JP5816199B2 - マイクロ繊維及びナノ繊維の二次元又は三次元繊維材料の製造装置 - Google Patents

マイクロ繊維及びナノ繊維の二次元又は三次元繊維材料の製造装置 Download PDF

Info

Publication number
JP5816199B2
JP5816199B2 JP2012551494A JP2012551494A JP5816199B2 JP 5816199 B2 JP5816199 B2 JP 5816199B2 JP 2012551494 A JP2012551494 A JP 2012551494A JP 2012551494 A JP2012551494 A JP 2012551494A JP 5816199 B2 JP5816199 B2 JP 5816199B2
Authority
JP
Japan
Prior art keywords
collector
dimensional
electrode
microfiber
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012551494A
Other languages
English (en)
Other versions
JP2013518996A (ja
Inventor
ポコルニー,マレク
ヴェレブニー,ヴラディミル
Original Assignee
コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム
コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム, コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム filed Critical コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム
Publication of JP2013518996A publication Critical patent/JP2013518996A/ja
Application granted granted Critical
Publication of JP5816199B2 publication Critical patent/JP5816199B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は,第1の電位に接続された少なくとも1つの紡糸ノズルと,互いに一定間隔に配置されると共に第2の電位に接続された,前記ノズルに対向する第1の組の電極と,隣接する電極の組の間に落下したマイクロ繊維又はナノ繊維を捕集するための捕集板とを備える,マイクロ繊維及びナノ繊維の二次元及び三次元繊維材料の製造装置に関する。
既知の極めて高強度の静電界の原理で作動するポリマーの溶融物又は溶液を繊維状の構造に形成する,マイクロ繊維及びナノ繊維の製造装置は,板状の捕集電極を用いたものが殆どである。最初のポリマー紡糸方法は,20世紀初頭に遡って特許化されている(米国特許第0705671号明細書(1900年),米国特許第0692631号明細書(1902年),米国特許第2048651号明細書(1934年)[1])。このような板状の電極の上に堆積される個々の繊維はランダムに配置されており,すなわち,これらはいずれかの好ましい方向に配置されているわけではない。流れるポリマー噴流の相が不安定なため,その軌道は極めて複雑であると共に,捕集電極へ達する前は空間的に無秩序である。
製造される材料が規則的に配列されたマイクロ繊維又はナノ繊維から成る場合,このような材料の用途は,多くの新しい近代的な分野及び派生用途においても限りなく広がる可能性がある。これらの有望な可能性は,その形態学的特性,すなわち,特に規則的に配向された内部構造による機械的,生理学的,生物学的,物理的,光学的及び化学的特性の著しい向上によるものである。
数々の刊行物が,このように堆積される繊維の配列をもたらす原理を取り扱っている。2つの基本的な方法が公知である。第1の方法は,高速で回転するシリンダ,棒又はディスクに繊維を巻き取る機械的原理を利用する。本発明も関連する第2の原理では,一定のサイズを有する非導電性の間隙によって互いに分離されている2つ以上の導電性部品に分割された静電式集合コレクタが利用されている。コレクタが,作用している静電界の静電力線の形状を形成する。ポリマー噴流の軌道はこれらの静電力によって決定され,集合コレクタ上に落下する繊維は,分割されたコレクタの非導電性領域において好ましい方向に互いに平行に堆積される。コレクタの導電性領域及び非導電性領域の構造が作用する静電力を画定し,ここまでのポリマー噴流のランダムな飛翔に影響を及ぼし,したがって,その動きが制御される。繊維のコレクタ上への整列した堆積メカニズムは,系統的な実験的考察又は物理モデルの数値シミュレーションから推論することが可能である。理論的には,これらの方法は良好に機能する。2003年〜2005年に,ダン・リら(Dan Li et al)によって,専門誌[2]〜[4]において,上記で考察した主題が掲載されている。
同様の装置を用いる平坦ないし二次元(2D)又は立体ないし三次元(voluminous)(3D)の材料の製造は,著しく限定的であり規則的な構造を有する,より大きい2D及びより厚い3D材料を製造することは不可能である。そのため,製造は,個別に配向された繊維の生産のみに限定されている。整列されたマイクロ繊維又はナノ繊維は分割されたコレクタの非導電性領域上に堆積され,ここで,微細な規則的な層を形成する。分割されたコレクタは,高い抵抗(1016Ωcm超)を有する非導電性のバックプレートによって分離された導電性(通常は金属製)のリンクから構成される。このような集合コレクタ上に堆積した繊維は該集合コレクタと機械的に結合されているため,該繊維の更なる独自の実用的用途は限定される。分割されたコレクタ上の,若しくはエミッタとコレクタとの間の下方の基材の配置が構造化された静電力を低下させ,繊維の配向の形成にその影響が作用する。この方法によって製造された材料を用いるためには,得られる層を先ずコレクタから取り出して移す必要がある。
ローハラ・ジャリら(Rouhollaha Jalili et al)の[5]には,数々の配向された繊維を共通の束に集積するための単純なコレクタが記載されている。それによると,平坦構造ではなく,繊維の束しか得られない。このような繊維サンプルが,束の特性のその後のX線及び機械的分析のためだけに調製された。数々の繊維束の実際の用途は[5]では述べられておらず,達成される寸法(30mmの長さ及び約0.08mmの直径)から,重要ではないと想定され得る。
米国特許公開第2005−0104258A1号及びPPVCZ2007−0727A3では単一電荷を生成する捕集電極の構造が考察されているが,繊維の如何なる整列された形成及び配向については取り扱われてはいない。分割されたコレクタは米国特許第4689186号明細書の一部ではあるが,これは異なる目的のために用いられており,配向された繊維の形成のいずれにも直接的に関与していない。欧州特許公開第2045375A1号明細書には,シリンダ形状の電気的に分割されたコレクタを用いて,規則的な構造を有するマイクロ繊維又はナノ繊維から組成される2D又は3D材料を製造する装置が記載されており,コレクタが回転する際に配向された繊維が捕集される。記載された解決方法により,回転するコレクタの直径によって部分的に限定される制限された寸法を有する材料を生成することが可能である。また,より大きな面積を有するこの種の材料の製造装置の実施(すなわち,提案された解決方法の複数回の再現)は,実際には複雑であり,ラインが制限的であるため,効果的ではない。
より厚い層(2D又は3D)が形成される場合,特にバイオポリマー製の繊維といった低強度のマイクロ繊維又はナノ繊維はコレクタの電極間で自身の重力により裂けてしまうため,構造全体が損なわれる。これにより,製造技術及び所望のパラメータを有する応用可能な材料の入手が限定される。
繊維が堆積してより厚い層になると,配向レベルが低下して,繊維の配列が再び更にランダムになる。これは,繊維の形成された層,すなわち,繊維の配向化原理が正しく機能できるよう,非導電性のままであり,電荷が無いはずであるコレクタ部で,電荷が累進的に増加することにより生じる。この悪影響により,材料のより下方の層,すなわち,堆積の開始時に最初に堆積された層でのみ配向された繊維の堆積がもたらされ,一方,より上方の層では繊維は主にランダムに配列されている。そのため,集合コレクタの構造と自動メカニズムとが設計されており,自動メカニズムでは,紡糸プロセスと並行して,マイクロ繊維又はナノ繊維の薄く堆積された層が取り出され,これらがより厚い層(2D又は3D)に重畳される。
発明の概要
本発明は,製造されるマイクロ繊維材料又はナノ繊維材料の形態学的特性及びこれらにより生じる他の特性の制御を可能とすることにより,これらの新規材料のより良好,且つ,異方性の特性を得ることを目的とする。製造される繊維材料の得られる特性,特に,繊維状構造の配向度,形態,密度,空隙率,並びに,機械的,物理的,生物学的及び化学的特性が,プロセスパラメータにより影響される。新規材料は,二次元(2D)又は三次元(3D)の物体の形態で,大きな巨視的な寸法を有する。様々な出発材料,好ましくはポリマー,すなわち,合成又は天然ポリマーを,マイクロ繊維又はナノ繊維の製造に至る紡糸プロセスに用いることが可能である。
この目的は,第1の電位に接続された少なくとも1つの紡糸ノズルと,一定間隔で配置されると共に第2の電位に接続される前記ノズルに対向する一組の電極と,隣接する電極の組の間に沈降したマイクロ繊維又はナノ繊維を捕集するための捕集板とを備えるマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置により達成され,本発明の内容は以下のとおりである:一組の電極が平面に配置された少なくとも2つの電極から構成され,捕集板と電極の平面とが角度αを形成し,その角度が0°〜90°の範囲であり,捕集板が,電極の平面に垂直で,電極の軸が延在する平面内に延びる方向に,電極に対して移動可能に支持されており,捕集板が移動する方向がこの電極の軸と角度βを形成し,その角度が0°〜90°の範囲である。
本発明のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置の優位な実施形態では,ブレードを端縁に備えた捕集板を電極の上に載置している。
この装置の他の優位な実施形態では,捕集板が,開口した平行な間隙を備えており,その各々が電極の1つに対向して配置されているが,2つの隣接する間隙間の捕集板部は2つの隣接する電極間の空間に挿入されている。
この装置の更なる優位な実施形態では,一定間隔で配置された一組の電極は,少なくとも3つの平行電極を備えている。
この装置の更なる他の優位な実施形態では,捕集板が,電極から離隔された表面上で剥離可能な基材で被覆されており,ナノ繊維の層がこの基材により包囲されることが可能となっている。
最後に,この装置の更なる他の優位な実施形態では,捕集板が,前記電極から離隔された表面に,捕集板により捕集されたナノ繊維の層を配置するための凹部を備える。
本発明を,添付図面を参照してより詳細に説明する。
コレクタの電極が直線状で平行なガイド杆の形態である本発明のマイクロ繊維又はナノ繊維の二次元又は三次元の繊維材料の製造装置の第1の例示的実施形態の概略図。 コレクタの電極が平面に配置された同心円状のガイド杆の形態である本発明のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置の第2の例示的実施形態の概略図。 平坦な捕集板を備える捕集メカニズムの概略側面図。 捕集シリンダを備える捕集メカニズムの概略側面図。 繊維を勾配ブレードにより導電性の杆の表面から直接捕集する捕集メカニズムの概略側面図。 本発明の装置から捕集板により取り出される前の,空隙により離間された杆の電極間に整然と堆積された繊維の写真。 板状コレクタ上に堆積されたランダムに配列された繊維の写真。 電気的に分割されたコレクタ上に堆積された,部分的に配向された繊維の写真。 本発明の分割されたコレクタから連続して引き出された,配向された繊維の写真。 図7,図8及び図9に対応する繊維の配向を表す角スペクトル。 それぞれ70倍,350倍及び3700倍で拡大した,本発明の装置を用いるポリビニルアルコール繊維製の材料の例。
図面の詳細な説明
ここで,マイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置の第1の例示的実施形態を概略的に図示した図1を参照する。ノズルエミッタ2にはポリマー溶液1が充填されると共に,その金属ノズル3にDC電圧源4の一方の極が接続されており,電圧源4の他方の極はコレクタの導電性の杆から成る電極6に接続されている。コレクタの電極6の導電性の杆は,x軸に対して角度αで傾斜している捕集板7に設けた間隙を通過している。コレクタの電極6の導電性の杆は,x−y面に配置されていると共に,直線状で互いに平行である。
装置が操作されると,ポリマー溶液1が,機械式ピストンにより金属ノズル3を通して押出される。ノズル3とコレクタの電極6(電極は導電性の杆の形態である)との間に,印加された電圧源4からの高DC電圧が,ノズル3からコレクタに向かう方向(すなわちz軸方向)に移動する繊維5としてのポリマー噴流をランダムな軌道に向ける。この繊維5が,コレクタに衝突する前に,マイクロ繊維又はナノ繊維の形態で固化する。繊維5に作用する静電力は,この場合にはy軸方向である好ましい方向8への堆積に影響を与え,このy軸方向は,x−y面に配置されたコレクタの電極6の導電性の杆に対して垂直である。x軸に対して角度αで傾斜している捕集板7は規定の時間間隔の間,方向v(t)に並進運動を行い,この方向v(t)はx軸と共に角度βを形成している。捕集板7の移動中に,繊維5がサイズS=l×wを有する領域9上に自然に堆積される。この配向された繊維5が新たな二次元(2D)又は三次元(3D)の材料10を形成する。
ここで,コレクタの電極6が平面に配置された同心円状のガイド杆の形態である,本発明のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置の第2の例示的実施形態を概略的に図示した図2を参照する。ノズルエミッタ2にはポリマー溶液1が充填されると共に,その金属ノズル3にDC電圧源4の一方の極が接続される。電圧源4の他方の極はコレクタの電極6に接続される。コレクタの電極6の導電性の杆は,x軸に対して角度αで傾斜している捕集板7に設けた間隙を通過する。コレクタの電極6の導電性の杆はx−y面に配置されると共に,これらは同心円状の形態を有する。
装置が操作されると,ポリマー溶液1が,ノズルエミッタ2の機械式ピストンにより金属ノズル3を通して押出される。ノズル3とコレクタの電極6との間の高電圧DCが,ノズル3からコレクタへ向かう方向(すなわちz軸方向)に移動する繊維5のポリマー噴流をランダムな軌道に向ける。このポリマー繊維5の噴流が,コレクタへ衝突する前にマイクロ繊維又はナノ繊維の形態に固化する。繊維5に作用する静電力は,x−y面に配置されたコレクタの電極6の円形の導電性の杆に対して径方向である好ましい方向8への堆積に影響を与える。x軸に対して角度αで傾斜している捕集板7は,所定の時間間隔でその垂直軸11の周りを方向ω(t)に回転して移動するが,一方で,捕集板の質量中心はx軸に対して角度βで傾斜している円12を描く。この捕集板の移動中に,繊維が領域9上に自然に堆積される。配向された繊維5が新たな二次元(2D)又は三次元(3D)の材料10を形成する。平坦な捕集板7を備える捕集メカニズムの概略側面図が図3に概略的に図示される。繊維5は,静電紡糸プロセスによって,コレクタの電極6の導電性の杆上に堆積される。その後,繊維が捕集板7の表面上に配置されるが,配向はそのまま維持される。この例示的実施形態では,捕集板7は平坦であり,コレクタの電極6の杆に対して角度αで傾斜しており,x軸と共に角度βを形成する方向に並進運動する。
捕集シリンダ14を備える捕集メカニズムの側面図が,図4に概略的に図示される。繊維5は,静電紡糸プロセスによりコレクタの電極6の導電性の杆上に堆積される。その後,繊維5が捕集シリンダ14の表面上に配置されるが,その配向はそのまま維持される。捕集シリンダ14はその軸の周りを回転し,同時に,x軸に沿って並進運動を行う。
図5は,勾配ブレードにより繊維5をコレクタの電極6の導電性の杆の表面から直接捕集する捕集メカニズムの概略側面図を示す。繊維5は,静電紡糸プロセスによりコレクタの導電性の杆から成る電極6上に堆積される。その後,繊維5が捕集板7の表面上に配置されるが,配向はそのまま維持される。この例示的実施形態では,繊維5は,勾配ブレード13によりコレクタの電極6の導電性の杆の表面から直接的に捕集される。ブレード13はコレクタの電極6の導電性の杆に対して角度αで傾斜しており,x軸に沿って並進運動する。
図6は,捕集板によって取り出される前の,空隙により離間されたコレクタの電極6の導電性の杆の間に,整然と堆積された繊維の写真である。図6から,ナノ繊維が平行に配列されていることが明らかである。
図7,図8及び図9は,集合コレクタの設計及びポリビニルアルコールのナノ繊維の連続堆積方法の重要性を示す写真である。これらの写真は,約5000倍の倍率で電子顕微鏡により撮影した。図7では,板状コレクタ上に沈降した繊維5はランダムに堆積されており,図8では,電気的に分割されたコレクタ上に堆積された繊維5は部分的に配向されており,図9は,本発明による分割されたコレクタから引き続き取り出された,配向された繊維5の写真である。
図10は,図7(サンプルA),図8(サンプルB)及び図9(サンプルC)に示したサンプルの繊維5の配向を表す角スペクトル図を示す。スペクトルは,フーリエ変換による画像分析に基づいて得た。サンプルCのスペクトルのピークは,この場合は90°の角度(垂直方向)である,繊維5の最も重要な配列角度に対応している。写真分析は,個々の繊維5ではなく,ドット,換言すると画像ピクセルで行われるが,適用した分析は,繊維5の配向の自動評価及び比較のために専門分野で一般的に用いられている。
本発明の装置により製造された例示的な材料の写真が図11である。図11におけるポリビニルアルコール繊維5の材料の一部分は,3種の異なる拡大倍率,すなわち,図11aでは70倍の倍率,図11bでは350倍の倍率,及び,図11cでは3700倍の倍率で撮影されている。
マイクロ繊維又はナノ繊維は静電紡糸法により形成される。単一又は複数のノズルエミッタ2が,コレクタの第2の電極6に向かって移動し,コレクタの領域全体を均一にカバーする噴流の形態でポリマー繊維5の流れを生成する。マイクロ繊維又はナノ繊維は,静電界の力によって運搬されて,互いに平行に堆積される。なぜなら,繊維がノズルエミッタ2から電極6に移動する間に,繊維の軌道は,コレクタの近傍の静電界の力線に影響されるからであり,これらの目的のために,コレクタは2つ以上の導電性領域及び非導電性領域に分割される。数多くの実験を基に集合コレクタを設計し,テストしたが,コレクタの電極6は,例えば,互いに空隙によって分離されるワイヤ又は弦の形態といった,2つ以上の薄い導電性の杆により構成される。これらの数及び長さはいずれも限定されない。更に,杆の断面の最も好適な形状は円形ではなく,角のあるもの,すなわち,0.1mm〜10mm,好ましくは1〜5mmの幅を有する正方形もしくは矩形であるとの知見を得た。個々の杆は,横方向に空間を介して互いに離れており,所定の幅,すなわち,0.1mm〜200mm,より好ましくは1mm〜100mmの空隙により離間している。整列された繊維5の形成に対する空隙の影響を体系的に研究したところ,短い距離の場合,配向度が低下することが見出された。対照的に,長い距離の場合,繊維5は導電性電極上に直接的に堆積され,導電性の杆の間に延在する配向される繊維5の数が少なくなるか,又は,繊維は自身の重力によって裂ける。したがって,配向される繊維5を良好に形成するために,空隙の最も好適なサイズを,ポリマーの各種について実験的にテストしなければならない。更に,導電性の杆の幅は必ずしも大きい必要はなく,反対に,デザイン及び機能の観点から,正方形の断面を有する薄い杆を利用することが,前述の文献に示される幅広い板とは対照的に有利であるとの知見を得た。空隙のサイズは,機械特性に応じて数種の合成ポリマー及び天然ポリマーについて最適化した。
繊維5が,非導電性領域全体に,一方向に縦に,又は,コレクタの電極6の導電性の杆に対して垂直に配置される,コレクタの電極6の導電性の杆と杆の間の空間は,堆積の最中に徐々に埋められていく。このように配向された繊維5のより厚い層への堆積は,例えば配向度の低下等といった前述の理由により可能ではないため,薄く堆積された層を規則的な時間間隔で取り出し,好ましくは堆積と同時にバックプレート上に移すプロセスが提案されている。
配向された繊維5の捕集,移動,及び,重畳のために,細長い開口を有する捕集板7が用いられ,この細長い開口により,捕集板7をコレクタの電極6の導電性の杆上に載置すると共に,導電性の杆に沿った長手方向に並進運動させることが可能となる。捕集板7の形状を繰り返し実験的にテストし,改変した。得られた最適な設計が本開示に記載されている。1秒〜1時間の所定の時間間隔の間に,捕集板7は導電性の杆に沿った縦方向に移動し,整然と堆積されたマイクロ繊維又はナノ繊維を,その表面上に拾い上げる。コレクタの電極6の杆に対する捕集板7の所定の角度,すなわち0°<α<90°の傾斜により,コレクタの電極6の導電性の杆の端縁の近傍で取り出される繊維5は機械的に加えられる応力が小さいこと,及び,更に,捕集板7の傾斜が,捕集板7上への個々の繊維5の全長にわたる規則的な堆積を補助するとの知見を得た。更に,捕集板の傾斜は,コレクタの電極6の導電性の杆上へ直接的に堆積された繊維5を同時に取り出すことを可能とする。繊維5は,より強く作用している静電力により,これらの箇所で大量に堆積され,したがって,得られる材料の機械的耐久性が高められる。しかも,より大きな領域S=ΣS=Σ(l×w)(式中,lは長さであり,wは領域iの幅である)上での配向された繊維5の捕集における問題は,新規に設計され,実験的に検証されたプロセスによってのみ解決される。捕集板はコレクタの電極6の導電性の杆に沿って並進運動を(0.001m/s〜10m/sの速度で)行い,この運動の方向が,コレクタの電極6の導電性の杆と角度β(0°<β<90°の間)を形成する。この運動の最中に,整然と堆積されたマイクロ繊維又はナノ繊維は,材料10の規則的な整列構造が保持されたまま,厚い層(2D)又は立体(3D)の物体に重畳される。角度βの値によって,新規材料10により形成された層における繊維5の面密度と,繊維で被覆される捕集板部の長さlとが決定される。平面状又は立体状の材料10は,合計処理時間及び製造される材料10の総領域に応じて連続的に形成される。開発されたプロセスでは,マイクロ繊維又はナノ繊維を,より上方の層においても配向度を保持しつつ,より厚い層に堆積させることが可能である。製造された最終的なバックプレート上に配置することで,繊維5の機械的な変形を最小に抑えることができるため,その構造が乱されることがない。
例えば合成又は天然ポリマーといった異なる混合物から生産された繊維5は一般に異なる機械的特徴を有し,静電紡糸により製造される材料10もまた異なる形態を有する。試験した特徴に基づき,提案されている整列された繊維5の捕集及び堆積プロセスの1つを選択した。コレクタの電極6の導電性の杆間に挿入されている捕集板7の使用が,天然ポリマー製の機械的強度が低い繊維5に好適であるとの知見を得た。繊維5は,コレクタの電極6の導電性の杆の間に懸下されている間に,自身の重量によっても裂けてしまう場合があるほどに細い可能性がある。このような事例では,本発明の装置によって繊維5を取り出す以外の他の可能性はない。反対に,導電性の杆の表面上で並進運動を行う捕集ブレード13を備える捕集板7が,合成ポリマーのようなより耐性を有する材料10と共に用いられる。このプロセスの利点は,得られる材料10は,どこも破断されておらず,コレクタの電極6の導電性の杆上の領域で強化すらされており,例えば特定の用途におけるその後の機械的応力に対するその耐性を著しく高めていることである。
コレクタの電極6の導電性の杆に沿った捕集板7の並進運動は,材料10の片面の堆積物を形成するために,所定の時間間隔の間に逆行する。新たな材料10は任意のバックプレート上に形成され,このバックプレートは,梱包材として設計されることが可能である。実際の解決方法では,堆積チャンバ内でそのまま同時に無菌梱包されることにより,直接的に適用及び使用できる状態の,整列された材料の製造が可能となる。設計された装置は,技術的に困難である微細な繊維材料10の他の移送基材上への機械的な移動の問題を解決すると共に,操作中に材料10の乱れ,損傷,汚染及び劣化が生じる可能性を排除する。設計された装置は,堆積チャンバ内の単一環境での製造プロセスの実施を可能とし,したがって,医薬用の材料10に必要な無菌性が容易に達成され得る。
他の事例では,捕集板7は,時間間隔の経過後に一方向にのみ移動する。捕集板7は同じ時間間隔で端部位置に留まり,その後,戻ってくる。分割された並進運動により,下方の材料に形状が適合して取り付けられている捕集板7の両面からマイクロ繊維又はナノ繊維が堆積される。この原理により,支持バックプレートのみの両面に繊維の層を形成することが可能となる。
更に,設計の観点でより困難である捕集板7の不連続な動きの問題に対処している。中心対称構造は,コレクタの円形の導電性の杆をコレクタの電極6として用いる。この場合,捕集板7はその中心軸の周囲を回転する。この場合,捕集板は,0.001〜10rad/sの範囲の角速度ω(t)で動く。繊維5は,既述の実施形態における場合と同じく,堆積及び積層される。したがって,捕集板7の連続的な回転運動は,既述の解決方法における不連続な並進と比較した場合に有利である。
捕集板7の構造的な変更により,0<γ<90°の範囲内の角度γで捕集板7の個々の要素を回転させることが可能である。繊維材料10の積層の所定の時間間隔(1秒〜1時間)の経過後,領域S=l×wを有する捕集板7の要素をわずかに回転させ,材料10の更なる層を再度堆積させる。このように形成された材料10の内部構造はマイクロ繊維又はナノ繊維から成る独立した層を有しており,これらの層は,調整された角度γだけ互いにわずかに変位している。この原理では,異方性材料10の2つ以上の好ましい方向を有する材料10の製造が可能であると共に,整列された3D構造の形成もまた可能である。規則的な構造は,前記プロセスにおける,捕集板7の要素の回転により,又は,繊維5の捕集の複数回の反復により,領域上のみならず,三次元物体中にもたらされる。
堆積された繊維5が捕集板7における間隙間の領域を埋める。配向されたマイクロ繊維又はナノ繊維が積層される領域9のサイズは次元的に限定されない。電極6の導電性の杆の横幅(及び,これに基づく捕集板7における間隙の幅)が唯一の重要なパラメータである。これらの箇所では,得られる材料10中の繊維5は整然と堆積されていないか,又は,ここのいくつかの箇所が埋められずに残される。得られる材料10では,これらの領域は最大で20%を占める。
エミッタの複数の金属ノズル3が,コレクタのより大きな領域を繊維5で被覆し,製造効率を高める目的のために用いられる。エミッタの個別の金属ノズル3はまた,異なるポリマー混合物の繊維5の堆積にも用いられる。エミッタの金属ノズル3がコレクタの電極6の導電性の杆に沿って一列に配置される場合,繊維5は次々と層に堆積されるが,個々の層は異なるポリマーの繊維5により形成される。得られる材料の繊維構造は複合型のものである。
捕集板7を,コレクタの電極6の個々の導電性の杆のための間隙が側面に設けられた所定の直径Rの捕集シリンダ14に置換することにより,壁が縦方向に規則的に配列された繊維5から構成される中空管の生産が可能となる。捕集シリンダ14は,2つの独立した動作である,その縦軸を回る回転動作,及び,コレクタの電極6の導電性の杆(x軸)に沿った方向への並進動作を行う。シリンダのこれらの動作により,その表面上へのマイクロ繊維又はナノ繊維の捕集が可能となる。繊維5が二次元(2D)な材料10に堆積された,バックプレートを備えた捕集シリンダ14の表面は,管状のままにするか,又は,より大きいサイズの面状の材料10を形成する目的のために展開される。
コレクタの前述の構造,並びに,配向されたマイクロ繊維又はナノ繊維の捕集及び堆積のメカニズムにより,微細で規則的な繊維構造を保持したまま,面積的に大きいか,又は,三次元的(3D)に積層された形態である新規材料の効率的な製造が可能となる。
産業上の利用可能性
本発明は,一以上の方向に縦に配列された,配向されたマイクロ繊維又はナノ繊維から組成される内部繊維構造を有する平面(2D)又は三次元(3D)の材料の製造に用いられ得る。

Claims (9)

  1. 第1の電位に接続された少なくとも1つの紡糸金属ノズル(3)と,コレクタの一組の電極(6)を備え,前記コレクタの一組の電極(6)が,平面に配置された前記コレクタの少なくとも2つの電極(6)を備え,記ノズル(3)に対向し,互いに一定の間隔で配置されると共に第2の電位に接続される,マイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置において,
    前記コレクタの隣接する前記電極(6)の組の間に沈降したマイクロ繊維又はナノ繊維を捕集するための捕集板(7)又は捕集シリンダ(14)とを備え,前記捕集板(7)は,前記コレクタの前記電極(6)が通過する間隙を有し,その交線上にある前記捕集板(7)又は前記コレクタの前記電極(6)の前記平面との接触線に対して垂直な捕集シリンダ(14)に対する接線と前記コレクタの前記電極(6)の前記平面とが角度αを形成し,その角度が0°〜90°の範囲であり,前記捕集板(7)又は前記捕集シリンダ(14)が,前記コレクタの前記電極(6)の前記平面に垂直であると共に前記電極(6)の軸が延在する平面内に延びる方向に,前記コレクタの前記電極(6)に対して移動可能に配置され,且つ,前記捕集板(7)又は前記捕集シリンダ(14)が移動する方向が,前記電極(6)の軸と角度βを形成し,その角度が0°〜90°の範囲であることを特徴とするマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  2. 前記捕集板(7)が,開口した平行な前記間隙を備えており,前記間隙の各々が前記コレクタの前記電極(6)の1つに対向して配置され,前記捕集板(7)の2つの隣接する前記間隙間の領域が,前記コレクタの2つの隣接する前記電極(6)間の空間に配置されることを特徴とする請求項1記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  3. 互いに対して一定の間隔を有する前記コレクタの前記一組の電極(6)が,前記コレクタの少なくとも3つの平行な電極(6)を備えることを特徴とする請求項1又は2記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  4. 前記捕集板(7)が前記コレクタの前記電極(6)から離隔された表面を有し,前記表面が剥離可能な基材で被覆され,前記マイクロ繊維又はナノ繊維の層が前記基材で包囲されることを可能とすることを特徴とする請求項1記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  5. 前記捕集板(7)が,前記コレクタの前記電極(6)から離隔されていると共に,前記捕集板(7)により捕集された前記マイクロ繊維又はナノ繊維の層を配置するための凹部を設けた表面を含むことを特徴とする請求項1記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  6. 前記コレクタの前記電極(6)の断面の形状が,0.1mm〜10mmの幅を有する正方形又は矩形であることを特徴とする請求項1記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  7. 前記コレクタの前記電極(6)の断面の形状が,1mm〜5mmの幅を有する正方形又は矩形であることを特徴とする請求項記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  8. 前記コレクタの前記電極(6)が空隙によって互いに分離され,且つ,横方向に互いに0.1mm〜200mm離間したことを特徴とする請求項1記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
  9. 前記コレクタの前記電極(6)が,横方向に互いに1mm〜100mm離間したことを特徴とする請求項記載のマイクロ繊維又はナノ繊維の二次元又は三次元繊維材料の製造装置。
JP2012551494A 2010-02-05 2011-02-03 マイクロ繊維及びナノ繊維の二次元又は三次元繊維材料の製造装置 Expired - Fee Related JP5816199B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZPV2010-93 2010-02-05
CZ20100093A CZ201093A3 (cs) 2010-02-05 2010-02-05 Zarízení pro výrobu dvojrozmerných nebo trojrozmerných vlákenných materiálu z mikrovláken nebo nanovláken
PCT/CZ2011/000013 WO2011095141A1 (en) 2010-02-05 2011-02-03 Apparatus for production of two-dimensional or three-dimensional fibrous materials of microfibres and nanofibres

Publications (2)

Publication Number Publication Date
JP2013518996A JP2013518996A (ja) 2013-05-23
JP5816199B2 true JP5816199B2 (ja) 2015-11-18

Family

ID=44170129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012551494A Expired - Fee Related JP5816199B2 (ja) 2010-02-05 2011-02-03 マイクロ繊維及びナノ繊維の二次元又は三次元繊維材料の製造装置

Country Status (17)

Country Link
US (1) US8721313B2 (ja)
EP (1) EP2531636B1 (ja)
JP (1) JP5816199B2 (ja)
KR (1) KR20120128664A (ja)
CN (1) CN102753738B (ja)
BR (1) BR112012019532A2 (ja)
CA (1) CA2786931A1 (ja)
CZ (1) CZ201093A3 (ja)
DK (1) DK2531636T3 (ja)
ES (1) ES2536430T3 (ja)
HU (1) HUE025211T2 (ja)
IL (1) IL221215A0 (ja)
PL (1) PL2531636T3 (ja)
PT (1) PT2531636E (ja)
RU (1) RU2547638C2 (ja)
SI (1) SI2531636T1 (ja)
WO (1) WO2011095141A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122019009442B8 (pt) 2010-06-17 2021-05-04 Univ Washington aparelho para produzir uma estrutura que inclui uma pluralidade de fibras
CZ2011376A3 (cs) * 2011-06-27 2012-08-22 Contipro Biotech S.R.O. Zpusob výroby materiálu s anizotropními vlastnostmi složených z nanovláken nebo mikrovláken a zarízení pro provádení tohoto zpusobu
CN102433596B (zh) * 2011-12-28 2014-07-02 东华大学 一种泰勒锥喷头静电纺丝取向纳米纤维的收集装置及方法
ES2847893T3 (es) 2012-09-21 2021-08-04 Univ Washington Parches biomédicos con fibras dispuestas en el espacio
US11236442B2 (en) 2013-03-14 2022-02-01 Lifenet Health Electrospinning apparatus and methods of use thereof
US10441403B1 (en) 2013-03-15 2019-10-15 Acera Surgical, Inc. Biomedical patch and delivery system
CZ2013379A3 (cs) * 2013-05-22 2014-08-20 Malm S.R.O. Způsob a zařízení pro výrobu vrstvy vláken, zejména nanovláken, mikrovláken nebo jejich směsí, s vlákny orientovanými v jednom směru, a kolektor tohoto zařízení pro ukládání vláken
CN103469492B (zh) * 2013-09-22 2015-08-19 北京化工大学 一种静电纺丝纤维沉积均化装置及方法
WO2015075658A1 (en) * 2013-11-20 2015-05-28 The Stellenbosch Nanofiber Company (Pty) Limited Electrospun fibre collection and handling
WO2016018988A1 (en) * 2014-07-31 2016-02-04 The University Of North Carolina At Chapel Hill Two dimensional materials produced by the liquid exfoliation of black phosphorus
CN104264240B (zh) * 2014-09-25 2016-08-24 天津市职业大学 一种多功能集成式实验室专用静电纺丝机
CN105648546A (zh) * 2016-02-25 2016-06-08 清华大学 静电纺丝纤维的定向排布设计和制备方法
KR101790992B1 (ko) * 2016-04-26 2017-10-27 전북대학교산학협력단 나노섬유 제조장치 및 제조방법
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
EP3680370A4 (en) * 2017-09-05 2021-07-07 M-Techx, Inc. NANO FIBER COLLECTING DEVICE, NANO FIBER COLLECTING METHOD, AND NANO FIBER ACCUMULATION / FORMING DEVICE AND ACCUMULATION / FORMING METHOD FOR THEREFORE
CN107858787B (zh) * 2018-01-03 2023-09-22 郑州大学 一种制备组织工程用复合生物材料的装置
CN108103598A (zh) * 2018-02-09 2018-06-01 郑州大学 一种制备沿轴取向管状组织工程材料的静电纺丝接收装置
CN108642574B (zh) * 2018-04-24 2020-11-24 东华大学 一种批量化复合三维结构亚微米纤维膜的制备装置与方法
PT115228B (pt) * 2018-12-21 2023-04-18 Univ Aveiro Sistema e processo de fabricação em larga escala de matrizes tridimensionais de fibras alinhadas por eletrofiação
US11980932B2 (en) 2019-05-10 2024-05-14 Max-Planck-Gesellschaft, Zur Förderung der Wissenschaften e.V. Method of producing metal strands and apparatus for producing metal strands
EP3741478A1 (en) * 2019-05-21 2020-11-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method of producing metal strands and apparatus for producing metal strands
CN110284208B (zh) * 2019-05-28 2020-08-04 武汉纺织大学 一种离心纺丝的双向收集系统
CN110424057B (zh) * 2019-08-12 2022-05-10 广东工业大学 一种静电纺丝沉积方法及系统
EP4053313A1 (en) * 2019-10-28 2022-09-07 Kao Corporation Fiber deposit production method, membrane production method, and membrane adhesion method
EP4053312A1 (en) * 2019-10-28 2022-09-07 Kao Corporation Method for manufacturing fiber deposition body, method for manufacturing film, and method for attaching film
CN111321475A (zh) * 2020-04-17 2020-06-23 中广核达胜加速器技术有限公司 一种无机纤维原丝纺丝系统及其纺丝方法
CN111945236B (zh) * 2020-07-29 2022-07-26 华南理工大学 一种纳米纤维取向和厚度可控的静电纺丝装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US692631A (en) 1899-10-06 1902-02-04 Charles S Farquhar Apparatus for electrically dispersing fluids.
US705691A (en) 1900-02-20 1902-07-29 William James Morton Method of dispersing fluids.
US705671A (en) 1901-06-21 1902-07-29 Arthur Herschmann Differential gear for self-propelling vehicles.
US2048651A (en) 1933-06-23 1936-07-21 Massachusetts Inst Technology Method of and apparatus for producing fibrous or filamentary material
DE2960875D1 (en) * 1978-04-19 1981-12-10 Ici Plc A method of preparing a tubular product by electrostatic spinning
EP0009941B2 (en) 1978-10-10 1987-05-27 Imperial Chemical Industries Plc Production of electrostatically spun products
RU2198718C1 (ru) * 2001-10-01 2003-02-20 Государственное научное учреждение Институт механики металлополимерных систем им. В.А. Белого НАН Беларуси Способ получения электретного тонковолокнистого фильтрующего материала для респираторов
US20050104258A1 (en) 2003-07-02 2005-05-19 Physical Sciences, Inc. Patterned electrospinning
DE60331264D1 (ja) * 2003-12-30 2010-03-25 Kim Hag Yong
US20070000727A1 (en) 2005-06-30 2007-01-04 Ciesielka Sean V Drain valve assembly
WO2007084742A2 (en) * 2006-01-20 2007-07-26 University Of Akron Method of making coiled and buckled electrospun fiber structures
ATE502140T1 (de) * 2007-10-02 2011-04-15 Stem Cell Technology Company Vorrichtung und verfahren für elektrospinning von 2d- oder 3d-strukturen von mikro- bzw. nanofasermaterialien
CZ2007727A3 (cs) 2007-10-18 2009-04-29 Nanopeutics S. R. O. Sberná elektroda zarízení pro výrobu nanovláken elektrostatickým zvláknováním polymerních matric, a zarízení obsahující tuto sbernou elektrodu
WO2009101472A2 (en) 2007-11-02 2009-08-20 National University Of Singapore Stent coated with aligned nanofiber by electrospinning
CN101279204B (zh) * 2008-01-15 2012-03-21 沈阳航空工业学院 高强度纳米纤维功能膜的制备方法
CN101255611A (zh) * 2008-02-22 2008-09-03 哈尔滨工业大学深圳研究生院 定向排列的聚合物螺旋纳米纤维电纺制备方法及其设备

Also Published As

Publication number Publication date
KR20120128664A (ko) 2012-11-27
SI2531636T1 (sl) 2015-06-30
EP2531636A1 (en) 2012-12-12
EP2531636B1 (en) 2015-02-18
ES2536430T3 (es) 2015-05-25
HUE025211T2 (en) 2016-01-28
PL2531636T3 (pl) 2015-07-31
RU2012137379A (ru) 2014-03-10
CN102753738B (zh) 2015-02-04
IL221215A0 (en) 2012-10-31
JP2013518996A (ja) 2013-05-23
RU2547638C2 (ru) 2015-04-10
DK2531636T3 (en) 2015-05-26
CA2786931A1 (en) 2011-08-11
WO2011095141A1 (en) 2011-08-11
BR112012019532A2 (pt) 2018-03-13
US20120301567A1 (en) 2012-11-29
PT2531636E (pt) 2015-05-28
CZ201093A3 (cs) 2011-08-17
US8721313B2 (en) 2014-05-13
CN102753738A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5816199B2 (ja) マイクロ繊維及びナノ繊維の二次元又は三次元繊維材料の製造装置
EP2045375B1 (en) Apparatus and method for electrospinning 2D- or 3D-structures of micro- or nano-fibrous materials
Alghoraibi et al. Different methods for nanofiber design and fabrication
KR20140045515A (ko) 나노섬유 또는 마이크로섬유로 구성되고 이방성을 갖는 재료를 제조하는 방법 및 이 방법을 실시하기 위한 장치
Teo et al. A review on electrospinning design and nanofibre assemblies
US20140207248A1 (en) Hierarchical multiscale fibrous scaffold via 3-d electrostatic deposition prototyping and conventional electrospinning
US20110039101A1 (en) Electrospun fiber tubular material and preparation method thereof
JP2014095174A (ja) 電界紡糸装置及びそれを備えたナノファイバ製造装置
García-López et al. 3D printed multiplexed electrospinning sources for large-scale production of aligned nanofiber mats with small diameter spread
Ali et al. Electrospinning of continuous nanofiber bundles and twisted nanofiber yarns
Liu et al. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds
Nurfaizey et al. Manipulation of electrospun fibres in flight: the principle of superposition of electric fields as a control method
Yousefzadeh et al. Modeling performance of electrospun nanofibers and nanofibrous assemblies
US20160168754A1 (en) Electrospinning apparatus and method for producing multi-dimensional structures and core-sheath yarns
Liu et al. Simulation of electrospun nanofibre deposition on stationary and moving substrates
WO2011090995A2 (en) Structures and methods of collecting electrospun fibers
KR101258908B1 (ko) 멀티-셀 타입 전기방사용 튜브 및 이를 이용한 나노섬유의 제조방법
Liu et al. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors
Haseeb Controlled deposition and alignment of electrospun PMMA-g-PDMS nanofibers by novel electrospinning setups
Yeum et al. Fabrication of highly aligned poly (vinyl alcohol) nanofibers and its yarn by electrospinning
Liu et al. Scale-up strategies for electrospun nanofiber production
ES2961325T3 (es) Fabricación automatizada de matrices celulares tridimensionales con nanofibras de alineación controlada y distribución celular uniforme
Yousefzadeh et al. * Amirkabir University of Technology, Tehran, Iran,† National University of Singapore, Singapore, Singapore
EP3507396B1 (en) Method and apparatus for fabricating a fibre array and structure incorporating a fibre array
EP3882385A1 (en) Automated manufacturing of three-dimensional cell matrices with nanofibres of controlled alignment and uniform cell distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5816199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees