JP5814760B2 - プリント基板の基板構造 - Google Patents

プリント基板の基板構造 Download PDF

Info

Publication number
JP5814760B2
JP5814760B2 JP2011266637A JP2011266637A JP5814760B2 JP 5814760 B2 JP5814760 B2 JP 5814760B2 JP 2011266637 A JP2011266637 A JP 2011266637A JP 2011266637 A JP2011266637 A JP 2011266637A JP 5814760 B2 JP5814760 B2 JP 5814760B2
Authority
JP
Japan
Prior art keywords
power
base material
circuit
pattern
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011266637A
Other languages
English (en)
Other versions
JP2013121201A (ja
Inventor
神藤 高広
高広 神藤
壮志 野村
壮志 野村
直道 石浦
直道 石浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2011266637A priority Critical patent/JP5814760B2/ja
Publication of JP2013121201A publication Critical patent/JP2013121201A/ja
Application granted granted Critical
Publication of JP5814760B2 publication Critical patent/JP5814760B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はプリント基板の基板構造に関し、より詳細には、基板上の複数系統の回路ごとに絶縁された電源を供給するプリント基板の基板構造に関する。
多数の部品が実装されて複数系統の回路が構成されるプリント基板では、多くの場合、回路系統ごとに絶縁された電源を使用するほうが好ましい。例えば、CPU素子を含む制御系回路と、モータ駆動用のトランジスタ素子を含む動力系回路とを1枚のプリント基板上に構成する場合、制御系回路および動力系回路では相互に絶縁された電源を使用するほうが好ましい。仮に、絶縁されていない共通電源を用いると、トランジスタ素子でモータに流れる大電流をスイッチングした際に発生するノイズ電圧が共通電源を介してCPU素子に伝搬し、CPU素子が誤動作するおそれが生じる。
同様に、CPU素子を含むデジタル制御系回路と、A/D変換器などを用いて微小アナログ信号を処理するアナログ系回路とを1枚のプリント基板上に構成する場合、やはり相互に絶縁された電源を使用するほうが好ましい。仮に、絶縁されていない共通電源を用いると、デジタル制御系回路内のIC素子などで内部の半導体がスイッチング動作してノイズ電圧を発生させ、ノイズ電圧が共通電源を介してアナログ系回路に伝搬し、アナログ系回路の誤動作や精度低下を引き起こすおそれが生じる。
このような共通電源による誤動作や精度低下のおそれを解消するため、従来技術では絶縁トランスが多用されてきた。絶縁トランスは、電子回路の電源として一般的に用いられる直流電圧を一旦交流電圧に変換し、この交流電圧を変圧器の一次側に印加し、絶縁された二次側から誘起電圧を取り出して整流することにより第2の直流電圧を発生するものである。また、電源が相互に絶縁された回路間で信号を授受する場合には、絶縁素子が用いられてきた。絶縁素子は、入出力間の絶縁を確保しつつ信号波形を維持して伝達するものである。また、近年では、特許文献1および2に例示されるように、高周波を用いた非接触給電技術が提案されており、プリント基板の電源の絶縁化への応用が期待されている。非接触給電技術には、大きく分けて電界結合方式と電磁誘導方式がある。
特許文献1に開示されたエネルギー搬送装置は、主として2つの離れた能動電極間に容量結合が存在し、これらの電極が強い電位にされ、強い場のゾーンがこれらの電極間に位置する空間に限定されることを特徴としている。さらに、請求項2には、能動電極が高圧高周波発生器に結合され、電位エネルギーが電極間の空間に供給される態様が示されている。これにより、遠隔エネルギー伝送を行うことができる。特許文献1は、電界結合方式の非接触給電技術の一例を示している。
また、特許文献2の請求項1には、電気エネルギーをある距離に伝達する方法が開示されている。この方法は、複数のサブ電極にセグメント化された能動電極および受動電極からなる第1の組の電極を含む発生器装置を供給するステップと、能動電極および受動電極からなる第2の組の電極を含む負荷装置を供給するステップと、負荷装置の1つの能動電極を発生器装置のサブ電極の近傍に位置決めするステップと、サブ電極の近傍に強力な電界領域を形成することによって負荷装置に電気エネルギーを伝達するステップとを含んでいる。この方法は、大規模発生器が複数の小さな負荷に電流を供給する極めて非対称的な状況における用途を目的とし、小さな負荷は移動可能である、とされている(特許文献2の段落0037参照)。特許文献2は、電界結合方式により、移動する複数の負荷に非接触で給電する技術の一例を示している。
特表2009−531009号公報 特表2010−537613号公報
ところで、プリント基板に用いられる電源トランスは、比較的大形の部品であるため大きな配置スペースが必要になってプリント基板の面積が大きくなる弊害が生じていた。さらに、電源トランスは高価であるので、プリント基板全体のコストがアップする要因となりがちであった。
また、特許文献1の技術は、非接触給電における電極の構造や非接触部分の絶縁性について開示しているものの、プリント基板の電源の絶縁化に適用できる具体的な構成を開示するものではない。さらに、特許文献2の技術は、複数の移動する負荷に非接触給電することを目的としており、プリント基板の電源の絶縁化には適用できない。
本発明は、上記背景技術の問題点に鑑みてなされたもので、従来技術と比較して電源の絶縁化に要するプリント基板上の面積を省スペース化するとともにコストを削減したプリント基板の基板構造を提供することを解決すべき課題とする。
上記課題を解決する請求項1に係るプリント基板の基板構造の発明は、絶縁性の基材層と、前記基材層の表面に設けられた第1配線パターン層を含んで構成された第1系回路と、前記基材層の表面に前記第1配線パターン層から電気絶縁されて設けられた第2配線パターン層を含んで構成された第2系回路と、を備えたプリント基板の基板構造であって、前記基材層の一方の表面に設けられて前記第1配線パターン層に電気接続された導電性の給電パターン、および前記基材層の他方の表面に設けられて前記第2配線パターン層に電気接続されるとともに前記基材層を挟んで前記給電パターンに対向する導電性の受電パターンをそれぞれ有し、前記給電パターンと前記受電パターンとの間に形成される電界を介して高周波電力の給電が可能となっている2組の非接触給電部と、前記第1系回路内に設けられて2つの給電パターンの間に高周波電力を給電する給電回路と、前記第2系回路内に設けられて2つの受電パターンの間に非接触給電された高周波電力を変成し前記第2系回路内の負荷に給電する受電回路と、をさらに備える。
請求項2に係る発明は、請求項1において、前記基材層の前記給電パターンと前記受電パターンとの間に介在する領域の基材厚さが薄くされている。
請求項3に係る発明は、請求項1または2において、前記基材層の前記給電パターンと前記受電パターンとの間に介在する領域に高い誘電率を有する絶縁性材料が用いられている。
請求項4に係る発明は、請求項1〜3のいずれか一項において、前記給電回路と前記2組の非接触給電部と前記受電回路とにより形成される閉回路内に設けられ、前記閉回路のインピーダンスを最小に調整するインピーダンス調整素子をさらに備える。
請求項5に係る発明は、請求項1〜4のいずれか一項において、前記プリント基板は複数の基材層が重ね合わせられて構成され、いずれかの基材層の一方の表面に前記給電パターンが設けられ他方の表面に前記受電パターンが設けられている。
請求項1に係るプリント基板の基板構造の発明では、給電パターンおよび受電パターンをそれぞれ有する2組の非接触給電部と、2つの給電パターンの間に高周波電力を給電する給電回路と、2つの受電パターンの間に非接触給電された高周波電力を変成して負荷に給電する受電回路と、により電界結合方式の非接触給電機構が構成される。非接触給電機構では、非接触給電部がコンデンサになり電界が形成されて高周波電流が流れ、非接触で第2系回路内の負荷に電源を供給できる。ここで、第2系回路の負荷の電源と第1系回路の電源とは相互に絶縁されており、第1系および第2系回路の相互間の電圧ノイズの伝搬が抑制される。したがって、従来技術で用いていた絶縁トランスが不要になり、絶縁トランスの配置スペース分だけプリント基板を省スペース化できる。また、絶縁トランスのコスト分だけプリント基板のコストを削減できる。
請求項2に係る発明では、基材層の給電パターンと受電パターンとの間に介在する領域の基材厚さが薄くされている。これにより、給電パターンと受電パターンとで構成されるコンデンサの電極間距離が小さくなって静電容量が増加し、大きな給電容量および高い給電効率を確保できる。
請求項3に係る発明では、基材層の給電パターンと受電パターンとの間に介在する領域に高い誘電率を有する絶縁性材料が用いられている。これにより、給電パターンと受電パターンとで構成されるコンデンサの電界形成領域の誘電率が大きくなって静電容量が増加し、大きな給電容量および高い給電効率を確保できる。
請求項4に係る発明では、インピーダンス調整素子は、給電回路と2組の非接触給電部と受電回路とにより形成される閉回路のインピーダンスを最小に調整する。したがって、閉回路では直列共振が発生して大きな高周波電流が流れ、大きな給電容量および高い給電効率を確保できる。
請求項5に係る発明では、プリント基板は複数の基材層が重ね合わせられて構成され、いずれかの基材層の一方の表面に給電パターンが設けられ他方の表面に受電パターンが設けられている。本発明は、複数の基材層からなる多層プリント基板でも実施でき、請求項1〜4と同様の効果が生じる。
第1実施形態のプリント基板の基板構造の構成を模式的に示す図であり、(1)はプリント基板を上方から見た上面の平面図および下面の透視平面図、(2)はプリント基板を側方から見た図である。 第1実施形態のプリント基板の基板構造における電源系統の構成を示す回路図である。 第1および第2非接触給電部が構成する平行板コンデンサを示した図である。 第2実施形態のプリント基板の基板構造の構成を模式的に示す図であり、(1)はプリント基板を上方から見た上面の平面図および下面の透視平面図、(2)はプリント基板を側方から見た図である。 第3実施形態のプリント基板の基板構造の構成を模式的に示す図であり、プリント基板を側方から見た図である。 従来技術を用いたプリント基板の基板構造を模式的に示す図であり、(1)は制御系回路および動力系回路に共通電源を用いた基板構造、(2)はデジタル制御系回路およびアナログ系回路に共通電源を用いた基板構造である。
本発明の第1実施形態のプリント基板の基板構造1について、図1〜図3を参考にして説明する。図1は第1実施形態のプリント基板の基板構造1の構成を模式的に示す図であり、(1)はプリント基板を上方から見た上面21の平面図および下面22の透視平面図、(2)はプリント基板を側方から見た図である。第1実施形態のプリント基板は、モータ91の始動および停止ならびに速度の制御を用途とし、その基板構造1は、基材層2、制御系回路31および給電回路32からなる第1系回路3、受電回路41および動力系回路42からなる第2系回路4、2組の非接触給電部51、52などにより構成されている。
図1に示されるように、プリント基板の母材となる基材層2は、矩形の薄板であり、絶縁材料で形成されている。絶縁材料の材質としては、一般的な樹脂を用いることができ、後述するように、特に高い誘電率を有する材料を用いるようにしてもよい。基材層2の表裏の二つの面に特性上の差は無く、便宜的に上面21および下面22と名付ける。基材層2の上面21には第1配線パターン層23が設けられ、下面22には第2配線パターン層24が設けられている。第1および第2配線パターン層23、24は、公知のメッキ法や真空蒸着法、スパッタ法、あるいはインクジェット装置やディスペンサ装置を用いた描画法などにより、銀や銅などの導体性材料で形成されている。
第1系回路3は、制御系回路31および給電回路32からなり、基材層2の上面21に構成されている。図1に示されるように、制御系回路31は、CPU素子311および図略のその他の部品を第1配線パターン層23の図中の左側部分に実装することで構成されている。給電回路32は、高周波発生部321および図略のその他の部品を第1配線パターン層23の図中の右側部分に実装することで構成されている。制御系回路31および給電回路32は、それぞれの電源が接続された第1系回路3を構成する。
第2系回路4は、受電回路41および動力系回路42からなり、基材層2の下面22に構成されている。図1の(1)の下面22の透視平面図に示されるように、受電回路41は、整流部411および図略のその他の部品を第2配線パターン層24の図中の左側部分に実装することで構成されている。動力系回路42は、モータ駆動回路421および図略のその他の部品を第2配線パターン層24の図中の右側部分に実装することで構成されている。モータ駆動回路421の出力は、プリント基板の外部に引き出されてモータ91に接続されている。受電回路41および動力系回路42は、それぞれの電源が接続されかつ第1系回路3とは絶縁されており、第2系回路4を構成する。
2組の非接触給電部51、52は、給電パターン51A、52Aおよび受電パターン51B、52Bをそれぞれ有している。第1非接触給電部51の給電パターン51Aは、基材層2の上面21に設けられて、給電回路32に電気接続されている。また、第1非接触給電部51の受電パターン51Bは、基材層2の下面22に設けられて、受電回路41に電気接続されている。給電パターン51Aおよび受電パターン51Bは、基材層2の厚さtを挟んで対向し、電気的には平行板コンデンサC1になっている。
同様に、第2非接触給電部52の給電パターン52Aは、基材層2の上面21に設けられて、給電回路32に電気接続されている。また、第2非接触給電部52の受電パターン52Bは、基材層2の下面22に設けられて、受電回路41に電気接続されている。給電パターン52Aおよび受電パターン52Bは、基材層2の厚さtを挟んで対向し、電気的には平行板コンデンサC2になっている。
給電パターン51A、52Aおよび受電パターン51B、52Bは、第1および第2配線パターン層23、24と同一または異なる導電性材料で形成され、図1に示されるように、4個とも矩形の薄板形状で同形同大とされている。したがって、2つの平行板コンデンサC1、C2も同形状になり、静電容量Capも等しくなっている。
第1実施形態において、2組の非接触給電部51、52と給電回路32と、受電回路41と、により電界結合方式の非接触給電機構が構成されている。図1の(1)において、実線の矢印は第1および第2配線パターン層23、24を用いた配線給電経路を示し、破線の矢印は第1および第2非接触給電部51、52を用いた非接触給電経路を示している。以下、給電作用について詳述する。
図2は、第1実施形態のプリント基板の基板構造1における電源系統の構成を示す回路図である。このプリント基板の大元の電源は商用周波数(50Hzまたは60Hz)の交流電圧Vacであり、交流電圧Vacが第1系回路3の制御系回路31に給電される。制御系回路31は、4個のダイオードからなる全波整流ブリッジ312と、コイルおよびコンデンサからなる平滑部313とを有し、交流電圧Vacを直流電圧Vd1に変成する。直流電圧Vd1は、制御系回路31内のCPU素子311などに給電され、さらに、給電回路32にも給電される。
給電回路32の高周波発生部321は、2個のスイッチングトランジスタからなり、給電された直流電圧Vd1を高頻度で開閉制御して高周波電圧Vhfに変成する。高周波電圧Vhfは、2つの給電パターン51A、52Aの間に給電され、第1および第2非接触給電部51、52(電気的には第1および第2コンデンサC1、C2)によって、第2系回路4の受電回路41に非接触給電される。
受電回路41の整流部411は、4個のダイオードからなる全波整流ブリッジ412と、コイルおよびコンデンサからなる平滑部413とを有し、2つの受電パターン51B、52Bの間に非接触給電された高周波電圧Vhfを直流電圧Vd2に変成する。直流電圧Vd2は、動力系回路42のモータ駆動回路421に給電される。モータ駆動回路421は4個のスイッチングトランジスタからなり、直流電圧Vd2の印加位相ならびに極性を制御してモータ電圧Vmotorを生成し、モータ91に給電する。なお、4個のスイッチングトランジスタのオンおよびオフの制御タイミングは、制御系回路31内のCPU素子311から、図略の絶縁素子を介して指令される。
次に、非接触給電作用について詳述する。図3は、第1および第2非接触給電部51、52が構成する平行板コンデンサC1、C2を示した図である。周知のように平行板コンデンサC1、C2の静電容量Capは次式で表される。
Cap=ε・S/t
ただし、εは給電パターン51A(52A)と受電パターン51B(52B)との間の電界形成領域、すなわち基材層2の誘電率であり、Sは給電パターン51A(52A)と受電パターン51B(52B)との対向面積、tは基材層2の厚さtである。
ここで、静電容量Capを大きくすれば高周波に対するインピーダンスが減少するので、高周波電圧Vhfを印加したときに流れる高周波電流が増加し、非接触給電の給電容量が増加する。上式から分かるように、静電容量Capを大きくするためには、誘電率εおよび対向面積Sを大きくするか、厚さtを小さくすることが効果的であり、比例関係の効果が生じる。
まず、誘電率εに関し、基材層2の材質として一般的に用いられる紙フェノール樹脂や紙エポキシ樹脂、ガラスエポキシ樹脂などの比誘電率は4.5〜4.7程度である。これに対し、特に高い誘電率を有するセラミックの比誘電率は約10であり、低温同時焼成セラミックスの比誘電率は約8.5である。したがって、これらのセラミックス系の基材層を用いれば、給電容量を概ね倍増できる。なお、基材層2全体の材質を変更する方法、および平行板コンデンサC1、C2に挟まれた領域部分だけ材質を変更する方法のいずれを採用してもよい。
次に、基材層2の厚さtに関し、機械的強度などの諸条件が許す範囲で厚さtを小さくすることが好ましい。これについても、基材層2全体の厚さtを小さく方法、および平行板コンデンサC1、C2に挟まれた領域部分だけ材質を変更する方法のいずれを採用してもよい。対向面積Sに関しては、プリント基板の外形を大きくしない範囲で大きくすることが好ましい。
さらに、第1実施形態では、インピーダンス調整素子55、56を備えている。インピーダンス調整素子55、56は、給電回路32と2組の非接触給電部51、52と受電回路41とにより形成される閉回路内に設けられ、閉回路のインピーダンスを最小に調整する。図2に例示されるように、インピーダンス調整素子55、56には、インダクタンスLが固定値または調整可能な誘導素子を用いることができる。インピーダンス調整素子55、56は、給電回路32の高周波発生部321と第1給電用電極板51Aとの間、および第1受電用電極板51Bと受電回路41の整流部411との間に直列接続されており、これに限定されず閉回路内の他の位置に接続されていてもよい。
インダクタンスLの具体的な値は、高周波電圧Vhfに対して、2組の非接触給電部51、52の静電容量C1、C2とインピーダンス調整素子55、56のインダクタンスLとが直列共振するように定める。これにより、流れる高周波電流を最大化できる。ここで、直列共振の発生条件は、閉回路内の漂遊容量Cfおよび漂遊インダクタンスLfなどの影響を受ける。したがって、インピーダンス調整素子55、56のインダクタンスLの値は、予め実験やシミュレーションを行って決定するようにしてもよく、プリント基板ごとに個別に調整して最適化するようにしてもよい。インピーダンス調整素子55、56の種類、数量、および接続箇所は、上述に限定されない。
次に、第1実施形態のプリント基板の基板構造1の効果について、従来技術と比較して説明する。図6は、従来技術を用いたプリント基板の基板構造1A、1Bを模式的に示す図であり、(1)は制御系回路93および動力系回路94に共通電源92Aを用いた基板構造1A、(2)はデジタル制御系回路95およびアナログ系回路96に共通電源92Bを用いた基板構造1Bである。なお、図中の破線の矢印は、ノイズ電圧の伝搬経路を示している。
図6の(1)に示される基板構造1Aで、矩形薄板の基材層2Aの表面に制御系回路93および動力系回路94が構成されている。制御系回路93内には共通電源92AおよびCPU素子931が接地点EAを共有して設けられており、CPU素子931には共通電源92Aから直流電圧Vd3が供給されるように接続されている。動力系回路94内にはモータ駆動回路941が接地点EAを共有して設けられており、モータ駆動回路941には制御系回路93の共通電源92Aから直流電圧Vd3が供給されるように接続されている。モータ駆動回路941の制御入力ピン942は、CPU素子931の制御出力ピン932に接続されており、CPU素子931の制御信号SAが入力されるようになっている。モータ駆動回路941の出力ピン943、944は、プリント基板から引き出されてモータ91に接続されており、モータ電流を通電するようになっている。
基板構造1Aにおいて、制御系回路93および動力系回路94は、共通電源92Aおよび接地点EAを共有し、相互に電気的に導通している。そして、CPU素子931からの制御信号SAにしたがいモータ駆動回路941がモータ電流をスイッチングすると、その際にノイズ電圧が発生する。ノイズ電圧は、図中に破線の矢印で示されるように、電源線を経由してCPU素子931に伝搬するため、CPU素子931が誤動作するおそれが生じる。
また、図6の(2)に示される基板構造1Bで、矩形薄板の基材層2Bの表面にデジタル制御系回路95およびアナログ系回路96が構成されている。デジタル制御系回路95内には共通電源92BおよびCPU回路部951が接地点EBを共有して設けられており、CPU回路部951には共通電源92Bから直流電圧Vd3が供給されるように接続されている。アナログ系回路96内にはA/D変換器961が接地点EBを共有して設けられており、A/D変換器961にはデジタル制御系回路95の共通電源92Bから直流電圧Vd3が供給されるように接続されている。A/D変換器961の制御入力ピン962は、CPU回路部951の制御出力ピン952に接続されており、CPU回路部951の制御信号SBが入力されるようになっている。A/D変換器961の複数のデジタル出力ピン963は、CPU回路部951の入力ピン953に接続されており、デジタル変換後の出力信号SDを出力するようになっている。
基板構造1Bにおいて、デジタル制御系回路95およびアナログ系回路96は、共通電源92Bおよび接地点EBを共有し、相互に電気的に導通している。そして、A/D変換器961にA/D変換動作を行わせるためにCPU回路部951で制御信号SBを生成する際に、IC素子などで内部の半導体がスイッチング動作してノイズ電圧が発生する。ノイズ電圧は、図中に破線の矢印で示されるように、電源線を経由してアナログ系回路96に伝搬し、アナログ系回路96の誤動作やA/D変換器961のA/D変換精度の低下を引き起こすおそれが生じる。
図6に例示された共通電源92A、92Bによる誤動作や精度低下のおそれを解消するため、従来技術では絶縁トランスが多用されて、電源が絶縁されていた。これに対し、第1実施形態では、非接触給電機構の作用により、非接触で第1系回路3から第2系回路4に電源を供給するので、回路3、4相互間の電圧ノイズの伝搬が抑制される。したがって、従来技術で用いていた絶縁トランスが不要になり、絶縁トランスの配置スペース分だけプリント基板を省スペース化できる。また、絶縁トランスのコスト分だけプリント基板のコストを削減できる。
さらに、基材層2の給電パターン51A、52Aと受電パターン51B、52Bとの間に介在する領域の基材厚さtを薄くすることができ、また、基材層2に高い誘電率を有する絶縁性材料を用いることができて、第1および第2非接触給電部51、52(第1および第2コンデンサC1、C2)の静電容量Capを大きくすることができる。加えて、インピーダンス調整素子55、56により、給電回路32と2組の非接触給電部51、52と受電回路41とにより形成される閉回路のインピーダンスが最小になるので、閉回路では直列共振が発生する。これらの総合的な作用により、非接触給電機構に大きな高周波電流を流し、大きな給電容量および高い給電効率を確保できる。
次に、第2実施形態のプリント基板の基板構造10について、第1実施形態と異なる点を主に説明する。図4は、第2実施形態のプリント基板の基板構造10の構成を模式的に示す図であり、(1)はプリント基板を上方から見た上面21の平面図および下面22の透視平面図、(2)はプリント基板を側方から見た図である。第2実施形態のプリント基板の基板構造10では、第1系回路6および第2系回路7が共に、基材層20の上面21に構成されている。
図4に示されるように、矩形薄板の基材層20の上面21のうち図中の左側の約半分に第1配線パターン層23Aが設けられ、右側の約半分に第2配線パターン層24Aが設けられている。
第1系回路6は、デジタル制御系回路61および給電回路62からなり、基材層20の上面21に構成されている。デジタル制御系回路61は、CPU回路部611および図略のその他の部品を第1配線パターン層23Aの図中の左側部分に実装することで構成されている。給電回路62は、高周波発生部621および図略のその他の部品を第1配線パターン層23Aの図中の右側部分に実装することで構成されている。デジタル制御系回路61および給電回路62は、それぞれの電源が接続された第1系回路6を構成する。
第2系回路7は、受電回路71およびアナログ系回路72からなり、基材層20の上面21に構成されている。受電回路71は、整流部711および図略のその他の部品を第2配線パターン層24Aの図中の左側部分に実装することで構成されている。アナログ系回路72は、A/D変換器721および図略のその他の部品を第2配線パターン層24Aの図中の右側部分に実装することで構成されている。受電回路71およびアナログ系回路72は、それぞれの電源が接続されかつ第1系回路6とは絶縁されており、第2系回路7を構成する。
2組の非接触給電部51、52は、給電パターン51A、52Aおよび受電パターン51B、52Bをそれぞれ有している。第1非接触給電部51の給電パターン51Aは、基材層2の上面21に設けられて、給電回路62に電気接続されている。また、第1非接触給電部51の受電パターン51Bは、基材層2の下面22に設けられ、スルーホール57を介して上面21に引き出され、受電回路71に電気接続されている。給電パターン51Aおよび受電パターン51Bは、基材層2の厚さtを挟んで対向し、電気的には平行板コンデンサC1になっている。
同様に、第2非接触給電部52の給電パターン52Aは、基材層20の上面21に設けられて、給電回路32に電気接続されている。また、第2非接触給電部52の受電パターン52Bは、基材層2の下面22に設けられ、スルーホール58を介して上面21に引き出され、受電回路71に電気接続されている。給電パターン52Aおよび受電パターン52Bは、基材層2の厚さtを挟んで対向し、電気的には平行板コンデンサC2になっている。
給電パターン51A、52Aおよび受電パターン51B、52Bは、第1および第2配線パターン層23A、24Aと同一または異なる導電性材料で形成され、図1に示されるように、4個とも矩形の薄板形状で同形同大とされている。したがって、2つの平行板コンデンサC1、C2も同形状になり、静電容量Capも等しくなっている。
第2実施形態において、2組の非接触給電部51、52と給電回路62と、受電回路71と、により電界結合方式の非接触給電機構が構成されている。図4の(1)において、実線の矢印は第1および第2配線パターン層23、24を用いた配線給電経路を示し、破線の矢印は第1および第2非接触給電部51、52を用いた非接触給電経路を示している。
第2実施形態における電源系統の構成は、図2に示された第1実施形態の電源系統の構成に一致している。ただし、非接触給電部51、52の受電用電極板51B、52Bの後段でスルーホール57、58を介して上面21側に引き上げられ、以降が上面21に配設されている点が第1実施形態と異なる。また、CPU回路部611からA/D変換器721への制御信号、および、A/D変換器721からCPU回路部611へのデジタル出力信号は、図略の絶縁素子を介して授受される。
第2実施形態のプリント基板の基板構造10における電源の絶縁化の作用や、プリント基板の省スペースおよびコスト削減の効果は第1実施形態と同様であり、詳細な説明は省略する。さらに、第2実施形態では、基材層2の上面21のみに配線パターン層23A、24Aを形成して、上面21のみに部品を実装すればよい。したがって、第1実施形態よりもプリント基板の製造工程を簡略化でき、製造コストを一層削減できる。
次に、第3実施形態のプリント基板の基板構造100について、第1および第2実施形態と異なる点を主に説明する。図5は、第3実施形態のプリント基板の基板構造100の構成を模式的に示す図であり、プリント基板を側方から見た図である。第3実施形態のプリント基板の基板構造100は多層プリント基板を対象とし、具体的には基材層26〜28が3層で配線パターン層811〜814、821〜823(便宜的に斜線のハッチングを付して示す)が4層の4層プリント基板を例にして説明する。
図示されるように、第3実施形態のプリント基板は、同形同大の第1〜第3基材層26〜28が記載した順番で上から下へと重ね合わせられて構成されている。第1基材層26の厚さt1は、第2基材層27の厚さt2や第3基材層28の厚さt3よりも薄くなっている。
第1系回路81は、第1基材層26の上面261の図中の左側の約半分に第1部品群810が実装され、第11〜第14配線パターン層811〜814を用いて配線されることで構成されている。第11配線パターン層811は第1基材層26の上面261に形成され、第12配線パターン層812は第1基材層26と第2基材層27との間に形成され、第13配線パターン層813は第2基材層27と第3基材層28との間に形成され、第14配線パターン層814は第3基材層28の下面282に形成されている。第1部品群810は、第11配線パターン層811に直接接続され、第12〜第14配線パターン層812〜814に対しては適宜スルーホールを介して接続される。
第2系回路82は、第1基材層26の上面261の図中の右側の約半分に第2部品群820が実装され、第2部品群820が第21〜第23配線パターン層821〜823を用いて配線されることで構成されている。第21配線パターン層821は第1基材層26の上面261に形成され、第22配線パターン層822は第1基材層26と第2基材層27との間に形成され、第23配線パターン層823は第2基材層27と第3基材層28との間に形成されている。第2部品群820は、第21配線パターン層821に直接接続され、第22および第23配線パターン層822、823に対しては適宜スルーホールを介して接続される。
第1非接触給電部83は、給電パターン83Aおよび受電パターン83Bを有し、同様に、第2非接触給電部84も、給電パターン84Aおよび受電パターン84Bを有している。給電パターン83A、84Aは、第1基材層26の上面261の図中の幅方向の中央付近に設けられており、図5では給電パターン84Aが見え、その紙面裏側に給電パターン83Aが隠れている。受電パターン83B、84Bは、第1基材層26の下面262の給電パターン83A、84Aの真下に設けられており、図5では受電パターン84Bが見え、その紙面裏側に受電パターン83Bが隠れている。給電パターン83A、84Aは第1系回路81に電気接続され、受電パターン83B、84Bは、第2系回路82に電気接続されている。
上下に重なる給電パターン83A、84Aと受電パターン83B、84Bの組は、第1基材層26の厚さt1を挟んで対向し、電気的には平行板コンデンサになっている。この2組の非接触給電部83、84を介し、図2に示される第1実施形態と類似の電源構成を用いて、第1系回路81から第2系回路82への非接触給電が行われる。
ここで、第1系回路81の第13配線パターン層813は、全領域の電位が基準電位(一般的には電圧ゼロ)になる基準電位パターン(接地した場合にはグラウンドパターン)とされている。そして、第13配線パターン層813と第12配線パターン層812との間、および、第13配線パターン層813と第14配線パターン層814との間には、構造上定まる漂遊容量Cfなどが形成される。このため、第1系回路81を分布定数回路と見なしたときの特性インピーダンスをコントロールするために、第2および第3基材層27、28の厚さt2、t3が設計される。したがって、厚さt2、t3は薄くすることができない。一方、第11配線パターン層811には特性インピーダンスに影響を及ぼす配線パターンは含まれず、第1基材層26の厚さt1は薄くすることができる。
同様に、第2系回路82の第23配線パターン層823は基準電位パターンとされ、第22配線パターン層822との間に形成される特性インピーダンスをコントロールする必要上、第2基材層27の厚さt2は薄くすることができない。また、第21配線パターン層821には特性インピーダンスに影響を及ぼす配線パターンは含まれず、第1基材層の厚さt1は薄くすることができる。
上述のように構成することで、第1系回路81と第2系回路82で電源を絶縁化するために従来技術で用いていた絶縁トランスが不要になり、絶縁トランスの配置スペース分だけ多層プリント基板を省スペース化できる。また、絶縁トランスのコスト分だけ多層プリント基板のコストを削減できる。
なお、第1〜第3実施形態で例示した第1系回路3、6、81および第2系回路4、7,82の種類や構成は、適宜変更できる。例えば、第1および第2実施形態で配線パターン層を基材層2の上面21および下面22に分けて形成してもよい。また、第3実施形態において、配線パターン層の層数は4層に限定されず、非接触給電を行う基材層も選択できる。本発明は、その他にも様々な応用や変形が可能である。
1、10、100:プリント基板の基板構造
1A、1B:従来技術を用いたプリント基板の基板構造
2、2A、2B:基材層 21:上面 22:下面
23:第1配線パターン層 24:第2配線パターン層
26〜28:第1〜第3基材層
3:第1系回路
31:制御系回路 311:CPU素子
32:給電回路 321:高周波発生部
4:第2系回路
41:受電回路 411:整流部
42:動力系回路 421:モータ駆動回路
51:第1非接触給電部 51A:給電パターン 51B:受電パターン
52:第2非接触給電部 52A:給電パターン 52B:受電パターン
55、56:インピーダンス調整素子 57、58:スルーホール
6:第1系回路
61:デジタル制御系回路 611:CPU回路部
62:給電回路 621:高周波発生部
7:第2系回路
71:受電回路 711:整流部
72:アナログ系回路 721:A/D変換器
81:第1系回路
810:第1部品群 811〜814:第11〜第14配線パターン層
82:第2系回路
820:第2部品群 821〜823:第21〜第23配線パターン層
83:第1非接触給電部 83A:給電パターン 83B:受電パターン
84:第2非接触給電部 84A:給電パターン 84B:受電パターン
91:モータ
92A、92B:共通電源
93:制御系回路 931:CPU素子
94:動力系回路 941:モータ駆動回路
95:デジタル制御系回路 951:CPU回路部
96:アナログ系回路 961:A/D変換器
C1、C2:平行板コンデンサ Cap:静電容量
EA、EB:接地点

Claims (5)

  1. 絶縁性の基材層と、前記基材層の表面に設けられた第1配線パターン層を含んで構成された第1系回路と、前記基材層の表面に前記第1配線パターン層から電気絶縁されて設けられた第2配線パターン層を含んで構成された第2系回路と、を備えたプリント基板の基板構造であって、
    前記基材層の一方の表面に設けられて前記第1配線パターン層に電気接続された導電性の給電パターン、および前記基材層の他方の表面に設けられて前記第2配線パターン層に電気接続されるとともに前記基材層を挟んで前記給電パターンに対向する導電性の受電パターンをそれぞれ有し、前記給電パターンと前記受電パターンとの間に形成される電界を介して高周波電力の給電が可能となっている2組の非接触給電部と、
    前記第1系回路内に設けられて2つの給電パターンの間に高周波電力を給電する給電回路と、
    前記第2系回路内に設けられて2つの受電パターンの間に非接触給電された高周波電力を変成し前記第2系回路内の負荷に給電する受電回路と、
    をさらに備えるプリント基板の基板構造。
  2. 請求項1において、前記基材層の前記給電パターンと前記受電パターンとの間に介在する領域の基材厚さが薄くされているプリント基板の基板構造。
  3. 請求項1または2において、前記基材層の前記給電パターンと前記受電パターンとの間に介在する領域に高い誘電率を有する絶縁性材料が用いられているプリント基板の基板構造。
  4. 請求項1〜3のいずれか一項において、前記給電回路と前記2組の非接触給電部と前記受電回路とにより形成される閉回路内に設けられ、前記閉回路のインピーダンスを最小に調整するインピーダンス調整素子をさらに備えるプリント基板の基板構造。
  5. 請求項1〜4のいずれか一項において、前記プリント基板は複数の基材層が重ね合わせられて構成され、いずれかの基材層の一方の表面に前記給電パターンが設けられ他方の表面に前記受電パターンが設けられているプリント基板の基板構造。
JP2011266637A 2011-12-06 2011-12-06 プリント基板の基板構造 Active JP5814760B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266637A JP5814760B2 (ja) 2011-12-06 2011-12-06 プリント基板の基板構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266637A JP5814760B2 (ja) 2011-12-06 2011-12-06 プリント基板の基板構造

Publications (2)

Publication Number Publication Date
JP2013121201A JP2013121201A (ja) 2013-06-17
JP5814760B2 true JP5814760B2 (ja) 2015-11-17

Family

ID=48773622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266637A Active JP5814760B2 (ja) 2011-12-06 2011-12-06 プリント基板の基板構造

Country Status (1)

Country Link
JP (1) JP5814760B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120963B2 (ja) 2013-06-28 2017-04-26 オリンパス株式会社 内視鏡システム

Also Published As

Publication number Publication date
JP2013121201A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
US10263471B2 (en) Multiple interleaved coil structures for wireless power transfer
US11239700B2 (en) Wireless power transfer system, power reception apparatus, and control method therefor
JP6118320B2 (ja) 容量性電力伝送を用いた配電のための広表面導電層
JP6472818B2 (ja) 電力を伝送するための方法および装置
US9490638B2 (en) Electrical power transmission system and electrical power output device
KR20120039661A (ko) 전력 전송 시스템 및 비접촉 충전 장치
CN109891760A (zh) 无线电力传送系统的干扰过滤器
US10117334B2 (en) Magnetic assembly
US10410787B2 (en) Coil module and wireless power transmission device using the same
JP6315109B2 (ja) 給電装置
JP5552752B2 (ja) 受電装置、電子機器および無接点電力伝送システム
JP5814760B2 (ja) プリント基板の基板構造
CN205428676U (zh) 一种llc谐振变压器
JP7447463B2 (ja) 非接触給電装置
JP2011087396A (ja) 電源装置およびパワーモジュール
KR102209038B1 (ko) 자기 결합 장치 및 이를 포함하는 평판 디스플레이 장치
JP3644175B2 (ja) 空芯コイルの電磁シールド構造
JP6104231B2 (ja) 静電結合方式非接触給電装置
JP2006310435A (ja) 多層プリント基板
JP2021510935A (ja) インダクタ積層構造
JP2014155265A (ja) Dc−dcコンバータのトランス配線構造
WO2020230283A1 (ja) 整流装置
JP6439319B6 (ja) 巻線部および巻線部品
CN205407578U (zh) 超声波焊接电源
JP6939409B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R150 Certificate of patent or registration of utility model

Ref document number: 5814760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250