JP5813834B2 - プラズマ処理方法 - Google Patents

プラズマ処理方法 Download PDF

Info

Publication number
JP5813834B2
JP5813834B2 JP2014148360A JP2014148360A JP5813834B2 JP 5813834 B2 JP5813834 B2 JP 5813834B2 JP 2014148360 A JP2014148360 A JP 2014148360A JP 2014148360 A JP2014148360 A JP 2014148360A JP 5813834 B2 JP5813834 B2 JP 5813834B2
Authority
JP
Japan
Prior art keywords
antenna element
plasma
high frequency
dielectric
shield member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014148360A
Other languages
English (en)
Other versions
JP2014241285A (ja
Inventor
詩麻夫 米山
詩麻夫 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Priority to JP2014148360A priority Critical patent/JP5813834B2/ja
Publication of JP2014241285A publication Critical patent/JP2014241285A/ja
Application granted granted Critical
Publication of JP5813834B2 publication Critical patent/JP5813834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は,処理ガスのプラズマを励起させて被処理基板に対して所定の処理を施すプラズマ処理装置を用いたプラズマ処理方法に関する。
この種のプラズマ処理装置は,例えば半導体ウエハ,FPD(フラットパネルディスプレイ)基板などの被処理基板に対するエッチング,アッシング,プラズマ蒸着などの種々のプロセス処理に使用される。このようなプラズマ処理装置としては,例えば誘電体の上部に平面状の螺旋状コイルを設け,この螺旋状コイルの両端を接地し,その一端と接地間に高周波電源を接続して構成されるものがある(例えば特許文献1参照)。これによれば,螺旋状コイルに高周波電源から高周波を供給し,その高周波の例えば1/2波長(又は1/4波長)で共振させることで定在波を誘導し,誘電体の下部に誘導電界を発生させて処理ガスのプラズマを励起する。
特開平7−296992号公報 特開2007−142444号公報
ところで,近年では半導体素子の更なる微細化,多層化の要求に伴い,このようなプロセス処理においても,よりダメージの少ない処理を行うことが要請されている。例えばラジカルによってプロセス処理を行う場合には,そのラジカルによる反応を促進し,イオンダメージを極力低減することが要求される。すなわち,過剰なイオンは,ウエハにおける層間での材料の混合,酸化物の破壊,汚染物質の侵入,形質変化などのダメージを引き起こすのでこれを避けるために様々な工夫がされている。また,高精度に選択比を規定するエッチング処理などにおいては,低選択性をもたらすイオン衝撃を避けるのが好ましい。このようなイオンダメージは,例えばできる限り電位の低いプラズマを励起することにより効果的に抑制できることが知られている。
しかしながら,上述したプラズマ処理装置のように,螺旋状コイルの両端を接地した場合には,高周波の1/2波長(又は1/4波長)で共振させることで定在波を誘導させても,螺旋状コイル上の電圧成分は必ず正と負のいずれかになり,正と負の電圧成分が両方同時に存在することはないので,螺旋状コイル上には常に電圧成分が残る。このため,プラズマ中の容量結合成分が多く発生するので,イオンダメージの発生は避けられない。
また,このようなプラズマ中の容量結合成分を低減するためには,螺旋状コイルに残存する電圧成分を少なくすればよいので,特許文献1に記載のように低インダクタンスの螺旋状コイルを用いることで,プラズマ中の容量結合成分を低減することも可能である。ところが,低インダクタンスの螺旋状コイルを用いると,励起される磁場が弱くなり,結果として強い誘導結合プラズマが生じ難くなり,プラズマ密度も低下してしまう。
なお,特許文献2には減圧可能な縦長の反応容器の外側に巻回した螺旋状コイルを設け,この螺旋状コイルに所定波長の高周波を供給して例えば全波長モード,1/2波長モードなどで共振させることで定在波を誘導し,反応容器内に誘導電界を発生させて処理ガスのプラズマを励起している。これによれば,波長調整回路によって位相電圧と逆位相電圧とが位相電圧の切り替わる点を境に対称となるように電圧波形を調整することで,その位相電圧の切り替わる電位がゼロのノードにおいて,誘導性結合プラズマを励起できるものとされている。
ところが,これは縦方向に巻回された螺旋状コイルのアンテナ素子であるからこそ,波長調整回路によって位相電圧と逆位相電圧とが位相電圧の切り替わる点を境に対称となるように波形を調整できるものである。これに対して,平面状コイルのアンテナ素子では,縦方向に巻回された螺旋状コイルの場合と異なり,同一平面上で内側端部から外側端部に向かうに連れてその径が徐々に大きくなる。このため,位相電圧と逆位相電圧とが位相電圧の切り替わる点の内側の路線と外側の路線とではリアクタンスが異なるので,その点を境に対称となるように波形を調整することができない。このため,このような特許文献2の螺旋状コイルの場合の技術をそのまま平面状コイルの場合に適用することはできない。
そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,プラズマ電位が低く,より安定した高密度のプラズマを容易に形成できるプラズマ処理装置を用いてダメージの少ないプラズマ処理を行うことができるプラズマ処理方法を提供することにある。
上記課題を解決するために,本発明のある観点によれば,減圧された処理室内に処理ガスの誘導結合プラズマを生成することにより被処理基板に所定のプラズマ処理を施すプラズマ処理装置であって,前記処理室内に設けられ,前記被処理基板を載置する載置台と,前記処理室内に前記処理ガスを導入するガス供給部と,前記処理室内を排気して減圧する排気部と,前記載置台に対向するように板状誘電体を介して配設された平面状の高周波アンテナと,前記高周波アンテナを覆うように設けられたシールド部材と,前記板状誘電体と前記載置台との間に前記誘導結合プラズマを生成するための高周波を前記高周波アンテナに印加する高周波電源とを備え,前記高周波アンテナは,両端を開放するとともに中点又はその近傍を接地し,前記高周波電源からの高周波の1/2波長で共振するように構成したアンテナ素子からなることを特徴とするプラズマ処理装置が提供される。
このような本発明によれば,アンテナ素子は両端を開放するとともに中点又はその近傍を接地し,高周波電源からの高周波の1/2波長で共振させるように構成することにより,アンテナ素子上の電圧成分には,大きさは僅かに異なるが,必ず正と負が同時に存在するので,これらが互いに相殺してアンテナ素子全体として電圧成分は小さくなる。これによって,プラズマ中の容量結合成分も小さくすることができるので,プラズマによるイオンダメージを低減できる。
また,前記アンテナ素子と前記シールド部材との距離を調整可能とすることが好ましい。これによれば,アンテナ素子とシールド部材との距離を調整することにより,これらの間の浮遊容量を変えることができるので,アンテナ素子の物理的長さを変えることなく,アンテナ素子の共振周波数を調整できる。また,アンテナ素子とシールド部材との間の浮遊容量を調整することでアンテナ素子の電気的長さを調整できるので,アンテナ素子のサイズ,形状などの自由度を大幅に拡大させることができる。
また,前記アンテナ素子と前記板状誘電体との距離を調整可能とすることが好ましい。これによれば,アンテナ素子とプラズマとの距離を変えることができるので,アンテナ素子とプラズマとの間の容量結合度を変化させることが可能となり,プラズマポテンシャルを調整できる。
この場合,前記シールド部材の高さを調整することによって前記アンテナ素子と前記シールド部材との距離を調整するシールド高さ調整機構と,前記高周波アンテナの高さを調整することによって前記アンテナ素子と前記シールド部材との距離を調整するアンテナ高さ調整機構とを備えるようにしてもよい。これによれば,シールド高さ調整機構によってシールド部材の高さを調整するという簡単な操作でアンテナ素子の共振周波数を調整できる。また,アンテナ高さ調整機構によって高周波アンテナの高さを調整するという簡単な操作でプラズマポテンシャルを調整できる。
また,前記高周波電源の出力側に高周波パワーメータを設け,この高周波パワーメータによって検出される高周波電力に応じてアクチュエータを制御してシールド部材の高さを調整してアンテナ素子の共振周波数が最適になるように自動的に調整するようにしてもよい。これによれば,より簡単にアンテナ素子の共振周波数を最適に調整することができる。
また,前記アンテナ素子は,渦巻きコイル状であることが好ましい。平面状であって渦巻きコイル状のアンテナ素子の場合は,縦方向に巻回された螺旋状コイルの場合と異なり,同一平面上で内側端部から外側端部に向かうに連れてその径が徐々に大きくなる。このため,アンテナ素子の中点又はその近傍を接地点とすると,内側端部から接地点までの線路と接地点から外側端部までの線路とではリアクタンスが異なるので,アンテナ素子上の電圧波形は,アンテナ素子の接地点からその内側の線路とその外側の線路とでは厳密には対称になっておらず,僅かではあるが両者の波形は相違する。このため,僅かではあるがアンテナ素子には電圧成分が残ることになる。このような場合でも,本発明によれば,例えばアンテナ素子とプラズマとの距離が長くなるように高周波アンテナの高さを調整することで,プラズマ電位を小さくすることができる。これによれば,アンテナ素子に残留する僅かな電圧成分の影響を受けないように,プラズマを生成することができる。
上記課題を解決するために,本発明の別の観点によれば,減圧された処理室内に処理ガスの誘導結合プラズマを生成することにより被処理基板に施すプラズマ処理装置を用いたプラズマ処理方法であって,前記プラズマ処理装置は,前記処理室内に設けられ,前記被処理基板を載置する載置台と,前記処理室内に前記処理ガスを導入するガス供給部と,前記処理室内を排気して減圧する排気部と,前記載置台に対向して配置された板状誘電体と,前記板状誘電体の上側に配設されたアンテナ素子と,前記アンテナ素子を上方から覆うように設けられたシールド部材と,前記板状誘電体と前記載置台との間に前記誘導結合プラズマを生成するための高周波を前記アンテナ素子に印加する高周波電源と,を備え,前記アンテナ素子は前記板状誘電体の中心軸周りに巻回する平面渦巻きコイル状であって,その両端を開放するとともに巻き方向長さの中点を接地点とし,前記アンテナ素子を,このアンテナ素子と前記シールド部材との距離を調整してこれらの間の浮遊容量を調整することによって,その接地点より内側に巻かれる部分と外側に巻かれる部分との電気的長さが同じになるようにして,前記高周波電源からの高周波の1/2波長で共振させることにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とするプラズマ処理方法が提供される。
また,上記プラズマ処理装置には,前記アンテナ素子に対する前記シールド部材の高さを調整するシールド高さ調整機構を設け,前記シールド高さ調整機構によって前記アンテナ素子と前記シールド部材との距離を調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すようにしてもよい。
また,上記プラズマ処理装置には,前記板状誘電体に対する前記アンテナ素子の高さを調整するアンテナ高さ調整機構を設け,前記アンテナ高さ調整機構によって前記アンテナ素子と前記板状誘電体との距離を調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すようにしてもよい。
また,上記アンテナ素子の接地点よりも内側又は外側の部分においてインピーダンスが50オームとなる位置を,前記高周波電源からの高周波を印加する給電ポイントにすることにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すようにしてもよい。
また,前記プラズマ処理装置には,前記高周波電源の出力側に設けた高周波パワーメータを設け,前記高周波パワーメータによって検出される高周波電力に応じて,前記シールド高さ調整機構を制御して前記シールド部材の高さを前記アンテナ素子の共振周波数が最適になるように自動的に調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すようにしてもよい。
本発明によれば,アンテナ素子をその両端を開放するとともに中点又はその近傍を接地して高周波電源からの高周波の1/2波長で共振させるように構成したプラズマ処理装置を用いて,処理室内において板状誘電体の中心軸周りにプラズマ電位が低く,安定した高密度のドーナツ状プラズマを発生させて被処理基板にプラズマ処理を施すことにより,被処理基板にダメージの少ないプラズマ処理を施すことができる。
本発明の実施形態にかかるプラズマ処理装置の概略構成を示す縦断面図である。 図1に示す高周波アンテナの構成例を示す平面図である。 中点を接地点としたアンテナ素子を共振させた場合にある瞬間に印加される電流と電圧を模式的に表した図である。 図3に示すアンテナ素子に実際に印加される電流と電圧を表した図である。 本実施形態にかかるアンテナ素子の作用を説明するための斜視図である。 端部を接地点としたアンテナ素子を共振させた場合にある瞬間に印加される電流と電圧を模式的に表した図である。 シールド部材,高周波アンテナの高さ調整機構を説明するための部分断面図である。 シールド部材の高さ調整機構の作用説明図である。 シールド部材の高さ調整機構の作用説明図である。 高周波アンテナの高さ調整機構の作用説明図である。 高周波アンテナの高さ調整機構の作用説明図である。 アンテナ素子の他の構成例を示す平面図である。 本実施形態にかかるプラズマ処理装置の変形例を示す部分断面図である。
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(プラズマ処理装置の構成例)
先ず,本発明の実施形態にかかるプラズマ処理装置100の構成例について図面を参照しながら説明する。ここでは,平面状の高周波アンテナに高周波電力を印加して処理室内に励起した処理ガスのプラズマによって,被処理基板例えば半導体ウエハ(以下,単に「ウエハ」とも称する)Wに所定のプラズマ処理を施す誘導結合型のプラズマ処理装置を例に挙げる。図1は本実施形態にかかるプラズマ処理装置100の概略構成を示す断面図であり,図2はプラズマ処理装置100に設けられる高周波アンテナ140を上方から見たものである。プラズマ処理装置100は,金属製(例えばアルミニウム製)の筒状(例えば円筒状)に形成された処理室(チャンバ)102を備える。なお,処理室102の形状は円筒状に限られるものではない。例えば角筒状(例えば箱状)であってもよい。
処理室102の底部には,ウエハWを載置するための載置台110が設けられている。載置台110は,アルミニウムなどで略柱状(例えば円柱状)に成形されている。なお,載置台110の形状についても円柱状に限られるものではない。例えば角柱状(例えば多角柱状)であってもよい。なお,図示はしないが,載置台110にはウエハWをクーロン力により吸着保持する静電チャック,ヒータや冷媒流路などの温度調整機構等,必要に応じて様々な機能を設けることができる。
処理室102の天井部には,例えば石英ガラスやセラミックなどで構成された板状誘電体104が載置台110に対向するように設けられている。具体的には板状誘電体104は例えば円板状に形成され,処理室102の天井部に形成された開口を塞ぐように気密に取り付けられている。
処理室102には,ウエハWを処理するための処理ガスなどを供給するガス供給部120が設けられている。ガス供給部120は例えば図1に示すように構成される。すなわち,処理室102の側壁部にはガス導入口121が形成されており,ガス導入口121にはガス供給配管123を介してガス供給源122が接続されている。ガス供給配管123の途中には処理ガスの流量を制御する流量制御器例えばマスフローコントローラ124,開閉バルブ126が介在している。このようなガス供給部120によれば,ガス供給源122からの処理ガスは,マスフローコントローラ(MFC)124により所定の流量に制御されて,ガス導入口121から処理室102内に供給される。
図1では説明を簡単にするため,ガス供給部120を一系統のガスラインで表現しているが,ガス供給部120は単一のガス種の処理ガスを供給する場合に限られるものではなく,複数のガス種を処理ガスとして供給するものであってもよい。この場合には,複数のガス供給源を設けて複数系統のガスラインで構成し,各ガスラインにマスフローコントローラを設けてもよい。また,図1ではガス供給部120を処理室102の側壁部からガスを供給するように構成した場合を例に挙げているが,必ずしもこれに限られるものではない。例えば処理室102の天井部からガスを供給するように構成してもよい。この場合には,例えば板状誘電体104の例えば中央にガス導入口を形成し,そこからガスを供給するようにしてもよい。
このようなガス供給部120により処理室102内に供給する処理ガスとしては,例えば酸化膜のエッチングでは,Clなどを含むハロゲン系ガスが用いられる。具体的にはSiO膜などのシリコン酸化膜をエッチングする場合には,CHFガスなどが処理ガスとして用いられる。また,HfO,HfSiO,ZrO,ZrSiOなどの高誘電体薄膜をエッチングする場合には,BClガスを処理ガスとしたり,BClガスとOガスとの混合ガスを処理ガスとして用いられる。
処理室102の底部には,処理室102内の雰囲気を排出する排気部130が排気管132を介して接続されている。排気部130は例えば真空ポンプにより構成され,処理室102内を所定の圧力まで減圧し得るようになっている。処理室102の側壁部にはウエハ搬出入口134が形成され,ウエハ搬出入口134にはゲートバルブ136が設けられている。例えばウエハWの搬入する際には,ゲートバルブ136を開いて図示しない搬送アームなどの搬送機構によってウエハWを処理室102内の載置台110上に載置し,ゲートバルブ136を閉じてウエハWの処理を行う。
処理室102の天井部には,板状誘電体104の外側面(上側面)に平面状の高周波アンテナ140が配置されており,この高周波アンテナ140を覆うように略筒状(例えば円筒状)のシールド部材160が設けられている。なお,シールド部材160の形状は,円筒状に限られるものではない。シールド部材160の形状を例えば角筒状など他の形状にしてもよいが,処理室102の形状に合わせることが好ましい。ここでは,例えば処理室102を略円筒状としているので,それに合わせてシールド部材160も略円筒状に形成している。また,処理室102が略角筒状であれば,シールド部材160も略角筒状とするのが好ましい。
高周波アンテナ140は,例えば銅,アルミニウム,ステンレスなどの導体で構成された渦巻きコイル状のアンテナ素子142を複数の挟持体144で挟持してなる。挟持体144は例えば図2に示すように棒状に形成し,3つの挟持体144をアンテナ素子142の中央付近からその外側に放射線状に配置する。
アンテナ素子142には,高周波電源150が接続されている。高周波電源150からアンテナ素子142に所定の周波数(例えば27.12MHz)の高周波を所定のパワーで供給することにより,処理室102内に誘導磁界が形成される。これにより,処理室102内に導入されたガスが励起されプラズマが生成され,アッシング処理,エッチング処理,成膜処理などウエハに対する所定のプラズマ処理が実行される。高周波電源150から出力される高周波は,27.12MHzに限られるものではない。例えば13.56MHz,60MHzなどであってもよい。但し,高周波電源150から出力される高周波に応じてアンテナ素子142の電気的長さを調整する必要がある。
なお,アンテナ素子142の具体的な構成についての詳細は後述する。また,シールド部材160は,アクチュエータ168によって高さ調整ができるようになっている。また,高周波アンテナ140も,アクチュエータ148によって高さ調整ができるようになっている。これらの詳細についても後述する。
プラズマ処理装置100には,制御部(全体制御装置)200が接続されており,この制御部200によってプラズマ処理装置100の各部が制御されるようになっている。また,制御部200には,オペレータがプラズマ処理装置100を管理するためにコマンドの入力操作等を行うキーボードや,プラズマ処理装置100の稼働状況を可視化して表示するディスプレイ等からなる操作部210が接続されている。
さらに,制御部200には,プラズマ処理装置100で実行される各種処理を制御部200の制御にて実現するためのプログラムやプログラムを実行するために必要なレシピデータなどが記憶された記憶部220が接続されている。
記憶部220には,例えばウエハのプロセス処理を実行させるための複数のプロセス処理レシピの他,処理室内のクリーニング処理など必要な処理を行うためのレシピなどが記憶されている。これらのレシピは,プラズマ処理装置100の各部を制御する制御パラメータ,設定パラメータなどの複数のパラメータ値をまとめたものである。例えばプロセス処理レシピは,例えば処理ガスの流量比,処理室内圧力,高周波電力などのパラメータ値を有する。
なお,これらのレシピはハードディスクや半導体メモリに記憶されていてもよく,またCD−ROM,DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で記憶部220の所定位置にセットするようになっていてもよい。
制御部200は,操作部210からの指示等に基づいて所望のプロセス処理レシピを記憶部220から読み出して各部を制御することで,プラズマ処理装置100での所望の処理を実行する。また,操作部210からの操作によりレシピを編集できるようになっている。
(高周波アンテナの構成例)
ここで,本実施形態にかかる高周波アンテナ140の具体的な構成例について図面を参照しながら説明する。高周波アンテナ140は,例えば図2に示すようにアンテナ素子142の両端を自由端142a,142bとするとともに,巻き方向の長さの中点又はその近傍(以下,単に「中点」という。)を接地点(グラウンド)とする1/2波長の定在波を形成できるように構成されている。
すなわち,アンテナ素子142は,高周波電源150から供給される所定の周波数(例えば27.12MHz)を基準として,その基準周波数の1/2波長で共振(半波長モードで共振)するように,長さ,巻径,巻回ピッチ,巻数が設定される。例えばアンテナ素子142の電気的長さは,基準周波数の1/2倍によって共振する長さ,すなわち基準周波数である27.12MHzにおける1波長の1/2倍の長さである。
なお,アンテナ素子142は,パイプ状,線状,板状などいずれの形状で構成してもよい。アンテナ素子142の巻回ピッチが同じ場合には,導体間距離が大きい方が耐電圧を大きくとれる点で有利である。従って,アンテナ素子142の形状は耐電圧の観点からは,厚みが大きいパイプ状にするよりも,厚みが小さい板状にした方が導体間距離を大きくとれる点で有利である。アンテナ素子142の巻回ピッチをより狭くしたい場合も耐電圧の観点からは板状にした方が有利である。
この場合,高周波電源150からの高周波を供給する給電ポイントは,接地点よりも内側であっても外側であってもよく,例えばインピーダンスが50Ωとなる点であることが好ましい。給電ポイントは可変にしてもよい。この場合,モータなどにより給電ポイントを自動で変更できるようにしてもよい。
このようなアンテナ素子142によれば,高周波電源150から基準周波数(例えば27.12MHz)の高周波を高周波アンテナ140に印加して半波長モードで共振させると,ある瞬間では図3に示すようにアンテナ素子142に印加される電圧Vは,中点(接地点)がゼロで,一方の端部が正のピークとなり,他方の端部が負のピークとなるような波形になる。これに対して,アンテナ素子142に印加される電流Iは,電圧波形と90度位相がずれるため,中点(接地点)が最大で,両端部がゼロとなるような波形になる。
このとき,高周波の正負のサイクル毎に互いに瞬時容量が逆方向に増減するので,アンテナ素子142に印加される電圧Vと電流Iの波形はそれぞれ図4に示すようになる。すなわち,電圧Vについてはアンテナ素子142上に発生する正負の電圧成分によって相殺されて平均電圧が非常に小さくなるような半波長モードの定在波が形成される。これに対して,電流Iについてはアンテナ素子142上で中点(接地点)が最も強く,正のみ又は負のみの電流成分による定在波が形成される。
このような定在波によって図5に示すようにアンテナ素子142の中央近傍に最大強度を有する垂直磁場Bが発生するので,これにより処理室102内に図5に示す垂直磁場Bを中心とする円形電場Eが励起され,ドーナツ状のプラズマPが生成される。しかも,アンテナ素子142に印加される平均電圧は非常に小さいので,容量結合度が極めて弱いため,電位の低いプラズマを生成できる。
ところで,もし図6に示すようにアンテナ素子142の内側端部142aと外側端部142bの両方を接地して,外側端部142bと接地間に高周波電源150を接続した場合には,図3に示す電圧Vと電流Iの波形が逆になる。すなわち,高周波電源150から基準周波数(例えば27.12MHz)の高周波を高周波アンテナ140に印加して半波長モードで共振させると,ある瞬間では図6に示すようにアンテナ素子142に印加される電圧Vは,中点(接地点)が最大で,両端部がゼロとなるような波形になる。これに対して,アンテナ素子142に印加される電流Iは,電圧波形と90度位相がずれるため,中点(接地点)がゼロで,一方の端部が正のピークとなり,他方の端部が負のピークとなるような波形になる。
このように,アンテナ素子142の両端を接地(図6)して,アンテナ素子142の中点を接地した場合(図3)と同じ半波長モードで共振させると,接地点を境としてアンテナ素子142の内側部とアンテナ素子142の外側部では常に相反する方向の磁場が形成される。その相反する磁場によって処理室102内でほぼ同一平面内の近傍に,例えば図5に示すような円形電場が二つ形成される。しかもこの二つの円形電場の回転方向が常に相反しているため,互いに干渉し合い,生成されたプラズマが不安定になるおそれがある。
これに対して,アンテナ素子142の中点を接地点とする図3の場合には,上述したように処理室102内に励起される円形電場は一つであって常に一方向であり,干渉し合う反対方向の電場もない。このため,アンテナ素子142の中点を接地点とする場合には,アンテナ素子142の端部を接地点とする場合に比して,より安定したプラズマを形成できる。
また,アンテナ素子142の両端を接地した場合(図6)は,共振状態でのアンテナ素子142上に電圧成分が残るので,プラズマ中に容量結合成分が多く発生する。この点,アンテナ素子142の中点を接地点とする図3の場合には,上述したように共振状態でのアンテナ素子142上の電圧成分が非常に小さいので,プラズマ中に容量結合成分が発生し難い。従って,ダメージの少ないプラズマ処理を行うには,アンテナ素子142の中点を接地点とする場合(図3)の方が有利である。
このようなプラズマ中の容量結合成分を低減するためには,アンテナ素子142に残存する電圧成分を少なくすればよい。このため,アンテナ素子142の両端を接地した場合(図6)は,低インダクタンスのアンテナ素子142を用いることで,プラズマ中の容量結合成分を低減することも可能である。ところが,低インダクタンスのアンテナ素子142を用いると,励起される磁場が弱くなり,結果として強い誘導結合プラズマが生じ難くなる。これに対して,アンテナ素子142の中点を接地点とする場合(図3)は,プラズマ中の容量結合成分を低減することを考える必要がないため,高インダクタンスのアンテナ素子142を用いることもできる。高インダクタンスのアンテナ素子142を用いるほど,高磁場を形成することができるので,より強い誘導結合プラズマを形成できる。従って,より高密度なプラズマを形成するためには,アンテナ素子142の中点を接地点とする場合(図3)の方が有利である。
このように,本実施形態にかかる高周波アンテナ140では,アンテナ素子142の両端を自由端142a,142bとするとともに,巻き方向の長さの中点を接地点(グラウンド)として,1/2波長モードで共振させるという極めて簡単な構成で,プラズマ電位が低く,より安定した高密度のプラズマを容易に形成することができる。
ところで,本実施形態においてアンテナ素子142を1/2波長モードで共振させるためには,上述したようにアンテナ素子142の電気的長さを正確に基準周波数(ここでは27.12MHz)の1/2倍の長さに合わせる必要がある。すなわち,アンテナ素子142の共振周波数を正確に合わせる必要がある。
しかしながら,アンテナ素子142の物理的長さを正確に製作するのは容易ではない。また,アンテナ素子142の共振周波数はアンテナ素子142のもつ固有のリアクタンスだけでなく,例えば図7に示すようなアンテナ素子142とシールド部材160との間の浮遊容量(ストレキャパシタンス)も影響する。このため,たとえアンテナ素子142の物理的長さを正確に製作できたとしても,取付誤差などによりアンテナ素子142とシールド部材160の距離に誤差が生じて設計通りの共振周波数が得られない場合もある。
この点,上述したアンテナ素子142の端部を接地点とする場合(図6)には,その接地点に例えば可変コンデンサを取り付け,これによってアンテナ素子142の電気的長さを調整することも可能である。ところが,アンテナ素子142の中点を接地点とする場合(図3)には,アンテナ素子142の中点と接地間に可変コンデンサを接続してもコンデンサによるロスが大きくなってメリットがないばかりか,もし可変コンデンサを挿入すれば,そのC値を小さくすると高周波電源150との整合条件を満たさなくなる可能性が高くなり,逆にC値を大きくすると可変コンデンサに大電流が流れそれ自体が耐力不足で破損する可能性が高くなる。
そこで,本実施形態では,シールド部材160の高さを調整可能とし,これによってアンテナ素子142とシールド部材160との間の距離を調整して浮遊容量を変化させることで,アンテナ素子142の共振周波数を調整できるようにしている。さらに本実施形態では,高周波アンテナ140の高さも調整可能とし,これによってプラズマとアンテナ素子142との距離を調整することでプラズマポテンシャルを調整できるようにしている。
以下,このようなシールド部材160,高周波アンテナ140の高さ調整機構について図面を参照しながら詳細に説明する。図7は,図1に示す高周波アンテナ140の近傍の構成を拡大した図である。図8A,図8Bは,シールド部材160の高さを調整する際の作用を説明する図である。図8Aはシールド部材160の高さを低くした場合であり,図8Bはシールド部材160の高さを高くした場合である。図9A,図9Bは,高周波アンテナ140の高さを調整する際の作用を説明する図である。図9Aは高周波アンテナ140の高さを低くした場合であり,図9Bは高周波アンテナ140の高さを高くした場合である。
先ず,シールド部材160の高さ調整機構の具体的構成例について説明する。図7に示すようにシールド部材160は,処理室102の天井部に固定された略筒状(ここでは処理室102の形状に合わせて略円筒状)の下部シールド部材162と,この下部シールド部材162の外側にスライド自在に設けられた上部シールド部材164とで構成される。上部シールド部材164は,上面が閉塞し下面が開口する略筒状に形成される。
上部シールド部材164は,処理室102の側壁部に設けられたアクチュエータ168によって上下にスライド駆動するようになっている。具体的には例えば複数のアクチュエータ168をそれぞれ駆動棒169を上下に駆動可能なモータで構成し,各駆動棒169の先端を上部シールド部材164の外側に張り出した張出部166にそれぞれ取り付けるようにしてもよい。
これによれば,各アクチュエータ168の駆動棒169によって上部シールド部材164を上下に駆動させることで,シールド部材160と高周波アンテナ140との距離(上部シールド部材164の上面とアンテナ素子142との距離)Dを調整できる。
具体的にはアクチュエータ168を駆動させて上部シールド部材164を図8Aに示す位置から図8Bに示す位置まで高くすることで,シールド部材160と高周波アンテナ140との距離Dが長くなる。これにより,浮遊容量Cが小さくなるので,アンテナ素子142の電気長が長くなるように共振周波数を調整できる。
逆に,上部シールド部材164を低くすれば,シールド部材160と高周波アンテナ140との距離Dを短くすることができる。これにより,浮遊容量Cが大きくなるので,アンテナ素子142の電気長が短くなるように共振周波数を調整できる。なお,シールド部材160の高さ調整機構としては,上記のものに限られるものではない。例えばアクチュエータ168は1つであってもよい。
このように,本実施形態によればシールド部材160の高さを調整することにより,アンテナ素子142とシールド部材160との間の浮遊容量Cを変えることができるので,アンテナ素子142の物理的長さを変えることなく,アンテナ素子142の共振周波数を調整できる。
しかも,シールド部材160の高さを調整するだけという簡単な操作で,共振周波数を容易に調整でき,所望の周波数で共振させることができる。例えば最大外径320mm,巻回ピッチを20mmの渦巻きコイル状の銅パイプで構成したアンテナ素子142を27.12MHzの1/2波長で共振させる実験を行ったところ,10mm〜100mm程度のシールド部材160の高さ調整を行うだけで,共振周波数を±5%〜±10%の範囲内で調整することができた。
また,アンテナ素子142とシールド部材160との間の浮遊容量Cを調整することで,アンテナ素子142の電気的長さを調整できるので,アンテナ素子142のサイズ,形状などの自由度を大幅に拡大させることができる。すなわち,本実施形態にかかるプラズマ処理装置100では,様々なサイズ・形状のアンテナ素子を用いることができる。例えば図10に示すような角型のアンテナ素子142の他,楕円,その他の形状のアンテナ素子を用いることができる。
さらに,アンテナ素子142のサイズ,形状などの自由度が拡大したことにより,必要なプラズマサイズに対応したアンテナ素子142の設計が可能となった。例えばウエハWの径に応じて自由にアンテナ素子142のサイズ,形状を設計できる。また,巻きピッチと共振周波数を最適化することでプラズマサイズの自由度が大幅に増加させることができる。
なお,シールド部材160の高さを調整できるようにしたことで,シールド部材160の高さが低くすぎて,アンテナ素子142との間の距離が近すぎる場合には,シールド部材160とアンテナ素子142との間に誘電体を入れることで,異常放電を防止することができる。
次に,高周波アンテナ140の高さ調整機構の具体的構成例について説明する。図7に示すように高周波アンテナ140は,処理室102の側壁部に設けられたアクチュエータ148によって上下にスライド駆動するようになっている。具体的には例えば複数のアクチュエータ148をそれぞれ駆動棒149を上下に駆動可能なモータで構成し,各駆動棒149の先端を高周波アンテナ140の支持部材146に取り付けるようにしてもよい。また,アクチュエータ168は必ずしも設ける必要はなく,上部シールド部材164自体を手動で上下駆動できるようにしてもよい。
この場合,支持部材146は,高周波アンテナ140の挟持体144にその外側に張り出すように設け,各支持部材146の先端は,シールド部材160に形成した上下に延びるスリット状の孔からその外側に突き出るようにし,その部分に駆動棒149の先端を取り付ける。
これによれば,各アクチュエータ148の駆動棒149によって高周波アンテナ140を上下に駆動させることで,高周波アンテナ140と板状誘電体104との距離d1,ひいてはアンテナ素子142とプラズマPとの距離d2を調整することができる。
具体的にはアクチュエータ148を駆動させて高周波アンテナ140を図9Aに示す位置から図9Bに示す位置まで高くすることで,アンテナ素子142とプラズマPとの距離d2が長くなる。これにより,処理室内102に生成されたプラズマPとアンテナ素子142上の電圧成分との間の容量結合度を弱めることができるので,プラズマPのポテンシャルを減少させることができる。
逆に,高周波アンテナ140を低くすれば,アンテナ素子142とプラズマPとの距離d2を短くすることができる。これにより,処理室内102に生成されたプラズマPとアンテナ素子142上の電圧成分との間の容量結合度を強めることができるので,プラズマPのポテンシャルを増加させることができる。なお,高周波アンテナ140の高さ調整機構としては,上記のものに限られるものではない。例えばアクチュエータ148は1つであってもよい。また,アクチュエータ148は必ずしも設ける必要はなく,高周波アンテナ140自体を支持部材146によって手動で上下駆動できるようにしてもよい。
このように,本実施形態によれば高周波アンテナ140の高さを調整することにより,アンテナ素子142とプラズマPとの距離d2を変えることができるので,プラズマポテンシャルを調整できる。しかも,高周波アンテナ140の高さを調整するだけという簡単な操作でプラズマポテンシャルを容易に調整できる。従って,例えば高いポテンシャルのプラズマが必要なプラズマ処理の場合には,高周波アンテナ140の高さを低くして,アンテナ素子142とプラズマPとの距離d2を短くするようにすればよい。
また,本実施形態におけるアンテナ素子142は平面的な渦巻きコイル状なので同一平面上で内側端部142aから外側端部142bに向かうに連れてその径が徐々に大きくなる。このため,アンテナ素子142の中点を接地点とすると,内側端部142aから接地点までの線路と接地点から外側端部142bまでの線路とではリアクタンスが異なるので,上述した図4に示す電圧Vの波形は,アンテナ素子142の中点からその内側の線路とその外側の線路とでは厳密には対称になっておらず,僅かではあるが両者の波形は相違する。このため,僅かではあるがアンテナ素子142には電圧成分が残ることになる。
このような場合でも,本実施形態によれば,アンテナ素子142とプラズマPとの距離が長くなるように高周波アンテナ140の高さを調整することで,プラズマ電位を実用上無視できる程度に小さくすることができる。このため,アンテナ素子142に残留する僅かな電圧成分の影響を受けないように,プラズマを生成することができる。
上述した高周波アンテナ140とシールド部材160の高さ調整はそれぞれ,制御部200によってアクチュエータ148,168を制御することによって行われる。この場合,高周波アンテナ140とシールド部材160の高さ調整は,操作部210によるオペレータの操作によって行うようにしてもよく,また制御部200の自動制御によって行うようにしてもよい。
具体的にはシールド部材160の高さ調整を自動的に行う場合には,例えば図11に示すように高周波電源150の出力側に高周波パワーメータ(例えば反射波パワーメータ)152を設け,高周波パワーメータ152によって検出される高周波電力に応じて(例えば反射波電力が最小となるように),アクチュエータ168を制御してシールド部材160の高さを調整してアンテナ素子142の共振周波数を自動的に調整するようにしてもよい。これによれば,高周波電源150からの所望の出力周波数に合わせて,アンテナ素子142の共振周波数が最適な共振条件になるように自動的に調整することができる。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は,処理ガスのプラズマを励起させて被処理基板に対して所定の処理を施すプラズマ処理装置を用いたプラズマ処理方法に適用可能である。
100 プラズマ処理装置
102 処理室
104 板状誘電体
110 載置台
120 ガス供給部
121 ガス導入口
122 ガス供給源
123 ガス供給配管
124 マスフローコントローラ
126 開閉バルブ
130 排気部
132 排気管
134 ウエハ搬出入口
136 ゲートバルブ
140 高周波アンテナ
142 アンテナ素子
142a 内側端部
142b 外側端部
144 挟持体
146 支持部材
148 アクチュエータ
149 駆動棒
150 高周波電源
152 RFパワーメータ
160 シールド部材
162 下部シールド部材
164 上部シールド部材
166 張出部
168 アクチュエータ
169 駆動棒
200 制御部
210 操作部
220 記憶部
W ウエハ

Claims (5)

  1. 減圧された処理室内に処理ガスの誘導結合プラズマを生成することにより被処理基板に施すプラズマ処理装置を用いたプラズマ処理方法であって,
    前記プラズマ処理装置は,
    前記処理室内に設けられ,前記被処理基板を載置する載置台と,
    前記処理室内に前記処理ガスを導入するガス供給部と,
    前記処理室内を排気して減圧する排気部と,
    前記載置台に対向して配置された板状誘電体と,
    前記板状誘電体の上側に配設されたアンテナ素子と,
    前記アンテナ素子を上方から覆うように設けられたシールド部材と,
    前記板状誘電体と前記載置台との間に前記誘導結合プラズマを生成するための高周波を前記アンテナ素子に印加する高周波電源と,を備え,
    前記アンテナ素子は、内側の端部から外側の端部に向かうに連れて径が徐々に大きくなるように前記板状誘電体の中心軸周りに巻回する平面渦巻きコイル状であって,その両端を開放するとともに巻き方向長さの中点を接地点とし,前記アンテナ素子を,このアンテナ素子と前記シールド部材との距離を調整してこれらの間の浮遊容量を調整することによって,その接地点より内側に巻かれる部分と外側に巻かれる部分との電気的長さが同じになるようにして,前記高周波電源からの高周波の1/2波長で共振させることにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とするプラズマ処理方法。
  2. 前記プラズマ処理装置には,前記アンテナ素子に対する前記シールド部材の高さを調整するシールド高さ調整機構を設け,
    前記シールド高さ調整機構によって前記アンテナ素子と前記シールド部材との距離を調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とする請求項1に記載のプラズマ処理方法。
  3. 前記プラズマ処理装置には,前記板状誘電体に対する前記アンテナ素子の高さを調整するアンテナ高さ調整機構を設け,
    前記アンテナ高さ調整機構によって前記アンテナ素子と前記板状誘電体との距離を調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とする請求項2に記載のプラズマ処理方法。
  4. 前記アンテナ素子の接地点よりも内側又は外側の部分においてインピーダンスが50オームとなる位置を,前記高周波電源からの高周波を印加する給電ポイントにすることにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とする請求項1〜3のいずれかに記載のプラズマ処理方法。
  5. 前記プラズマ処理装置には,前記高周波電源の出力側に設けた高周波パワーメータを設け,
    前記高周波パワーメータによって検出される高周波電力に応じて,前記シールド高さ調整機構を制御して前記シールド部材の高さを前記アンテナ素子の共振周波数が最適になるように自動的に調整することにより前記処理室内において前記板状誘電体の中心軸周りにドーナツ状プラズマを発生させて,前記被処理基板にプラズマ処理を施すことを特徴とする請求項2又は3に記載のプラズマ処理方法。
JP2014148360A 2014-07-18 2014-07-18 プラズマ処理方法 Active JP5813834B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148360A JP5813834B2 (ja) 2014-07-18 2014-07-18 プラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148360A JP5813834B2 (ja) 2014-07-18 2014-07-18 プラズマ処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008331785A Division JP5584412B2 (ja) 2008-12-26 2008-12-26 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2014241285A JP2014241285A (ja) 2014-12-25
JP5813834B2 true JP5813834B2 (ja) 2015-11-17

Family

ID=52140422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148360A Active JP5813834B2 (ja) 2014-07-18 2014-07-18 プラズマ処理方法

Country Status (1)

Country Link
JP (1) JP5813834B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920732B (zh) 2015-12-25 2018-10-16 中微半导体设备(上海)有限公司 一种电极结构及icp刻蚀机
JP6999368B2 (ja) * 2017-11-01 2022-01-18 東京エレクトロン株式会社 プラズマ処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739137B2 (ja) * 1996-06-18 2006-01-25 日本電気株式会社 プラズマ発生装置及びこのプラズマ発生装置を使用した表面処理装置
JP3736016B2 (ja) * 1997-03-27 2006-01-18 松下電器産業株式会社 プラズマ処理方法及び装置
JP2000235900A (ja) * 1999-02-15 2000-08-29 Tokyo Electron Ltd プラズマ処理装置
JP2002151491A (ja) * 2000-10-31 2002-05-24 Applied Materials Inc プラズマ成膜装置
JP4178775B2 (ja) * 2001-08-31 2008-11-12 株式会社日立国際電気 プラズマリアクター

Also Published As

Publication number Publication date
JP2014241285A (ja) 2014-12-25

Similar Documents

Publication Publication Date Title
JP5584412B2 (ja) プラズマ処理装置
JP5227245B2 (ja) プラズマ処理装置
JP5685094B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5901887B2 (ja) プラズマ処理装置のクリーニング方法及びプラズマ処理方法
JP2013182966A (ja) プラズマ処理装置及びプラズマ処理方法
TWI575597B (zh) 電漿腔室之充電柵
JP5399151B2 (ja) 誘導結合プラズマ処理装置、プラズマ処理方法及び記憶媒体
KR20210108440A (ko) 고전압 필터 어셈블리
KR101998520B1 (ko) 플라즈마 처리 장치 및 플라즈마 발생 유닛
JP6539986B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW202037236A (zh) 產生均勻近場波印廷向量的射頻天線
JP2002540582A (ja) 可変高周波結合を有するコイルを備えたプラズマ・プロセッサ
JP2015026464A (ja) プラズマ処理装置、高周波供給機構および高周波供給方法
JP2009224596A (ja) プラズマ処理装置
JP5813834B2 (ja) プラズマ処理方法
KR101406432B1 (ko) 유도 결합 플라즈마 처리 장치
KR20140140804A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP5097074B2 (ja) プラズマ処理装置及びプラズマ処理方法
US11302521B2 (en) Processing system and processing method
TW202130227A (zh) 電漿處理系統及電漿點火支援方法
JP6282128B2 (ja) プラズマ処理装置及びfsvの制御方法
KR101712263B1 (ko) 헬리컬공명플라즈마 안테나 및 이를 구비하는 플라즈마 발생 장치
JP2018098094A (ja) プラズマ処理装置
KR20150102921A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20220104648A (ko) 기판 처리 장치, 반도체 장치의 제조 방법, 기판 처리 방법 및 기록 매체

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250