JP5811391B2 - Method for producing silicon nitride ceramic sintered body and firing container - Google Patents
Method for producing silicon nitride ceramic sintered body and firing container Download PDFInfo
- Publication number
- JP5811391B2 JP5811391B2 JP2011087217A JP2011087217A JP5811391B2 JP 5811391 B2 JP5811391 B2 JP 5811391B2 JP 2011087217 A JP2011087217 A JP 2011087217A JP 2011087217 A JP2011087217 A JP 2011087217A JP 5811391 B2 JP5811391 B2 JP 5811391B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- powder
- container
- storage
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 96
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 96
- 238000010304 firing Methods 0.000 title claims description 65
- 239000000919 ceramic Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000003860 storage Methods 0.000 claims description 133
- 239000000843 powder Substances 0.000 claims description 105
- 239000000758 substrate Substances 0.000 claims description 34
- 238000005238 degreasing Methods 0.000 claims description 31
- 229910052582 BN Inorganic materials 0.000 claims description 30
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 30
- 238000011049 filling Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- 238000005192 partition Methods 0.000 claims description 28
- 238000005245 sintering Methods 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 18
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 8
- 238000009423 ventilation Methods 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 235000013312 flour Nutrition 0.000 claims 1
- 239000007789 gas Substances 0.000 description 27
- 239000002245 particle Substances 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 15
- 239000000395 magnesium oxide Substances 0.000 description 14
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 14
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 14
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 230000004580 weight loss Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000012856 packing Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Furnace Charging Or Discharging (AREA)
Description
本発明は、窒化珪素質セラミックス焼結体の製造方法および焼成容器に関する発明である。 The present invention relates to a method for producing a silicon nitride ceramic sintered body and a firing container.
上記技術分野に関連する先行技術が下記特許文献1および2に開示されている。特許文献1に開示された窒化アルミニウム基板の製造方法は、「窒化アルミニウム焼結体で形成した筒状容器本体と窒化硼素焼結体で形成され上記容器本体に被せる蓋体とから成る焼成容器内に、窒化アルミニウムを主成分とする基板成形体を収容した状態で非酸化性雰囲気中で焼結することを特徴とする窒化アルミニウム基板の製造方法」、である。
Prior arts related to the above technical field are disclosed in
特許文献2に開示された窒化ケイ素セラミックスの焼結方法は、「窒化ケイ素粉末と焼結助剤として作用する1種類以上の添加材とを混合しブロック状に成形した窒化ケイ素被焼結体を、窒化ケイ素とシリカから成る混合粉末若しくは該窒化ケイ素とシリカと分散材として作用する窒化ホウ素粉末から成る混合粉末若しくは酸窒化ケイ素粉末をサヤ中に詰め、該混合粉末若しくは酸窒化ケイ素粉末中に前記窒化ケイ素粉末と焼結助剤として作用する1種類以上の添加材とを混合しブロック状に成形した被焼結体を埋め、 同時に焼結することを特徴とする窒化ケイ素セラミックスの焼結方法」、である。そして、上記サヤは、「窒化ホウ素製若しくは窒化ケイ素製の焼結体」であり、カーボン製の容器に収納される。
The method for sintering silicon nitride ceramics disclosed in
特許文献1の窒化アルミニウム基板の製造方法によれば、密閉された焼成容器内に成形体を収納した状態で焼成するので、成形体を均一に加熱することができ、さらに加熱炉中に存在する炭素等の不純物が成形体に直接触れることを防止できるので、変形が比較的抑制された焼結体を得ることができる。しかしながら、この製造方法を、特に、焼成工程を常圧または10気圧未満の低圧に加圧された窒素雰囲気下で行う場合に適用した場合には、窒化珪素質セラミックス焼結体(以下焼結体と言う場合がある。)を構成する窒化珪素成分や焼結助剤成分が高温下で多量に分解し、気化して重量損失を生じせしめ、焼結体の内部や表面に空孔が生じたり、焼結体の密度が低下し、所望の機械的特性(強度、破壊靭性)や熱的特性(熱伝導率、熱膨張率)を得ることができなかった。この問題は、10気圧以上の高圧に加圧した窒素雰囲気中で成形体を焼成することにより解消できるが、加熱室を高圧に維持する加熱炉の構成からして焼結工程をバッチ式で行わざるを得ず、大量生産には不向きであり、製品のコスト高を招来していた。
According to the method for manufacturing an aluminum nitride substrate of
一方で、特許文献2の窒化ケイ素セラミックスの焼結方法によれば、高温反応によりSiOを発生するシリカと窒化ケイ素との混合粉末や酸窒化ケイ素粉末(以下埋め粉と言う。)に脱脂体(特許文献2における被焼結体)を埋めた状態で焼結するので、SiOの分圧が高まり、窒化珪素成分の揮発が抑制されて、焼結体の重量損失を防止することができ、焼成工程を常圧または低圧の窒素雰囲気下で行う場合における上記特許文献1の窒化アルミニウム基板の製造方法の重量損失の問題を解消することが可能である。しかしながら、特許文献2の窒化ケイ素セラミックスの焼結方法には、埋め粉に脱脂体を埋めて焼成するため、脱脂体と埋め粉との接触状態の不均一性にともない生じる焼結体の変形という問題があった。すなわち、特許文献2の窒化ケイ素セラミックスの焼結方法において、変形が抑制された焼結体を得るためには、埋め粉に埋め込まれた脱脂体の各表面と当該各表面に接する埋め粉との接触状態を均一にし、焼成中に収縮する脱脂体と埋め粉の間で生じる摩擦力を各表面において一様にし、焼結体全体を均一に収縮させる必要がある。しかし、粒度分布が揃った埋め粉を準備し、被焼結体の周囲に一様に配置することは非常に困難であり、脱脂体に接する埋め粉の不均一性に起因して焼結体に変形が生じる場合もあり、平坦度や平面度などの精度の高い所望の形状を有する焼結体を得ることは困難であった。
On the other hand, according to the sintering method of silicon nitride ceramics of
さらに、特許文献2の窒化ケイ素セラミックスの焼結方法のように、被焼結体を埋め粉に埋めそれらを同時に焼成すると、埋め粉が焼結体の表面に焼き付いて付着するという問題があり、焼き付きを抑制するための分散材である窒化ホウ素粉末を埋め粉に添加しても充分ではなかった。そのため、付着した埋め粉を除去する除去工程が別途必要になるばかりか、除去工程を経ても微小な粒径を持つ埋め粉を完全に除去することができず、この微小な埋め粉に起因して焼結体の割れなどが発生するという問題があった。
Further, as in the method of sintering silicon nitride ceramics of
本発明は、上記従来技術の問題点を鑑みてなされたものであり、特に、焼成工程が常圧または低圧の窒素雰囲気下で行う場合であっても、変形および重量損失の抑制される改善された窒化珪素質セラミックス焼結体の製造方法および焼成容器を提供することを目的としている。 The present invention has been made in view of the above-described problems of the prior art, and in particular, even when the firing step is performed in a nitrogen atmosphere at normal pressure or low pressure, the deformation and weight loss can be suppressed. Another object of the present invention is to provide a method for producing a silicon nitride ceramic sintered body and a firing container.
上記課題を解決する本発明の一の態様は、窒化珪素質セラミックス焼結体の製造方法であって、窒化珪素粉末と焼結助剤粉末とを混合した原料粉を成形した成形体を脱脂し脱脂体を形成する脱脂工程と、脱脂工程後に、外気が流通可能な窒化硼素または窒化珪素からなる収納容器の収納室に脱脂体を収納する第1の収納工程と、外気が流通可能な通気路を有する焼成容器の収納部に、収納容器を収納する第2の収納工程と、第2の収納工程の後に、焼成容器を加熱炉中に置き、窒素雰囲気中で脱脂体を焼成する焼成工程を有し、前記焼成容器は、その収納部に収納された収納容器と、その内壁面との間に形成された窒化硼素または窒化珪素からなる隔壁を有し、前記隔壁と前記焼成容器との間に、窒化珪素粉末および焼結助剤粉末を混合した詰め粉を配置する詰め粉配置工程を含むことを特徴とする窒化珪素質セラミックス焼結体の製造方法である。前記第2の収納工程において、脱脂体が通気路と対向しないように収納容器を収納することが好ましい。 One aspect of the present invention for solving the above problems is a method for producing a silicon nitride ceramic sintered body, which comprises degreasing a molded body obtained by molding a raw material powder in which a silicon nitride powder and a sintering aid powder are mixed. A degreasing step for forming a degreased body, a first storage step for storing the degreased body in a storage chamber of a storage container made of boron nitride or silicon nitride through which the outside air can flow after the degreasing step, and an air passage through which the outside air can flow A second storage step of storing the storage container in the storage portion of the baking container, and a baking step of placing the baking container in a heating furnace and baking the degreased body in a nitrogen atmosphere after the second storage step. The firing container has a partition made of boron nitride or silicon nitride formed between a storage container stored in the storage portion and an inner wall surface thereof, and the partition between the partition and the firing container In addition, silicon nitride powder and sintering aid powder were mixed. A method for producing a silicon nitride ceramic sintered body which comprises a packed powder placement step of placing the fit powder. In the second storing step, it is preferable to store the storage container so that the degreased body does not face the air passage.
なお、上記隔壁は、焼成容器の上方から見た平面視において、収納容器を包囲するように配置されていることが望ましい。 Note that the partition wall is preferably arranged so as to surround the storage container in a plan view as viewed from above the baking container.
さらに、上記焼成容器は、隔壁を構成する一方が開口した筒状の壁体、壁体の開口を塞ぐ蓋体を有することが望ましい。加えて、焼成容器は、窒化珪素質または炭素質であれば好適である。 Furthermore, it is desirable that the firing container has a cylindrical wall body having one opening that constitutes the partition wall and a lid body that closes the opening of the wall body. In addition, it is preferable that the firing container is silicon nitride or carbonaceous.
さらに、収納容器は、一面に前記脱脂体が載置される底体、前記底体に載置された脱脂体を包囲するように当該底体の一面に配置された開口を有する壁体、前記壁体の開口を塞ぐ蓋体を有し、前記収納室は前記底体、壁体および蓋体で画成され、前記壁体および蓋体との間に形成された通気路を有していれば、好ましい。この場合には、収納容器と隔壁の間にも、上記と同様な詰め粉を配置することができる。また、焼成容器の収納部に収納容器を、重ねて配置する際には、上部の収納容器の底体が下部の収納容器の蓋体であってもよい。 Furthermore, the storage container has a bottom body on which the degreased body is placed on one surface, a wall body having an opening disposed on one surface of the bottom body so as to surround the degreased body placed on the bottom body, A lid that closes the opening of the wall, and the storage chamber is defined by the bottom, the wall, and the lid, and has an air passage formed between the wall and the lid. Is preferable. In this case, a stuffing powder similar to the above can be disposed between the storage container and the partition wall. In addition, when the storage container is placed in the storage part of the baking container, the bottom of the upper storage container may be the lid of the lower storage container.
上記課題を解決する本発明の他の態様は、窒化珪素質セラミックス焼結体の焼成工程で使用される焼成容器であって、窒化珪素粉末と焼結助剤粉末とを混合した原料粉を成形してなる成形体を脱脂した脱脂体を収納する外気が流通可能な収納室を備えた窒化硼素または窒化珪素からなる収納容器を収納可能な収納部と、前記収納部と連通する外気が流通可能な通気路とを有し、前記収納部に収納された収納容器とその内壁面との間に形成された隔壁を有し、前記隔壁とその内壁面との間には、窒化珪素粉末および焼結助剤粉末を混合した詰め粉を配置し得る領域が設けられていることを特徴とする焼成容器である。前記収納部に収納される収納容器は、収納された脱脂体が前記通気孔と対向しないように配置されることが好ましい。 Another aspect of the present invention that solves the above problems is a firing container used in a firing process of a silicon nitride ceramic sintered body, and molding raw material powder in which silicon nitride powder and sintering aid powder are mixed. A storage part capable of storing a storage container made of boron nitride or silicon nitride having a storage chamber for storing outside air for storing a degreased body that has been degreased, and outside air communicating with the storage part can flow And a partition wall formed between the storage container stored in the storage unit and the inner wall surface thereof, and between the partition wall and the inner wall surface, silicon nitride powder and sintered It is a baking container characterized by providing the area | region which can arrange | position the filling powder which mixed the binder powder. It is preferable that the storage container stored in the storage unit is disposed so that the stored degreased body does not face the vent hole.
なお、上記隔壁は、焼成容器の上方から見た平面視において、収納容器を包囲するように配置されていることが望ましい。 Note that the partition wall is preferably arranged so as to surround the storage container in a plan view as viewed from above the baking container.
さらに、上記焼成容器は、隔壁を構成する一方が開口した筒状の壁体、壁体の開口を塞ぐ蓋体を有することが望ましい。加えて、焼成容器は、窒化硼素質、窒化珪素質または炭素質であることが望ましい。 Furthermore, it is desirable that the firing container has a cylindrical wall body having one opening that constitutes the partition wall and a lid body that closes the opening of the wall body. In addition, the firing container is desirably boron nitride, silicon nitride, or carbon.
さらに、前記収納部に収納される前記収納容器は、一面に前記脱脂体が載置される底体、前記底体に載置された脱脂体を包囲するように当該底体の一面に配置された開口を有する筒状の壁体、前記壁体の開口を塞ぐ蓋体を有し、前記収納室は前記底体、壁体および蓋体で画成され、前記壁体および蓋体との間に形成された通気路を有していれば、好ましい。この場合には、収納容器と隔壁の間には、上記と同様な詰め粉を配置し得る領域が設定することができる。 Further, the storage container stored in the storage unit is disposed on one surface of the bottom body so as to surround the bottom body on which the degreased body is placed on one surface and the degreased body placed on the bottom body. A cylindrical wall having an opening and a lid that closes the opening of the wall, and the storage chamber is defined by the bottom body, the wall, and the lid, and is defined between the wall and the lid. It is preferable if it has a ventilation path formed in the. In this case, an area where the same stuffing powder as above can be placed can be set between the storage container and the partition wall.
本発明によれば、上記のように構成されているので、その課題を解決することができる。 According to the present invention, since it is configured as described above, the problem can be solved.
本発明について、その実施形態に基づき図1〜6を参照しつつ説明する。なお、以下、窒化珪素質セラミックス焼結体で構成された、半導体装置などの電子部品を搭載する電子・電気的用途に用いられる矩形薄板状の基板(以下窒化珪素基板という場合がある。)を例として、本発明を具体的に説明するが、本発明は、機械構造部品や建築構造部品その他各種の用途に用いられる窒化珪素質セラミックス焼結体に利用できることは言うまでもない。また、本発明は、特に焼結工程を常圧または低圧の窒素雰囲気下で行う窒化珪素質セラミックス焼結体の製造に好適に適用することができるが、焼結工程を高圧の窒素雰囲気下で行う場合にも適用することができる。 The present invention will be described based on the embodiment with reference to FIGS. In the following, a rectangular thin plate-like substrate (hereinafter sometimes referred to as a silicon nitride substrate) composed of a silicon nitride ceramic sintered body and used for electronic and electrical applications on which electronic components such as semiconductor devices are mounted. The present invention will be described specifically by way of example, but it goes without saying that the present invention can be used for silicon nitride ceramic sintered bodies used for machine structural parts, building structural parts, and other various applications. In addition, the present invention can be suitably applied to the production of a silicon nitride ceramic sintered body in which the sintering process is performed in a normal or low pressure nitrogen atmosphere, but the sintering process is performed in a high pressure nitrogen atmosphere. It can also be applied in the case of performing.
[組成]
本態様に係わる焼結体で構成された窒化珪素基板は、焼結助剤として、Mg(マグネシウム)を酸化物換算で1.5〜5.5重量%、少なくとも1種の希土類元素を酸化物換算で0.5〜15重量%含有している。希土類元素の酸化物としては、Y、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等があげられるが、中でもYの酸化物Y2O3は窒化珪素基板の高密度化に有効であり、より好ましい。マグネシウム及び希土類元素は、窒化珪素の柱状粒子を成長させるための焼結助剤として機能するので、含有量が少ないと柱状粒子の成長が不十分で上記長軸方向の長さが短い柱状粒子が多くなる。このため、窒化珪素基板の曲げ強度、破壊靱性等が低下する。一方、マグネシウム及び希土類元素の含有量が多くなると柱状粒子の成長が促進され、上記長軸方向の長さが長い柱状粒子が多くなる。このため、窒化珪素基板の配向度faが大きくなって表面粗度が増大する。本態様の窒化珪素基板では、これらの特性を調整するために、マグネシウム及び希土類元素の各含有量を上記範囲としている。
[composition]
The silicon nitride substrate composed of the sintered body according to this embodiment has Mg (magnesium) as the sintering aid in an amount of 1.5 to 5.5% by weight in terms of oxide and at least one rare earth element as an oxide. Containing 0.5 to 15% by weight. Examples of rare earth element oxides include Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Among them, Y oxide Y 2 O 3 Is effective for increasing the density of the silicon nitride substrate, and is more preferable. Since magnesium and rare earth elements function as a sintering aid for growing columnar particles of silicon nitride, if the content is small, the columnar particles are insufficiently grown and the columnar particles having a short length in the major axis direction are formed. Become more. For this reason, the bending strength, fracture toughness, etc. of the silicon nitride substrate are lowered. On the other hand, when the contents of magnesium and rare earth elements are increased, the growth of columnar particles is promoted, and the columnar particles having a long length in the major axis direction are increased. For this reason, the degree of orientation fa of the silicon nitride substrate increases and the surface roughness increases. In the silicon nitride substrate of this embodiment, in order to adjust these characteristics, the contents of magnesium and rare earth elements are in the above ranges.
[製造方法]
次に、本態様の焼結体の製造フローを示す図1を参照して、その製造方法について説明する。図1において符号S1は、原料調整・混合工程であり、窒化珪素原料粉にマグネシウムを酸化物換算で1.5〜5.5重量%、少なくとも1種の希土類元素を酸化物換算で0.5〜15.0重量%の割合となるように混合し、有機バインダー、可塑剤等とともにボールミル等で混合し、原料スラリーを形成する。ここで、希土類元素酸化物としては、上述したY2O3を使用するのが好適である。
[Production method]
Next, the manufacturing method is demonstrated with reference to FIG. 1 which shows the manufacturing flow of the sintered compact of this aspect. In FIG. 1, reference sign S <b> 1 is a raw material adjustment / mixing step, in which magnesium is added to silicon nitride raw material powder in an amount of 1.5 to 5.5% by weight in terms of oxide, and at least one rare earth element is converted to 0.5 in terms of oxide. It mixes so that it may become a ratio of -15.0 weight%, It mixes with a ball mill etc. with an organic binder, a plasticizer, etc., and forms raw material slurry. Here, as the rare earth element oxide, it is preferable to use the above-described Y 2 O 3 .
次いで、成形工程S2である。成形工程S2では、上記混合した原料スラリーを脱泡・増粘した後、ドクターブレード法により所定厚さの板にシート成形する。このときのシート成形体の板厚は、用途に応じて適宜決定できるが、窒化珪素基板の場合には、通常0.1〜1.0mm程度である。成形工程S2にて成形された成形体(グリーンシート)は通常大判であるため、切断工程S3により所望の大きさのカード状の成形体となるよう切断される。なお、このカード状の成形体は、最終製品である小片の窒化珪素基板を複数枚含む大きさであり、当該成形体を焼成してカード状の焼結体を作成した後、小片に分割して最終製品としての窒化珪素基板を得ることができる。 Next, the forming step S2. In the forming step S2, the mixed raw material slurry is defoamed and thickened, and then formed into a sheet having a predetermined thickness by a doctor blade method. The sheet thickness of the sheet molded body at this time can be appropriately determined according to the application, but in the case of a silicon nitride substrate, it is usually about 0.1 to 1.0 mm. Since the molded body (green sheet) molded in the molding step S2 is usually large, it is cut into a card-shaped molded body of a desired size in the cutting step S3. This card-shaped molded body is sized to include a plurality of small pieces of silicon nitride substrates as final products. After the molded body is fired to form a card-shaped sintered body, it is divided into small pieces. Thus, a silicon nitride substrate as a final product can be obtained.
切断工程S3の後、BN塗布工程S4において成形体の両面または片面に窒化硼素粉末を塗布する。この窒化硼素粉末は、この工程の後の積層工程S5で複数枚積層され、脱脂工程S6を経て焼成工程S8で焼成される際に、窒化珪素基板同士が固着することを防止して剥離性を向上するとともに、窒化珪素基板の変形を抑制する機能を有するものである。なお、窒化硼素粉末としては、その機能の観点から、酸素量0.01〜0.5重量%、平均粒子径4〜20μm、比表面積20m2/g以下、酸素量0.01〜0.5重量%のものを利用することが好ましい。さらに、窒化硼素粉末に含まれる不純物、特に炭素は、窒素ガスに含まれる微量な酸素と結合し一酸化炭素となり、窒化珪素基板の中の窒化珪素成分を還元し、変形を生じせしめる可能性があるので、その含有量は1重量%以下であることが望ましい。さらに、窒化硼素粉末の好ましい塗布量は、0.05〜1.4mg/cm2
である。また、窒化硼素粉末の塗布方法は特に限定されず、窒化珪素粉末を溶媒と混合してなる溶液をスプレーや筆で成形体の表面に塗布してもよいが、成形体の表面に均一な塗布量で窒化硼素粉末を塗布するためにはスクリーン印刷法で塗布することが好ましい。
After the cutting step S3, boron nitride powder is applied to both sides or one side of the compact in the BN coating step S4. A plurality of the boron nitride powders are laminated in the laminating step S5 after this step, and the silicon nitride substrates are prevented from adhering to each other when the degreasing step S6 and the firing step S8 are fired. In addition to improving, it has a function of suppressing deformation of the silicon nitride substrate. The boron nitride powder has an oxygen content of 0.01 to 0.5% by weight, an average particle size of 4 to 20 μm, a specific surface area of 20 m 2 / g or less, and an oxygen content of 0.01 to 0.5 from the viewpoint of its function. It is preferable to use the weight percent. Further, impurities contained in the boron nitride powder, particularly carbon, may combine with a minute amount of oxygen contained in the nitrogen gas to form carbon monoxide, which may reduce the silicon nitride component in the silicon nitride substrate and cause deformation. Therefore, the content is desirably 1% by weight or less. Furthermore, the preferable coating amount of boron nitride powder is 0.05 to 1.4 mg / cm 2.
It is. Further, the method for applying boron nitride powder is not particularly limited, and a solution obtained by mixing silicon nitride powder with a solvent may be applied to the surface of the molded body with a spray or a brush. In order to apply the boron nitride powder in an amount, it is preferably applied by a screen printing method.
次いで、積層工程S5である。脱脂工程S6における窒化珪素基板の状態を説明する図でもある図3に示すように、窒化硼素粉末bが表面に塗布された成形体w1は、積層工程S5において、窒化硼素粉末bが塗布された面が互いに接触するように板体1cの上に複数枚積層される。
Then, it is lamination process S5. As shown in FIG. 3, which is also a diagram for explaining the state of the silicon nitride substrate in the degreasing step S6, the molded body w1 coated with the boron nitride powder b on the surface was coated with the boron nitride powder b in the laminating step S5. A plurality of sheets are laminated on the
積層工程S5で積層された複数枚の成形体w1は、脱脂工程S6において、成形体w1に含まれるバインダー等の有機成分を除去するために脱脂され、脱脂体w2が形成される。脱脂は、例えば成形体w1を加熱炉または加熱テーブルに置き、900℃以下の大気中、もしくは常圧の窒素、アルゴン等の不活性雰囲気中で行うことが好ましい。ここで、図3に示すように、脱脂工程において、積層された成形体w1を収納容器1に収納し、脱脂を行うことが望ましい。
In the degreasing step S6, the plurality of molded bodies w1 stacked in the stacking step S5 are degreased in order to remove organic components such as a binder contained in the molded body w1, thereby forming a degreased body w2. Degreasing is preferably performed, for example, by placing the molded body w1 in a heating furnace or a heating table and in an atmosphere of 900 ° C. or lower, or in an inert atmosphere such as atmospheric nitrogen or argon. Here, as shown in FIG. 3, in the degreasing step, it is desirable to store the laminated molded body w1 in the
収納容器1は、その正面断面図である図3(a)、図3(a)のA−A断面図である図3(b)に示すように、積層された複数枚の成形体w1が載置される矩形平板状の底体1c(積層工程において成形体w1が積層される板体でもある。)と、底面が底板1cの上面に密着して配置された上下が開口した矩形枠状の壁体1bと、壁体1bの上方開口を塞ぐように配置された矩形平板状の蓋体1aとを有している。そして、壁体1bは、底板1cに載置された成形体w1を包囲するように配置されており、底体1c、壁体1bおよび蓋体1aとで画成される収納室1dに積層された成形体w1は収納されることとなる。ここで、蓋体1aおよび壁体1bまたは底体1cおよび壁体1bとは密着しておらず、微小な間隙が形成されているそれらの界面が通気路1fとなり、当該通気路1fを介し収納室1dと外部とは連通している。したがって、脱脂工程S6において、図中矢印Cで示すように、通気路1fを通じて外気は外部から収納室1dに流入し、成形体から発生するガスは収納室1dから外部に流出するが、収納室1dは、底体1c・壁体1b・蓋体1aで包囲されているので、収納室1dに収納される成形体w1は直接外気に触れることがない。このため、収納容器1の外部の環境において温度・湿度・風速などに変化が生じた場合であっても、収納室1dの中に収納された成形体w1には影響が及びにくく、さらに比較的密閉された収納室1dにおいて成形体w1は均一に加熱されるので、脱脂工程において脱脂体w2の変形(反り)を抑制することができる。
As shown in FIG. 3A, which is a front cross-sectional view, and FIG. 3B, which is a cross-sectional view taken along line AA of FIG. 3A, the
なお、収納容器1を構成する底体1c・壁体1b・蓋体1aを形成する材料は、脱脂工程が比較的低温で行われることから、当該材料と成形体w1との反応を考慮する必要性が低く、アルミナやジルコニアその他適宜なセラミックスを利用することができる。また、成形体w1の脱脂のみを考えた場合には、図3(c)に示すように、蓋体1aと底体1cとの間に介在し両者を支える支柱5bを4辺に設け、外気の流通性をより高めた収納容器5を利用してもよい。しかしながら、成形体を収納する収納容器は、脱脂工程S6に引き続く焼成工程S8でも使用されるため、作業の効率性の観点から、脱脂工程S6と焼成工程S8で使用する収納容器は共通の構造としておくことが好ましく、焼成工程S8において焼結体との反応性の低い、窒化珪素または窒化硼素で底体1c・壁体1b・蓋体1aを形成することが望ましい。
In addition, since the material which forms the
図1に示すように、本態様の製造方法では、脱脂工程S6の後に準備工程S7が実施される。脱脂工程S6と焼成工程S8との間に介在された準備工程S7は、焼成工程S8で焼成される脱脂体w2を焼成容器2に所定の状態で収納する工程であり、図2に示すように、第1の収納工程S71、第2の収納工程S72、詰め粉配置工程S73の三の工程を含んでいる。以下、準備工程S7の詳細を説明する前に、この工程で使用される焼成容器2および収納容器7の構成について、図4および5を参照しつつ説明する。
As shown in FIG. 1, in the manufacturing method of this aspect, preparation process S7 is implemented after degreasing process S6. Preparatory step S7 interposed between degreasing step S6 and firing step S8 is a step of storing degreased body w2 fired in firing step S8 in firing
準備工程S7で使用される収納容器7は、上記脱脂工程S6で使用された収納容器1と基本的に同一の構造である。すなわち、収納容器7は、図3(a)・(b)に示すように、矩形平板状の底体7cと、底面が底板7cの上面に密着して配置された矩形枠状の壁体7bと、壁体7bの上方開口を塞ぐように配置された矩形平板状の蓋体7aとを有し、脱脂された複数枚の脱脂体w2は、底体7c・壁体7b・蓋体7aとで画成される外気が流通可能な収納室7dに収納されている。ここで、脱脂工程の説明でも触れたように、脱脂時に使用する収納容器1は特に材質および構造に限定はないが、準備工程S7に引き続く焼成工程S8では、脱脂体w2が焼成されてなる焼結体w3に含まれる窒化珪素成分および焼結助剤成分と収納容器7を構成する材料の反応性を考慮する必要があり、両者と反応しない材料である窒化珪素または窒化硼素で、底体7c・壁体7b・蓋体7aを形成しなければならない。したがって、収納容器1と7の材料が異なる場合には、脱脂工程S6の後に脱脂体w2を収納容器1から取り出し、収納容器7に移載する必要がある。なお、収納容器1と7とは、上記したように脱脂工程S6と焼成工程S8とで共用することができ、両者ともに窒化珪素または窒化硼素で形成されていれば、脱脂工程S6で説明した収納容器5のような構造を有する収納容器を利用することもできる。
The
準備工程S7で使用される本態様の焼成容器2は、その正面断面図である図4、図4のB−B断面図である図5(a)に示すように、壁部3aを有する加熱炉3の加熱室3bにおいて、その炉床3cに、底面が接する状態で配置される上下ともに開口した断面が矩形枠状の壁体2aと、壁体2aの上部開口を塞ぐように配置される蓋体2bを有し、炉床3c・壁体2a・蓋体2bとで収納部2dが画成される。ここで、蓋体2bと壁体2aは密着しておらず、微小な間隙が形成されているそれらの界面が通気路2fとなり、当該通気路2fを介して収納部2dと加熱室3b(外部)は連通しているので、図中矢印Dで示すように、通気路2fを通じて収納部2dの気体は外部へ流出する。さらに本態様の焼成容器2においては、好ましい態様として、脱脂体w2が通気路2fと対向しないように収納容器7を収納部2dに納めているので、通気路2fを通じ流入してきた外気に脱脂体w2が直接触れることがない。このため、焼成容器2の外部の環境において温度・湿度・風速などに変化が生じた場合であっても、脱脂体w2には影響が及びにくい。なお、脱脂体w2を収めた収納容器7は、図5(a)に示すように、焼成容器2の収納部2dのほぼ中央部の炉床3cの上に配置される。
As shown in FIG. 4 which is a front cross-sectional view thereof and FIG. 5A which is a BB cross-sectional view of FIG. In the
図4および図5(a)において符号2cは隔壁であり、上記の態様で焼成容器2の収納部2dに収納された収納容器7と焼成容器2の壁体2aの内壁面との間に配置されている。筒状である本態様の隔壁2cは、収納容器7を包囲する断面が矩形枠状をなしており、その外壁面と焼成容器2の壁体2aとの間隙2eの底部4辺には、所定量の詰め粉T1が充填された状態で配置される。なお、焼成容器内における隔壁の配置態様は上記に限定されず、図5(b)に平面断面図を示す焼成容器4のように、離別した4枚の隔壁4cを収納容器7の周囲の4辺に配置し、各々の隔壁4cと壁体2aの間隙2eに詰め粉T1を配置してもよい。また、このような隔壁2c・4cを配置することにより、壁体2aと併せ脱脂体2wは2重に外部から隔離されることとなり、外部環境の変化の影響がより及びがたくなる。
4 and 5A,
ここで、脱脂体w2に含まれる窒化珪素および酸化マグネシウムは蒸気圧が高く、常圧または低圧の窒素雰囲気下の焼成では、下記の式1および2の左辺から右辺へ向かう反応により、下記式1の左辺のSi3N4である窒化珪素および下記式2の左辺のMgOである酸化マグネシウムの分解反応が進行し、下記式1および2の右辺のSiOガスおよびMgガスとなり焼成中の脱脂体w2から揮発し、その結果、焼結体の重量損失が生じる。なお、式1左辺のSiO2の供給源は、窒化珪素粒子の表面に形成された酸化シリコン層である。焼成容器2の収納部2dに配置される詰め粉T1は、式1および2の右辺のSiOおよびMgのガス分圧を高め、この窒化珪素および酸化マグネシウムの分解・揮発を抑制するという機能を有する。他の焼結助剤成分である希土類元素酸化物は蒸気圧が比較的低く、脱脂体w2の焼成時に揮発し難いので、必要に応じ詰め粉T1に添加すればよい。
Here, silicon nitride and magnesium oxide contained in the degreased body w2 have a high vapor pressure, and in firing in a nitrogen atmosphere at normal pressure or low pressure, the following
Si3N4(s)+3SiO2(l)→6SiO(g)+2N2(g):式1
Si3N4(s)+3MgO(s)→3SiO(g)+3Mg(g)+2N2(g):式2
ここで、s:固相、l:液相、g:気相
Si 3 N 4 (s) + 3SiO 2 (l) → 6SiO (g) + 2N 2 (g):
Si 3 N 4 (s) + 3MgO (s) → 3SiO (g) + 3Mg (g) + 2N 2 (g):
Where s: solid phase, l: liquid phase, g: gas phase
上記機能を発現させるため、詰め粉T1は、窒化珪素粉末および焼結助剤としての酸化マグネシウム粉末とを含み、好ましくは高温加熱による窒化珪素粉末の凝着を防止するための分散材としての窒化硼素粉末を添加する。焼成容器2の間隙2eに配置された詰め粉T1は、焼成工程における高温下で上記式1および式2の左辺から右辺に向かう反応に従い分解し、SiOガスおよびMgガスが発生する。その結果、収納部2dのSiOおよびMgのガス分圧が高まり、脱脂体w2の焼成時における式1および2の左辺から右辺への進行が抑制され、その結果、焼結体の重量損失が抑制される。
In order to express the above function, the filling powder T1 includes a silicon nitride powder and a magnesium oxide powder as a sintering aid, and is preferably nitrided as a dispersing material for preventing adhesion of the silicon nitride powder due to high-temperature heating. Add boron powder. The filling powder T1 disposed in the
なお、詰め粉T1は、窒化珪素粉末と酸化マグネシウム粉末の配合比(酸化マグネシウム粉末/窒化珪素粉末)が、1.0〜0.25となるよう構成することが好ましい。酸化マグネシウム粉末/窒化珪素粉末が0.25未満であると脱脂体w2を焼成してなる焼結体w3の重量損失を抑制する充分なSiOガスが生成できず、1.0を超えると雰囲気中のMgO蒸気圧が高くなり窒化珪素焼結体にまで拡散し、MgSiN2が生成し、焼成体w3の強度の低下を招来する。また、窒化硼素粉末を添加する場合には、10〜50wt%添加することが好ましい。10wt%未満では窒化珪素粒子の凝着抑制の効果が生じ難く、50wt%を超えると重量損失抑制の効果が得られ難い。加えて、窒化珪素粉末は25〜72wt%、酸化マグネシウム粉末を10〜45wt%、となるよう構成することが好ましい。 The filling powder T1 is preferably configured such that the compounding ratio of the silicon nitride powder and the magnesium oxide powder (magnesium oxide powder / silicon nitride powder) is 1.0 to 0.25. If the magnesium oxide powder / silicon nitride powder is less than 0.25, a sufficient SiO gas that suppresses the weight loss of the sintered body w3 obtained by firing the degreased body w2 cannot be generated. MgO vapor pressure becomes higher and diffuses to the silicon nitride sintered body, MgSiN 2 is generated, and the strength of the fired body w3 is reduced. Moreover, when adding boron nitride powder, it is preferable to add 10-50 wt%. If it is less than 10 wt%, the effect of suppressing the adhesion of silicon nitride particles is difficult to occur, and if it exceeds 50 wt%, it is difficult to obtain the effect of suppressing weight loss. In addition, the silicon nitride powder is preferably constituted to be 25 to 72 wt% and the magnesium oxide powder to be 10 to 45 wt%.
焼成容器2の本体部分を構成する壁体2aおよび蓋体2bは、脱脂体w2との反応性が低い材料である窒化硼素質、窒化珪素質または炭素質で構成することが望ましい。特に、下記の理由により、炭素質の材料で形成することが望ましい。すなわち、高温雰囲気にさらされ消耗の激しく交換頻度の高い壁体2aおよび蓋体2bが炭素質の材料で構成することにより低コスト化することが可能になるととともに、酸素との親和性が良いことから焼成容器内が還元雰囲気になり、焼成体中の酸素含有量を低減させて熱伝導特性が良好な焼結体を作製することが可能であるからである。なお、焼成すべき脱脂体w2の周囲に配置される収納容器7および隔壁2cを構成する材料は、脱脂体w2に含まれる窒化珪素と反応しない窒化珪素または窒化硼素とすることが必須である。
It is desirable that the
上記収納容器7および焼成容器2を使用した準備工程71の詳細について、図2、図4および図5(a)を参照して説明する。まず、第1の収納工程S71である(図2参照)。第1の収納工程S71では、上記したように外気が流通可能な収納容器7の収納室7dに脱脂体w2を収納する。なお、脱脂体w2の表面には、BN塗布工程S4で成形体に塗布された窒化硼素粉末がそのままの状態で維持されている。また、収納容器7を、脱脂工程S6で使用した収納容器1と共用する場合には、脱脂体w2を形成する脱脂工程S6において成形体w1を収納容器1に収納する工程が第1の収納工程S71を兼ねることとなる。さらに、収納部7dに収納する脱脂体w2の姿は、図4に示すように複数の脱脂体w2を積層した状態ではなく、1枚であってもよい。
Details of the preparation step 71 using the
次いで、第2の収納工程S72である。第2の収納工程S72では、上記したように外気が流通可能な通気路2fを有する焼成容器2の収納部2dに、脱脂体w2が収納された収納容器7を、好ましくは脱脂体w2が通気路2fと対向しないように、収納する。なお、図4では、複数個の収納容器7を積み重ねて収納部7dに収納しているが、収納容器7は1個だけ収納してもよく、横方向に並列した状態で収納部7dに収納してもよい。また、図示のように収納容器7を重ねて配置する際には、上部の収納容器7の底体1cが下部の収納容器7の蓋体1a(図3参照)となるよう配置してもよい。
Then, it is 2nd accommodation process S72. In the second storage step S72, the
次いで、詰め粉配置工程S73である。詰め粉配置工程S73では、焼成容器2の隔壁2cと焼成容器2aの間隙2eに、上記説明した詰め粉T1を配置する。詰め粉T1の組成は上記したとおりだが、その充填量は収納容器7に収納された脱脂体w2の質量、収納部2dの容量および焼成工程における焼成条件(焼成温度・焼成時間)などを考慮し、適宜な量、充填すればよい。なお、第1の収納工程S71、第2の収納工程S72および詰め粉配置工程S73は、この順序で実施しなくともよく、例えば、焼成容器2の間隙2eに詰め粉T1を配置した後(詰め粉配置工程)、脱脂体w2を収納容器7に収納し(第1の収納工程)、収納容器7を焼成容器2に収納してもよい(第2の収納工程)。
Then, it is packing powder arrangement | positioning process S73. In the packing powder arranging step S73, the above-described packing powder T1 is arranged in the
上記準備工程S7に引き続き焼成工程S8を実施する。焼結工程S7では、上記のように焼成容器2に収納された脱脂体w2を、1700〜2000℃の温度で、1〜20時間、常圧または低圧の窒素雰囲気中で焼成する。この焼成時に、焼成容器2に配置された詰め粉T1は、以下のように作用する。
Subsequent to the preparation step S7, the firing step S8 is performed. In the sintering step S7, the degreased body w2 housed in the
上記したように、窒化珪素粉末および酸化マグネシウム粉末を含む詰め粉T1は、高温下において式1および式2の左辺から右辺に向かう分解反応によりガス化し、その結果、SiOガスおよびMgガスが生成される。このガスは、焼成容器2の収納部2dの内を満たし、SiOガスおよびMgガスの分圧を高め、収納容器7の内に収納された脱脂体w2に含まれる窒化珪素粒子および酸化マグネシウム粒子の式1および2の反応による分解反応が阻止され、焼結体w3の重量損失が防止される。
As described above, the filling powder T1 containing the silicon nitride powder and the magnesium oxide powder is gasified by a decomposition reaction from the left side to the right side of the
ここで、上記のように収納部2dを満たすSiOガスおよびMgガスの圧力は、加熱炉3の加熱室3b(外部)の圧力よりも高いので、これらのガスは、焼成容器2の蓋体2bおよび壁体2aの間の通気路2fを経て加熱室3bへと流出される。このように通気路2fから流出されるガスにより当該隙間はシールされる。これにより、焼成工程S8の際に、収納部2dは気密化され、加熱室3bの中の窒素ガスに含まれる不純物としての炭素や酸素の収納部2dへの流入が抑制され、脱脂体w2が焼成されてなる焼結体の重量損失がより一層防止される。このように蓋体2bおよび壁体2aの隙間から収納部2dに外気が流入せず、さらに蓋体2bおよび壁体2aにより、ほぼ密閉された収納部2dは外気と直接触れないように構成されており、収納室2dの中の温度は均一に保たれるので、もって焼成体の変形が抑制される。また、加熱室3bには、通例、一定の流量で窒素ガスが吹き込まれるが、脱脂体w2は通気路2fと対向していないので、通気路2fを通じ流入した窒素ガス(外気)が直接脱脂体w2に直接当たることがなく、このガスの圧力による脱脂体w2の変形も抑制される。
Here, since the pressure of the SiO gas and the Mg gas filling the
そして、詰め粉T1は、隔壁2cと壁体1aとの間隙2eに、脱脂体w2とは別離して配置されているので、焼成工程において脱脂体2wに焼き付き、焼結体に残存することが無い。その結果、脱脂体w2が焼成されてなる焼結体について、焼き付いた詰め粉T1を除去する工程が不要となるばかりか、焼き付いた詰め粉T1による窒化珪素基板の不良を回避することができる。また、脱脂体w2が詰め粉T1と直接接触しないことから、詰め粉T1の組成・配置のバラツキによる焼結体w3の変形が防止される。なお、詰め粉の効果を高めるため、間隙2eに配置する詰め粉T1とは別個に、例えば図4に示すように収納容器7の上部に詰め粉T2を別個に設けてもよい。
And since the stuffing powder T1 is disposed separately from the degreased body w2 in the
上記焼成工程S8の後に、図1に示すように、必要に応じ熱処理工程S9が置かれる。熱処理工程S9は、焼成時に生じた焼結体の変形を修正し、窒化珪素基板として必要な平坦度を得る工程であり、焼成後の焼結体の変形量が所望の範囲内であれば必要ではない。焼結体を窒化珪素基板として用いる場合、工業生産上において許容される変形量は、概ね2.0μm/mm以下である。熱処理工程S9では、焼成後の焼結体の上に錘体を載せた状態で加熱炉に挿入し、当該錘体より0.2〜8.0KPaの荷重(圧力)を焼結体へ鉛直方向に直接負荷し、窒素雰囲気中にて1550〜1900℃で加熱する。このように、荷重を印加しながら熱処理することにより、窒化珪素基板の反りを修正することができる。なお、このときの熱処理温度が1550℃よりも低くなると、反りの抑制効果が不十分となり、焼結体の変形がより大きくなる。また、1900℃よりも高くなると、焼結体に含まれる柱状粒子の成長が促進され、柱状粒子の配向度が大きくなって表面粗度が増大する。従って、熱処理温度は上記範囲が好適である。さらに、熱処理の際に印加する荷重が0.2kPaより低い場合には反りの抑制効果が不十分であり、8.0KPaより高い場合には焼結体に含まれる粒界ガラス相の表面浸透が促進され、脱脂体を積層し焼成した場合に、焼結体同士がガラス相により接着される。従って、熱処理の際に印加する荷重は上記範囲が好適である。さらに、焼結体を複数枚重ね積層体とし、その積層体の上に錘体を載せ、熱処理することが好ましい。これにより、焼結助剤である酸化マグネシウムや酸化イットリウム等の揮発量が抑制され、焼結体に含まれる柱状粒子の成長が抑制され、柱状粒子の配向度が過度に高くなることを抑制できる。 After the firing step S8, as shown in FIG. 1, a heat treatment step S9 is performed as necessary. The heat treatment step S9 is a step of correcting the deformation of the sintered body generated during firing to obtain the necessary flatness as a silicon nitride substrate, and is necessary if the amount of deformation of the sintered body after firing is within a desired range. is not. When the sintered body is used as a silicon nitride substrate, the amount of deformation allowed in industrial production is approximately 2.0 μm / mm or less. In the heat treatment step S9, a weight is placed on the sintered body after firing and inserted into a heating furnace, and a load (pressure) of 0.2 to 8.0 KPa is vertically applied to the sintered body from the weight. And heated at 1550 to 1900 ° C. in a nitrogen atmosphere. Thus, the warp of the silicon nitride substrate can be corrected by performing the heat treatment while applying a load. In addition, when the heat processing temperature at this time becomes lower than 1550 degreeC, the inhibitory effect of curvature will become inadequate and a deformation | transformation of a sintered compact will become larger. Moreover, when it becomes higher than 1900 degreeC, the growth of the columnar particle | grains contained in a sintered compact will be accelerated | stimulated, the orientation degree of columnar particle | grains will become large and surface roughness will increase. Therefore, the above range is preferable for the heat treatment temperature. Further, when the load applied during the heat treatment is lower than 0.2 kPa, the effect of suppressing warpage is insufficient, and when it is higher than 8.0 kPa, the surface penetration of the grain boundary glass phase contained in the sintered body is insufficient. When the defatted bodies are laminated and fired, the sintered bodies are bonded together by the glass phase. Therefore, the above range is suitable for the load applied during the heat treatment. Furthermore, it is preferable that a plurality of sintered bodies are stacked and a weight body is placed on the stacked body and heat-treated. As a result, the volatilization amount of the sintering aids such as magnesium oxide and yttrium oxide is suppressed, the growth of columnar particles contained in the sintered body is suppressed, and the degree of orientation of the columnar particles can be suppressed from becoming excessively high. .
焼成工程S8または熱処理工程S9の後に、ブラスト加工工程S10を行う。ブラスト加工工程S10では、焼結体の表面にセラミックスからなる砥粒その他メディアを吹きつけ、焼結体の表面から突起した柱状粒子を除去し、表面粗度を低下させる。これにより、回路基板および放熱基板を形成する銅やアルミニウム板を窒化珪素基板の表面に接合し、窒化珪素回路基板を構成するにあたり、接合界面における空孔(ボイド)の発生を抑制せしめることができる。 A blasting step S10 is performed after the firing step S8 or the heat treatment step S9. In the blasting step S10, abrasive grains or other media made of ceramics are sprayed on the surface of the sintered body to remove the columnar particles protruding from the surface of the sintered body, thereby reducing the surface roughness. As a result, when the copper or aluminum plate forming the circuit board and the heat dissipation board is bonded to the surface of the silicon nitride substrate, the formation of voids at the bonding interface can be suppressed when the silicon nitride circuit substrate is configured. .
図4に示す焼成容器2の好ましい一例である焼成容器6を図6に示す。なお、図6において、図4と同一の構成要素については同一符号を付しており、詳細な説明を省略する。
FIG. 6 shows a firing container 6 which is a preferred example of the firing
焼成容器6の基本的な構造は、図6に示すように、焼成容器2とほぼ同一であるが、その収納部2dに設けた隔壁2cの上部開口を塞ぐように配置された平板状の蓋体6fを有し、この蓋体6fと壁体2aに配置された蓋体2bとの間も含め間隙2eの全てに詰め粉T1が充填されている点で焼成容器2と相違している。ここで、蓋体6fと隔壁2cは密着しておらず、微小な間隙が形成されているそれらの界面が通気路6hとなり、当該通気路6hを介し、蓋体6fと隔壁2cとで画成される内部空間6gと間隙2eとは連通している。したがって、図中矢印Eで示すように、間隙2eに配置された詰め粉T1から上記反応により発生したSiOガスおよびMgガスは、通気路6hを通じて内部空間6gへ流入し、当該内部空間6gのSiOガスおよびMgガスの分圧を高める。
As shown in FIG. 6, the basic structure of the baking container 6 is almost the same as that of the
さらに、かかる焼成容器6によれば、通気路2fを通じ加熱室3bに含まれる酸素や炭素が進入した際においても,成形体w2の近傍に拡散してくる前に、進入した酸素や炭素が詰め粉T1に含まれる窒化珪素や酸化マグネシウムと反応し、成形体w2と反応することが抑制される。そして、酸素と反応した窒化珪素はSiOガスを生成し,SiOガスが成形体w2に触れるので成形体w2の酸化を抑制することができる。
Further, according to the firing container 6, even when oxygen or carbon contained in the
1(7) 収納容器
1a(7a) 蓋体
1b(7b) 壁体
1c(7c) 底体
1d(7d) 収納室
2(4、6) 焼成容器
2a 壁体
2b 蓋体
2c(4c) 隔壁
2d 収納部
T1(T2) 詰め粉
w1 成形体
w2 脱脂体
b 窒化硼素
1 (7)
Claims (7)
窒化珪素粉末と焼結助剤粉末とを混合した原料粉を成形した成形体を脱脂し脱脂体を形成する脱脂工程と、
脱脂工程後に、外気が流通可能な窒化硼素または窒化珪素からなる収納容器の収納室に脱脂体を収納する第1の収納工程と、
外気が流通可能な通気路を有する焼成容器の収納部に、収納容器を収納する第2の収納工程と、
第2の収納工程の後に、焼成容器を加熱炉中に置き、窒素雰囲気中で脱脂体を焼成する焼成工程を有し、
前記焼成容器は、その収納部に収納された収納容器と、焼成容器の内壁面と収納容器との間に形成された窒化硼素または窒化珪素からなる隔壁を有し、前記隔壁と前記焼成容器との間に、窒化珪素粉末および焼結助剤粉末を混合した詰め粉を配置して、前記脱脂体と前記詰め粉は直接接触しないように配置されている、詰め粉配置工程を含むことを特徴とする窒化珪素質セラミックス焼結基板の製造方法。 A method of manufacturing a silicon nitride ceramic sintered substrate ,
A degreasing step of degreasing a molded body obtained by molding a raw material powder in which silicon nitride powder and sintering aid powder are mixed, and forming a degreased body;
A first storage step of storing a degreased body in a storage chamber of a storage container made of boron nitride or silicon nitride through which external air can flow after the degreasing step;
A second storage step of storing the storage container in the storage part of the baking container having a ventilation path through which outside air can circulate;
After the second storage step, the firing container is placed in a heating furnace, and the degreasing body is fired in a nitrogen atmosphere.
The firing container includes a storage container housed in the housing portion, and a partition made of boron nitride or silicon nitride formed between an inner wall surface of the firing container and the storage container, the partition and the firing container A filling powder arranging step, in which a filling powder in which silicon nitride powder and sintering aid powder are mixed is arranged so that the degreased body and the filling powder are not in direct contact with each other. A method for producing a sintered silicon nitride ceramic substrate .
The storage container stored in the storage unit includes a bottom body on which the degreased body is placed on one surface, and an opening disposed on one surface of the bottom body so as to surround the degreased body placed on the bottom body. A cylindrical wall body having a lid that closes the opening of the wall body, and the storage chamber is defined by the bottom body, the wall body, and the lid body, and is formed between the wall body and the lid body The firing container according to claim 6 , which has a vented air passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011087217A JP5811391B2 (en) | 2011-04-11 | 2011-04-11 | Method for producing silicon nitride ceramic sintered body and firing container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011087217A JP5811391B2 (en) | 2011-04-11 | 2011-04-11 | Method for producing silicon nitride ceramic sintered body and firing container |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015173656A Division JP2016040224A (en) | 2015-09-03 | 2015-09-03 | Method for producing sintered board of silicon nitride-based ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012218983A JP2012218983A (en) | 2012-11-12 |
JP5811391B2 true JP5811391B2 (en) | 2015-11-11 |
Family
ID=47270893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011087217A Active JP5811391B2 (en) | 2011-04-11 | 2011-04-11 | Method for producing silicon nitride ceramic sintered body and firing container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5811391B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146789A1 (en) * | 2012-03-26 | 2013-10-03 | 日立金属株式会社 | Sintered silicon nitride substrate and process for producing same |
JPWO2022004755A1 (en) * | 2020-06-30 | 2022-01-06 | ||
CN112209725B (en) * | 2020-10-15 | 2023-06-06 | 郑州航空工业管理学院 | Pretreatment method for sintering silicon nitride ceramic, silicon nitride ceramic and preparation method thereof |
CN112811912B (en) * | 2021-01-20 | 2021-11-02 | 中国科学院上海硅酸盐研究所 | Batch sintering method of high-performance silicon nitride ceramic substrate |
CN114373983B (en) * | 2021-12-28 | 2022-10-21 | 广东马车动力科技有限公司 | Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material |
CN116217235B (en) * | 2023-02-10 | 2024-03-01 | 湖南星鑫航天新材料股份有限公司 | Silicon nitride large-size high-temperature structural member and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2010913B (en) * | 1977-12-23 | 1982-06-23 | Fiat Spa | Process for sintering silicon nitride compacts |
JPS59199582A (en) * | 1983-04-26 | 1984-11-12 | 三菱マテリアル株式会社 | Method of sintering sialon base sintering material |
-
2011
- 2011-04-11 JP JP2011087217A patent/JP5811391B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012218983A (en) | 2012-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5811391B2 (en) | Method for producing silicon nitride ceramic sintered body and firing container | |
JP6399252B2 (en) | Circuit board and silicon nitride sintered substrate manufacturing method | |
JP5836522B2 (en) | Method for manufacturing silicon nitride substrate | |
JP2000058631A5 (en) | ||
JP7468769B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
WO2005123627A1 (en) | Nitride sintered compact and method for production thereof | |
JP6891991B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
JP2016040224A (en) | Method for producing sintered board of silicon nitride-based ceramic | |
JP6672960B2 (en) | Manufacturing method of ceramic sintered plate | |
CN112912356B (en) | Method for manufacturing silicon nitride substrate and silicon nitride substrate | |
JP6766509B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
JP2797372B2 (en) | Manufacturing method of aluminum nitride substrate | |
JP4593062B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2002220282A (en) | Aluminum nitride sintered compact and method of manufacture | |
JP2019014636A (en) | Silicon carbide sintered body substrate and electronic component sintering tool including the same | |
JP2007063124A (en) | Ceramic substrate | |
JP2008001558A (en) | Method and tool for firing aluminum nitride formed body | |
JPH0826828A (en) | Production of aluminum nitride sintered compact | |
JP2005082450A (en) | SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD | |
KR20240098457A (en) | Manufacturing method of silicon nitride ceramics substrate using silicon nitride reactive sintering method | |
JPH01239067A (en) | Production of aluminum nitride base | |
JP2683528B2 (en) | Method for firing aluminum nitride substrate | |
JP2006327872A (en) | Burning tool for aluminum nitride substrate, and its manufacturing method | |
JPH0881264A (en) | Production of aluminum nitride sintered compact | |
JPH04193764A (en) | Calcination of aluminum nitride substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5811391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |