JPH01239067A - Production of aluminum nitride base - Google Patents

Production of aluminum nitride base

Info

Publication number
JPH01239067A
JPH01239067A JP63064720A JP6472088A JPH01239067A JP H01239067 A JPH01239067 A JP H01239067A JP 63064720 A JP63064720 A JP 63064720A JP 6472088 A JP6472088 A JP 6472088A JP H01239067 A JPH01239067 A JP H01239067A
Authority
JP
Japan
Prior art keywords
aln
pressure
firing
negative pressure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63064720A
Other languages
Japanese (ja)
Other versions
JP2628599B2 (en
Inventor
Mineharu Tsukada
峰春 塚田
Etsuro Udagawa
悦郎 宇田川
Koji Omote
孝司 表
Hiroshi Makihara
宏 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63064720A priority Critical patent/JP2628599B2/en
Publication of JPH01239067A publication Critical patent/JPH01239067A/en
Application granted granted Critical
Publication of JP2628599B2 publication Critical patent/JP2628599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a dense and flat AlN base having high thermal conductivity and high transparency free from warpage and undulation, by calcining green sheets of AlN or a laminate thereof under negative pressure in the presence of Al vapor. CONSTITUTION:Green sheets of AlN or a laminate thereof is calcined under especially preferably 0.2-200mbar negative pressure in the presence of Al vapor. The calcining temperature is 1,600-2,000 deg.C and retention time is preferably 6-12hr. AlN bases thus obtained are further subjected to HIP treatment under the highest pressure of >=10 atmospheric pressure at 1,600-2,000 deg.C to improve characteristics of AlN bases. Since the AlN bases are calcined under negative pressure, a liquid phase is completely vaporized and consequently sintering by treatment under high pressure is smoothly advanced.

Description

【発明の詳細な説明】 〔概 要〕 緻密で、透光性が高く、熱伝導率の高い、平坦なAβN
基板の製造方法に関し、 常圧下ではAINの分解のため基板に反りや割れが発生
し、これを防止するためにBNセック−をAlNグリー
ンシート又は積層体を交互に重ねると、AIN焼結体表
面にBNが拡散したり、基板内の収縮率がばらつくとい
う問題を解決して、平坦でかつ緻密、高透明性、高熱伝
導率の/IN基板を提供することを目的として、 AlNグリーンシート又はその積層体を負圧下かつアル
ミニウム蒸気の存在下で焼成する方法、及びさらにHI
P処理する方法として構成する。
[Detailed description of the invention] [Summary] Dense, highly translucent, and flat AβN with high thermal conductivity
Regarding the manufacturing method of the substrate, warping and cracking occur in the substrate due to the decomposition of AIN under normal pressure, and to prevent this, if BN SEC- is alternately layered with AlN green sheets or laminates, the surface of the AIN sintered body will be With the aim of solving the problems of BN diffusion and variation in shrinkage rate within the substrate, and providing a flat, dense, highly transparent, and highly thermally conductive /IN substrate, we developed an AlN green sheet or its A method of firing a laminate under negative pressure and in the presence of aluminum vapor, and further comprising HI
This is configured as a method for P processing.

〔産業上の利用分野〕[Industrial application field]

本発明は窒化アルミニウム(Aj2N)基板の製造方法
に係り、とりわけ緻密、高透明性、高熱伝導率でしかも
平坦な(反りのない)AlN基板の製造方法に関する。
The present invention relates to a method for manufacturing an aluminum nitride (Aj2N) substrate, and more particularly to a method for manufacturing an AlN substrate that is dense, highly transparent, has high thermal conductivity, and is flat (without warping).

〔従来の技術と発明が解決しようとする課題〕AβN単
結晶の熱伝導率は、理論値で320W/mkと金属A!
よりも高い。ところが実際に得られる焼結体(多結晶体
)の熱伝導率は理論値の半分程度にとどまっている。こ
れは原料粉末中に含有される不純物、特に酸素不純物や
、Si 、 Fe 。
[Prior art and problems to be solved by the invention] The thermal conductivity of AβN single crystal is 320 W/mk in theory, which is higher than that of metal A!
higher than However, the thermal conductivity of the sintered body (polycrystalline body) actually obtained is only about half of the theoretical value. This is due to impurities contained in the raw material powder, especially oxygen impurities, Si, and Fe.

Ca等の金属が原因だとされている。これまでに、酸素
不純物を除去する働きを持つCaOを始めとするCa化
合物やy203などを焼結助剤として添加したり、H2
やC○といった還元性雰囲気で焼成するなどの工夫がな
されている。しかし、得られる焼結体は不純物のAβN
粒内での固溶や、厚い粒界相が形成されている場合が多
(、このため褐色に着色したり、透光性は低い。したが
って熱伝導率は上記の如く低い値にとどまっている。
It is believed that metals such as Ca are the cause. So far, Ca compounds such as CaO, which have the function of removing oxygen impurities, and y203 have been added as sintering aids, and H2
Efforts have been made such as firing in a reducing atmosphere such as or C○. However, the obtained sintered body contains impurities of AβN.
In many cases, there is solid solution within the grains or a thick grain boundary phase is formed (this results in brown coloration and low translucency. Therefore, the thermal conductivity remains at a low value as mentioned above. .

AIN基板は一般に常圧焼結法で作成されるが、焼成温
度や昇温速度、焼成雰囲気などの工夫の他にグリーンシ
ートあるいはグリーンシート積層体を炉内にどのように
セットするかが重要である。
AIN substrates are generally created using the pressureless sintering method, but in addition to the firing temperature, heating rate, and firing atmosphere, it is important to consider how the green sheet or green sheet laminate is set in the furnace. be.

通常はグラファイト製容器内におさめて焼成するが、こ
の場合はグラファイト容器の内側にAIN粉末をぬるな
どの工夫が提案されている。しかし、AfNl板は、1
800℃以上の高温で焼成するため、1気圧の窒素中で
はAANの分解が起こり、反りの発生などの問題が生じ
る。
Usually, it is placed in a graphite container and fired, but in this case, it has been proposed to spread AIN powder inside the graphite container. However, the AfNl plate has 1
Since the firing is performed at a high temperature of 800° C. or higher, AAN decomposes in nitrogen at 1 atm, causing problems such as warping.

発明者が知る限りでは、特開昭62−100479号公
報に開示されている、BNセッターとAβNグリーンシ
ートあるいはグリーンシート積層体を交互に積ね、BN
容器内で焼成する方法が緻密なAIN焼結体を得る上で
も、またそりやうねりをなくす上でも効果が大きい。し
かし、この場合には、AIN焼結体表面にはBNの拡散
が見られたり、基板内での収縮率にばらつきが大きいな
どの問題がある。このことはグリーンシートあるいはグ
リーンシート積層体に内部配線や表面配線をを施したり
、あるいはバイヤーホールを形成するなどの複雑な焼結
体は得られない。
As far as the inventor knows, the BN setter and AβN green sheets or green sheet laminates are alternately stacked, as disclosed in JP-A-62-100479.
The method of firing in a container is highly effective in obtaining a dense AIN sintered body and in eliminating warpage and waviness. However, in this case, there are problems such as diffusion of BN being observed on the surface of the AIN sintered body and large variations in shrinkage rate within the substrate. This means that it is not possible to obtain a complex sintered body in which internal wiring or surface wiring is applied to the green sheet or green sheet laminate, or a Bayer hole is formed.

そこで、本発明は、上記の如き問題点に鑑み、緻密で高
熱伝導度、高透明性であり、かつ反りやうねりのない平
坦なA!lN基板を提供することを目的とする。
Therefore, in view of the above-mentioned problems, the present invention has been developed to provide a flat A! that is dense, has high thermal conductivity, is highly transparent, and has no warping or waviness. The purpose is to provide an IN substrate.

〔課題を達成するための手段〕[Means to accomplish the task]

本発明は、上記目的を達成するために焼成条件および焼
成雰囲気について検討した結果得られたものであり、具
体的には、1気圧以下の負圧下で焼成することを特徴と
し、さらに炉内のAβ蒸気圧の分圧を高めて焼成するも
のである。このことによってBNセッターによる荷重な
しでも反りやうねりが無く、収縮率も基板内で一定とな
り、緻密で透光性の大きい焼結体が得られる。さらに、
このようにして焼成して得られるAIN基板はHIP処
理することによって、更に緒特性が向上したAβN基板
を提供する。
The present invention was obtained as a result of studying firing conditions and firing atmosphere in order to achieve the above object. Specifically, the present invention is characterized by firing under a negative pressure of 1 atmosphere or less, and furthermore, Firing is performed by increasing the partial pressure of Aβ vapor pressure. As a result, there is no warping or waviness even without a load from a BN setter, the shrinkage rate is constant within the substrate, and a dense sintered body with high translucency can be obtained. moreover,
The AIN substrate obtained by firing in this manner is subjected to HIP treatment to provide an AβN substrate with further improved properties.

すなわち、本発明は、窒化アルミニウムのグリーンシー
ト又はその積層体を負圧下かつアルミニウム蒸気の存在
下で焼成することを特徴とする窒化アルミニウム基板の
製造方法、及び上記方法で得られる焼結体を更に最大圧
力10気圧以上、温度1600〜2000℃でHIP処
理することを特徴とする窒化アルミニウム基板の製造方
法にある。
That is, the present invention further provides a method for producing an aluminum nitride substrate, characterized in that an aluminum nitride green sheet or a laminate thereof is fired under negative pressure and in the presence of aluminum vapor, and a sintered body obtained by the above method. A method for manufacturing an aluminum nitride substrate, characterized by performing HIP treatment at a maximum pressure of 10 atm or more and a temperature of 1,600 to 2,000°C.

AINのグリーンシート及びその積層体の製造方法は従
来と同様であることができるが、AβNグリーンシート
に含められる焼結助剤としては比較的液相を形成しやす
く、かつ蒸発もしやすいアルミン酸塩が望ましい。
The manufacturing method of the AIN green sheet and its laminate can be the same as the conventional one, but the sintering aid included in the AβN green sheet is an aluminate that is relatively easy to form a liquid phase and easily evaporates. is desirable.

焼成は焼成温度で負圧であればよいが、雰囲気ガスとし
ては窒素ガスを用いることが望ましいが、アルゴンなど
の不活性ガスあるいは不活性ガスと窒素ガスとの混合ガ
スでもよい。負圧下で焼成することによって液相なとの
連敗除去がより完全になる。好ましい圧力は、室温で(
すなわち初期圧が) 0.02〜500mbar 、よ
り好ましくは0.02〜200mbar、さらに好まし
くは0.2〜200mbarの範囲内である。負圧が小
さい(圧力が高い)と液相の揮散が不十分となり、また
負圧が大きすぎる(圧力が小さい)とAANの分解が抑
えきれなくなるおそれがあるので上記範囲内の圧力が好
ましい。
The firing may be performed at a firing temperature and under negative pressure, and it is preferable to use nitrogen gas as the atmospheric gas, but an inert gas such as argon or a mixed gas of an inert gas and nitrogen gas may also be used. By firing under negative pressure, continuous loss removal of liquid phase becomes more complete. The preferred pressure is (
That is, the initial pressure is in the range of 0.02 to 500 mbar, more preferably 0.02 to 200 mbar, even more preferably 0.2 to 200 mbar. If the negative pressure is small (high pressure), the volatilization of the liquid phase will be insufficient, and if the negative pressure is too large (pressure is small), the decomposition of AAN may not be suppressed, so a pressure within the above range is preferable.

本発明では、上記負圧下での焼成と併せてアルミニウム
蒸気圧の存在を必須とする。アルミニウム蒸気圧の存在
によって、負圧下での焼成でもAANの分解が抑制され
るので、Aj2Nの反りゃうねり、さらには割れが有効
に防止される。アルミニウム蒸気を存在さセるには炉内
にAINやANなどの粉末を配置するだけでよい。但し
、詰め粉の如く試料(A I N基板)にAJNやAβ
等の粉末を接触させることは、それらの粉末が試料に付
着するなどの不都合があるので不適当である。
In the present invention, the presence of aluminum vapor pressure is essential in addition to the above-mentioned firing under negative pressure. The presence of aluminum vapor pressure suppresses the decomposition of AAN even during firing under negative pressure, so warping, waviness, and even cracking of Aj2N is effectively prevented. To eliminate the presence of aluminum vapor, it is sufficient to place a powder such as AIN or AN in the furnace. However, AJN and Aβ may be added to the sample (AIN substrate) like packing powder.
It is inappropriate to bring such powders into contact with each other because such powders may adhere to the sample.

AlNやA、ffの量は炉容積500β当り100g以
上存在することが望ましい。
The amount of AlN, A, and ff is preferably 100 g or more per 500 β of furnace volume.

特に、炉容積5001当り100g以上のAIN粉末を
試料の近くに配置して、初期圧(室温下の圧力)0.2
〜300mbarの窒素圧力下で焼成することが好まし
い。
In particular, 100g or more of AIN powder per 5001 furnace volume is placed near the sample, and the initial pressure (pressure at room temperature) is 0.2.
Preference is given to firing under nitrogen pressure of ~300 mbar.

焼成温度は一般的に1600〜2200℃、好ましくは
1800〜2000℃の範囲内、保持時間は一般に1〜
20時間、好ましくは6〜12時間である。
The firing temperature is generally in the range of 1,600 to 2,200°C, preferably 1,800 to 2,000°C, and the holding time is generally in the range of 1 to 2,000°C.
20 hours, preferably 6 to 12 hours.

このようにして得られたAIN基板は緻密で、透明かつ
熱伝導度も高く、しかも基板の反りやうねりがない。
The AIN substrate thus obtained is dense, transparent, and has high thermal conductivity, and has no warpage or waviness.

さらに、本発明によれば、このようにして得られたAβ
N基板(焼結体)を最高圧力10気圧以上、好ましくは
100〜1000気圧、温度1600〜2000℃、好
ましくは1700〜1900’CT:HI P処理する
ことによって、AffN基板の緒特性を向上させること
ができる。本発明の方法で焼成したAfNJJ板は負圧
下で焼成されているため液相の揮散が完全であり、その
結果高圧下での処理による焼結が有効に進行する。従っ
て、本発明に従って焼成及びHI P処理された/IN
基板の緒特性は従来法で焼成後にHIP処理したAβN
基板の緒特性より大幅に優れている特徴がある。
Furthermore, according to the present invention, the Aβ obtained in this way
By subjecting the N substrate (sintered body) to a maximum pressure of 10 atm or higher, preferably 100 to 1000 atm, and a temperature of 1600 to 2000°C, preferably 1700 to 1900'CT:HIP, the properties of the AffN substrate are improved. be able to. Since the AfNJJ plate fired by the method of the present invention is fired under negative pressure, the liquid phase is completely volatilized, and as a result, sintering by processing under high pressure progresses effectively. Therefore, the /IN
The initial characteristics of the substrate are those of AβN that was HIP-treated after firing using the conventional method.
It has characteristics that are significantly superior to the original characteristics of the substrate.

HI P処理の雰囲気は窒素ガス中が好ましいが、この
ときにも必要に応じてAINやANの粉末を少量配置し
てA6蒸気を存在させるとよい。保持時間は1〜20時
間、好ましくは4〜15時間程度である。
The atmosphere for the HIP process is preferably nitrogen gas, but even at this time, if necessary, a small amount of AIN or AN powder may be placed to make A6 vapor exist. The holding time is about 1 to 20 hours, preferably about 4 to 15 hours.

本発明によるAINグリーンシート又はその積層体の焼
成及び/IN焼結体のHIP処理の仕方の例を第1図を
参照して説明する。同図の如く、ヒータ1を有する炉内
に、グラファイトるつぼ2中にAAN粉末3とグラファ
イト粉末4を入れ、これを試料6の近くに配置する。試
料6はグラファイトセフタ−5でセットする。このよう
な炉に窒素を封入し、昇温して負圧下で焼成するか、過
剰圧下でHIP処理する。
An example of how to sinter an AIN green sheet or a laminate thereof and perform HIP treatment of an AIN sintered body according to the present invention will be described with reference to FIG. As shown in the figure, AAN powder 3 and graphite powder 4 are placed in a graphite crucible 2 in a furnace equipped with a heater 1, and placed near a sample 6. Sample 6 is set using graphite safeter 5. Such a furnace is filled with nitrogen, heated and fired under negative pressure, or HIPed under excess pressure.

〔作 用〕[For production]

負圧下で焼成することによって液相の連敗除去が促進さ
れ、HIP処理を有効に行なうことを可能にし、またA
N蒸気の存在を併用することによって負圧下でもAIN
の分解を抑制することができる。
By firing under negative pressure, continuous loss removal of the liquid phase is promoted, making it possible to carry out HIP treatment effectively, and A
AIN even under negative pressure by combined use of N vapor
decomposition can be suppressed.

〔実施例〕〔Example〕

■よ 市販のAβN粉末(徳山ソータ製)に焼結助剤としてC
aCO3を4ivt%添加し、樹脂ボールでミリングを
溶剤にエタノール180g、アセトン80gを用いて2
4時間行った。次にこの混合粉末100重量部に対して
、バインダーとしてポリ塩化ビニル(積木化学製BL−
1) 6.5重量部、分散剤としてポリエチレングリコ
ール脂肪酸エステルを2重星部加え、さらに24時間ミ
リングを行った。
■C is added to commercially available AβN powder (manufactured by Tokuyama Sorta) as a sintering aid.
Add 4ivt% of aCO3 and mill with a resin ball using 180g of ethanol and 80g of acetone as solvents.
I went for 4 hours. Next, to 100 parts by weight of this mixed powder, polyvinyl chloride (BL-
1) 6.5 parts by weight and double parts of polyethylene glycol fatty acid ester as a dispersant were added, and milling was further performed for 24 hours.

得られたスラリーをドクターブレード法で厚さ250−
のグリーンシートとした。グリーンシートはプレス圧6
0MPaで10枚積層した。この積層体をN、中600
℃、4時間で焼成して有機成分を除去した。
The obtained slurry was made to a thickness of 250 mm using the doctor blade method.
It was made into a green sheet. Green sheet press pressure 6
Ten sheets were laminated at 0 MPa. This laminate was heated to N, medium 600
C. for 4 hours to remove organic components.

次に有効容積500 j2のグラフィイト発熱体の炉内
に100gAIlN粉末を置き、/IN積層体をBNの
セッターにのせ荷重をかけずに焼成した。
Next, 100 g of AlIN powder was placed in a graphite heating element furnace having an effective volume of 500 j2, and the /IN laminate was placed on a BN setter and fired without applying any load.

焼成は600’C/hで1800℃まで昇温し、180
0°Cを10時間保持した。炉内には室温で20mba
rのN2ガスを封入し、1800℃で約100mbar
とした。
For firing, the temperature was raised to 1800℃ at 600'C/h, and the temperature was increased to 180℃.
0°C was maintained for 10 hours. Inside the furnace is 20mba at room temperature.
Filled with r N2 gas and heated at 1800℃ and approximately 100mbar
And so.

焼成後の基板は反りやうねりがなく、相対密度99.5
%以上で、透光性も大きかった。基板は熱伝導率220
W/mk、曲げ強さ350MPaであった。
The substrate after firing has no warpage or waviness, and has a relative density of 99.5.
% or more, the translucency was also large. The thermal conductivity of the substrate is 220
W/mk and bending strength of 350 MPa.

■し= 例1と同様にグリーンシート積層体を作製し、1800
℃、10時間保持の焼成を行った。室温でのガス封入を
0.002〜200mbarとした。
■Shi = A green sheet laminate was prepared in the same manner as in Example 1, and 1800
Firing was carried out at a temperature of 10 hours. Gas filling at room temperature was between 0.002 and 200 mbar.

結果を下表に示す。The results are shown in the table below.

N1 1と同様にグリーンシートを作製し、1800℃。N1 A green sheet was prepared in the same manner as in 1, and heated to 1800°C.

10時間の焼成を行った。室温でのガス封入圧を20r
@barとした。炉内におく A ff NFA末を0
〜500 gとした。結果を下表に示す。
Firing was performed for 10 hours. Gas filling pressure at room temperature is 20r
It was @bar. Place A ff NFA powder in the furnace
~500 g. The results are shown in the table below.

貫↓ 例2で得た焼結体をHIP処理した。HIP条件は12
00℃まで真空昇温し、その後1800℃で200気圧
となるようにN2ガスを封入した。また1800℃の保
持時間は5時間とした。試料は樹脂を含有したカーボン
をぬり、AIN粉末をわずかに容器内に加えた。
↓ The sintered body obtained in Example 2 was subjected to HIP treatment. HIP condition is 12
The temperature was raised to 00° C. under vacuum, and then N2 gas was filled in at 1800° C. to a pressure of 200 atm. Further, the holding time at 1800°C was 5 hours. The sample was coated with resin-containing carbon, and a small amount of AIN powder was added into the container.

結果を下図に示す。The results are shown in the figure below.

劃」− 例1と同様にしてグリーンシート積層体を作製し、脱脂
した。この試料を(1)真空中。
- A green sheet laminate was produced in the same manner as in Example 1 and degreased. This sample was (1) placed in a vacuum.

(2) 1 mbarNzガスフロー中、(3)1気圧
N2ガスフロー中、(40気圧N2ガス封入下、(5)
10気圧N2ガス封入下で、1800℃、4時間焼成し
た。
(2) 1 mbar Nz gas flow, (3) 1 atm N2 gas flow, (40 atm N2 gas filled, (5)
It was fired at 1800° C. for 4 hours under 10 atmospheres of N2 gas.

結果を下記表に示す 次に、上記試料(2)〜り5)を焼成後、例4同様にH
IP処理した。但し、HI P処理の際、AI!N粉末
は使用しなかった。
The results are shown in the table below. Next, after firing the above samples (2) to 5), H was heated in the same manner as in Example 4.
IP processed. However, during HIP processing, AI! No N powder was used.

結果を下表に示す。The results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、下記の如き効果がある。 According to the method of the present invention, there are the following effects.

(1)荷重をかけずに均一で平坦な基板が得られる。(1) A uniform and flat substrate can be obtained without applying any load.

(2)蒸発成分が効率良く除去されかつAfNの分解を
防げ、緻密で透光性が高く、熱伝導率の高い焼結体が得
られる。
(2) Evaporated components can be efficiently removed and decomposition of AfN can be prevented, and a sintered body that is dense, has high translucency, and high thermal conductivity can be obtained.

(3) HI P処理によって特性を大幅に改善される
ことを可能にする。
(3) Enables characteristics to be significantly improved by HIP processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による焼成及びHIP処理の様子を示す
模式図である。 1・・・グラファイトヒータ、 2・・・グラファイトるつぼ・ 3・・・AIN粉末、 4・・・グラファイト粉末、 5・・・グラファイトセッター、 6・・・試料。
FIG. 1 is a schematic diagram showing the firing and HIP processing according to the present invention. DESCRIPTION OF SYMBOLS 1... Graphite heater, 2... Graphite crucible, 3... AIN powder, 4... Graphite powder, 5... Graphite setter, 6... Sample.

Claims (2)

【特許請求の範囲】[Claims] 1.窒化アルミニウムのグリーンシート又はその積層体
を負圧下かつアルミニウム蒸気の存在下で焼成すること
を特徴とする窒化アルミニウム基板の製造方法。
1. A method for producing an aluminum nitride substrate, comprising firing an aluminum nitride green sheet or a laminate thereof under negative pressure and in the presence of aluminum vapor.
2.請求項1で得られる焼結体を最大圧力10気圧以上
、温度1600〜2000℃でHIP処理することを特
徴とする窒化アルミニウム基板の製造方法。
2. A method for manufacturing an aluminum nitride substrate, characterized in that the sintered body obtained according to claim 1 is subjected to HIP treatment at a maximum pressure of 10 atmospheres or more and a temperature of 1,600 to 2,000°C.
JP63064720A 1988-03-19 1988-03-19 Manufacturing method of aluminum nitride substrate Expired - Lifetime JP2628599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064720A JP2628599B2 (en) 1988-03-19 1988-03-19 Manufacturing method of aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064720A JP2628599B2 (en) 1988-03-19 1988-03-19 Manufacturing method of aluminum nitride substrate

Publications (2)

Publication Number Publication Date
JPH01239067A true JPH01239067A (en) 1989-09-25
JP2628599B2 JP2628599B2 (en) 1997-07-09

Family

ID=13266272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064720A Expired - Lifetime JP2628599B2 (en) 1988-03-19 1988-03-19 Manufacturing method of aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JP2628599B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294578A (en) * 1988-05-20 1989-11-28 Denki Kagaku Kogyo Kk Production of aluminum nitride sintered material
JP2007031250A (en) * 2005-07-29 2007-02-08 Tokuyama Corp Aluminum nitride sintered compact
JP2012036090A (en) * 2011-10-26 2012-02-23 Tokuyama Corp Method for producing aluminum nitride sintered compact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277568A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JPS63277569A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JPH01167279A (en) * 1987-12-22 1989-06-30 Elektroschmelzwerk Kempten Gmbh Sintered polycrystalline containing aluminium nitride as main component and method for its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277568A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JPS63277569A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JPH01167279A (en) * 1987-12-22 1989-06-30 Elektroschmelzwerk Kempten Gmbh Sintered polycrystalline containing aluminium nitride as main component and method for its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294578A (en) * 1988-05-20 1989-11-28 Denki Kagaku Kogyo Kk Production of aluminum nitride sintered material
JP2007031250A (en) * 2005-07-29 2007-02-08 Tokuyama Corp Aluminum nitride sintered compact
JP2012036090A (en) * 2011-10-26 2012-02-23 Tokuyama Corp Method for producing aluminum nitride sintered compact

Also Published As

Publication number Publication date
JP2628599B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
TWI464133B (en) Polycrystalline MgO sintered body and its manufacturing method and MgO target for sputtering
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP2009173537A (en) High-purity low-resistivity electrostatic chuck
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
JPH06508339A (en) High toughness - high strength sintered silicon nitride
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP3472585B2 (en) Aluminum nitride sintered body
JPH01239067A (en) Production of aluminum nitride base
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2797372B2 (en) Manufacturing method of aluminum nitride substrate
EP1036779B1 (en) Aluminium nitride sintered product and process for its production
JP2628598B2 (en) Manufacturing method of aluminum nitride sintered body
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JPWO2019082916A1 (en) Method for producing oriented ceramic sintered body and flat sheet
JPH0940460A (en) Production of titanic acid based sintered body
JPH05105525A (en) Production of highly heat conductive aluminum nitride sintered compact
CN108585879B (en) Method for rapidly preparing anisotropic titanium nitride ceramic block material
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JP2661258B2 (en) Manufacturing method of aluminum nitride substrate
JPH01224270A (en) Production of aln base
JPH05238832A (en) Production of sintered ceramic and baking vessel to be used therein
JP2686650B2 (en) Manufacturing method of aluminum nitride substrate
JP2024032944A (en) Gallium nitride-based sintered compact and its manufacturing method
JPH01241849A (en) Aluminum nitride substrate with excellent surface smoothness and manufacture thereof