JP2628598B2 - Manufacturing method of aluminum nitride sintered body - Google Patents
Manufacturing method of aluminum nitride sintered bodyInfo
- Publication number
- JP2628598B2 JP2628598B2 JP63049724A JP4972488A JP2628598B2 JP 2628598 B2 JP2628598 B2 JP 2628598B2 JP 63049724 A JP63049724 A JP 63049724A JP 4972488 A JP4972488 A JP 4972488A JP 2628598 B2 JP2628598 B2 JP 2628598B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- aln
- aluminum nitride
- pressure
- negative pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔概 要〕 高熱伝導率窒化アルミニウム焼結体の製法に関し、 原料窒化アルミニウム中の不純物を有効に除去して高
熱伝導率の窒化アルミニウム焼結体を得ることを目的と
し、 窒化アルミニウム粉末成形体を負圧下の窒素ガス気流
中で焼成した後、さらにHIP処理することを特徴とする
窒化アルミニウム焼結体の製法として構成する。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for producing a high thermal conductivity aluminum nitride sintered body, which aims to obtain a high thermal conductivity aluminum nitride sintered body by effectively removing impurities in a raw material aluminum nitride. The aluminum nitride powder compact is fired in a nitrogen gas stream under a negative pressure, and then subjected to a HIP treatment to produce a method for producing an aluminum nitride sintered body.
本発明は窒化アルミニウム焼結体の製造方法に係り、
とくに、半導体チップ搭載基板として適した高い熱伝導
率を有する窒化アルミニウム焼結体の製造方法に関す
る。The present invention relates to a method for producing an aluminum nitride sintered body,
In particular, the present invention relates to a method for manufacturing an aluminum nitride sintered body having a high thermal conductivity suitable as a semiconductor chip mounting substrate.
窒化アルミニウム(AlN)単結晶の熱伝導率は、理論
値で320W/mKと金属アルミニウム(Al)よりも高い。と
ころが実際に得られる焼結体(多結晶体)の熱伝導率は
140〜260W/mKと理論値の半分程度にとどまっている。こ
れは原料粉末中に含有される不純物、特に酸素不純物
や、Si,Fe,Ca等の金属が原因だとされている。これまで
に、酸素不純物を除去する働きを持つCaOを始めとするC
a化合物やY2O3などを焼結助剤として添加したり、H2やC
Oといった還元性雰囲気で焼成するなどの工夫がなされ
ている。しかし得られる焼結体は不純物のAlN粒内への
固溶や、厚い粒界相が形成されている場合が多く、この
ため褐色に着色したり、投光性は低い。その結果、熱伝
導率は140〜260W/mKにとどまっている。The thermal conductivity of aluminum nitride (AlN) single crystal is 320 W / mK in theory, which is higher than that of metallic aluminum (Al). However, the thermal conductivity of the sintered body (polycrystal) actually obtained is
140 to 260 W / mK, which is about half of the theoretical value. This is attributed to impurities contained in the raw material powder, particularly oxygen impurities, and metals such as Si, Fe, and Ca. So far, CaO and other C that have the function of removing oxygen impurities
aAddition of a compound or Y 2 O 3 as a sintering aid, H 2 or C
A device such as firing in a reducing atmosphere such as O is employed. However, in many cases, the obtained sintered body has a solid solution of impurities in AlN grains or a thick grain boundary phase formed, and thus is colored brown or has low light-projecting property. As a result, the thermal conductivity remains at 140-260 W / mK.
AlN基板は一般にトンネル炉内の窒素ガス流中の常圧
焼成法で作製されるが、1800℃以上の高温で焼成するた
め、1気圧の窒素気流中ではAlNの分解が起こり、反り
の発生などの問題が生じる。分解を抑えるために、AlN
粉末で包埋して焼成する方法があるが、この場合には基
板にAlN粉末が付着して表面が粗くなる。また、反りを
抑えるために重し材をのせて焼成する方法もあるが、こ
の場合は収縮率のばらつきや、割れなどが生じ易すくな
る。AlN substrates are generally manufactured by atmospheric pressure firing in a nitrogen gas flow in a tunnel furnace. However, since firing is performed at a high temperature of 1800 ° C or higher, AlN decomposition occurs in a 1 atm nitrogen flow, and warpage occurs. Problem arises. AlN to reduce decomposition
There is a method of burying and baking with powder, but in this case, AlN powder adheres to the substrate and the surface becomes rough. In addition, there is a method in which a weight member is placed and fired in order to suppress warpage. In this case, however, variation in shrinkage ratio, cracking, and the like are likely to occur.
高圧の窒素雰囲気下で焼成すれば、分解は生じにくい
が、焼結助剤との反応で生じた液相が十分に揮散しなく
なるため、緻密化せず、熱伝導率も低くなる。Decomposition hardly occurs when firing in a high-pressure nitrogen atmosphere, but since the liquid phase generated by the reaction with the sintering agent does not volatilize sufficiently, it does not densify and has low thermal conductivity.
そこで、本発明はAlN焼結体の熱伝導率を大幅に向上
させる方法を提供することを目的とする。Therefore, an object of the present invention is to provide a method for significantly improving the thermal conductivity of an AlN sintered body.
本発明は、上記目的を達成するために、AlN粉末成形
体を800mbar以下の負圧下の窒素気流中で焼成した後、
得られるAlN焼結体をさらに1600〜1900℃の温度、100〜
300気圧、アルミニウム蒸気圧の存在下で、HIP処理する
ことを特徴とするAlN焼結体の製法を提供する。The present invention, in order to achieve the above object, after firing the AlN powder compact in a nitrogen stream under a negative pressure of 800 mbar or less,
The obtained AlN sintered body is further heated to a temperature of 1600 to 1900 ° C.,
Provided is a method for producing an AlN sintered body, which is characterized in that HIP processing is performed in the presence of 300 atm and aluminum vapor pressure.
本発明者らは、HIP処理を行なうことによってAlN焼結
体の熱伝導率を向上させるべく検討をすすめたところ、
1気圧以上の圧力で予備焼成したものは焼結助剤との反
応で生じた液相が十分に揮散せず、緻密化が不十分で熱
伝導率も期待するほど向上しないが、予備焼成を負圧下
で行なえば不純物の揮散が完全になり、HIP処理の効果
を大幅に向上させることが可能であること、及び負圧下
での焼成によるAlNの分解の問題は負圧下でも常圧下と
大きくは変わらないこと、又さらにHIP処理をアルミニ
ウム蒸気圧の存在下で行なうことによって補うことが可
能であることを見い出し、本発明を完成するに到ったも
のである。The present inventors have studied to improve the thermal conductivity of the AlN sintered body by performing the HIP treatment,
In the case of pre-baking at a pressure of 1 atm or more, the liquid phase generated by the reaction with the sintering aid does not volatilize sufficiently, the densification is insufficient, and the thermal conductivity does not improve as expected. Impurity volatilization is completed when performed under negative pressure, and the effect of HIP treatment can be greatly improved.Also, the problem of decomposition of AlN by firing under negative pressure is as large as under normal pressure even under negative pressure. It has been found that this is the same, and that it can be supplemented by performing the HIP treatment in the presence of aluminum vapor pressure, and has completed the present invention.
本発明のAlN粉末成形体はAlN焼結体の製造に用いられ
る慣用のものを用いることができ、また圧粉体又はグリ
ーンシートを脱脂したもののいずれも使用できる。さら
に、本発明の方法によれば負圧下で焼成されるため、高
温下でしか脱脂されないために脱脂が不完全なものでも
結果として完全に脱脂される利点がある。また、グリー
ンシートはメタライズ層を形成した半導体基板形成用の
ものでもよい。As the AlN powder compact of the present invention, a conventional one used for producing an AlN sintered body can be used, and any of a green compact and a green sheet degreased can be used. Furthermore, according to the method of the present invention, since the calcination is performed under a negative pressure, the degreasing is performed only at a high temperature. Further, the green sheet may be one for forming a semiconductor substrate on which a metallized layer is formed.
負圧下での焼成を窒素気流中で行なうのは、揮散する
ガスを有効に除去するためであるが、一般的には10〜60
/min、好ましくは20〜40/min程度の気流中で行な
う。The calcination under a negative pressure is performed in a nitrogen stream in order to effectively remove the volatilizing gas.
/ min, preferably about 20 to 40 / min.
ここで負圧は800mbar以下、好ましくは60〜800mbarで
ある。圧力が低いほどAlN以外の不純物をより有効に除
去できる。しかし、AlNの分解を防止するために、60mba
r以上の圧力であることが望ましい。The negative pressure here is below 800 mbar, preferably between 60 and 800 mbar. The lower the pressure, the more effectively impurities other than AlN can be removed. However, in order to prevent the decomposition of AlN, 60mba
It is desirable that the pressure be equal to or higher than r.
負圧下N2気流中での焼成は一般に1700〜1800℃、8時
間以上行なう。Firing under negative pressure N 2 gas stream is generally 1700 to 1800 ° C., carried out over 8 hours.
負圧下での焼成によって従来より透明度の高いAlN焼
成体が得られる。By firing under negative pressure, an AlN fired body having higher transparency than before can be obtained.
負圧下での焼成後、得られたAlN焼結体はHIP処理を行
なうことによって大幅に緻密化し、さらに透明度が増
し、そして熱伝導率が大幅に改良される。After firing under negative pressure, the obtained AlN sintered body is greatly densified by performing the HIP treatment, the transparency is further increased, and the thermal conductivity is greatly improved.
HIP処理の条件は、1600〜1900℃、好ましくは1700〜1
800℃、より好ましくは1750〜1800℃の温度、100〜300
気圧の圧力下、窒素雰囲気中で行なう。なおAr,He,Ne等
の不活性ガスあるいはこれら不活性ガスとN2との混合ガ
スも用いる。このとき、HIP炉内にアルミニウム蒸気を
存在させるためにAl又はAlNなどを、また必要であれば
さらにCの蒸気圧を高めるためにカーボンの粉末をAlN
焼結体の近くにAlN焼結体と接触させることなく置く。
また、限定するわけではないが、HIP処理を行なうため
の昇温中は例えば1200℃程度までは真空下である方が吸
着した酸素を除去できるので好ましい。The conditions of the HIP treatment are 1600 to 1900 ° C., preferably 1700 to 1
800 ° C, more preferably 1750-1800 ° C, 100-300
It is performed in a nitrogen atmosphere under a pressure of atmospheric pressure. Note that an inert gas such as Ar, He, or Ne or a mixed gas of these inert gases and N 2 is also used. At this time, Al or AlN or the like is used to make aluminum vapor exist in the HIP furnace, and carbon powder is used to further increase the vapor pressure of C if necessary.
Place near the sintered body without contacting the AlN sintered body.
Further, although not limited, it is preferable to be under a vacuum up to, for example, about 1200 ° C. during the temperature rise for performing the HIP treatment since adsorbed oxygen can be removed.
負圧下のN2気流中でAlNを焼結することによって不純
物を有効に除去することができ、これをAl蒸気圧の存在
下でHIP処理することによってHIP処理の効果が高めら
れ、高純度、緻密、高熱伝導率のAlN焼結体が得られ
る。The AlN under negative pressure of N 2 gas stream can be effectively remove impurities by sintering, which the effect of HIP treatment is enhanced by HIP treatment in the presence of Al vapor pressure, high purity, A dense, high-thermal-conductivity AlN sintered body can be obtained.
例1 CaO換算で1.5wt%となる。CaCO3を添加したAlNを用い
φ12×10mmの圧粉を成形した。Example 1 1.5 wt% in terms of CaO. A compact of φ12 × 10 mm was formed using AlN to which CaCO 3 was added.
得られた圧粉体はバッチ炉で100mbarの負圧下かつN2
ガス20/minのフローの下で1800℃、6時間保持の焼成
を行った。この焼成体は透明に優れていた。The resulting green compact was placed in a batch furnace under a negative pressure of 100 mbar and N 2
The firing was carried out at 1800 ° C. for 6 hours under a flow of a gas of 20 / min. This fired body was excellent in transparency.
この焼結体をHIP処理した。HIP条件は1200℃までは真
空で昇温し、その後1800℃で200気圧となるようにN2ガ
ス封入した。また1800℃の保持時間は5時間とした。こ
の時HIP炉内はCやAlの分圧を高めるためにグラファイ
トとAlNの粉末を試料の付近に置いた。このときの様子
を第1図に示す。同図中、1はグラファイトヒータであ
る。2はグラファイトるつぼで、AlN粉末3とグラファ
イト粉末4が入っている。5はグラァイトセッターで、
AlN焼結体試料6はこのグラファイトセッター5上に置
かれている。このような炉でHIP処理を行なうことによ
って炉中にAl及びCの蒸気圧が維持される。This sintered body was subjected to HIP processing. Under HIP conditions, the temperature was raised in a vacuum up to 1200 ° C., and then N 2 gas was sealed at 1800 ° C. to 200 atm. The holding time at 1800 ° C. was 5 hours. At this time, in the HIP furnace, graphite and AlN powder were placed near the sample in order to increase the partial pressure of C and Al. The situation at this time is shown in FIG. In FIG. 1, reference numeral 1 denotes a graphite heater. Reference numeral 2 denotes a graphite crucible containing an AlN powder 3 and a graphite powder 4. 5 is a grite setter,
The AlN sintered body sample 6 is placed on the graphite setter 5. By performing HIP processing in such a furnace, the vapor pressures of Al and C are maintained in the furnace.
得られた焼結体の熱伝導率をレーザーフラッシュ法で
測定した。結果は下記の通りであった。The thermal conductivity of the obtained sintered body was measured by a laser flash method. The results were as follows.
例2(比較例) 例1と同じ試料を1気圧下で20/minのN2ガスフロー
中で焼成した。この場合も1800℃の保持時間は4時間と
した。 Example 2 (Comparative Example) The same sample as in Example 1 was fired at 1 atm in a N 2 gas flow of 20 / min. Also in this case, the holding time at 1800 ° C. was 4 hours.
またHIP条件も例1と同様とした。 The HIP conditions were the same as in Example 1.
得られた焼結体の熱伝導率は以下の通りである。 The thermal conductivity of the obtained sintered body is as follows.
例1と例2を比較すると、負圧下での焼成によってHI
P処理の効果が高められていることが認められる。 Comparison between Example 1 and Example 2 shows that firing under negative pressure caused HI
It is recognized that the effect of the P treatment has been enhanced.
例3 例1と同じ試料を例1と同じ条件で焼成した。ただ
し、1800℃の保持時間を9時間、18時間、36時間とし
た。Example 3 The same sample as in Example 1 was fired under the same conditions as in Example 1. However, the holding time at 1800 ° C. was 9, 18 and 36 hours.
得られた焼結体の熱伝導率は以下の通りである。 The thermal conductivity of the obtained sintered body is as follows.
従来の常圧下の焼成でなく負圧下で焼成した後HIP処
理を行うことによってAlNの熱伝導率が25%以上向上し
ているのが認められる。 It is recognized that the thermal conductivity of AlN is improved by 25% or more by performing the HIP treatment after firing under negative pressure instead of the conventional firing under normal pressure.
AlNを負圧下のN2気流中で焼成した後HIP処理すること
によってAlNの熱伝導率を大きく向上させることがで
き、また緻密さ及び純度も高めることができる。AlN can greatly improve the thermal conductivity of the AlN by HIP treatment after firing with N 2 gas stream negative pressure, also can be enhanced compactness and purity.
第1図は本発明の実施例におけるHIP処理の様子を示す
模式図である。 1……グラファイトヒータ、 2……グラファイトるつぼ、 3……AlN粉末、 4……グラファイト粉末、 5……グラファイトセッター、 6……AlN焼成体試料。FIG. 1 is a schematic diagram showing a state of HIP processing in an embodiment of the present invention. 1 ... graphite heater, 2 ... graphite crucible, 3 ... AlN powder, 4 ... graphite powder, 5 ... graphite setter, 6 ... AlN fired body sample.
フロントページの続き (72)発明者 表 考司 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 亀原 伸男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 平1−167279(JP,A)Continued on the front page (72) Inventor Table Koji 1015 Uedanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Nobuo Kamehara 1015 Uedanaka, Nakahara-ku, Nakazaki-ku Kawasaki City, Kanagawa Prefecture Fujitsu Limited (56) Reference Document JP-A-1-167279 (JP, A)
Claims (1)
下の負圧下の窒素気流中で焼成した後、得られる窒化ア
ルミニウム焼結体をさらに1600〜1900℃の温度、100〜3
00気圧の圧力下、アルミニウム蒸気圧の存在下で、HIP
処理することを特徴とする窒化アルミニウム焼結体の製
造方法。After firing an aluminum nitride powder compact in a nitrogen stream under a negative pressure of 800 mbar or less, the obtained aluminum nitride sintered body is further heated to a temperature of 1600 to 1900 ° C. and 100 to 3900 ° C.
HIP under the pressure of 00 atm, in the presence of aluminum vapor pressure
A method for producing an aluminum nitride sintered body, characterized by performing a treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63049724A JP2628598B2 (en) | 1988-03-04 | 1988-03-04 | Manufacturing method of aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63049724A JP2628598B2 (en) | 1988-03-04 | 1988-03-04 | Manufacturing method of aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01224269A JPH01224269A (en) | 1989-09-07 |
JP2628598B2 true JP2628598B2 (en) | 1997-07-09 |
Family
ID=12839135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63049724A Expired - Lifetime JP2628598B2 (en) | 1988-03-04 | 1988-03-04 | Manufacturing method of aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2628598B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01294578A (en) * | 1988-05-20 | 1989-11-28 | Denki Kagaku Kogyo Kk | Production of aluminum nitride sintered material |
WO2012012384A1 (en) * | 2010-07-20 | 2012-01-26 | Hexatech, Inc. | Polycrystalline aluminum nitride material and method of production thereof |
CN115353082B (en) * | 2022-08-29 | 2023-10-24 | 山东大学 | Method for sintering high-quality aluminum nitride raw material in one step |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3743663A1 (en) * | 1987-12-22 | 1989-07-06 | Kempten Elektroschmelz Gmbh | POLYCRYSTALLINE SINTERING KOERPER BASED ON ALUMINUM NITRIDE AND METHOD FOR THE PRODUCTION THEREOF |
-
1988
- 1988-03-04 JP JP63049724A patent/JP2628598B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01224269A (en) | 1989-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6651628B2 (en) | High thermal conductivity silicon nitride sintered body and method for producing the same | |
JP3214890B2 (en) | Aluminum nitride sintered body, method for producing the same, and firing jig using the same | |
JP2628598B2 (en) | Manufacturing method of aluminum nitride sintered body | |
CN115304383A (en) | Aluminum nitride substrate and preparation method and application thereof | |
JP2002220282A (en) | Aluminum nitride sintered compact and method of manufacture | |
JP2628599B2 (en) | Manufacturing method of aluminum nitride substrate | |
JP4458692B2 (en) | Composite material | |
JP2742600B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2572103B2 (en) | Manufacturing method of A1N substrate | |
JPH06191955A (en) | Production of aluminum mitride sintered compact | |
JP2742599B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2630157B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP3570640B2 (en) | High density aluminum fluoride sintered body and method for producing the same | |
JP2003292377A (en) | Ceramic member for semiconductor device | |
JPH03275567A (en) | Production of aluminum nitride sintered body | |
JPH05238833A (en) | Production of aluminum nitride substrate | |
JP2661258B2 (en) | Manufacturing method of aluminum nitride substrate | |
JPH11147767A (en) | Production of aluminum nitride sintered product | |
JP4095345B2 (en) | Corrosion resistant material | |
JPH046161A (en) | Production of aln sintered body | |
JPH05330924A (en) | Production of aluminum nitride base plate and sintering vessel | |
JP2916934B2 (en) | Method for producing sialon-based sintered body | |
JP2742598B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2892195B2 (en) | Manufacturing method of AlN firing jig | |
JPH0431364A (en) | Production of silicon carbide sintered compact |