JP2572103B2 - Manufacturing method of A1N substrate - Google Patents

Manufacturing method of A1N substrate

Info

Publication number
JP2572103B2
JP2572103B2 JP63049725A JP4972588A JP2572103B2 JP 2572103 B2 JP2572103 B2 JP 2572103B2 JP 63049725 A JP63049725 A JP 63049725A JP 4972588 A JP4972588 A JP 4972588A JP 2572103 B2 JP2572103 B2 JP 2572103B2
Authority
JP
Japan
Prior art keywords
aln
substrate
mbar
pressure
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63049725A
Other languages
Japanese (ja)
Other versions
JPH01224270A (en
Inventor
悦郎 宇田川
宏 牧原
峰春 塚田
考司 表
伸男 亀原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63049725A priority Critical patent/JP2572103B2/en
Publication of JPH01224270A publication Critical patent/JPH01224270A/en
Application granted granted Critical
Publication of JP2572103B2 publication Critical patent/JP2572103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔概要〕 緻密かつ高熱伝導率のAlN基板の製造方法に関し、 低圧焼成ではAlNが分解揮散して割れなどが生じ易
く、高圧では液相の揮散が不十分になるため緻密化しな
い問題点を解決して、緻密かつ高熱伝導率のAlNを提供
することを目的とし、 室温で1〜300mbarの圧力の窒素ガスを封入した炉中
でAlNのグリーンシート又はその積層体を焼成する方法
として構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding a method for producing a dense and high thermal conductivity AlN substrate, AlN is liable to be decomposed and volatilized in low-pressure sintering, causing cracks and the like. In order to solve the problem of non-densification and to provide AlN with high density and high thermal conductivity, a green sheet of AlN or a laminate thereof in a furnace filled with nitrogen gas at a room temperature and a pressure of 1 to 300 mbar. It is configured as a firing method.

〔産業上の利用分野〕[Industrial applications]

本発明は緻密で熱伝導率の高い窒化アルミニウム(Al
N)基板の製造方法に関する。
The present invention relates to a dense and high thermal conductivity aluminum nitride (Al
N) A method for manufacturing a substrate.

〔従来の技術と発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

AlN基板は一般にトンネル炉中で常圧の窒素気流下、1
800℃以上の高温で10時間程度をかけて焼成される。し
かし、1気圧の窒素気流中ではAlNの分解が起こり、反
りの発生などの問題が生じる。分解を抑えるために、Al
N粉末で包埋して焼成する方法があるが、この場合には
基板にAlN粉末が付着して表面が粗くなる。また、反り
を抑えるために重し材をのせて焼成する方法もあるが、
この場合には収縮率のばらつきや、割れなどが生じ易く
なる。
The AlN substrate is generally placed in a tunnel furnace under a nitrogen stream at normal pressure.
It is fired at a high temperature of 800 ° C or more for about 10 hours. However, AlN is decomposed in a nitrogen atmosphere at 1 atm, which causes problems such as warpage. Al to reduce decomposition
There is a method of embedding and firing with N powder, but in this case, AlN powder adheres to the substrate and the surface becomes rough. There is also a method in which a weight material is placed and fired to suppress warpage,
In this case, variations in shrinkage, cracks, and the like are likely to occur.

一方、高圧の窒素雰囲気下で焼成する場合には、分解
は生じにくいが、焼結助剤との反応で生じた液相が充分
に揮散しなくなるため、緻密化せず、熱伝導率も低くな
る。
On the other hand, when firing in a high-pressure nitrogen atmosphere, decomposition is unlikely to occur, but the liquid phase generated by the reaction with the sintering aid does not volatilize sufficiently, so that it does not densify and has low thermal conductivity. Become.

そこで、本発明は、包埋粉を用いることなく、AlNの
分解を抑え、また重し材を用いることなく反りを抑え、
かつ液相を充分に揮散させて、緻密で高い熱伝導率を有
するAlN基板の焼成方法を提供することを目的とする。
Therefore, the present invention suppresses the decomposition of AlN without using embedding powder, and also suppresses the warpage without using a weight material,
It is another object of the present invention to provide a method for baking an AlN substrate that is dense and has high thermal conductivity by sufficiently evaporating a liquid phase.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を、室温で1〜300mbarの圧力の
窒素ガスを封入した炉中でAlNのグリーンシート又はそ
の積層体を焼成することを特徴とするAlN基板の製造方
法を提供することによって達成する。
The object of the present invention is to provide a method for producing an AlN substrate, comprising firing an AlN green sheet or a laminate thereof in a furnace filled with nitrogen gas at a pressure of 1 to 300 mbar at room temperature. To achieve.

本発明者らは上記目的を達成するため鋭意検討する過
程で、減圧下でAlNを焼成することによって液相を十分
に揮散させることができること、また密封炉中一定範囲
の窒素圧力下であればAlNの分解が少なく、反りの小さ
いAlN焼成体が得られることを見い出し、本発明を完成
した。
In order to achieve the above object, the present inventors are in the process of eagerly studying that the liquid phase can be sufficiently volatilized by firing AlN under reduced pressure, and if it is under a certain range of nitrogen pressure in a sealed furnace. The present inventors have found that an AlN fired body with little decomposition of AlN and small warpage can be obtained, and thus completed the present invention.

密閉炉内の窒素圧力は室温で1mbar〜300mbarの範囲内
とする。この範囲の圧力より小さい場合はAlNの分解が
顕著となり、大きい場合は液相の揮散が不十分となり緻
密化しない。好ましい窒素圧力は室温で10mbar〜200mba
rの範囲である。
The nitrogen pressure in the closed furnace is between 1 mbar and 300 mbar at room temperature. When the pressure is lower than this range, the decomposition of AlN becomes remarkable, and when the pressure is higher, volatilization of the liquid phase becomes insufficient and densification does not occur. Preferred nitrogen pressure is 10 mbar to 200 mba at room temperature
range of r.

本発明の方法が適用されるAlN基板を製造するための
グリーンシート又はその積層体は慣用のものであること
ができ、焼成温度及び焼成時間等も従来と同様であるこ
とができる。
A green sheet or a laminate thereof for manufacturing an AlN substrate to which the method of the present invention is applied may be a conventional one, and the firing temperature and the firing time may be the same as those in the related art.

〔作用〕[Action]

減圧下で焼成することにより液相が有効に揮散し、か
つ密閉炉内の圧力を一定範囲内に規定することによって
基板の反りを最小限にすることができた。
By firing under reduced pressure, the liquid phase was effectively volatilized, and by regulating the pressure in the closed furnace within a certain range, the warpage of the substrate could be minimized.

〔実施例〕〔Example〕

AlN粉末に、CaOを2wt%添加し、さらにポリビニルブ
チラール、ジブチルフタレート(DBP)、エタノールを
加えドクターブレード法により厚さ150μmのAlNグリー
ンシートを作製し、これを90mm口に打ち抜いて、10層に
積層した後、600℃の窒素中で4時間脱脂した。
2 wt% of CaO is added to AlN powder, and polyvinyl butyral, dibutyl phthalate (DBP), and ethanol are further added, and a 150 μm-thick AlN green sheet is prepared by a doctor blade method. After lamination, degreasing was performed in nitrogen at 600 ° C. for 4 hours.

これらの試料を以下の条件で1800℃で6時間焼成し
た。
These samples were fired at 1800 ° C. for 6 hours under the following conditions.

(1) 真空、(2) 1mbar N2ガスフロー、 (3) 10mbar N2ガスフロー、 (4) 1mbar N2ガス封入、 (5) 10mbar N2ガス封入、 (6) 30mbar N2ガス封入、 (7) 100mbar N2ガス封入、 (8) 300mbar N2ガス封入、 (9) 400mbar N2ガス封入。(1) vacuum, (2) 1 mbar N 2 gas flow, (3) 10 mbar N 2 gas flow, (4) 1 mbar N 2 gas filling, (5) 10 mbar N 2 gas filling, (6) 30 mbar N 2 gas filling, (7) 100 mbar N 2 gas filling, (8) 300 mbar N 2 gas filling, (9) 400 mbar N 2 gas filling.

得られた焼成体について、重量減少、反り、相対密
度、熱伝導率について調べた結果を下記表に示す。
The following table shows the results of examining the obtained fired body for weight reduction, warpage, relative density, and thermal conductivity.

上記より、本発明の実施例では反りが小さく、緻密
で、かつ熱伝導率の高いAlN基板が得られることが認め
られる。
From the above, it is recognized that in the example of the present invention, an AlN substrate having a small warpage, a high density, and a high thermal conductivity can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、反りがなく、緻密で、高い熱
伝導率を有するAlN基板が得られる。また、ガス封入で
焼成するため、ガスフローの場合に比べ、ガスの使用両
が大幅に少なくなる利点がある。なお、本発明で得られ
た窒化アルミニウム基板をHIP処理すればさらに緻密な
基板を得ることができる。
ADVANTAGE OF THE INVENTION According to the method of this invention, the AlN board | substrate which has no warpage, is dense, and has high thermal conductivity is obtained. In addition, since firing is performed with gas sealing, there is an advantage that the amount of gas used is significantly reduced as compared with the case of gas flow. If the aluminum nitride substrate obtained by the present invention is subjected to HIP processing, a more dense substrate can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 表 考司 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 亀原 伸男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Table Koji 1015 Uedanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Nobuo Kamehara 1015 Uedanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】室温で1〜300mbarの圧力の窒素ガスを封
入した炉中で窒化アルミニウムのグリーンシート又はそ
の積層体を焼成することを特徴とする窒化アルミニウム
基板の製造方法。
1. A method for manufacturing an aluminum nitride substrate, comprising firing a green sheet of aluminum nitride or a laminate thereof in a furnace filled with nitrogen gas at a pressure of 1 to 300 mbar at room temperature.
JP63049725A 1988-03-04 1988-03-04 Manufacturing method of A1N substrate Expired - Lifetime JP2572103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049725A JP2572103B2 (en) 1988-03-04 1988-03-04 Manufacturing method of A1N substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049725A JP2572103B2 (en) 1988-03-04 1988-03-04 Manufacturing method of A1N substrate

Publications (2)

Publication Number Publication Date
JPH01224270A JPH01224270A (en) 1989-09-07
JP2572103B2 true JP2572103B2 (en) 1997-01-16

Family

ID=12839164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049725A Expired - Lifetime JP2572103B2 (en) 1988-03-04 1988-03-04 Manufacturing method of A1N substrate

Country Status (1)

Country Link
JP (1) JP2572103B2 (en)

Also Published As

Publication number Publication date
JPH01224270A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
EP0287841A2 (en) Sintered body of aluminum nitride
ATE38374T1 (en) REFRACTORY ELECTRICALLY CONDUCTIVE MIXED MATERIALS AND PROCESS FOR THEIR MANUFACTURE BY HOT ISOSTATIC PRESSING.
JP2572103B2 (en) Manufacturing method of A1N substrate
US4810679A (en) Rare earth fluoride additive for sintering aluminum nitride
JP2628598B2 (en) Manufacturing method of aluminum nitride sintered body
JP2628599B2 (en) Manufacturing method of aluminum nitride substrate
JP2000302553A (en) Corrosion resistant fluoride based combined ceramics sintered compact
EP1036779B1 (en) Aluminium nitride sintered product and process for its production
US5441764A (en) Method of manufacturing a compound body and the resulting body
JP2001316174A (en) Composite material and its manufacturing method
JP2661258B2 (en) Manufacturing method of aluminum nitride substrate
JP2649582B2 (en) Method for producing SiC coated SiC ceramics
JP2842445B2 (en) Method for manufacturing container having setter and method for firing aluminum nitride substrate using the same
JP4641758B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS5939769A (en) Method of sintering silicon nitride
JPH04243974A (en) Production of sintered material of silicon nitride
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH0380157A (en) Manufacture of aluminum nitride sintered body
JP2683528B2 (en) Method for firing aluminum nitride substrate
JPH02501382A (en) Method for hot isostatic pressing of silicon nitride bodies reinforced with carbide fibers and carbide whiskers
JPH05279710A (en) Continuous inclination function metallic material
CN115321986A (en) Susceptor for high temperature applications having a shaft with low thermal conductivity
US20030036262A1 (en) Method for manufacturing multilayer ceramics with improved interlayer bonding