WO2013146789A1 - Sintered silicon nitride substrate and process for producing same - Google Patents
Sintered silicon nitride substrate and process for producing same Download PDFInfo
- Publication number
- WO2013146789A1 WO2013146789A1 PCT/JP2013/058813 JP2013058813W WO2013146789A1 WO 2013146789 A1 WO2013146789 A1 WO 2013146789A1 JP 2013058813 W JP2013058813 W JP 2013058813W WO 2013146789 A1 WO2013146789 A1 WO 2013146789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon nitride
- nitride sintered
- temperature
- sintered body
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/587—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0061—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6587—Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
- C04B2235/9638—Tolerance; Dimensional accuracy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
Definitions
- the present invention relates to a silicon nitride sintered body substrate having high thermal conductivity and less warpage and undulation, and an efficient manufacturing method thereof.
- Circuit boards used for power semiconductor modules, etc. are made of metal bonded to a silicon nitride sintered body substrate with high insulation, mechanical strength, thermal conductivity, etc. by brazing or direct bonding (DBC). Circuit board or heat sink.
- a semiconductor module a semiconductor chip is bonded to a circuit board.
- the silicon nitride sintered substrate is required to have high thermal conductivity.
- the silicon nitride sintered body substrate is also required to have high insulation (electrical resistivity).
- a silicon nitride sintered substrate is formed by mixing a silicon nitride powder with a sintering aid such as MgO, a binder, a plasticizer, etc. to form a slurry, and molding and drying the slurry to form a green sheet. It is formed through a process of degreasing and baking the sheet. Since the thermal conductivity of the silicon nitride sintered substrate is greatly influenced by the porosity and the state of the grain boundary phase, various manufacturing methods for improving these have been proposed.
- a sintering aid such as MgO, a binder, a plasticizer, etc.
- fine particles having a particle size of 100 nm or less containing at least one element selected from the group consisting of Mg or Y and rare earth elements and O are present in silicon nitride particles.
- a method for producing a silicon nitride sintered body with high thermal conductivity at least one step of holding at a temperature of 1400 to 1600 ° C. for 1 to 10 hours is performed at the time of raising the temperature of the sintering step, and the sintering temperature is determined from this holding temperature.
- MgO and rare earth oxide are used as sintering aids in order to obtain a silicon nitride sintered body substrate having high thermal conductivity.
- MgO is easily segregated, the distribution of grain boundary phases is not uniform.
- large warpage and undulation occur in the silicon nitride sintered body substrate.
- the silicon nitride sintered body substrate is as large as 100 mm ⁇ 100 mm and is as thin as 0.7 mm or less, warping and waviness increase.
- the silicon nitride sintered substrate is warped or wavy, voids are generated at the bonding interface when the circuit board or the heat sink is bonded, and the thermal conductivity is lowered. Therefore, it is very important to suppress warpage and undulation of the silicon nitride sintered body substrate.
- Japanese Patent Laid-Open No. 2009-215142 discloses that 3-4 mass% magnesium oxide powder and 2-5 mass% rare earth oxide powder are mixed with silicon nitride powder, and a solvent, an organic binder and A plasticizer is mixed to produce a slurry, the slurry is formed into a green sheet, the green sheet is sintered once, and a plurality of the obtained sintered bodies are stacked, and 1550 while applying a load of 0.5 to 6.0 kPa A method of heat treatment at ⁇ 1700 ° C is proposed.
- the silicon nitride sintered substrate obtained by this method has a Mg distribution variation coefficient of 0.20 or less, a warpage suppressed to 2.0 ⁇ m / mm or less, and high mechanical strength and thermal conductivity.
- the heat treatment process of the sintered body must be performed after the firing process, there is a problem that the manufacturing cost is inevitably increased.
- an object of the present invention is to provide a silicon nitride sintered substrate having a sufficient mechanical strength and thermal conductivity with little warpage and undulation, and an efficient manufacturing method thereof.
- the present inventors As a result of diligent research in view of the above-mentioned object, the present inventors, (a) When a moderate uniform load is vertically applied to the silicon nitride green sheet during firing, the sintering shrinkage is substantially prevented without being hindered. Since the sintering of the silicon nitride green sheet proceeds while holding the surface, a silicon nitride sintered body substrate with less warpage and waviness is formed, and (b) ⁇ after the first sintering temperature range When the temperature holding region was provided, it was discovered that the silicon nitride particles were rearranged and densified in the sintering aid liquidized in the sintering process, and the present invention was completed.
- the method for producing a silicon nitride sintered substrate of the present invention comprises 80-98.3 mass% Si 3 N 4 , 0.7-10 mass% (oxide conversion) Mg, and 1-10 mass% (oxide conversion). ) Containing at least one rare earth element, each of which is 100 mm or more in length and breadth and has a thickness of 0.7 mm or less.
- the temperature profile in the baking step is 0.5 to a temperature lower than the first temperature holding range in the range of 1400 to 1700 ° C. after the first temperature holding range in which the temperature is in the range of 1600 to 2000 ° C. It is preferred to have a second temperature holding region that holds for ⁇ 45 hours.
- the temperature profile in the firing step has a cooling region for cooling at a rate of 100 ° C./hour or more after the second temperature holding region.
- the temperature profile in the firing step is, before the first temperature holding region, (a) a gradually heating region where heating is performed at a rate of 300 ° C./hour or less in a temperature range of 1400 to 1600 ° C., or (b) 1400 to 1400 to It is preferable to have a temperature holding range for holding for 0.5 to 40 hours in a temperature range of 1600 ° C.
- the firing step is performed in a state where a weight plate is disposed on a laminate composed of a plurality of green sheets, and the weight of the weight plate is set so that a load of 10 to 600 Pa is applied to each green sheet in the laminate. It is preferable to set it to work.
- Each of the laminates is placed on a mounting plate, a plurality of mounting plates are stacked via a vertical frame member to form a mounting plate assembly, and the crucible in which the mounting plate assembly is disposed is placed in a firing furnace.
- the firing step is preferably performed.
- the firing step is performed after a stuffing powder made of a mixed powder of magnesia powder, boron nitride powder and silicon nitride powder is placed in the crucible together with the laminate.
- the packing powder is preferably arranged on the upper surface of the uppermost mounting plate of the mounting plate assembly.
- the crucible preferably has a double structure of an inner crucible and an outer crucible.
- the inner crucible is preferably made of BN
- the outer crucible is preferably made of carbon coated with BN.
- the silicon nitride sintered substrate of the present invention produced by the above method preferably has a warpage of 2.5 ⁇ m / mm or less and a surface area of 2.0 ⁇ m or more in an area ratio of 15% or less.
- the silicon nitride sintered substrate of the present invention preferably has a variation coefficient of Mg distribution in the thickness direction of 0.3 or less.
- the voids in the silicon nitride sintered body substrate of the present invention preferably have an area ratio of 2.0% or less and a diameter of 10.0 ⁇ m or less.
- the area ratio of voids having a diameter of 100 ⁇ m or more generated at the bonding interface is 3.0% or less.
- the weight plate is disposed on the green sheet laminate, warping and undulation are suppressed by one firing, and high mechanical strength and heat conduction are achieved.
- a silicon nitride sintered body substrate having a high rate can be obtained.
- the temperature profile of the firing process has the second temperature holding region after the first temperature holding region, the distribution of the grain boundary phase is uniform and Mg segregation is suppressed, and the warp of the silicon nitride sintered body substrate is more It is suppressed.
- a double structure crucible consisting of a BN inner crucible and a carbon outer crucible coated with BN is used, and a mounting plate assembly in which a plurality of mounting plates on which a laminate is placed is stacked on the inner side.
- the filling powder made of mixed powder of magnesia powder, boron nitride powder and silicon nitride powder is placed on the upper surface of the uppermost mounting plate of the mounting plate assembly, warpage and undulation are further suppressed and high.
- a silicon nitride sintered substrate having mechanical strength and thermal conductivity is obtained.
- FIG. 1 It is a flowchart which shows the manufacturing method of the silicon nitride sintered compact board
- 6 is a cross-sectional view illustrating a state in which another mounting plate is disposed on the mounting plate illustrated in FIG. 5 via a vertical frame member and a second stacked body is mounted thereon. It is a graph which shows the temperature profile of the baking process in the manufacturing method of the silicon nitride sintered compact board
- 6 is a SEM photograph showing a cross-sectional structure of an upper surface portion, a center portion, and a lower surface portion of a silicon nitride sintered body substrate of Example 5.
- 6 is an SEM photograph showing a cross-sectional structure of an upper surface portion, a central portion, and a lower surface portion of a silicon nitride sintered body substrate of Comparative Example 6.
- FIG. 3 is a plan view showing a state in which laser light is irradiated along the three scanning lines on the surface of a silicon nitride sintered body substrate placed on a surface plate. It is a top view which shows the method of calculating
- the raw material powder for producing the silicon nitride sintered body substrate of the present invention contains 80 to 98.3% by mass of silicon nitride (Si 3 N 4 ) as a main component, and 0.7 to It contains 10% by mass (as oxide) Mg and 1-10% by mass (as oxide) at least one rare earth element. From the viewpoint of the density, bending strength, and thermal conductivity of the silicon nitride sintered body, the alpha conversion rate of the silicon nitride powder is preferably 20 to 100%.
- the resulting silicon nitride sintered substrate has too low bending strength and thermal conductivity.
- Si 3 N 4 exceeds 98.3% by mass, the sintering aid is insufficient and a dense silicon nitride sintered body substrate cannot be obtained.
- generated at low temperature is inadequate that Mg is less than 0.7 mass% in conversion of an oxide.
- Mg exceeds 10% by mass in terms of oxide, the volatilization amount of Mg increases, and voids are easily generated in the silicon nitride sintered substrate.
- the rare earth element is less than 1% by mass in terms of oxide, the bond between the silicon nitride particles becomes weak, and the cracks easily extend the grain boundary, so the bending strength becomes low.
- the rare earth element exceeds 10% by mass in terms of oxide, the ratio of the grain boundary phase increases and the thermal conductivity decreases.
- the Mg content (as oxide) is preferably 0.7 to 7% by mass, more preferably 1 to 5% by mass, and most preferably 2 to 5% by mass.
- the rare earth element content (as oxide) is preferably 2 to 10% by mass, more preferably 2 to 5% by mass. Accordingly, the content of Si 3 N 4 is preferably 83 to 97.3% by mass, and more preferably 90 to 97% by mass.
- rare earth elements Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, etc. can be used, among which Y is a silicon nitride sintered body It is effective and preferable for increasing the density of the substrate.
- Mg and rare earth elements are preferably used in the form of oxide powders. Accordingly, a preferred sintering aid is a combination of MgO powder and Y 2 O 3 powder.
- FIG. 1 is a flowchart showing a preferred example of the method of the present invention for producing a silicon nitride sintered body substrate.
- the silicon nitride raw material powder is Si 3 N 4 powder
- the Mg raw material powder is MgO powder
- the rare earth element raw material powder is Y 2 O 3 powder. It is not limited to the case of using raw material powder.
- Raw material powder mixing process S1 A plasticizer, an organic binder, and an organic solvent (for example, ethyl alcohol) are mixed with a Si 3 N 4 powder, MgO powder, and Y 2 O 3 powder blended so as to obtain the above sintered composition with a ball mill or the like to produce a slurry. To do.
- the solid content concentration of the slurry is preferably 30 to 70% by mass.
- a green sheet is formed by, for example, a doctor blade method.
- the thickness of the green sheet is appropriately set in consideration of the thickness of the silicon nitride sintered substrate to be formed and the sintering shrinkage rate. Since the green sheet formed by the doctor blade method is usually a long strip, it is punched or cut into a predetermined shape and size. When forming a plurality of silicon nitride sintered body substrates from one green sheet, the substrate is cut after sintering.
- Lamination process S3 In order to efficiently manufacture the silicon nitride sintered body substrate, it is preferable to stack a plurality of green sheets. As shown in FIG. 2, a plurality of green sheets 1 are laminated through a boron nitride (BN) powder layer 12 having a thickness of about 1 to 20 ⁇ m to form a laminated body 10.
- the BN powder layer 12 is for facilitating separation of the sintered silicon nitride sintered substrate, and a slurry of BN powder is applied to one surface of each green sheet 1 by, for example, spraying, brush coating or screen printing. Can be formed.
- the BN powder preferably has a purity of 95% or more and an average particle diameter of 1 to 20 ⁇ m.
- each green sheet 1 is constrained by the load and smooth shrinkage during sintering is inhibited, so that it is difficult to obtain a dense silicon nitride sintered body substrate.
- the load acting on each green sheet 1 is preferably 20 to 300 Pa, more preferably 20 to 200 Pa, and most preferably 30 to 150 Pa.
- the weight of the weight plate 11 is W 1 g
- the weight and area of each green sheet 1 are W 2 g and S cm 2 respectively
- the number of green sheets 1 in the laminate 10 is n
- the load applied to the green sheet 1a is 98 ⁇ (W 1 / S) Pa
- the load applied to the lowermost green sheet 1b is 98 ⁇ [W 1 + W 2 ⁇ (n ⁇ 1)] / S Pa.
- the load applied to the lowermost green sheet 1b is applied to the uppermost green sheet 1a.
- the weight of the weight plate 11 and the number of green sheets 1 in the laminate 10 are set.
- FIG. 4 shows an example of a crucible for firing a plurality of laminated bodies 10 simultaneously.
- the crucible 20 includes a mounting plate assembly 30 in which mounting plates 21 that store the stacked bodies 10 are stacked in multiple stages, an inner crucible 40 that stores the mounting plate assembly 30, and an outer crucible that stores the inner crucible 40. It consists of 50. The interval between the mounting plates 21 adjacent in the vertical direction is held by the vertical frame member 22.
- the crucible 20 having a double structure of the inner crucible 40 and the outer crucible 50 By making the crucible 20 having a double structure of the inner crucible 40 and the outer crucible 50, the decomposition of Si 3 N 4 and the volatilization of MgO in the green sheet 1 can be suppressed, and the silicon nitride firing is more dense and less warped. A bonded substrate can be obtained.
- Both the inner crucible 40 and the outer crucible 50 are preferably made of BN, but the outer crucible 50 can also be made of carbon coated with p-BN by CVD.
- the inner crucible 40 includes a lower plate 40a, a side plate 40b, and an upper plate 40c
- the outer crucible 50 includes a lower plate 50a, a side plate 50b, and an upper plate 50c.
- the lowermost green sheet 1b in contact with the mounting plate 21 has a portion that is in contact with the upper surface of the mounting plate 21 and a portion that is not in contact therewith. Then, the non-contact part of the green sheet 1b is easily contracted during sintering, and the contact part is difficult to contract. Therefore, non-uniform contraction occurs in the green sheet 1b, and warping and undulation occur. Further, the warpage and undulation of the lowermost green sheet 1b also affect the upper green sheet 1, and as a result, warpage and undulation occur in all the silicon nitride sintered substrates. Therefore, the upper surface of the mounting plate 21 needs to be as flat as possible.
- the warpage is within 2.0 ⁇ m / mm and the undulation is within 2.0 ⁇ m.
- the warping and waviness of the mounting plate 21 can be measured by the same method as the warping and waviness of the silicon nitride sintered substrate.
- the filling powder 24 is made of, for example, 0.1 to 50% by mass of magnesia (MgO) powder, 25 to 99% by mass of silicon nitride (Si 3 N 4 ) powder, and 0.1 to 70% by mass of boron nitride (BN) powder. It is a mixed powder. Silicon nitride powder and magnesia powder in padding powder 24 volatilize at a high temperature of 1400 ° C or higher, and adjust the partial pressure of Mg and Si in the firing atmosphere to suppress silicon nitride and magnesia from volatilizing from green sheet 1 To do.
- MgO magnesia
- Si 3 N 4 silicon nitride
- BN boron nitride
- the BN powder prevents adhesion of silicon nitride powder and magnesi powder in the filling powder 24.
- the filling powder 24 it is possible to obtain a silicon nitride sintered body substrate that is dense and has little warpage.
- the lower plate 40a of the inner crucible 40 is placed on the upper surface of the lower plate 50a of the outer crucible 50, the placing plate 21 is placed on the upper surface of the lower plate 40a of the inner crucible 40, and a plurality of pieces are placed thereon.
- the laminated body 10 made of the green sheet 1 and the weight plate 11 are placed.
- the vertical frame member 22 is installed on the outer peripheral portion of the mounting plate 21, the next stage mounting plate 21 is placed, and the stacked body 10 and the weight plate 11 are mounted thereon. .
- the filling powder 24 is disposed on the upper surface of the uppermost mounting plate 21a.
- the side plate 40b and the upper plate 40c of the inner crucible 40 are assembled, and further, the side plate 50b and the upper plate 50c of the outer crucible 50 are assembled to complete the crucible 20 containing the laminate 10.
- a desired number of such crucibles 20 are arranged in a firing furnace (not shown).
- the green sheet 1 is fired according to the temperature profile P shown in FIG.
- the temperature profile P includes a temperature rising area having a gradual heating area P 0 , a temperature holding area having a first temperature holding area P 1 and a second temperature holding area P 2 , and a cooling area.
- the temperature shown on the vertical axis is the heating temperature of the firing furnace.
- the slow heating zone P 0 is a temperature zone where the sintering aid contained in the green sheet 1 reacts with the oxide layer on the surface of the silicon nitride particles to generate a liquid phase.
- the slow heating region P 0 the growth of ⁇ -type silicon nitride grains is suppressed, and the silicon nitride grains are rearranged and densified in the liquid phase sintering aid.
- a silicon nitride sintered substrate having a small pore diameter and porosity, a high bending strength and a high thermal conductivity can be obtained.
- the heating time t 0 is preferably 0.5 to 30 hours.
- the heating rate may include 0 ° C./hour, that is, a temperature holding region where the slow heating region P 0 is held at a constant temperature.
- the heating rate in the slow heating region P 0 is more preferably 1 to 150 ° C./hour, and most preferably 1 to 100 ° C./hour.
- the heating time t 0 is more preferably 1 to 25 hours, and most preferably 5 to 20 hours.
- the first temperature holding region P 1 is the rearrangement of silicon nitride particles, the formation of ⁇ -type silicon nitride crystal, and the silicon nitride crystal by the liquid phase generated in the slow heating region P 0 This is a temperature range in which the grain growth of the sintered body is increased, and the sintered body is further densified.
- the temperature T in the first temperature holding region P 1 1 was in the range of 1600 ⁇ 2000 ° C., preferably the holding time t 1 and about 1 to 30 hours.
- the temperature T 1 of the first temperature holding region P 1 is less than 1600 ° C., it is difficult to densify the silicon nitride sintered body.
- the temperature T 1 exceeds 2000 ° C., volatilization of the sintering aid and decomposition of the silicon nitride become intense, and it becomes difficult to obtain a dense silicon nitride sintered body. If the temperature is in the range of 1600 to 2000 ° C., the heating temperature T 1 may change (for example, gradually increase in temperature) within the first temperature holding region P 1 .
- the temperature T 1 in the first temperature holding region P 1 is more preferably in the range of 1750 to 1950 ° C., and most preferably in the range of 1800 to 1900 ° C. Further, the first temperature T 1 of the temperature holding zone P 1 is preferably greater 50 ° C. or higher than the upper limit of the temperature T 0 of Jonetsuiki P 0, more preferably higher 100 ⁇ 300 ° C. or higher.
- the holding time t 1 is more preferably 2 to 20 hours, and most preferably 3 to 10 hours.
- a second second temperature holding zone P 2 that follows the temperature holding zone first temperature holding zone P 1 is slightly lower than the temperature T 1 of the sintered body first temperature holding zone P 1 by holding the T 2, the temperature range to maintain a state of directly or solid-liquid coexisting a first temperature holding zone P 1 a through the liquid phase.
- the temperature T 2 of the second temperature holding region P 2 is preferably in the range of 1400 to 1700 ° C. and lower than the temperature T 1 of the first temperature holding region P 1 .
- the holding time t 2 of the second temperature holding zone P 2 is 0.5 to 45 hours.
- the temperature T 2 of the second temperature holding region P 2 is less than 1400 ° C.
- the grain boundary phase is easily crystallized, and the resulting silicon nitride sintered substrate has low bending strength.
- the temperature T 2 exceeds 1700 ° C.
- the fluidity of the liquid phase is too high and the above effect cannot be obtained.
- the temperature T 2 is more preferably 1500-1650 ° C., and most preferably 1550-1650 ° C.
- the holding time t 2 in the second temperature holding region P 2 is preferably 0.5 to 45 hours, more preferably 0.5 to 10 hours, and most preferably 1 to 5 hours.
- the holding time t 2 of the second temperature holding zone P 2 is less than 0.5 hours, sufficient uniformity of the grain boundary phase.
- the second holding time t 2 of the temperature holding zone P 2 for 45 hours The following is preferable.
- FIG. 8 shows the first temperature holding region P 1 (T 1 : 1850 ° C, t 1 : 5 hours) followed by the second temperature holding region P 2 (T 2 : 1600 ° C, t 2 : 2 hours).
- a is a SEM photograph showing a sectional structure in the middle portion and the lower surface portion
- the distribution of the grain boundary phase (appears as white spots due to the heavy element Y) is uneven in the thickness direction, An area without white spots (encircled by circle O) is observed.
- the region without white spots is a grain boundary phase with a high Mg / Y concentration ratio (low Y) and can be said to be a Mg segregation portion. Therefore, the cross-sectional structure of the silicon nitride sintered body substrate of Comparative Example 6 in which the second temperature holding region P 2 is not provided after the first temperature holding region P 1 has an Mg segregation portion, and has a grain in the thickness direction. It can be said that the field phase distribution is non-uniform.
- An excessively large Mg segregation part serves as a starting point of fracture, which decreases mechanical strength (bending strength and fracture toughness) and causes excessive warpage.
- the grain boundary phase (which looks like white spots due to heavy element Y) is uniform in the thickness direction. It is distributed and no Mg segregation part is observed. Therefore, the silicon nitride sintered body substrate of Example 5 in which the second temperature holding region P 2 is provided after the first temperature holding region P 1 has high mechanical strength (bending strength and fracture toughness), Warpage is suppressed.
- the cooling zone P 3 that follows the (f) cooling zone second temperature holding zone P 2 is a second liquid phase which is maintained at a temperature holding zone P 2 of solidified by cooling, the position of the resulting grain boundary phase This is the temperature range for fixing
- the cooling rate of the cooling zone P 3 is preferably at least 100 ° C. / hour, more preferably at least 300 ° C. / time, 500 ° C. / Most preferred is more than hours. Practically, the cooling rate is preferably 500 to 600 ° C./hour.
- the cooling rate of the cooling zone P 3 is maintained up to 1200 ° C., the cooling rate at a lower temperature is not particularly limited.
- the silicon nitride sintered substrate obtained by the above method has a warpage reduced to 2.5 ⁇ m / mm or less. Since the warpage is within 2.5 ⁇ m / mm, a metal circuit board or a heat radiating plate (sometimes collectively referred to as a “metal plate”) is joined to the silicon nitride sintered substrate via a brazing material, etc. When the substrate is formed, the generation of voids (portions where the silicon nitride sintered substrate is not bonded to the metal plate) at the bonding interface between the silicon nitride sintered substrate and the metal plate via the brazing material is suppressed.
- the warp is preferably within 2.0 ⁇ m / mm, more preferably within 1.5 ⁇ m / mm.
- the warp is preferably as small as possible, but practically, the lower limit is about 0.1 ⁇ m / mm.
- the warpage of the silicon nitride sintered body substrate 60 is measured as follows using a three-dimensional laser measuring instrument (LT-8100 manufactured by Keyence Corporation). As shown in FIG. 9 (a) and FIG. 9 (b), the three scanning lines L1 are applied to the surface of the silicon nitride sintered substrate 60 placed on the surface plate by the three-dimensional laser measuring instrument 80. The laser beam 81 is scanned along L2, L3. As shown in FIG. 9 (b), the scanning lines L1 and L3 are along the inner line by 10 mm from each side end of the silicon nitride sintered body substrate 60, and the scanning line L2 is the silicon nitride sintered body substrate 60. Along the center line. As shown in FIG.
- a straight line C connecting both ends A and B in the scanning direction of the surface of the silicon nitride sintered body substrate 60 is horizontal, and is separated from the straight line C to the uppermost position.
- the height G of the point E and the height H of the point F that is farthest downward are obtained.
- the vertical distance (G + H) between point E and point F is divided by the length I of each scanning line L1 to L3, and the value of (G + H) / I obtained for each scanning line L1 to L3 is averaged.
- the warp of the silicon nitride sintered body substrate 60 is exaggerated for the sake of explanation.
- the variation coefficient of the Mg amount in the thickness direction is 0.3 or less.
- the Mg variation coefficient is obtained by scanning an electron beam with a beam diameter of 0.1 ⁇ m at an interval of 2 ⁇ m with an EPMA in an arbitrary range of 0.2 mm in the cross section in the thickness direction of the silicon nitride sintered body substrate, and obtaining an X-ray of Mg Determined by dividing the standard deviation of intensity by its average.
- the area ratio of the pores of the silicon nitride sintered body substrate of the present invention is 2.0% or less, and the maximum diameter of the pores is about 10 ⁇ m.
- the maximum diameter and area ratio of the holes are obtained from a scanning electron microscope (SEM) photograph. For example, when the hole has a shape having a major axis and a minor axis, the maximum diameter of the hole is the length of the major axis.
- the area ratio of the region having a surface waviness of 2.0 ⁇ m or more is preferably 15% or less.
- the area ratio (%) of the region where the surface waviness is 2.0 ⁇ m or more is the center line (straight line obtained by averaging the waviness) of the surface 60a of the silicon nitride sintered body substrate 60.
- the area ratio of the area where the surface waviness is 2.0 ⁇ m or more is determined based on the surface of the silicon nitride sintered substrate 60 using an optical interference type non-contact surface shape measuring machine (MikroCAD Premium 80 ⁇ 60 manufactured by GFM). Is calculated from the processed image with the pre-filter set as follows. Preset filter set value polynomial filter: 8, Bandpass filter: Filter Size 1 X: 11, Y: 11 Filter Size 2 X: 51, Y: 51 Averaging filter: X: 15, Y: 15 Median filter: X: 7, Y: 27
- the area ratio of voids having a diameter of 100 ⁇ m or more at the joining interface is 3.0% or less.
- the brazing material include an Ag—In—Cu based brazing material, an Ag—Cu based brazing material mainly composed of eutectic Ag and Cu, and added with an active metal such as Ti, Zr, and Hf.
- the size of the silicon nitride sintered body substrate of the present invention is set to 100 mm or more in both vertical and horizontal directions.
- a preferable size is 120 mm ⁇ 120 mm, and a more preferable size is 140 mm ⁇ 140 mm.
- a thinner silicon nitride sintered substrate used as a heat transfer substrate for a circuit element such as a semiconductor is better, but the thinner it is, the more difficult it is to manufacture.
- the thickness of the silicon nitride sintered substrate of the present invention is set to 0.7 mm or less.
- the thickness of the silicon nitride sintered body substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less.
- Examples 1-6 Green sheet by a doctor blade method from a slurry of solid powder (solid content concentration: 60% by mass) with 3.0% by mass of MgO powder, 2.0% by mass of Y 2 O 3 powder and the balance being Si 3 N 4 powder and unavoidable impurities (Dry size: 200 mm ⁇ 200 mm) 1 was formed, and 20 laminates were formed via BN powder to form a laminate 10.
- a weight plate 11 was placed on each laminate 10, placed on the placement plate 21, and placed in the crucible 20 shown in FIG. The load on the uppermost green sheet 1a by the weight plate 11 was 40 Pa.
- Each mounting plate 21 had a warp of 0.5 ⁇ m / mm and a waviness of 0.3 ⁇ m.
- the crucible 20 is put into a firing furnace, a heating range P 0 for 10 hours at a temperature rising rate of 1 to 100 ° C./hour, a first temperature holding range P 1 for 14 hours at a temperature T 1 of 1850 ° C., 1420 to 1650 second temperature holding zone P 2 of temperature T 2 at 1.5 hours in the range of ° C., and the temperature profile having a cooling zone P 3 of the cooling rate of 600 ° C. / time, the green sheets 1 in each stack 10 Sintering produced a 0.32 mm thick silicon nitride sintered substrate.
- Example 2 was repeated except that the temperature T 2 of the second temperature holding region P 2 was changed within the range of 1420 to 1650 ° C., and the holding time t 2 was also changed between 0.6 and 29.0 hours.
- a silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured.
- Examples 14-16 A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the amount of MgO powder in the raw material powder was 1.0 to 5.0 mass%.
- Examples 17-20 A silicon nitride sintered substrate was produced in the same manner as in Example 5 except that the cooling rate in the cooling zone P 3 was changed within the range of 50 to 500 ° C./hour.
- Example 21-23 The thickness was changed in the same manner as in Example 5 except that the rate of temperature increase in the slow heating region P 0 was changed within the range of 50 to 300 ° C./hour and the temperature increase time was changed within the range of 1 to 20 hours. A 0.32 mm silicon nitride sintered substrate was produced.
- Examples 24-27 A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the weight plate 11 was changed within the range of 10 to 100 Pa.
- Examples 28-30 A silicon nitride sintered substrate having a thickness of 0.12 to 0.60 mm was manufactured in the same manner as in Example 5 except that the thickness of the green sheet 1 was changed.
- Example 31 In the same manner as in Example 5 except that the second holding time t 2 of the temperature holding zone P 2 were 45 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
- Comparative Example 1 A silicon nitride sintered body substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the firing step was performed without placing the overlapping plate 11 on the laminate 10 of the green sheet 1.
- Comparative Example 2 A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the weight plate 11 was 5 Pa.
- Comparative Example 3 Silicon nitride having a thickness of 0.32 mm, in the same manner as in Example 5, except that the temperature T 2 of the second temperature holding region P 2 was 1300 ° C., less than the lower limit of the present invention, and the holding time t 2 was 5.0 hours. A sintered substrate was produced.
- Comparative Example 4 Silicon nitride having a thickness of 0.32 mm in the same manner as in Example 5 except that the temperature T 2 of the second temperature holding region P 2 was 1800 ° C., exceeding the upper limit of the present invention, and the holding time t 2 was 2.0 hours. A sintered substrate was produced.
- Comparative Example 5 Second holding time t 2 of the temperature holding zone P 2 in the same manner as in Example 5 except that as short as 0.1 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
- Comparative Example 6 A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the temperature profile having no second temperature holding region P 2 was used.
- Comparative Example 7 A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the weight plate 11 was 700 Pa.
- the thicknesses and structures of the silicon nitride sintered substrates of Examples 1 to 31 and Comparative Examples 1 to 7 are shown in Table 1-1 and Table 1-2, and the manufacturing conditions are shown in Table 2-1 and Table 2-2. .
- the silicon nitride sintered substrates of Examples 1 to 31 and Comparative Examples 1 to 7 have a bending strength, thermal conductivity, relative density, Mg coefficient of variation, warpage, waviness, voids, and a diameter of 100 ⁇ m or more at the bonding interface.
- the void area ratio was measured by the following method.
- the bending strength, thermal conductivity, relative density, and Mg variation coefficient of each silicon nitride sintered substrate are shown in Table 3-1 and Table 3-2, and warp, undulation, pores, and a diameter of 100 ⁇ m or more at the bonding interface are shown.
- Table 4-1 and Table 4-2 show the void area ratios.
- each silicon nitride sintered substrate is cut to a width of 4 mm, set in a three-point bending jig with a distance between support rolls of 7 mm, and a crosshead speed of 0.5 mm / min. A load was applied to measure the load at break, and the bending strength of each silicon nitride sintered substrate was calculated therefrom.
- Warpage and undulation Measurement was performed by the method described in [3] above.
- the brazing material is Ag-In-Cu alloy powder having an average particle size of 20 ⁇ m (Ag: 70% by mass, In: 5% by mass, balance: Cu, oxygen: 0.1% by mass or less) 76.5% by mass, Ag having an average particle size of 10 ⁇ m Contains 7.6% by weight of powder and 0.8% by weight of titanium hydride powder (particle size of 85% or more, 45 ⁇ m or less), 5% by weight of acrylic resin binder, 10% by weight of ⁇ -terpineol solvent, and 0.1% by weight % Dispersant, having a melting point of 770 ° C. and a viscosity of 55 Pa ⁇ s.
- the temperature T 1 of the first temperature holding region P 1 is in the range of 1600 to 2000 ° C.
- the temperature T 2 of the second temperature holding region P 2 is in the range of 1400 to 1700 ° C. Bending strength of 600 MPa or more, 65 W / m /, depending on the conditions of Examples 1-31, which is lower than the holding zone P 1 and the holding time t 2 of the second temperature holding zone P 2 is 0.5 to 45 hours It has been found that a silicon nitride sintered substrate having a thermal conductivity of K or higher and a relative density of 95% or higher can be obtained.
- the warp of the silicon nitride sintered body substrate of the example was in the range of 2.5 ⁇ m / mm, and the area ratio of the region of 2 ⁇ m or more was as small as 15% or less even though there was undulation. Moreover, in the test piece in which the silicon nitride sintered body substrate of each example was bonded to a copper plate, the area ratio of voids having a diameter of 100 ⁇ m or more was as small as 3% or less.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A process for producing a sintered silicon nitride substrate which comprises 80-98.3 mass% Si3N4, 0.7-10 mass% (in terms of oxide amount) Mg, and 1-10 mass% (in terms of oxide amount) at least one rare-earth element and which has length and width dimensions of 100 mm or larger each and a thickness of 0.7 mm or less, characterized by comprising a step in which a silicon nitride powder is mixed with a sintering aid powder comprising both Mg and at least one rare-earth element, a step in which the obtained mixed powder is molded, and a step in which the obtained green sheet is fired in a nitrogen atmosphere, the firing step being conducted while a weight plate is kept being placed on the green sheet so that a load of 10-600 Pa is imposed on the green sheet.
Description
本発明は、高い熱伝導率を有するとともに反り及びうねりが少ない窒化珪素焼結体基板、及びその効率的な製造方法に関する。
The present invention relates to a silicon nitride sintered body substrate having high thermal conductivity and less warpage and undulation, and an efficient manufacturing method thereof.
パワー半導体モジュール等に使用される回路基板は、高い絶縁性、機械的強度、熱伝導率等を有する窒化珪素焼結体基板と、それにろう付け又は直接接合法(DBC)により接合された金属製の回路板又は放熱板とで構成されている。半導体モジュールの場合、回路板に半導体チップが接合される。動作中の半導体チップの放熱を効率良く行うため、窒化珪素焼結体基板には高い熱伝導率が要求される。勿論、窒化珪素焼結体基板には高い絶縁性(電気抵抗率)も要求される。
Circuit boards used for power semiconductor modules, etc. are made of metal bonded to a silicon nitride sintered body substrate with high insulation, mechanical strength, thermal conductivity, etc. by brazing or direct bonding (DBC). Circuit board or heat sink. In the case of a semiconductor module, a semiconductor chip is bonded to a circuit board. In order to efficiently dissipate heat from the operating semiconductor chip, the silicon nitride sintered substrate is required to have high thermal conductivity. Of course, the silicon nitride sintered body substrate is also required to have high insulation (electrical resistivity).
一般に、窒化珪素焼結体基板は、窒化珪素粉末にMgO等の焼結助剤、バインダー、可塑剤等を混合してスラリーを形成し、スラリーを成形及び乾燥してグリーンシートを形成し、グリーンシートを脱脂及び焼成する工程を経て形成される。窒化珪素焼結体基板の熱伝導率は空孔率及び粒界相の状態に大きく影響されるので、これらを改善する種々の製造方法が提案されている。
In general, a silicon nitride sintered substrate is formed by mixing a silicon nitride powder with a sintering aid such as MgO, a binder, a plasticizer, etc. to form a slurry, and molding and drying the slurry to form a green sheet. It is formed through a process of degreasing and baking the sheet. Since the thermal conductivity of the silicon nitride sintered substrate is greatly influenced by the porosity and the state of the grain boundary phase, various manufacturing methods for improving these have been proposed.
例えば特開2003-313079号は、窒化珪素粒子内に、Mg又はY及び希土類元素からなる群から選ばれた少なくとも1種の元素と、Oとを含む粒径100 nm以下の微細粒子が存在し、高熱伝導率の窒化珪素焼結体の製造方法として、焼結工程の昇温時に1400~1600℃の温度で1~10時間保持する工程を少なくとも1回行い、かつこの保持温度から焼結温度までの昇温速度を5.0℃/分以下にする方法を提案している。この方法では、高熱伝導率の窒化珪素焼結体基板を得るために、焼結助剤としてMgO及び希土類酸化物を用いているが、MgOは偏析しやすいために粒界相の分布が不均一し、窒化珪素焼結体基板に大きな反り及びうねりが発生する。特に窒化珪素焼結体基板が100 mm×100 mm以上と大きく、かつ0.7 mm以下と薄い場合に、反り及びうねりは大きくなることが分った。
For example, in Japanese Patent Laid-Open No. 2003-313079, fine particles having a particle size of 100 nm or less containing at least one element selected from the group consisting of Mg or Y and rare earth elements and O are present in silicon nitride particles. As a method for producing a silicon nitride sintered body with high thermal conductivity, at least one step of holding at a temperature of 1400 to 1600 ° C. for 1 to 10 hours is performed at the time of raising the temperature of the sintering step, and the sintering temperature is determined from this holding temperature. We have proposed a method to keep the temperature rise rate up to 5.0 ℃ / min. In this method, MgO and rare earth oxide are used as sintering aids in order to obtain a silicon nitride sintered body substrate having high thermal conductivity. However, because MgO is easily segregated, the distribution of grain boundary phases is not uniform. In addition, large warpage and undulation occur in the silicon nitride sintered body substrate. In particular, it has been found that when the silicon nitride sintered body substrate is as large as 100 mm × 100 mm and is as thin as 0.7 mm or less, warping and waviness increase.
窒化珪素焼結体基板に反り又はうねりがあると、回路板又は放熱板と接合したときに、接合界面にボイドが生じ、熱伝導性が低下する。そのため、窒化珪素焼結体基板の反り及びうねりを抑制することは非常に重要である。
If the silicon nitride sintered substrate is warped or wavy, voids are generated at the bonding interface when the circuit board or the heat sink is bonded, and the thermal conductivity is lowered. Therefore, it is very important to suppress warpage and undulation of the silicon nitride sintered body substrate.
特開2009-215142号は、窒化珪素粉末に、3~4質量%の酸化マグネシウム粉末、及び2~5質量%の希土類元素酸化物粉末を混合し、得られた混合粉末に溶剤、有機バインダー及び可塑剤を混合してスラリーを生成し、スラリーをグリーンシートに成形し、グリーンシートを一旦焼結した後、得られた焼結体を複数枚重ね、0.5~6.0 kPaの荷重を印可しながら1550~1700℃で熱処理する方法を提案している。この方法により得られる窒化珪素焼結体基板は、Mg分布の変動係数が0.20以下で、反りが2.0μm/mm以下に抑制され、かつ高い機械的強度及び熱伝導率を有する。しかし、焼成工程の後、焼結体の熱処理工程を行わなければならないので、必然的に製造コストが高くなるという問題がある。
Japanese Patent Laid-Open No. 2009-215142 discloses that 3-4 mass% magnesium oxide powder and 2-5 mass% rare earth oxide powder are mixed with silicon nitride powder, and a solvent, an organic binder and A plasticizer is mixed to produce a slurry, the slurry is formed into a green sheet, the green sheet is sintered once, and a plurality of the obtained sintered bodies are stacked, and 1550 while applying a load of 0.5 to 6.0 kPa A method of heat treatment at ~ 1700 ° C is proposed. The silicon nitride sintered substrate obtained by this method has a Mg distribution variation coefficient of 0.20 or less, a warpage suppressed to 2.0 μm / mm or less, and high mechanical strength and thermal conductivity. However, since the heat treatment process of the sintered body must be performed after the firing process, there is a problem that the manufacturing cost is inevitably increased.
従って本発明の目的は、反り及びうねりが小さく十分な機械的強度及び熱伝導率を有する窒化珪素焼結体基板、及びその効率的な製造方法を提供することである。
Therefore, an object of the present invention is to provide a silicon nitride sintered substrate having a sufficient mechanical strength and thermal conductivity with little warpage and undulation, and an efficient manufacturing method thereof.
上記目的に鑑み鋭意研究の結果、本発明者等は、(a) 焼成中に窒化珪素グリーンシートに適度の均一な荷重を垂直に負荷すると、焼結収縮を実質的に妨げられることなく、平坦面を保持しつつ窒化珪素グリーンシートの焼結が進行するので、反り及びうねりが小さい窒化珪素焼結体基板が形成されること、及び(b) 第一の焼結温度域の後で第二の温度保持域を設けると、焼結過程で液相化した焼結助剤中で窒化珪素粒子が再配列して緻密化することを発見し、本発明を完成した。
As a result of diligent research in view of the above-mentioned object, the present inventors, (a) When a moderate uniform load is vertically applied to the silicon nitride green sheet during firing, the sintering shrinkage is substantially prevented without being hindered. Since the sintering of the silicon nitride green sheet proceeds while holding the surface, a silicon nitride sintered body substrate with less warpage and waviness is formed, and (b) 第二 after the first sintering temperature range When the temperature holding region was provided, it was discovered that the silicon nitride particles were rearranged and densified in the sintering aid liquidized in the sintering process, and the present invention was completed.
すなわち、本発明の窒化珪素焼結体基板の製造方法は、80~98.3質量%のSi3N4、0.7~10質量%(酸化物換算)のMg、及び1~10質量%(酸化物換算)の少なくとも1種の希土類元素を含有し、縦横がそれぞれ100 mm以上で、厚さ0.7 mm以下の窒化珪素焼結体基板を製造するもので、
窒化珪素粉末と、Mg及び少なくとも1種の希土類元素を含有する焼結助剤粉末とを混合する工程と、
得られた混合粉末を成形する工程と、
得られたグリーンシートを窒素雰囲気中で焼成する工程とを有し、
前記グリーンシートに10~600 Paの荷重がかかるように、前記グリーンシートの上に重し板を配置した状態で前記焼成工程を行うことを特徴とする。 That is, the method for producing a silicon nitride sintered substrate of the present invention comprises 80-98.3 mass% Si 3 N 4 , 0.7-10 mass% (oxide conversion) Mg, and 1-10 mass% (oxide conversion). ) Containing at least one rare earth element, each of which is 100 mm or more in length and breadth and has a thickness of 0.7 mm or less.
Mixing a silicon nitride powder and a sintering aid powder containing Mg and at least one rare earth element;
A step of molding the obtained mixed powder;
And baking the obtained green sheet in a nitrogen atmosphere,
The firing step is performed in a state where a weight plate is placed on the green sheet so that a load of 10 to 600 Pa is applied to the green sheet.
窒化珪素粉末と、Mg及び少なくとも1種の希土類元素を含有する焼結助剤粉末とを混合する工程と、
得られた混合粉末を成形する工程と、
得られたグリーンシートを窒素雰囲気中で焼成する工程とを有し、
前記グリーンシートに10~600 Paの荷重がかかるように、前記グリーンシートの上に重し板を配置した状態で前記焼成工程を行うことを特徴とする。 That is, the method for producing a silicon nitride sintered substrate of the present invention comprises 80-98.3 mass% Si 3 N 4 , 0.7-10 mass% (oxide conversion) Mg, and 1-10 mass% (oxide conversion). ) Containing at least one rare earth element, each of which is 100 mm or more in length and breadth and has a thickness of 0.7 mm or less.
Mixing a silicon nitride powder and a sintering aid powder containing Mg and at least one rare earth element;
A step of molding the obtained mixed powder;
And baking the obtained green sheet in a nitrogen atmosphere,
The firing step is performed in a state where a weight plate is placed on the green sheet so that a load of 10 to 600 Pa is applied to the green sheet.
前記焼成工程における温度プロファイルは、1600~2000℃の範囲内の温度に温度する第一の温度保持域の後に、1400~1700℃の範囲内で、前記第一の温度保持域より低い温度に0.5~45時間保持する第二の温度保持域を有するのが好ましい。
The temperature profile in the baking step is 0.5 to a temperature lower than the first temperature holding range in the range of 1400 to 1700 ° C. after the first temperature holding range in which the temperature is in the range of 1600 to 2000 ° C. It is preferred to have a second temperature holding region that holds for ˜45 hours.
前記焼成工程における温度プロファイルは、前記第二の温度保持域の後に、100℃/時間以上の速度で冷却する冷却域を有するのが好ましい。
It is preferable that the temperature profile in the firing step has a cooling region for cooling at a rate of 100 ° C./hour or more after the second temperature holding region.
前記焼成工程における温度プロファイルは、前記第一の温度保持域の前に、(a) 1400~1600℃の温度範囲において300℃/時間以下の速度で加熱する徐熱域、又は(b) 1400~1600℃の温度範囲に0.5~40時間保持する温度保持域を有するのが好ましい。
The temperature profile in the firing step is, before the first temperature holding region, (a) a gradually heating region where heating is performed at a rate of 300 ° C./hour or less in a temperature range of 1400 to 1600 ° C., or (b) 1400 to 1400 to It is preferable to have a temperature holding range for holding for 0.5 to 40 hours in a temperature range of 1600 ° C.
複数枚のグリーンシートからなる積層体の上に重し板を配置した状態で前記焼成工程を行い、前記重し板の重量を、前記積層体中の各グリーンシートに10~600 Paの荷重が作用するように設定するのが好ましい。
The firing step is performed in a state where a weight plate is disposed on a laminate composed of a plurality of green sheets, and the weight of the weight plate is set so that a load of 10 to 600 Pa is applied to each green sheet in the laminate. It is preferable to set it to work.
前記積層体の各々を載置板に載せ、複数の載置板を縦枠部材を介して重ねて載置板組立体とし、前記載置板組立体を配置した坩堝を焼成炉内に入れて、前記焼成工程を行うのが好ましい。
Each of the laminates is placed on a mounting plate, a plurality of mounting plates are stacked via a vertical frame member to form a mounting plate assembly, and the crucible in which the mounting plate assembly is disposed is placed in a firing furnace. The firing step is preferably performed.
前記積層体とともに、マグネシア粉末、窒化ホウ素粉末及び窒化珪素粉末の混合粉末からなる詰め粉を坩堝内に配置した後、前記焼成工程を行うのが好ましい。前記詰め粉は、前記載置板組立体の最上段の載置板の上面に配置するのが好ましい。
It is preferable that the firing step is performed after a stuffing powder made of a mixed powder of magnesia powder, boron nitride powder and silicon nitride powder is placed in the crucible together with the laminate. The packing powder is preferably arranged on the upper surface of the uppermost mounting plate of the mounting plate assembly.
前記坩堝は内側坩堝と外側坩堝の二重構造になっているのが好ましい。前記内側坩堝はBN製であり、前記外側坩堝はBNコーティングをした炭素製であるのが好ましい。
The crucible preferably has a double structure of an inner crucible and an outer crucible. The inner crucible is preferably made of BN, and the outer crucible is preferably made of carbon coated with BN.
上記方法により製造された本発明の窒化珪素焼結体基板は、反りが2.5μm/mm以内であり、かつ表面うねりが2.0μm以上の領域の面積率が15%以下であるのが好ましい。
The silicon nitride sintered substrate of the present invention produced by the above method preferably has a warpage of 2.5 μm / mm or less and a surface area of 2.0 μm or more in an area ratio of 15% or less.
本発明の窒化珪素焼結体基板は、厚さ方向のMg分布の変動係数が0.3以下であるのが好ましい。
The silicon nitride sintered substrate of the present invention preferably has a variation coefficient of Mg distribution in the thickness direction of 0.3 or less.
本発明の窒化珪素焼結体基板中の空孔は、2.0%以下の面積率及び10.0μm以下の径を有するのが好ましい。
The voids in the silicon nitride sintered body substrate of the present invention preferably have an area ratio of 2.0% or less and a diameter of 10.0 μm or less.
前記窒化珪素焼結体基板に銅板をろう付けした場合に、接合界面に生じた100μm以上の径を有するボイドの面積率が3.0%以下であるのが好ましい。
When the copper plate is brazed to the silicon nitride sintered body substrate, it is preferable that the area ratio of voids having a diameter of 100 μm or more generated at the bonding interface is 3.0% or less.
本発明の窒化珪素焼結体基板の製造方法では、グリーンシートの積層体の上に重し板を配置するので、一回の焼成により、反り及びうねりが抑制され、高い機械的強度及び熱伝導率を有する窒化珪素焼結体基板を得ることができる。さらに、焼成工程の温度プロファイルが第一の温度保持域の後に第二の温度保持域を有するので、粒界相の分布が均一でMg偏析が抑制され、窒化珪素焼結体基板の反りはより抑制される。その上、BN製の内側坩堝と、BNコーティングをした炭素製の外側坩堝からなる二重構造の坩堝を使用し、積層体を載せた複数の載置板を重ねた載置板組立体を内側坩堝内に入れ、載置板組立体の最上段の載置板の上面にマグネシア粉末、窒化ホウ素粉末及び窒化珪素粉末の混合粉末からなる詰め粉を配置すると、さらに反り及びうねりが抑制され、高い機械的強度及び熱伝導率を有する窒化珪素焼結体基板が得られる。
In the method for producing a silicon nitride sintered substrate according to the present invention, since the weight plate is disposed on the green sheet laminate, warping and undulation are suppressed by one firing, and high mechanical strength and heat conduction are achieved. A silicon nitride sintered body substrate having a high rate can be obtained. Furthermore, since the temperature profile of the firing process has the second temperature holding region after the first temperature holding region, the distribution of the grain boundary phase is uniform and Mg segregation is suppressed, and the warp of the silicon nitride sintered body substrate is more It is suppressed. In addition, a double structure crucible consisting of a BN inner crucible and a carbon outer crucible coated with BN is used, and a mounting plate assembly in which a plurality of mounting plates on which a laminate is placed is stacked on the inner side. When the filling powder made of mixed powder of magnesia powder, boron nitride powder and silicon nitride powder is placed on the upper surface of the uppermost mounting plate of the mounting plate assembly, warpage and undulation are further suppressed and high. A silicon nitride sintered substrate having mechanical strength and thermal conductivity is obtained.
本発明の実施形態を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想の範囲内で適宜変更することができる。各実施形態の説明は、特に断りがなければ他の実施形態にも当てはまる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings, but the present invention is not limited to them, and can be appropriately changed within the scope of the technical idea of the present invention. The description of each embodiment is applicable to other embodiments unless otherwise specified.
[1] 原料粉末
本発明の窒化珪素焼結体基板を製造するための原料粉末は、80~98.3質量%の窒化珪素(Si3N4)を主成分とし、焼結助剤として、0.7~10質量%(酸化物換算)のMg、及び1~10質量%(酸化物換算)の少なくとも1種の希土類元素を含有する。窒化珪素焼結体の密度、曲げ強度及び熱伝導率の観点から、窒化珪素粉末のα化率は20~100%であるのが好ましい。 [1] Raw material powder The raw material powder for producing the silicon nitride sintered body substrate of the present invention contains 80 to 98.3% by mass of silicon nitride (Si 3 N 4 ) as a main component, and 0.7 to It contains 10% by mass (as oxide) Mg and 1-10% by mass (as oxide) at least one rare earth element. From the viewpoint of the density, bending strength, and thermal conductivity of the silicon nitride sintered body, the alpha conversion rate of the silicon nitride powder is preferably 20 to 100%.
本発明の窒化珪素焼結体基板を製造するための原料粉末は、80~98.3質量%の窒化珪素(Si3N4)を主成分とし、焼結助剤として、0.7~10質量%(酸化物換算)のMg、及び1~10質量%(酸化物換算)の少なくとも1種の希土類元素を含有する。窒化珪素焼結体の密度、曲げ強度及び熱伝導率の観点から、窒化珪素粉末のα化率は20~100%であるのが好ましい。 [1] Raw material powder The raw material powder for producing the silicon nitride sintered body substrate of the present invention contains 80 to 98.3% by mass of silicon nitride (Si 3 N 4 ) as a main component, and 0.7 to It contains 10% by mass (as oxide) Mg and 1-10% by mass (as oxide) at least one rare earth element. From the viewpoint of the density, bending strength, and thermal conductivity of the silicon nitride sintered body, the alpha conversion rate of the silicon nitride powder is preferably 20 to 100%.
Si3N4が80質量%未満であると、得られる窒化珪素焼結体基板の曲げ強度及び熱伝導率が低すぎる。一方、Si3N4が98.3質量%を超えると、焼結助剤が不足し、緻密な窒化珪素焼結体基板を得られない。また、Mgが酸化物換算で0.7質量%未満であると、低温で生成する液相が不十分である。一方、Mgが酸化物換算で10質量%を超えると、Mgの揮発量が多くなり、窒化珪素焼結体基板に空孔が生じやすくなる。さらに、希土類元素が酸化物換算で1質量%未満であると、窒化珪素粒子間の結合が弱くなり、クラックが粒界を容易に伸展することから曲げ強度が低くなる。一方、希土類元素が酸化物換算で10質量%を超えると、粒界相の割合が多くなり、熱伝導率が低下する。
When Si 3 N 4 is less than 80% by mass, the resulting silicon nitride sintered substrate has too low bending strength and thermal conductivity. On the other hand, if Si 3 N 4 exceeds 98.3% by mass, the sintering aid is insufficient and a dense silicon nitride sintered body substrate cannot be obtained. Moreover, the liquid phase produced | generated at low temperature is inadequate that Mg is less than 0.7 mass% in conversion of an oxide. On the other hand, when Mg exceeds 10% by mass in terms of oxide, the volatilization amount of Mg increases, and voids are easily generated in the silicon nitride sintered substrate. Further, if the rare earth element is less than 1% by mass in terms of oxide, the bond between the silicon nitride particles becomes weak, and the cracks easily extend the grain boundary, so the bending strength becomes low. On the other hand, when the rare earth element exceeds 10% by mass in terms of oxide, the ratio of the grain boundary phase increases and the thermal conductivity decreases.
Mg含有量(酸化物換算)は好ましくは0.7~7質量%であり、より好ましくは1~5質量%であり、最も好ましくは2~5質量%である。また、希土類元素の含有量(酸化物換算)は、好ましくは2~10質量%であり、より好ましくは2~5質量%である。従って、Si3N4の含有量は好ましくは83~97.3質量%であり、より好ましくは90~97質量%である。希土類元素としては、Y、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等を使用することができるが、中でも、Yは窒化珪素焼結体基板の高密度化に有効であり好ましい。Mg及び希土類元素はそれぞれ酸化物粉末の形態で使用するのが好ましい。従って、好ましい焼結助剤は、MgO粉末とY2O3粉末との組合せである。
The Mg content (as oxide) is preferably 0.7 to 7% by mass, more preferably 1 to 5% by mass, and most preferably 2 to 5% by mass. The rare earth element content (as oxide) is preferably 2 to 10% by mass, more preferably 2 to 5% by mass. Accordingly, the content of Si 3 N 4 is preferably 83 to 97.3% by mass, and more preferably 90 to 97% by mass. As rare earth elements, Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, etc. can be used, among which Y is a silicon nitride sintered body It is effective and preferable for increasing the density of the substrate. Mg and rare earth elements are preferably used in the form of oxide powders. Accordingly, a preferred sintering aid is a combination of MgO powder and Y 2 O 3 powder.
[2] 窒化珪素焼結体基板の製造方法
グリーンシートの積層体を用いて窒化珪素焼結体基板を製造する場合について以下詳細に説明するが、本発明の方法は積層体の使用に限定されるものではない。 [2] Method for Producing Silicon Nitride Sintered Substrate The case of producing a silicon nitride sintered substrate using a laminate of green sheets will be described in detail below, but the method of the present invention is limited to the use of the laminate. It is not something.
グリーンシートの積層体を用いて窒化珪素焼結体基板を製造する場合について以下詳細に説明するが、本発明の方法は積層体の使用に限定されるものではない。 [2] Method for Producing Silicon Nitride Sintered Substrate The case of producing a silicon nitride sintered substrate using a laminate of green sheets will be described in detail below, but the method of the present invention is limited to the use of the laminate. It is not something.
図1は、窒化珪素焼結体基板を製造する本発明の方法の好ましい一例を示すフローチャートである。説明の簡略化のために、窒化珪素原料粉末をSi3N4粉末とし、Mg原料粉末をMgO粉末とし、希土類元素原料粉末をY2O3粉末とするが、勿論本発明の方法はこれらの原料粉末を使用する場合に限定されない。
FIG. 1 is a flowchart showing a preferred example of the method of the present invention for producing a silicon nitride sintered body substrate. For simplification of explanation, the silicon nitride raw material powder is Si 3 N 4 powder, the Mg raw material powder is MgO powder, and the rare earth element raw material powder is Y 2 O 3 powder. It is not limited to the case of using raw material powder.
(1) 原料粉末の混合工程S1
上記焼結組成が得られるように配合したSi3N4粉末、MgO粉末及びY2O3粉末に、可塑剤、有機バインダー及び有機溶剤(例えばエチルアルコール)をボールミル等で混合し、スラリーを作製する。スラリーの固形分濃度は30~70質量%が好ましい。 (1) Raw material powder mixing process S1
A plasticizer, an organic binder, and an organic solvent (for example, ethyl alcohol) are mixed with a Si 3 N 4 powder, MgO powder, and Y 2 O 3 powder blended so as to obtain the above sintered composition with a ball mill or the like to produce a slurry. To do. The solid content concentration of the slurry is preferably 30 to 70% by mass.
上記焼結組成が得られるように配合したSi3N4粉末、MgO粉末及びY2O3粉末に、可塑剤、有機バインダー及び有機溶剤(例えばエチルアルコール)をボールミル等で混合し、スラリーを作製する。スラリーの固形分濃度は30~70質量%が好ましい。 (1) Raw material powder mixing process S1
A plasticizer, an organic binder, and an organic solvent (for example, ethyl alcohol) are mixed with a Si 3 N 4 powder, MgO powder, and Y 2 O 3 powder blended so as to obtain the above sintered composition with a ball mill or the like to produce a slurry. To do. The solid content concentration of the slurry is preferably 30 to 70% by mass.
(2) 成形工程S2
スラリーを脱泡及び造粘した後、例えばドクターブレード法によりグリーンシートを形成する。グリーンシートの厚さは、形成すべき窒化珪素焼結体基板の厚さ及び焼結収縮率を考慮して適宜設定する。ドクターブレード法で形成したグリーンシートは通常長尺な帯状であるので、所定の形状及びサイズに打ち抜くか切断する。1枚のグリーンシートから複数枚の窒化珪素焼結体基板を形成する場合、焼結後に切断する。 (2) Molding process S2
After defoaming and thickening the slurry, a green sheet is formed by, for example, a doctor blade method. The thickness of the green sheet is appropriately set in consideration of the thickness of the silicon nitride sintered substrate to be formed and the sintering shrinkage rate. Since the green sheet formed by the doctor blade method is usually a long strip, it is punched or cut into a predetermined shape and size. When forming a plurality of silicon nitride sintered body substrates from one green sheet, the substrate is cut after sintering.
スラリーを脱泡及び造粘した後、例えばドクターブレード法によりグリーンシートを形成する。グリーンシートの厚さは、形成すべき窒化珪素焼結体基板の厚さ及び焼結収縮率を考慮して適宜設定する。ドクターブレード法で形成したグリーンシートは通常長尺な帯状であるので、所定の形状及びサイズに打ち抜くか切断する。1枚のグリーンシートから複数枚の窒化珪素焼結体基板を形成する場合、焼結後に切断する。 (2) Molding process S2
After defoaming and thickening the slurry, a green sheet is formed by, for example, a doctor blade method. The thickness of the green sheet is appropriately set in consideration of the thickness of the silicon nitride sintered substrate to be formed and the sintering shrinkage rate. Since the green sheet formed by the doctor blade method is usually a long strip, it is punched or cut into a predetermined shape and size. When forming a plurality of silicon nitride sintered body substrates from one green sheet, the substrate is cut after sintering.
(3) 積層工程S3
窒化珪素焼結体基板を効率的に製造するために、複数枚のグリーンシートを積層するのが好ましい。図2に示すように、複数枚のグリーンシート1を、厚さ約1~20μmの窒化硼素(BN)粉末層12を介して積層し、積層体10とする。BN粉末層12は焼結後の窒化珪素焼結体基板の分離を容易にするためのものであり、各グリーンシート1の一面にBN粉末のスラリーを、例えばスプレー、ブラシ塗布又はスクリーン印刷することにより形成することができる。BN粉末は95%以上の純度及び1~20μmの平均粒径を有するのが好ましい。 (3) Lamination process S3
In order to efficiently manufacture the silicon nitride sintered body substrate, it is preferable to stack a plurality of green sheets. As shown in FIG. 2, a plurality ofgreen sheets 1 are laminated through a boron nitride (BN) powder layer 12 having a thickness of about 1 to 20 μm to form a laminated body 10. The BN powder layer 12 is for facilitating separation of the sintered silicon nitride sintered substrate, and a slurry of BN powder is applied to one surface of each green sheet 1 by, for example, spraying, brush coating or screen printing. Can be formed. The BN powder preferably has a purity of 95% or more and an average particle diameter of 1 to 20 μm.
窒化珪素焼結体基板を効率的に製造するために、複数枚のグリーンシートを積層するのが好ましい。図2に示すように、複数枚のグリーンシート1を、厚さ約1~20μmの窒化硼素(BN)粉末層12を介して積層し、積層体10とする。BN粉末層12は焼結後の窒化珪素焼結体基板の分離を容易にするためのものであり、各グリーンシート1の一面にBN粉末のスラリーを、例えばスプレー、ブラシ塗布又はスクリーン印刷することにより形成することができる。BN粉末は95%以上の純度及び1~20μmの平均粒径を有するのが好ましい。 (3) Lamination process S3
In order to efficiently manufacture the silicon nitride sintered body substrate, it is preferable to stack a plurality of green sheets. As shown in FIG. 2, a plurality of
図3に示すように、得られる窒化珪素焼結体基板の反り及びうねりを抑制するために、各積層体10の上面に重し板11を載置し、各グリーンシート1に荷重を作用させる。各グリーンシート1に作用する荷重は10~600 Paの範囲内とする。荷重が10 Pa未満の場合、焼結された窒化珪素焼結体基板に反りが生じやすい。一方、荷重が600 Paを超えると、各グリーンシート1が荷重により拘束されて焼結時の円滑な収縮が阻害されるため、緻密な窒化珪素焼結体基板が得られにくい。各グリーンシート1に作用する荷重は20~300 Paが好ましく、20~200 Paがより好ましく、30~150 Paが最も好ましい。
As shown in FIG. 3, in order to suppress warpage and undulation of the obtained silicon nitride sintered body substrate, a weight plate 11 is placed on the upper surface of each laminate 10, and a load is applied to each green sheet 1. . The load acting on each green sheet 1 is within the range of 10 to 600 Pa. When the load is less than 10 Pa, the sintered silicon nitride sintered substrate is likely to warp. On the other hand, when the load exceeds 600 Pa, each green sheet 1 is constrained by the load and smooth shrinkage during sintering is inhibited, so that it is difficult to obtain a dense silicon nitride sintered body substrate. The load acting on each green sheet 1 is preferably 20 to 300 Pa, more preferably 20 to 200 Pa, and most preferably 30 to 150 Pa.
重し板11の重量がW1 gで、各グリーンシート1の重量及び面積がそれぞれW2 g及びS cm2で、積層体10中のグリーンシート1がn枚であるとすると、最上層のグリーンシート1aにかかる荷重は98×(W1/S) Paであり、最下層のグリーンシート1bにかかる荷重は98×[W1+W2×(n-1)]/S Paである。例えば、重し板11として厚さ2 mmのBN板を使用し、積層体10が20枚のグリーンシート1からなるとすると、最下層のグリーンシート1bにかかる荷重は最上層のグリーンシート1aにかかる荷重の約3~4倍である。この点を考慮に入れて、重し板11の重量、及び積層体10中のグリーンシート1の枚数を設定する。重し板11の重量がW1は、最下層のグリーンシート1bでも10~600 Paの範囲内の荷重を受けるとともに、収縮が拘束されずに反り及びうねりなく焼結されるように設定するのが好ましい。
If the weight of the weight plate 11 is W 1 g, the weight and area of each green sheet 1 are W 2 g and S cm 2 respectively, and the number of green sheets 1 in the laminate 10 is n, the uppermost layer The load applied to the green sheet 1a is 98 × (W 1 / S) Pa, and the load applied to the lowermost green sheet 1b is 98 × [W 1 + W 2 × (n−1)] / S Pa. For example, if a BN plate having a thickness of 2 mm is used as the weight plate 11 and the laminate 10 is composed of 20 green sheets 1, the load applied to the lowermost green sheet 1b is applied to the uppermost green sheet 1a. About 3 to 4 times the load. Taking this point into consideration, the weight of the weight plate 11 and the number of green sheets 1 in the laminate 10 are set. Weight W 1 of the weigh plate 11, as well as receives a load in the range of the lowermost green sheet 1b even 10 ~ 600 Pa, shrinkage to set so as to be sintered without warpage and undulation unconstrained Is preferred.
(4) 脱脂工程S4
グリーンシート1は有機バインダー及び可塑剤を含有するので、焼成工程S5の前に、積層体10を400~800℃に加熱して、脱脂する。脱脂後のグリーンシート1は脆いので、積層体10の状態で脱脂するのが好ましい。 (4) Degreasing process S4
Since thegreen sheet 1 contains an organic binder and a plasticizer, the laminate 10 is heated to 400 to 800 ° C. and degreased before the firing step S5. Since the green sheet 1 after degreasing is brittle, it is preferable to degrease in the state of the laminate 10.
グリーンシート1は有機バインダー及び可塑剤を含有するので、焼成工程S5の前に、積層体10を400~800℃に加熱して、脱脂する。脱脂後のグリーンシート1は脆いので、積層体10の状態で脱脂するのが好ましい。 (4) Degreasing process S4
Since the
(5) 焼成工程S5
(a) 焼成用坩堝
図4は、複数の積層体10を同時に焼成するための坩堝の一例を示す。坩堝20は、各積層体10を収容する載置板21を多段に積み上げた載置板組立体30と、載置板組立体30を収容する内側坩堝40と、内側坩堝40を収容する外側坩堝50とからなる。上下方向に隣接する載置板21の間隔は、縦枠部材22で保持する。 (5) Sintering step S5
(a) Firing crucible FIG. 4 shows an example of a crucible for firing a plurality oflaminated bodies 10 simultaneously. The crucible 20 includes a mounting plate assembly 30 in which mounting plates 21 that store the stacked bodies 10 are stacked in multiple stages, an inner crucible 40 that stores the mounting plate assembly 30, and an outer crucible that stores the inner crucible 40. It consists of 50. The interval between the mounting plates 21 adjacent in the vertical direction is held by the vertical frame member 22.
(a) 焼成用坩堝
図4は、複数の積層体10を同時に焼成するための坩堝の一例を示す。坩堝20は、各積層体10を収容する載置板21を多段に積み上げた載置板組立体30と、載置板組立体30を収容する内側坩堝40と、内側坩堝40を収容する外側坩堝50とからなる。上下方向に隣接する載置板21の間隔は、縦枠部材22で保持する。 (5) Sintering step S5
(a) Firing crucible FIG. 4 shows an example of a crucible for firing a plurality of
内側坩堝40及び外側坩堝50の二重構造の坩堝20とすることにより、グリーンシート1中のSi3N4の分解とMgOの揮発を抑制することができ、より緻密で反りが少ない窒化珪素焼結体基板を得ることができる。内側坩堝40及び外側坩堝50はいずれもBN製であるのが好ましいが、外側坩堝50をCVDによりp-BNをコーティングした炭素製とすることもできる。p-BNをコーティングした炭素製の外側坩堝50の場合、熱伝導の良い炭素基材により昇温時の温度分布を均一化しやすく、窒化珪素焼結体基板の反り及びうねりを抑制でき、またp-BNコーティングにより炭素基材による還元性雰囲気の生成を防止できる。内側坩堝40は下板40a、側板40b及び上板40cからなり、外側坩堝50は下板50a、側板50b及び上板50cからなる。
By making the crucible 20 having a double structure of the inner crucible 40 and the outer crucible 50, the decomposition of Si 3 N 4 and the volatilization of MgO in the green sheet 1 can be suppressed, and the silicon nitride firing is more dense and less warped. A bonded substrate can be obtained. Both the inner crucible 40 and the outer crucible 50 are preferably made of BN, but the outer crucible 50 can also be made of carbon coated with p-BN by CVD. In the case of the carbon outer crucible 50 coated with p-BN, the temperature distribution at the time of temperature rise can be easily made uniform by the carbon base material having good thermal conductivity, and the warp and undulation of the silicon nitride sintered body substrate can be suppressed. -Generation of reducing atmosphere by carbon substrate can be prevented by BN coating. The inner crucible 40 includes a lower plate 40a, a side plate 40b, and an upper plate 40c, and the outer crucible 50 includes a lower plate 50a, a side plate 50b, and an upper plate 50c.
載置板21の上面に反りやうねりがあると、載置板21と接触する最下層のグリーンシート1bには、載置板21の上面と接触する部分と接触しない部分とが生じる。そうすると、焼結時にグリーンシート1bの非接触部は収縮しやすく、接触部は収縮しずらいので、グリーンシート1b中に不均一な収縮が生じ、反り及びうねりが生じる。また、最下層のグリーンシート1bの反り及びうねりは上層のグリーンシート1にも波及し、結果的に全ての窒化珪素焼結体基板に反り及びうねりが生じる。このため、載置板21の上面はできるだけ平坦である必要があり、具体的には、反りは2.0μm/mm以内で、うねりは2.0μm以内であるのが好ましい。載置板21の反り及びうねりは、窒化珪素焼結体基板の反り及びうねりと同じ方法で測定できる。
When the upper surface of the mounting plate 21 is warped or undulated, the lowermost green sheet 1b in contact with the mounting plate 21 has a portion that is in contact with the upper surface of the mounting plate 21 and a portion that is not in contact therewith. Then, the non-contact part of the green sheet 1b is easily contracted during sintering, and the contact part is difficult to contract. Therefore, non-uniform contraction occurs in the green sheet 1b, and warping and undulation occur. Further, the warpage and undulation of the lowermost green sheet 1b also affect the upper green sheet 1, and as a result, warpage and undulation occur in all the silicon nitride sintered substrates. Therefore, the upper surface of the mounting plate 21 needs to be as flat as possible. Specifically, it is preferable that the warpage is within 2.0 μm / mm and the undulation is within 2.0 μm. The warping and waviness of the mounting plate 21 can be measured by the same method as the warping and waviness of the silicon nitride sintered substrate.
図4に示すように、内側坩堝40内に詰め粉24を配置するのが好ましい。詰め粉24は、例えば、0.1~50質量%のマグネシア(MgO)粉末、25~99質量%の窒化珪素(Si3N4)粉末、及び0.1~70質量%の窒化硼素(BN)粉末からなる混合粉末である。詰め粉24中の窒化珪素粉末及びマグネシア粉末は、1400℃以上の高温で揮発し、焼成雰囲気中のMg及びSiの分圧を調整し、グリーンシート1から窒化珪素及びマグネシアが揮発するのを抑制する。BN粉末は、詰め粉24中の窒化珪素粉末及びマグネシの粉末の凝着を防止する。詰め粉24の使用により、緻密で反りが少ない窒化珪素焼結体基板を得ることができる。詰め粉24のハンドリングを容易にするとともに、グリーンシート1に接触するのを防止するために、詰め粉24を最上段の載置板21aの上に配置するのが好ましい。
As shown in FIG. 4, it is preferable to place the filling powder 24 in the inner crucible 40. The filling powder 24 is made of, for example, 0.1 to 50% by mass of magnesia (MgO) powder, 25 to 99% by mass of silicon nitride (Si 3 N 4 ) powder, and 0.1 to 70% by mass of boron nitride (BN) powder. It is a mixed powder. Silicon nitride powder and magnesia powder in padding powder 24 volatilize at a high temperature of 1400 ° C or higher, and adjust the partial pressure of Mg and Si in the firing atmosphere to suppress silicon nitride and magnesia from volatilizing from green sheet 1 To do. The BN powder prevents adhesion of silicon nitride powder and magnesi powder in the filling powder 24. By using the filling powder 24, it is possible to obtain a silicon nitride sintered body substrate that is dense and has little warpage. In order to facilitate handling of the filling powder 24 and to prevent it from coming into contact with the green sheet 1, it is preferable to place the filling powder 24 on the uppermost mounting plate 21a.
図5に示すように、外側坩堝50の下板50aの上面に内側坩堝40の下板40aを載置し、内側坩堝40の下板40aの上面に載置板21を置き、その上に複数のグリーンシート1からなる積層体10及び重し板11を載置する。図6に示すように、載置板21の外周部位上に縦枠部材22を設置し、次の段の載置板21を置き、その上に積層体10及び重し板11を載置する。このようにして、所望段の積層体10及び重し板11を載せた載置板組立体30を形成した後、最上段の載置板21aの上面に詰め粉24を配置する。次いで、内側坩堝40の側板40b及び上板40cを組み立て、さらに外側坩堝50の側板50b及び上板50cを組み立てて、積層体10を収容した坩堝20を完成する。このような坩堝20を所望の数だけ焼成炉(図示せず)に配置する。
As shown in FIG. 5, the lower plate 40a of the inner crucible 40 is placed on the upper surface of the lower plate 50a of the outer crucible 50, the placing plate 21 is placed on the upper surface of the lower plate 40a of the inner crucible 40, and a plurality of pieces are placed thereon. The laminated body 10 made of the green sheet 1 and the weight plate 11 are placed. As shown in FIG. 6, the vertical frame member 22 is installed on the outer peripheral portion of the mounting plate 21, the next stage mounting plate 21 is placed, and the stacked body 10 and the weight plate 11 are mounted thereon. . In this way, after forming the mounting plate assembly 30 on which the desired-stage laminated body 10 and the weight plate 11 are placed, the filling powder 24 is disposed on the upper surface of the uppermost mounting plate 21a. Next, the side plate 40b and the upper plate 40c of the inner crucible 40 are assembled, and further, the side plate 50b and the upper plate 50c of the outer crucible 50 are assembled to complete the crucible 20 containing the laminate 10. A desired number of such crucibles 20 are arranged in a firing furnace (not shown).
(b) 温度プロファイル
グリーンシート1の焼成は、図7に示す温度プロファイルPに従って行う。温度プロファイルPは、徐熱域P0を有する昇温域と、第一の温度保持域P1及び第二の温度保持域P2を有する温度保持域と、冷却域とからなる。図7において、縦軸に示す温度は焼成炉の加熱温度である。 (b) Temperature profile Thegreen sheet 1 is fired according to the temperature profile P shown in FIG. The temperature profile P includes a temperature rising area having a gradual heating area P 0 , a temperature holding area having a first temperature holding area P 1 and a second temperature holding area P 2 , and a cooling area. In FIG. 7, the temperature shown on the vertical axis is the heating temperature of the firing furnace.
グリーンシート1の焼成は、図7に示す温度プロファイルPに従って行う。温度プロファイルPは、徐熱域P0を有する昇温域と、第一の温度保持域P1及び第二の温度保持域P2を有する温度保持域と、冷却域とからなる。図7において、縦軸に示す温度は焼成炉の加熱温度である。 (b) Temperature profile The
(c) 徐熱域
徐熱域P0は、グリーンシート1に含まれる焼結助剤が窒化珪素粒子の表面の酸化層と反応して液相を生成する温度域である。徐熱域P0では、α型窒化珪素の粒成長が抑えられ、液相化した焼結助剤中で窒化珪素粒子が再配列して緻密化する。その結果、第一及び第二の温度保持域P1、P2を経て、空孔径及び気孔率が小さく、曲げ強度及び熱伝導率の高い窒化珪素焼結体基板が得られる。徐熱域P0の温度T0を、第一の温度保持域P1の温度T1より低い1400~1600℃の範囲内とし、徐熱域P0における加熱速度を300℃/時間以下とし、加熱時間t0を0.5~30時間とするのが好ましい。加熱速度は0℃/時間を含んでも良く、すなわち徐熱域P0が一定温度に保持する温度保持域でも良い。徐熱域P0における加熱速度は1~150℃/時間がより好ましく、1~100℃/時間が最も好ましい。加熱時間t0は1~25時間がより好ましく、5~20時間が最も好ましい。 (c) Slow heating zone The slow heating zone P 0 is a temperature zone where the sintering aid contained in thegreen sheet 1 reacts with the oxide layer on the surface of the silicon nitride particles to generate a liquid phase. In the slow heating region P 0 , the growth of α-type silicon nitride grains is suppressed, and the silicon nitride grains are rearranged and densified in the liquid phase sintering aid. As a result, through the first and second temperature holding regions P 1 and P 2 , a silicon nitride sintered substrate having a small pore diameter and porosity, a high bending strength and a high thermal conductivity can be obtained. The temperature T 0 of Jonetsuiki P 0, then the first temperature holding zone in the range of 1400 ~ 1600 ° C. lower than the temperature T 1 of the P 1, the heating rate in Jonetsuiki P 0 and less 300 ° C. / time, The heating time t 0 is preferably 0.5 to 30 hours. The heating rate may include 0 ° C./hour, that is, a temperature holding region where the slow heating region P 0 is held at a constant temperature. The heating rate in the slow heating region P 0 is more preferably 1 to 150 ° C./hour, and most preferably 1 to 100 ° C./hour. The heating time t 0 is more preferably 1 to 25 hours, and most preferably 5 to 20 hours.
徐熱域P0は、グリーンシート1に含まれる焼結助剤が窒化珪素粒子の表面の酸化層と反応して液相を生成する温度域である。徐熱域P0では、α型窒化珪素の粒成長が抑えられ、液相化した焼結助剤中で窒化珪素粒子が再配列して緻密化する。その結果、第一及び第二の温度保持域P1、P2を経て、空孔径及び気孔率が小さく、曲げ強度及び熱伝導率の高い窒化珪素焼結体基板が得られる。徐熱域P0の温度T0を、第一の温度保持域P1の温度T1より低い1400~1600℃の範囲内とし、徐熱域P0における加熱速度を300℃/時間以下とし、加熱時間t0を0.5~30時間とするのが好ましい。加熱速度は0℃/時間を含んでも良く、すなわち徐熱域P0が一定温度に保持する温度保持域でも良い。徐熱域P0における加熱速度は1~150℃/時間がより好ましく、1~100℃/時間が最も好ましい。加熱時間t0は1~25時間がより好ましく、5~20時間が最も好ましい。 (c) Slow heating zone The slow heating zone P 0 is a temperature zone where the sintering aid contained in the
(d) 第一の温度保持域
第一の温度保持域P1は、徐熱域P0で生成した液相により、窒化珪素粒子の再配列、β型窒化珪素結晶の生成、及び窒化珪素結晶の粒成長を増進させ、もって焼結体をさらに緻密化させる温度域である。β型窒化珪素粒子の大きさ及びアスペクト比(長軸と短軸の比)、焼結助剤の揮発による空孔の形成等窒を考慮して、第一の温度保持域P1の温度T1を1600~2000℃の範囲内とし、保持時間t1を約1~30時間とするのが好ましい。第一の温度保持域P1の温度T1が1600℃未満であると、窒化珪素焼結体を緻密化しにくい。一方、温度T1が2000℃を超えると、焼結助剤の揮発及び窒化珪素の分解が激しくなり、やはり緻密な窒化珪素焼結体が得られにくくなる。なお、1600~2000℃の温度範囲内であれば、第一の温度保持域P1内で加熱温度T1が変化(例えば徐々に昇温)しても良い。 (d) First temperature holding region The first temperature holding region P 1 is the rearrangement of silicon nitride particles, the formation of β-type silicon nitride crystal, and the silicon nitride crystal by the liquid phase generated in the slow heating region P 0 This is a temperature range in which the grain growth of the sintered body is increased, and the sintered body is further densified. Considering the size and aspect ratio of the β-type silicon nitride particles (ratio of major axis to minor axis) and the formation of vacancies due to volatilization of the sintering aid, the temperature T in the first temperature holding region P 1 1 was in the range of 1600 ~ 2000 ° C., preferably the holding time t 1 and about 1 to 30 hours. When the temperature T 1 of the first temperature holding region P 1 is less than 1600 ° C., it is difficult to densify the silicon nitride sintered body. On the other hand, when the temperature T 1 exceeds 2000 ° C., volatilization of the sintering aid and decomposition of the silicon nitride become intense, and it becomes difficult to obtain a dense silicon nitride sintered body. If the temperature is in the range of 1600 to 2000 ° C., the heating temperature T 1 may change (for example, gradually increase in temperature) within the first temperature holding region P 1 .
第一の温度保持域P1は、徐熱域P0で生成した液相により、窒化珪素粒子の再配列、β型窒化珪素結晶の生成、及び窒化珪素結晶の粒成長を増進させ、もって焼結体をさらに緻密化させる温度域である。β型窒化珪素粒子の大きさ及びアスペクト比(長軸と短軸の比)、焼結助剤の揮発による空孔の形成等窒を考慮して、第一の温度保持域P1の温度T1を1600~2000℃の範囲内とし、保持時間t1を約1~30時間とするのが好ましい。第一の温度保持域P1の温度T1が1600℃未満であると、窒化珪素焼結体を緻密化しにくい。一方、温度T1が2000℃を超えると、焼結助剤の揮発及び窒化珪素の分解が激しくなり、やはり緻密な窒化珪素焼結体が得られにくくなる。なお、1600~2000℃の温度範囲内であれば、第一の温度保持域P1内で加熱温度T1が変化(例えば徐々に昇温)しても良い。 (d) First temperature holding region The first temperature holding region P 1 is the rearrangement of silicon nitride particles, the formation of β-type silicon nitride crystal, and the silicon nitride crystal by the liquid phase generated in the slow heating region P 0 This is a temperature range in which the grain growth of the sintered body is increased, and the sintered body is further densified. Considering the size and aspect ratio of the β-type silicon nitride particles (ratio of major axis to minor axis) and the formation of vacancies due to volatilization of the sintering aid, the temperature T in the first temperature holding region P 1 1 was in the range of 1600 ~ 2000 ° C., preferably the holding time t 1 and about 1 to 30 hours. When the temperature T 1 of the first temperature holding region P 1 is less than 1600 ° C., it is difficult to densify the silicon nitride sintered body. On the other hand, when the temperature T 1 exceeds 2000 ° C., volatilization of the sintering aid and decomposition of the silicon nitride become intense, and it becomes difficult to obtain a dense silicon nitride sintered body. If the temperature is in the range of 1600 to 2000 ° C., the heating temperature T 1 may change (for example, gradually increase in temperature) within the first temperature holding region P 1 .
第一の温度保持域P1の温度T1は1750~1950℃の範囲内がより好ましく、1800~1900℃の範囲内が最も好ましい。さらに、第一の温度保持域P1の温度T1は徐熱域P0の温度T0の上限より50℃以上高いのが好ましく、100~300℃以上高いのがより好ましい。保持時間t1は2~20時間がより好ましく、3~10時間が最も好ましい。
The temperature T 1 in the first temperature holding region P 1 is more preferably in the range of 1750 to 1950 ° C., and most preferably in the range of 1800 to 1900 ° C. Further, the first temperature T 1 of the temperature holding zone P 1 is preferably greater 50 ° C. or higher than the upper limit of the temperature T 0 of Jonetsuiki P 0, more preferably higher 100 ~ 300 ° C. or higher. The holding time t 1 is more preferably 2 to 20 hours, and most preferably 3 to 10 hours.
(e) 第二の温度保持域
第一の温度保持域P1の後にある第二の温度保持域P2は、焼結体を第一の温度保持域P1の温度T1よりやや低い温度T2に保持することにより、第一の温度保持域P1を経た液相をそのまま又は固液共存の状態で維持する温度域である。第二の温度保持域P2の温度T2は1400~1700℃の範囲内で、かつ第一の温度保持域P1の温度T1より低いのが好ましい。また、第二の温度保持域P2の保持時間t2は0.5~45時間とする。第一の温度保持域P1の後に第二の温度保持域P2を設けることにより、窒化珪素焼結基板の反りを2.5μm/mm以内にすることができる。 (e) a second second temperature holding zone P 2 that follows the temperature holding zone first temperature holding zone P 1 is slightly lower than the temperature T 1 of the sintered body first temperature holding zone P 1 by holding the T 2, the temperature range to maintain a state of directly or solid-liquid coexisting a first temperature holding zone P 1 a through the liquid phase. The temperature T 2 of the second temperature holding region P 2 is preferably in the range of 1400 to 1700 ° C. and lower than the temperature T 1 of the first temperature holding region P 1 . The holding time t 2 of the second temperature holding zone P 2 is 0.5 to 45 hours. By providing the second temperature holding area P 2 after the first temperature holding area P 1 , the warp of the silicon nitride sintered substrate can be made within 2.5 μm / mm.
第一の温度保持域P1の後にある第二の温度保持域P2は、焼結体を第一の温度保持域P1の温度T1よりやや低い温度T2に保持することにより、第一の温度保持域P1を経た液相をそのまま又は固液共存の状態で維持する温度域である。第二の温度保持域P2の温度T2は1400~1700℃の範囲内で、かつ第一の温度保持域P1の温度T1より低いのが好ましい。また、第二の温度保持域P2の保持時間t2は0.5~45時間とする。第一の温度保持域P1の後に第二の温度保持域P2を設けることにより、窒化珪素焼結基板の反りを2.5μm/mm以内にすることができる。 (e) a second second temperature holding zone P 2 that follows the temperature holding zone first temperature holding zone P 1 is slightly lower than the temperature T 1 of the sintered body first temperature holding zone P 1 by holding the T 2, the temperature range to maintain a state of directly or solid-liquid coexisting a first temperature holding zone P 1 a through the liquid phase. The temperature T 2 of the second temperature holding region P 2 is preferably in the range of 1400 to 1700 ° C. and lower than the temperature T 1 of the first temperature holding region P 1 . The holding time t 2 of the second temperature holding zone P 2 is 0.5 to 45 hours. By providing the second temperature holding area P 2 after the first temperature holding area P 1 , the warp of the silicon nitride sintered substrate can be made within 2.5 μm / mm.
第二の温度保持域P2の温度T2が1400℃未満であると、粒界相が結晶化しやすく、得られる窒化珪素焼結体基板の曲げ強度が低い。一方、温度T2が1700℃を超えると、液相の流動性が高すぎ、上記効果が得られない。温度T2は1500~1650℃がより好ましく、1550~1650℃が最も好ましい。第二の温度保持域P2の保持時間t2は0.5~45時間が好ましく、0.5~10時間がより好ましく、1~5時間が最も好ましい。第二の温度保持域P2の保持時間t2が0.5時間未満であると、粒界相の均一化が不十分である。焼結助剤の揮発を抑制して、窒化珪素焼結体基板の機械的特性及び熱伝導率の低下を防止するためには、第二の温度保持域P2の保持時間t2を45時間以下とするのが好ましい。
When the temperature T 2 of the second temperature holding region P 2 is less than 1400 ° C., the grain boundary phase is easily crystallized, and the resulting silicon nitride sintered substrate has low bending strength. On the other hand, when the temperature T 2 exceeds 1700 ° C., the fluidity of the liquid phase is too high and the above effect cannot be obtained. The temperature T 2 is more preferably 1500-1650 ° C., and most preferably 1550-1650 ° C. The holding time t 2 in the second temperature holding region P 2 is preferably 0.5 to 45 hours, more preferably 0.5 to 10 hours, and most preferably 1 to 5 hours. The holding time t 2 of the second temperature holding zone P 2 is less than 0.5 hours, sufficient uniformity of the grain boundary phase. By suppressing the volatilization of the sintering aids, in order to prevent the deterioration of mechanical properties and thermal conductivity of the sintered silicon nitride substrate, the second holding time t 2 of the temperature holding zone P 2 for 45 hours The following is preferable.
第一の温度保持域P1の後に第二の温度保持域P2を設ける効果を確認するために、実施例5及び比較例6の窒化珪素焼結体基板の断面組織を比較する。図8(a) は第一の温度保持域P1(T1:1850℃、t1:5時間)の後に第二の温度保持域P2(T2:1600℃、t2:2時間)を設けた実施例5の窒化珪素焼結体基板の上面部、中央部及び下面部における断面組織を示すSEM写真であり、図8(b) は第一の温度保持域P1(T1:1850℃、t1:5時間)の後に第二の温度保持域P2を設けなかった比較例6の窒化珪素焼結体基板の上面部、中央部及び下面部における断面組織を示すSEM写真である。
In order to confirm the effect of providing the second temperature holding region P 2 after the first temperature holding region P 1 , the cross-sectional structures of the silicon nitride sintered body substrates of Example 5 and Comparative Example 6 are compared. Fig. 8 (a) shows the first temperature holding region P 1 (T 1 : 1850 ° C, t 1 : 5 hours) followed by the second temperature holding region P 2 (T 2 : 1600 ° C, t 2 : 2 hours). upper surface portion of the silicon nitride sintered body substrate of example 5 in which a is a SEM photograph showing a sectional structure in the middle portion and the lower surface portion, FIG. 8 (b) a first temperature holding zone P 1 (T 1: (1850 ° C., t 1 : 5 hours) SEM photograph showing a cross-sectional structure of the upper surface portion, the central portion and the lower surface portion of the silicon nitride sintered body substrate of Comparative Example 6 in which the second temperature holding region P 2 was not provided is there.
図8(b) に示す比較例6の窒化珪素焼結体基板の断面組織では、粒界相(重元素であるYにより白い斑点状に見える)の分布は厚さ方向に不均一であり、白い斑点部がない領域(丸Oで囲まれている。)が認められる。白い斑点部がない領域は、Mg/Y濃度比が高い(Yが少ない)粒界相であり、Mg偏析部と言える。従って、第一の温度保持域P1の後に第二の温度保持域P2を設けない比較例6の窒化珪素焼結体基板の断面組織は、Mg偏析部を有し、厚さ方向の粒界相分布が不均一であると言える。過度な大きさのMg偏析部は破壊の起点となり、機械的強度(曲げ強度及び破壊靱性)を低下させるとともに、過大な反りを発生させる原因となる。
In the cross-sectional structure of the silicon nitride sintered body substrate of Comparative Example 6 shown in FIG. 8 (b), the distribution of the grain boundary phase (appears as white spots due to the heavy element Y) is uneven in the thickness direction, An area without white spots (encircled by circle O) is observed. The region without white spots is a grain boundary phase with a high Mg / Y concentration ratio (low Y) and can be said to be a Mg segregation portion. Therefore, the cross-sectional structure of the silicon nitride sintered body substrate of Comparative Example 6 in which the second temperature holding region P 2 is not provided after the first temperature holding region P 1 has an Mg segregation portion, and has a grain in the thickness direction. It can be said that the field phase distribution is non-uniform. An excessively large Mg segregation part serves as a starting point of fracture, which decreases mechanical strength (bending strength and fracture toughness) and causes excessive warpage.
これに対して、図8(a) に示す実施例5の窒化珪素焼結体基板の断面組織では、粒界相(重元素であるYにより白い斑点状に見える)は厚さ方向に均一に分布しており、Mg偏析部は認められない。従って、第一の温度保持域P1の後に第二の温度保持域P2を設けた実施例5の窒化珪素焼結体基板は、高い機械的強度(曲げ強度及び破壊靱性)を有し、反りが抑制されている。
On the other hand, in the cross-sectional structure of the silicon nitride sintered body substrate of Example 5 shown in FIG. 8 (a), the grain boundary phase (which looks like white spots due to heavy element Y) is uniform in the thickness direction. It is distributed and no Mg segregation part is observed. Therefore, the silicon nitride sintered body substrate of Example 5 in which the second temperature holding region P 2 is provided after the first temperature holding region P 1 has high mechanical strength (bending strength and fracture toughness), Warpage is suppressed.
(f) 冷却域
第二の温度保持域P2の後にある冷却域P3は、第二の温度保持域P2で維持された液相を冷却して固化し、得られる粒界相の位置を固定する温度域である。液相の固化を迅速に行って粒界相分布の均一性を維持するために、冷却域P3の冷却速度は100℃/時間以上が好ましく、300℃/時間以上がより好ましく、500℃/時間以上が最も好ましい。実用的には、冷却速度は500~600℃/時間が好ましい。このような冷却速度での冷却により、固化する焼結助剤の結晶化を抑制し、ガラス相を主体とした粒界相を構成できるので、窒化珪素焼結体基板の曲げ強度を高めることができる。冷却域P3の冷却速度を1200℃まで維持すれば、それより低い温度での冷却速度は特に限定されない。 cooling zone P 3 that follows the (f) cooling zone second temperature holding zone P 2 is a second liquid phase which is maintained at a temperature holding zone P 2 of solidified by cooling, the position of the resulting grain boundary phase This is the temperature range for fixing The solidification of the liquid phase carried out quickly in order to maintain the uniformity of the grain boundary phase distribution, the cooling rate of the cooling zone P 3 is preferably at least 100 ° C. / hour, more preferably at least 300 ° C. / time, 500 ° C. / Most preferred is more than hours. Practically, the cooling rate is preferably 500 to 600 ° C./hour. By cooling at such a cooling rate, crystallization of the solidifying sintering aid can be suppressed and a grain boundary phase mainly composed of the glass phase can be formed, so that the bending strength of the silicon nitride sintered substrate can be increased. it can. If the cooling rate of the cooling zone P 3 is maintained up to 1200 ° C., the cooling rate at a lower temperature is not particularly limited.
第二の温度保持域P2の後にある冷却域P3は、第二の温度保持域P2で維持された液相を冷却して固化し、得られる粒界相の位置を固定する温度域である。液相の固化を迅速に行って粒界相分布の均一性を維持するために、冷却域P3の冷却速度は100℃/時間以上が好ましく、300℃/時間以上がより好ましく、500℃/時間以上が最も好ましい。実用的には、冷却速度は500~600℃/時間が好ましい。このような冷却速度での冷却により、固化する焼結助剤の結晶化を抑制し、ガラス相を主体とした粒界相を構成できるので、窒化珪素焼結体基板の曲げ強度を高めることができる。冷却域P3の冷却速度を1200℃まで維持すれば、それより低い温度での冷却速度は特に限定されない。 cooling zone P 3 that follows the (f) cooling zone second temperature holding zone P 2 is a second liquid phase which is maintained at a temperature holding zone P 2 of solidified by cooling, the position of the resulting grain boundary phase This is the temperature range for fixing The solidification of the liquid phase carried out quickly in order to maintain the uniformity of the grain boundary phase distribution, the cooling rate of the cooling zone P 3 is preferably at least 100 ° C. / hour, more preferably at least 300 ° C. / time, 500 ° C. / Most preferred is more than hours. Practically, the cooling rate is preferably 500 to 600 ° C./hour. By cooling at such a cooling rate, crystallization of the solidifying sintering aid can be suppressed and a grain boundary phase mainly composed of the glass phase can be formed, so that the bending strength of the silicon nitride sintered substrate can be increased. it can. If the cooling rate of the cooling zone P 3 is maintained up to 1200 ° C., the cooling rate at a lower temperature is not particularly limited.
[3] 窒化珪素焼結体基板
上記方法により得られる窒化珪素焼結体基板は、反りが2.5μm/mm以内に低減されている。反りが2.5μm/mm以内であるので、窒化珪素焼結体基板にろう材等を介して金属製回路板又は放熱板(まとめて「金属板」と言うこともある。)を接合し、回路基板を形成した場合、窒化珪素焼結体基板と金属板とのろう材を介した接合界面におけるボイド(窒化珪素焼結体基板が金属板と接着していない部分)の発生が抑制される。その結果、回路基板全体の熱伝導性及び電気的耐圧性が向上し、冷熱サイクルにおける金属板と窒化珪素焼結体基板との接合信頼性が高まる。反りは好ましくは2.0μm/mm以内であり、より好ましくは1.5μm/mm以内である。反りはできるだけ小さいのが好ましいが、実用的には下限は0.1μm/mm程度である。 [3] Silicon Nitride Sintered Substrate The silicon nitride sintered substrate obtained by the above method has a warpage reduced to 2.5 μm / mm or less. Since the warpage is within 2.5 μm / mm, a metal circuit board or a heat radiating plate (sometimes collectively referred to as a “metal plate”) is joined to the silicon nitride sintered substrate via a brazing material, etc. When the substrate is formed, the generation of voids (portions where the silicon nitride sintered substrate is not bonded to the metal plate) at the bonding interface between the silicon nitride sintered substrate and the metal plate via the brazing material is suppressed. As a result, the thermal conductivity and electrical pressure resistance of the entire circuit board are improved, and the bonding reliability between the metal plate and the silicon nitride sintered body substrate in the cooling / heating cycle is increased. The warp is preferably within 2.0 μm / mm, more preferably within 1.5 μm / mm. The warp is preferably as small as possible, but practically, the lower limit is about 0.1 μm / mm.
上記方法により得られる窒化珪素焼結体基板は、反りが2.5μm/mm以内に低減されている。反りが2.5μm/mm以内であるので、窒化珪素焼結体基板にろう材等を介して金属製回路板又は放熱板(まとめて「金属板」と言うこともある。)を接合し、回路基板を形成した場合、窒化珪素焼結体基板と金属板とのろう材を介した接合界面におけるボイド(窒化珪素焼結体基板が金属板と接着していない部分)の発生が抑制される。その結果、回路基板全体の熱伝導性及び電気的耐圧性が向上し、冷熱サイクルにおける金属板と窒化珪素焼結体基板との接合信頼性が高まる。反りは好ましくは2.0μm/mm以内であり、より好ましくは1.5μm/mm以内である。反りはできるだけ小さいのが好ましいが、実用的には下限は0.1μm/mm程度である。 [3] Silicon Nitride Sintered Substrate The silicon nitride sintered substrate obtained by the above method has a warpage reduced to 2.5 μm / mm or less. Since the warpage is within 2.5 μm / mm, a metal circuit board or a heat radiating plate (sometimes collectively referred to as a “metal plate”) is joined to the silicon nitride sintered substrate via a brazing material, etc. When the substrate is formed, the generation of voids (portions where the silicon nitride sintered substrate is not bonded to the metal plate) at the bonding interface between the silicon nitride sintered substrate and the metal plate via the brazing material is suppressed. As a result, the thermal conductivity and electrical pressure resistance of the entire circuit board are improved, and the bonding reliability between the metal plate and the silicon nitride sintered body substrate in the cooling / heating cycle is increased. The warp is preferably within 2.0 μm / mm, more preferably within 1.5 μm / mm. The warp is preferably as small as possible, but practically, the lower limit is about 0.1 μm / mm.
窒化珪素焼結体基板60の反りは、三次元レーザ計測器(株式会社キーエンス製LT-8100)を用いて、下記の通り測定する。図9(a) 及び図9(b) に示すように、定盤70に載置された窒化珪素焼結体基板60の表面に対して、三次元レーザ計測器80により3本の走査線L1、L2、L3に沿ってレーザ光81を走査する。図9(b) に示すように、走査線L1及びL3は窒化珪素焼結体基板60の各側端から10 mmだけ内側の線に沿っており、走査線L2は窒化珪素焼結体基板60の中心線に沿っている。図9(c) に示すように、各走査線L1~L3について、窒化珪素焼結体基板60の表面の走査方向両端A及びBを結ぶ直線Cを水平にし、直線Cから最も上方に離隔した点Eの高さGと、最も下方に離隔した点Fの高さHとを求める。点Eと点Fとの垂直方向距離(G+H)を各走査線L1~L3の長さIで割り、走査線L1~L3ごとに得られた(G+H)/Iの値を平均し、反りとする。なお、図9(a) 及び図9(c) では、説明のために、窒化珪素焼結体基板60の反りを誇張してある。
The warpage of the silicon nitride sintered body substrate 60 is measured as follows using a three-dimensional laser measuring instrument (LT-8100 manufactured by Keyence Corporation). As shown in FIG. 9 (a) and FIG. 9 (b), the three scanning lines L1 are applied to the surface of the silicon nitride sintered substrate 60 placed on the surface plate by the three-dimensional laser measuring instrument 80. The laser beam 81 is scanned along L2, L3. As shown in FIG. 9 (b), the scanning lines L1 and L3 are along the inner line by 10 mm from each side end of the silicon nitride sintered body substrate 60, and the scanning line L2 is the silicon nitride sintered body substrate 60. Along the center line. As shown in FIG. 9 (c), for each of the scanning lines L1 to L3, a straight line C connecting both ends A and B in the scanning direction of the surface of the silicon nitride sintered body substrate 60 is horizontal, and is separated from the straight line C to the uppermost position. The height G of the point E and the height H of the point F that is farthest downward are obtained. The vertical distance (G + H) between point E and point F is divided by the length I of each scanning line L1 to L3, and the value of (G + H) / I obtained for each scanning line L1 to L3 is averaged. To do. 9A and 9C, the warp of the silicon nitride sintered body substrate 60 is exaggerated for the sake of explanation.
本発明の窒化珪素焼結体基板は均一な粒界相分布有するので、Mg量の厚さ方向分布の変動係数(単に「Mg変動係数」という)は0.3以下であるのが好ましい。Mg変動係数を0.3以下に制御することにより、窒化珪素焼結体基板の反りを有効に低減できる。Mg変動係数は、窒化珪素焼結体基板の厚さ方向断面における長さ0.2 mmの任意の範囲にEPMAによりビーム径0.1μmの電子線を2μmの間隔で走査し、得られたMgのX線強度の標準偏差をその平均で割ることにより求める。
Since the silicon nitride sintered substrate of the present invention has a uniform grain boundary phase distribution, it is preferable that the variation coefficient of the Mg amount in the thickness direction (simply referred to as “Mg variation coefficient”) is 0.3 or less. By controlling the Mg coefficient of variation to 0.3 or less, warpage of the silicon nitride sintered substrate can be effectively reduced. The Mg variation coefficient is obtained by scanning an electron beam with a beam diameter of 0.1 μm at an interval of 2 μm with an EPMA in an arbitrary range of 0.2 mm in the cross section in the thickness direction of the silicon nitride sintered body substrate, and obtaining an X-ray of Mg Determined by dividing the standard deviation of intensity by its average.
本発明の窒化珪素焼結体基板の空孔の面積率は2.0%以下であり、空孔の最大径は10μm程度である。空孔の最大径及び面積率は走査電子顕微鏡(SEM)写真から求める。空孔が例えば長軸と短軸を有する形状の場合、空孔の最大径は長軸の長さとする。
The area ratio of the pores of the silicon nitride sintered body substrate of the present invention is 2.0% or less, and the maximum diameter of the pores is about 10 μm. The maximum diameter and area ratio of the holes are obtained from a scanning electron microscope (SEM) photograph. For example, when the hole has a shape having a major axis and a minor axis, the maximum diameter of the hole is the length of the major axis.
本発明の窒化珪素焼結体基板60において、表面うねりが2.0μm以上の領域の面積率は15%以下であるのが好ましい。図10に誇張して示すように、表面うねりが2.0μm以上の領域の面積率(%)は、窒化珪素焼結体基板60の表面60aを中心線(うねりを平均して得られる直線)と交差する点により複数のうねり1,2,3,4,5・・・に分け、そのうち上下に2.0μm(幅4.0μm)の範囲以上の大きさのうねり2,5・・・の面積S2、S5・・・を合計し、得られた合計面積を表面全体の面積Sで割り、100倍することにより求める。具体的には、表面うねりが2.0μm以上の領域の面積率は、光干渉式の非接触表面形状測定機(GFM社製MikroCAD Premium 80×60)を用いて窒化珪素焼結体基板60の表面をスキャンし、前置きフィルタ(Pre-filter)を下記のように設定して処理した画像から算出する。
前置きフィルタ設定値
多項式フィルタ:8、
バンドパスフィルタ:Filter Size 1 X:11、Y:11
Filter Size 2 X:51、Y:51
平均化フィルタ: X:15、Y:15
メディアンフィルタ:X:7、Y:27 In the silicon nitride sinteredsubstrate 60 of the present invention, the area ratio of the region having a surface waviness of 2.0 μm or more is preferably 15% or less. As exaggeratedly shown in FIG. 10, the area ratio (%) of the region where the surface waviness is 2.0 μm or more is the center line (straight line obtained by averaging the waviness) of the surface 60a of the silicon nitride sintered body substrate 60. Divided into a plurality of undulations 1, 2, 3, 4, 5... According to the intersecting points, the area S 2 of the undulations 2, 5... , S 5 ..., And the total area obtained is divided by the area S of the entire surface and multiplied by 100. Specifically, the area ratio of the area where the surface waviness is 2.0 μm or more is determined based on the surface of the silicon nitride sintered substrate 60 using an optical interference type non-contact surface shape measuring machine (MikroCAD Premium 80 × 60 manufactured by GFM). Is calculated from the processed image with the pre-filter set as follows.
Preset filter set value polynomial filter: 8,
Bandpass filter: Filter Size 1 X: 11, Y: 11
Filter Size 2 X: 51, Y: 51
Averaging filter: X: 15, Y: 15
Median filter: X: 7, Y: 27
前置きフィルタ設定値
多項式フィルタ:8、
バンドパスフィルタ:Filter Size 1 X:11、Y:11
Filter Size 2 X:51、Y:51
平均化フィルタ: X:15、Y:15
メディアンフィルタ:X:7、Y:27 In the silicon nitride sintered
Preset filter set value polynomial filter: 8,
Bandpass filter: Filter Size 1 X: 11, Y: 11
Filter Size 2 X: 51, Y: 51
Averaging filter: X: 15, Y: 15
Median filter: X: 7, Y: 27
反り及びうねりが抑制された窒化珪素焼結体基板をろう材を介して銅板と接合した場合、接合界面における100μm以上の径のボイドの面積率は3.0%以下である。ろう材としては、Ag-In-Cu系ろう材、共晶組成であるAgとCuを主体とし、Ti、Zr、Hf等の活性金属を添加したAg-Cu系ろう材等が挙げられる。
When a silicon nitride sintered body substrate in which warpage and undulation are suppressed is joined to a copper plate via a brazing material, the area ratio of voids having a diameter of 100 μm or more at the joining interface is 3.0% or less. Examples of the brazing material include an Ag—In—Cu based brazing material, an Ag—Cu based brazing material mainly composed of eutectic Ag and Cu, and added with an active metal such as Ti, Zr, and Hf.
本発明の窒化珪素焼結体基板を切断することにより個々の基板を作製するので、窒化珪素焼結体基板は大きければ大きい程効率が良いが、その分反り及びうねりの問題も大きくなる。製造効率と反り及びうねりとのバランスの観点から、本発明の窒化珪素焼結体基板のサイズを縦横それぞれ100 mm以上とする。好ましいサイズは120 mm×120 mmであり、より好ましいサイズは140 mm×140 mmである。半導体等の回路素子用の伝熱基板として用いる窒化珪素焼結体基板は薄い程良いが、薄くなるほど製造は困難になる。伝熱基板としての性能と製造の困難性を考慮に入れて、本発明の窒化珪素焼結体基板の厚さを0.7 mm以下とする。窒化珪素焼結体基板の厚さは好ましくは0.5 mm以下であり、より好ましくは0.4 mm以下である。
Since the individual substrates are produced by cutting the silicon nitride sintered body substrate of the present invention, the larger the silicon nitride sintered body substrate is, the better the efficiency is. However, the problem of warpage and waviness also increases accordingly. From the viewpoint of the balance between manufacturing efficiency, warpage, and undulation, the size of the silicon nitride sintered body substrate of the present invention is set to 100 mm or more in both vertical and horizontal directions. A preferable size is 120 mm × 120 mm, and a more preferable size is 140 mm × 140 mm. A thinner silicon nitride sintered substrate used as a heat transfer substrate for a circuit element such as a semiconductor is better, but the thinner it is, the more difficult it is to manufacture. Taking into consideration the performance as a heat transfer substrate and the difficulty of manufacturing, the thickness of the silicon nitride sintered substrate of the present invention is set to 0.7 mm or less. The thickness of the silicon nitride sintered body substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less.
実施例1~6
MgO粉末が3.0質量%、Y2O3粉末が2.0質量%、残部がSi3N4粉末及び不可避的不純物である原料粉末のスラリー(固形分濃度:60質量%)からドクターブレード法によりグリーンシート(乾燥時のサイズ:200 mm×200 mm)1を形成し、BN粉末を介して20枚重ねて積層体10を形成した。各積層体10の上に重し板11を配置して載置板21の上に載置し、図4に示す坩堝20に入れた。重し板11による最上層のグリーンシート1aへの荷重は40 Paであった。坩堝20内では、実施例1~6の積層体10を載せた複数の載置板21を多段に重ねて載置板組立体30とし、最上段の載置板21aの上面に、15質量%のマグネシア粉末、55質量%の窒化珪素粉末、及び30質量%の窒化硼素粉末からなる詰め粉を配置した。各載置板21は0.5μm/mmの反り及び0.3μmのうねりを有していた。 Examples 1-6
Green sheet by a doctor blade method from a slurry of solid powder (solid content concentration: 60% by mass) with 3.0% by mass of MgO powder, 2.0% by mass of Y 2 O 3 powder and the balance being Si 3 N 4 powder and unavoidable impurities (Dry size: 200 mm × 200 mm) 1 was formed, and 20 laminates were formed via BN powder to form alaminate 10. A weight plate 11 was placed on each laminate 10, placed on the placement plate 21, and placed in the crucible 20 shown in FIG. The load on the uppermost green sheet 1a by the weight plate 11 was 40 Pa. In the crucible 20, a plurality of mounting plates 21 on which the laminates 10 of Examples 1 to 6 are stacked in multiple stages to form a mounting plate assembly 30, and 15% by mass on the upper surface of the uppermost mounting plate 21 a. A stuffing powder made of magnesia powder, 55 mass% silicon nitride powder, and 30 mass% boron nitride powder was placed. Each mounting plate 21 had a warp of 0.5 μm / mm and a waviness of 0.3 μm.
MgO粉末が3.0質量%、Y2O3粉末が2.0質量%、残部がSi3N4粉末及び不可避的不純物である原料粉末のスラリー(固形分濃度:60質量%)からドクターブレード法によりグリーンシート(乾燥時のサイズ:200 mm×200 mm)1を形成し、BN粉末を介して20枚重ねて積層体10を形成した。各積層体10の上に重し板11を配置して載置板21の上に載置し、図4に示す坩堝20に入れた。重し板11による最上層のグリーンシート1aへの荷重は40 Paであった。坩堝20内では、実施例1~6の積層体10を載せた複数の載置板21を多段に重ねて載置板組立体30とし、最上段の載置板21aの上面に、15質量%のマグネシア粉末、55質量%の窒化珪素粉末、及び30質量%の窒化硼素粉末からなる詰め粉を配置した。各載置板21は0.5μm/mmの反り及び0.3μmのうねりを有していた。 Examples 1-6
Green sheet by a doctor blade method from a slurry of solid powder (solid content concentration: 60% by mass) with 3.0% by mass of MgO powder, 2.0% by mass of Y 2 O 3 powder and the balance being Si 3 N 4 powder and unavoidable impurities (Dry size: 200 mm × 200 mm) 1 was formed, and 20 laminates were formed via BN powder to form a
坩堝20を焼成炉に入れ、1~100℃/時間の昇温速度で10時間の徐熱域P0、1850℃の温度T1で5時間の第一の温度保持域P1、1420~1650℃の範囲内の温度T2で1.5時間の第二の温度保持域P2、及び600℃/時間の冷却速度の冷却域P3を有する温度プロファイルにより、各積層体10中のグリーンシート1を焼結し、厚さ0.32 mmの窒化珪素焼結体基板を製造した。
The crucible 20 is put into a firing furnace, a heating range P 0 for 10 hours at a temperature rising rate of 1 to 100 ° C./hour, a first temperature holding range P 1 for 14 hours at a temperature T 1 of 1850 ° C., 1420 to 1650 second temperature holding zone P 2 of temperature T 2 at 1.5 hours in the range of ° C., and the temperature profile having a cooling zone P 3 of the cooling rate of 600 ° C. / time, the green sheets 1 in each stack 10 Sintering produced a 0.32 mm thick silicon nitride sintered substrate.
実施例7~13
第二の温度保持域P2の温度T2を1420~1650℃の範囲内で変化させ、かつその保持時間t2も0.6~29.0時間の間で変化させた以外、実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 7-13
Example 2 was repeated except that the temperature T 2 of the second temperature holding region P 2 was changed within the range of 1420 to 1650 ° C., and the holding time t 2 was also changed between 0.6 and 29.0 hours. A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured.
第二の温度保持域P2の温度T2を1420~1650℃の範囲内で変化させ、かつその保持時間t2も0.6~29.0時間の間で変化させた以外、実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 7-13
Example 2 was repeated except that the temperature T 2 of the second temperature holding region P 2 was changed within the range of 1420 to 1650 ° C., and the holding time t 2 was also changed between 0.6 and 29.0 hours. A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured.
実施例14~16
原料粉末中のMgO粉末の量を1.0~5.0質量%とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 14-16
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the amount of MgO powder in the raw material powder was 1.0 to 5.0 mass%.
原料粉末中のMgO粉末の量を1.0~5.0質量%とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 14-16
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the amount of MgO powder in the raw material powder was 1.0 to 5.0 mass%.
実施例17~20
冷却域P3における冷却速度を50~500℃/時間の範囲内で変化させた以外実施例5と同様にして、窒化珪素焼結体基板を製造した。 Examples 17-20
A silicon nitride sintered substrate was produced in the same manner as in Example 5 except that the cooling rate in the cooling zone P 3 was changed within the range of 50 to 500 ° C./hour.
冷却域P3における冷却速度を50~500℃/時間の範囲内で変化させた以外実施例5と同様にして、窒化珪素焼結体基板を製造した。 Examples 17-20
A silicon nitride sintered substrate was produced in the same manner as in Example 5 except that the cooling rate in the cooling zone P 3 was changed within the range of 50 to 500 ° C./hour.
実施例21~23
徐熱域P0における昇温速度を50~300℃/時間の範囲内で変化させ、かつ昇温時間を1~20時間の範囲内で変化させた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 21-23
The thickness was changed in the same manner as in Example 5 except that the rate of temperature increase in the slow heating region P 0 was changed within the range of 50 to 300 ° C./hour and the temperature increase time was changed within the range of 1 to 20 hours. A 0.32 mm silicon nitride sintered substrate was produced.
徐熱域P0における昇温速度を50~300℃/時間の範囲内で変化させ、かつ昇温時間を1~20時間の範囲内で変化させた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 21-23
The thickness was changed in the same manner as in Example 5 except that the rate of temperature increase in the slow heating region P 0 was changed within the range of 50 to 300 ° C./hour and the temperature increase time was changed within the range of 1 to 20 hours. A 0.32 mm silicon nitride sintered substrate was produced.
実施例24~27
重し板11が最上層のグリーンシート1aにかける荷重を10~100 Paの範囲内で変化させた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 24-27
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by theweight plate 11 was changed within the range of 10 to 100 Pa.
重し板11が最上層のグリーンシート1aにかける荷重を10~100 Paの範囲内で変化させた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Examples 24-27
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the
実施例28~30
グリーンシート1の厚さを変化させた以外実施例5と同様にして、厚さ0.12~0.60 mmの窒化珪素焼結体基板を製造した。 Examples 28-30
A silicon nitride sintered substrate having a thickness of 0.12 to 0.60 mm was manufactured in the same manner as in Example 5 except that the thickness of thegreen sheet 1 was changed.
グリーンシート1の厚さを変化させた以外実施例5と同様にして、厚さ0.12~0.60 mmの窒化珪素焼結体基板を製造した。 Examples 28-30
A silicon nitride sintered substrate having a thickness of 0.12 to 0.60 mm was manufactured in the same manner as in Example 5 except that the thickness of the
実施例31
第二の温度保持域P2の保持時間t2を45時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Example 31
In the same manner as in Example 5 except that the second holding time t 2 of the temperature holding zone P 2 were 45 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
第二の温度保持域P2の保持時間t2を45時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Example 31
In the same manner as in Example 5 except that the second holding time t 2 of the temperature holding zone P 2 were 45 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
比較例1
グリーンシート1の積層体10の上に重し板11を配置せずに焼成工程を行った以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 1
A silicon nitride sintered body substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the firing step was performed without placing the overlappingplate 11 on the laminate 10 of the green sheet 1.
グリーンシート1の積層体10の上に重し板11を配置せずに焼成工程を行った以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 1
A silicon nitride sintered body substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the firing step was performed without placing the overlapping
比較例2
重し板11が最上層のグリーンシート1aにかける荷重を5 Paにした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 2
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by theweight plate 11 was 5 Pa.
重し板11が最上層のグリーンシート1aにかける荷重を5 Paにした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 2
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the
比較例3
第二の温度保持域P2の温度T2を1300℃と本発明の下限未満にし、かつその保持時間t2を5.0時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 3
Silicon nitride having a thickness of 0.32 mm, in the same manner as in Example 5, except that the temperature T 2 of the second temperature holding region P 2 was 1300 ° C., less than the lower limit of the present invention, and the holding time t 2 was 5.0 hours. A sintered substrate was produced.
第二の温度保持域P2の温度T2を1300℃と本発明の下限未満にし、かつその保持時間t2を5.0時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 3
Silicon nitride having a thickness of 0.32 mm, in the same manner as in Example 5, except that the temperature T 2 of the second temperature holding region P 2 was 1300 ° C., less than the lower limit of the present invention, and the holding time t 2 was 5.0 hours. A sintered substrate was produced.
比較例4
第二の温度保持域P2の温度T2を1800℃と本発明の上限超とし、かつその保持時間t2を2.0時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 4
Silicon nitride having a thickness of 0.32 mm in the same manner as in Example 5 except that the temperature T 2 of the second temperature holding region P 2 was 1800 ° C., exceeding the upper limit of the present invention, and the holding time t 2 was 2.0 hours. A sintered substrate was produced.
第二の温度保持域P2の温度T2を1800℃と本発明の上限超とし、かつその保持時間t2を2.0時間とした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 4
Silicon nitride having a thickness of 0.32 mm in the same manner as in Example 5 except that the temperature T 2 of the second temperature holding region P 2 was 1800 ° C., exceeding the upper limit of the present invention, and the holding time t 2 was 2.0 hours. A sintered substrate was produced.
比較例5
第二の温度保持域P2の保持時間t2を0.1時間と短くした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 5
Second holding time t 2 of the temperature holding zone P 2 in the same manner as in Example 5 except that as short as 0.1 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
第二の温度保持域P2の保持時間t2を0.1時間と短くした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 5
Second holding time t 2 of the temperature holding zone P 2 in the same manner as in Example 5 except that as short as 0.1 hours to produce a sintered silicon nitride substrate having a thickness of 0.32 mm.
比較例6
第二の温度保持域P2を有さない温度プロファイルを用いた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 6
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the temperature profile having no second temperature holding region P 2 was used.
第二の温度保持域P2を有さない温度プロファイルを用いた以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 6
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the temperature profile having no second temperature holding region P 2 was used.
比較例7
重し板11が最上層のグリーンシート1aにかける荷重を700 Paとした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 7
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by theweight plate 11 was 700 Pa.
重し板11が最上層のグリーンシート1aにかける荷重を700 Paとした以外実施例5と同様にして、厚さ0.32 mmの窒化珪素焼結体基板を製造した。 Comparative Example 7
A silicon nitride sintered substrate having a thickness of 0.32 mm was manufactured in the same manner as in Example 5 except that the load applied to the uppermost green sheet 1a by the
実施例1~31及び比較例1~7の窒化珪素焼結体基板の厚さ及び組織を表1-1及び表1-2に示し、製造条件を表2-1及び表2-2に示す。
The thicknesses and structures of the silicon nitride sintered substrates of Examples 1 to 31 and Comparative Examples 1 to 7 are shown in Table 1-1 and Table 1-2, and the manufacturing conditions are shown in Table 2-1 and Table 2-2. .
実施例1~31及び比較例1~7の窒化珪素焼結体基板の曲げ強度、熱伝導率、相対密度、Mg変動係数、反り、うねり、空孔、及び接合界面における100μm以上の径を有するボイドの面積率を下記の方法により測定した。各窒化珪素焼結体基板の曲げ強度、熱伝導率、相対密度及びMg変動係数を表3-1及び表3-2に示し、反り、うねり、空孔、及び接合界面における100μm以上の径を有するボイドの面積率を表4-1及び表4-2に示す。
The silicon nitride sintered substrates of Examples 1 to 31 and Comparative Examples 1 to 7 have a bending strength, thermal conductivity, relative density, Mg coefficient of variation, warpage, waviness, voids, and a diameter of 100 μm or more at the bonding interface. The void area ratio was measured by the following method. The bending strength, thermal conductivity, relative density, and Mg variation coefficient of each silicon nitride sintered substrate are shown in Table 3-1 and Table 3-2, and warp, undulation, pores, and a diameter of 100 μm or more at the bonding interface are shown. Table 4-1 and Table 4-2 show the void area ratios.
(1) 曲げ強度
JIS R1601に従って、各窒化珪素焼結体基板を4 mmの幅に切断し、支持ロール間距離が7 mmの三点曲げ治具にセットし、クロスヘッド速度0.5 mm/分で荷重を印加して破断時の荷重を測定し、それから各窒化珪素焼結体基板の曲げ強度を算出した。 (1) Bending strength In accordance with JIS R1601, each silicon nitride sintered substrate is cut to a width of 4 mm, set in a three-point bending jig with a distance between support rolls of 7 mm, and a crosshead speed of 0.5 mm / min. A load was applied to measure the load at break, and the bending strength of each silicon nitride sintered substrate was calculated therefrom.
JIS R1601に従って、各窒化珪素焼結体基板を4 mmの幅に切断し、支持ロール間距離が7 mmの三点曲げ治具にセットし、クロスヘッド速度0.5 mm/分で荷重を印加して破断時の荷重を測定し、それから各窒化珪素焼結体基板の曲げ強度を算出した。 (1) Bending strength In accordance with JIS R1601, each silicon nitride sintered substrate is cut to a width of 4 mm, set in a three-point bending jig with a distance between support rolls of 7 mm, and a crosshead speed of 0.5 mm / min. A load was applied to measure the load at break, and the bending strength of each silicon nitride sintered substrate was calculated therefrom.
(2) 熱伝導率
各窒化珪素焼結体基板を5 mm×5 mmの大きさに切断し、カーボンスプレーで表裏面を黒化処理した後、JIS R1611に準拠したレーザーフラッシュ法により熱伝導率を測定した。 (2) Thermal conductivity Each silicon nitride sintered substrate is cut to 5 mm x 5 mm size, and the front and back surfaces are blackened with carbon spray, and then the thermal conductivity is measured by the laser flash method according to JIS R1611. Was measured.
各窒化珪素焼結体基板を5 mm×5 mmの大きさに切断し、カーボンスプレーで表裏面を黒化処理した後、JIS R1611に準拠したレーザーフラッシュ法により熱伝導率を測定した。 (2) Thermal conductivity Each silicon nitride sintered substrate is cut to 5 mm x 5 mm size, and the front and back surfaces are blackened with carbon spray, and then the thermal conductivity is measured by the laser flash method according to JIS R1611. Was measured.
(3) 相対密度
JIS R1634に準拠して各窒化珪素焼結体基板の密度を測定し、理論密度に対する相対密度を算出した。窒化珪素焼結体の理論密度は、窒化珪素の密度を3.20 g/cm3とし、MgOの密度を3.58 g/cm3とし、Y2O3の密度を5.03 g/cm3として、原料粉末の配合比に基づき算出した。 (3) Relative density Based on JIS R1634, the density of each silicon nitride sintered body substrate was measured, and the relative density with respect to the theoretical density was calculated. The theoretical density of the sintered silicon nitride is as follows: the density of silicon nitride is 3.20 g / cm 3 , the density of MgO is 3.58 g / cm 3 and the density of Y 2 O 3 is 5.03 g / cm 3. It calculated based on the mixture ratio.
JIS R1634に準拠して各窒化珪素焼結体基板の密度を測定し、理論密度に対する相対密度を算出した。窒化珪素焼結体の理論密度は、窒化珪素の密度を3.20 g/cm3とし、MgOの密度を3.58 g/cm3とし、Y2O3の密度を5.03 g/cm3として、原料粉末の配合比に基づき算出した。 (3) Relative density Based on JIS R1634, the density of each silicon nitride sintered body substrate was measured, and the relative density with respect to the theoretical density was calculated. The theoretical density of the sintered silicon nitride is as follows: the density of silicon nitride is 3.20 g / cm 3 , the density of MgO is 3.58 g / cm 3 and the density of Y 2 O 3 is 5.03 g / cm 3. It calculated based on the mixture ratio.
(4) Mg変動係数
上記[3] に記載の方法により測定した。 (4) Mg variation coefficient It was measured by the method described in [3] above.
上記[3] に記載の方法により測定した。 (4) Mg variation coefficient It was measured by the method described in [3] above.
(5) 反り及びうねり
上記[3] に記載の方法により測定した。 (5) Warpage and undulation Measurement was performed by the method described in [3] above.
上記[3] に記載の方法により測定した。 (5) Warpage and undulation Measurement was performed by the method described in [3] above.
(6) 空孔の最大径及び空孔の面積率
上記[3] に記載の方法によりSEM写真から求めた。 (6) Maximum pore diameter and area ratio of pores Obtained from SEM photographs by the method described in [3] above.
上記[3] に記載の方法によりSEM写真から求めた。 (6) Maximum pore diameter and area ratio of pores Obtained from SEM photographs by the method described in [3] above.
(7) 接合界面における100μm以上の径を有するボイドの面積率
18 mm×32 mmの各窒化珪素焼結体基板に、14 mm×28 mm×0.5 mmの無酸素銅板(JIS H3100のC1020H)を下記ろう材により接合し、得られた試験片を水溶媒に浸漬し、超音波探傷装置(日立建機株式会社製Mi-scope)により、窒化珪素焼結体基板と銅板との接合界面に生じた100μm以上の径を有するボイドの面積率を測定した。ろう材は、平均粒径20μmのAg-In-Cu合金粉末(Ag:70質量%、In:5質量%、残部:Cu、酸素:0.1質量%以下)76.5質量%、平均粒径10μmのAg粉末7.6質量%、及び水素化チタン粉末(85%以上の粒径が45μm以下)0.8質量%を含有し、さらに、5質量%のアクリル樹脂バインダー、10質量%のα-テルピネオール溶剤、及び0.1質量%の分散剤を含有し、770℃の融点及び55 Pa・sの粘度を有していた。 (7) Oxygen-free copper plate of 14 mm x 28 mm x 0.5 mm (JIS H3100 C1020H) on each silicon nitride sintered body substrate with an area ratio of 18 mm x 32 mm of voids with a diameter of 100 µm or more at the joint interface Joined with the following brazing material, the test specimen obtained is immersed in an aqueous solvent, and is generated at the joining interface between the sintered silicon nitride substrate and the copper plate by an ultrasonic flaw detector (Mi-scope manufactured by Hitachi Construction Machinery Co., Ltd.) The area ratio of voids having a diameter of 100 μm or more was measured. The brazing material is Ag-In-Cu alloy powder having an average particle size of 20 μm (Ag: 70% by mass, In: 5% by mass, balance: Cu, oxygen: 0.1% by mass or less) 76.5% by mass, Ag having an average particle size of 10 μm Contains 7.6% by weight of powder and 0.8% by weight of titanium hydride powder (particle size of 85% or more, 45 μm or less), 5% by weight of acrylic resin binder, 10% by weight of α-terpineol solvent, and 0.1% by weight % Dispersant, having a melting point of 770 ° C. and a viscosity of 55 Pa · s.
18 mm×32 mmの各窒化珪素焼結体基板に、14 mm×28 mm×0.5 mmの無酸素銅板(JIS H3100のC1020H)を下記ろう材により接合し、得られた試験片を水溶媒に浸漬し、超音波探傷装置(日立建機株式会社製Mi-scope)により、窒化珪素焼結体基板と銅板との接合界面に生じた100μm以上の径を有するボイドの面積率を測定した。ろう材は、平均粒径20μmのAg-In-Cu合金粉末(Ag:70質量%、In:5質量%、残部:Cu、酸素:0.1質量%以下)76.5質量%、平均粒径10μmのAg粉末7.6質量%、及び水素化チタン粉末(85%以上の粒径が45μm以下)0.8質量%を含有し、さらに、5質量%のアクリル樹脂バインダー、10質量%のα-テルピネオール溶剤、及び0.1質量%の分散剤を含有し、770℃の融点及び55 Pa・sの粘度を有していた。 (7) Oxygen-free copper plate of 14 mm x 28 mm x 0.5 mm (JIS H3100 C1020H) on each silicon nitride sintered body substrate with an area ratio of 18 mm x 32 mm of voids with a diameter of 100 µm or more at the joint interface Joined with the following brazing material, the test specimen obtained is immersed in an aqueous solvent, and is generated at the joining interface between the sintered silicon nitride substrate and the copper plate by an ultrasonic flaw detector (Mi-scope manufactured by Hitachi Construction Machinery Co., Ltd.) The area ratio of voids having a diameter of 100 μm or more was measured. The brazing material is Ag-In-Cu alloy powder having an average particle size of 20 μm (Ag: 70% by mass, In: 5% by mass, balance: Cu, oxygen: 0.1% by mass or less) 76.5% by mass, Ag having an average particle size of 10 μm Contains 7.6% by weight of powder and 0.8% by weight of titanium hydride powder (particle size of 85% or more, 45 μm or less), 5% by weight of acrylic resin binder, 10% by weight of α-terpineol solvent, and 0.1% by weight % Dispersant, having a melting point of 770 ° C. and a viscosity of 55 Pa · s.
(2) 最上層のグリーンシート1aにかかる荷重。
(3) 単位はμm/mm。
(2) Load applied to the uppermost green sheet 1a.
(3) The unit is μm / mm.
(2) 最上層のグリーンシート1aにかかる荷重。
(3) 単位はμm/mm。
(2) Load applied to the uppermost green sheet 1a.
(3) The unit is μm / mm.
(2) 接合界面に生じた100μm以上の径を有するボイドの面積率(%)。
(2) Area ratio (%) of voids having a diameter of 100 μm or more generated at the bonding interface.
(2) 接合界面に生じた100μm以上の径を有するボイドの面積率(%)。
(2) Area ratio (%) of voids having a diameter of 100 μm or more generated at the bonding interface.
表1~表4から明らかなように、80~98.3質量%のSi3N4、0.7~10質量%(酸化物換算)のMg、及び1~10質量%(酸化物換算)の少なくとも1種の希土類元素を含有するグリーンシートの積層体に荷重をかけながら焼成を行うことにより、反り及びうねりが小さい窒化珪素焼結体基板が得られることが分った。特に、積層体に荷重をかけずに焼成した比較例1の窒化珪素焼結体基板は大きな反り及びうねりを有していた。また積層体にかける荷重が小さい比較例2も反り及びうねりが比較的大きかった。
As is apparent from Tables 1 to 4, 80 to 98.3% by mass of Si 3 N 4 , 0.7 to 10% by mass (as oxide) Mg, and 1 to 10% by mass (as oxide) It was found that a silicon nitride sintered body substrate having small warpage and undulation can be obtained by firing while applying a load to a laminate of green sheets containing the rare earth element. In particular, the silicon nitride sintered body substrate of Comparative Example 1 fired without applying a load to the laminate had large warpage and waviness. Further, in Comparative Example 2 in which the load applied to the laminate was small, the warpage and the undulation were relatively large.
さらに、第一の温度保持域P1の温度T1を1600~2000℃の範囲内とし、第二の温度保持域P2の温度T2を1400~1700℃の範囲内で、第一の温度保持域P1より低くし、かつ第二の温度保持域P2の保持時間t2を0.5~45時間とする実施例1~31の条件により、600 MPa以上の曲げ強度、65 W/m/K以上の熱伝導率及び95%以上の相対密度を有する窒化珪素焼結体基板が得られることが分った。実施例の窒化珪素焼結体基板の反りは2.5μm/mmの範囲内であり、うねりはあっても2μm以上の領域の面積率が15%以下と小さかった。また、各実施例の窒化珪素焼結体基板を銅板に接合した試験片において、100μm以上の径を有するボイドの面積率は3%以下と小さかった。
Further, the temperature T 1 of the first temperature holding region P 1 is in the range of 1600 to 2000 ° C., and the temperature T 2 of the second temperature holding region P 2 is in the range of 1400 to 1700 ° C. Bending strength of 600 MPa or more, 65 W / m /, depending on the conditions of Examples 1-31, which is lower than the holding zone P 1 and the holding time t 2 of the second temperature holding zone P 2 is 0.5 to 45 hours It has been found that a silicon nitride sintered substrate having a thermal conductivity of K or higher and a relative density of 95% or higher can be obtained. The warp of the silicon nitride sintered body substrate of the example was in the range of 2.5 μm / mm, and the area ratio of the region of 2 μm or more was as small as 15% or less even though there was undulation. Moreover, in the test piece in which the silicon nitride sintered body substrate of each example was bonded to a copper plate, the area ratio of voids having a diameter of 100 μm or more was as small as 3% or less.
表3-1及び表3-2から明らかなように、実施例1~31の窒化珪素焼結体基板のMg変動係数は小さかった。これは、厚さ方向のMg偏析が小さいことを意味する。
As is clear from Table 3-1 and Table 3-2, the Mg coefficient of variation of the silicon nitride sintered substrates of Examples 1 to 31 was small. This means that Mg segregation in the thickness direction is small.
第二の温度保持域P2の条件が本発明の範囲外である比較例3~5では、曲げ強度、熱伝導率及び相対密度の少なくともいずれかが実施例1~31より劣り、また反りが実施例より大きかった。
In Comparative Examples 3 to 5 in which the condition of the second temperature holding region P 2 is outside the range of the present invention, at least one of bending strength, thermal conductivity, and relative density is inferior to that of Examples 1 to 31 and warpage occurs. It was larger than the example.
Claims (15)
- 80~98.3質量%のSi3N4、0.7~10質量%(酸化物換算)のMg、及び1~10質量%(酸化物換算)の少なくとも1種の希土類元素を含有し、縦横がそれぞれ100 mm以上で、厚さ0.7 mm以下の窒化珪素焼結体基板を製造する方法であって、
窒化珪素粉末と、Mg及び少なくとも1種の希土類元素を含有する焼結助剤粉末とを混合する工程と、
得られた混合粉末を成形する工程と、
得られたグリーンシートを窒素雰囲気中で焼成する工程とを有し、
前記グリーンシートに10~600 Paの荷重がかかるように、前記グリーンシートの上に重し板を配置した状態で前記焼成工程を行うことを特徴とする方法。 Contains 80 to 98.3 mass% Si 3 N 4 , 0.7 to 10 mass% (oxide equivalent) Mg, and 1 to 10 mass% (oxide equivalent) at least one rare earth element. A method for producing a silicon nitride sintered body substrate having a thickness of at least mm and a thickness of at most 0.7 mm,
Mixing a silicon nitride powder and a sintering aid powder containing Mg and at least one rare earth element;
A step of molding the obtained mixed powder;
And baking the obtained green sheet in a nitrogen atmosphere,
A method comprising performing the firing step in a state in which a weight plate is disposed on the green sheet so that a load of 10 to 600 Pa is applied to the green sheet. - 請求項1に記載の窒化珪素焼結体基板の製造方法において、前記焼成工程における温度プロファイルが、1600~2000℃の範囲内の温度に温度する第一の温度保持域の後に、1400~1700℃の範囲内で、前記第一の温度保持域より低い温度に0.5~45時間保持する第二の温度保持域を有することを特徴とする方法。 2. The method of manufacturing a silicon nitride sintered body substrate according to claim 1, wherein the temperature profile in the firing step is 1400 to 1700 ° C. after the first temperature holding region where the temperature profile is set to a temperature within the range of 1600 to 2000 ° C. The method further comprises a second temperature holding range for holding for 0.5 to 45 hours at a temperature lower than the first temperature holding range.
- 請求項1又は2に記載の窒化珪素焼結体基板の製造方法において、前記焼成工程における温度プロファイルが、前記第二の温度保持域の後に、100℃/時間以上の速度で冷却する冷却域を有することを特徴とする方法。 3. The method of manufacturing a silicon nitride sintered body substrate according to claim 1 or 2, wherein the temperature profile in the firing step is a cooling zone for cooling at a rate of 100 ° C./hour or more after the second temperature holding zone. A method characterized by comprising.
- 請求項1~3のいずれかに記載の窒化珪素焼結体基板の製造方法において、前記焼成工程における温度プロファイルが、前記第一の温度保持域の前に、1400~1600℃の温度範囲において300℃/時間以下の速度で昇温する徐熱域を有することを特徴とする方法。 4. The method of manufacturing a silicon nitride sintered body substrate according to claim 1, wherein a temperature profile in the firing step is 300 in a temperature range of 1400 to 1600 ° C. before the first temperature holding region. A method comprising a gradual heating range in which the temperature is increased at a rate of not more than ° C / hour.
- 請求項1~3のいずれかに記載の窒化珪素焼結体基板の製造方法において、前記焼成工程における温度プロファイルが、前記第一の温度保持域の前に、1400~1600℃の温度範囲に0.5~40時間保持する温度保持域を有することを特徴とする方法。 4. The method of manufacturing a silicon nitride sintered body substrate according to claim 1, wherein the temperature profile in the baking step is 0.5 to 1400 to 1600 ° C. before the first temperature holding region. A method having a temperature holding range for holding for ˜40 hours.
- 請求項1~5のいずれかに記載の窒化珪素焼結体基板の製造方法において、複数枚の前記グリーンシートからなる積層体の上に重し板を配置した状態で前記焼成工程を行い、前記重し板の重量を、前記積層体中の各グリーンシートに10~600 Paの荷重が作用するように設定することを特徴とする方法。 The method for producing a silicon nitride sintered body substrate according to any one of claims 1 to 5, wherein the firing step is performed in a state where a weight plate is disposed on a laminate composed of a plurality of the green sheets, A method wherein the weight of the weight plate is set so that a load of 10 to 600 Pa acts on each green sheet in the laminate.
- 請求項6に記載の窒化珪素焼結体基板の製造方法において、前記積層体の各々を載置板に載せ、複数の載置板を縦枠部材を介して重ねて載置板組立体とし、前記載置板組立体を配置した坩堝を焼成炉内に入れて、前記焼成工程を行うことを特徴とする方法。 In the method for manufacturing a silicon nitride sintered body substrate according to claim 6, each of the laminates is placed on a mounting plate, and a plurality of mounting plates are stacked via a vertical frame member to form a mounting plate assembly, A method, wherein the crucible having the mounting plate assembly is placed in a firing furnace and the firing step is performed.
- 請求項7に記載の窒化珪素焼結体基板の製造方法において、前記積層体とともに、マグネシア粉末、窒化ホウ素粉末及び窒化珪素粉末の混合粉末からなる詰め粉を坩堝内に配置した後、前記焼成工程を行うことを特徴とする方法。 8. The method of manufacturing a silicon nitride sintered body substrate according to claim 7, wherein a packing powder made of a mixed powder of magnesia powder, boron nitride powder and silicon nitride powder is placed in a crucible together with the laminate, and then the firing step. The method characterized by performing.
- 請求項8に記載の窒化珪素焼結体基板の製造方法において、前記詰め粉を前記載置板組立体の最上段の載置板の上面に配置することを特徴とする方法。 9. The method of manufacturing a silicon nitride sintered body substrate according to claim 8, wherein the filling powder is disposed on the upper surface of the uppermost mounting plate of the mounting plate assembly.
- 請求項7~9のいずれかに記載の窒化珪素焼結体基板の製造方法において、前記坩堝が内側坩堝と外側坩堝の二重構造になっていることを特徴とする方法。 10. The method for producing a sintered silicon nitride substrate according to claim 7, wherein the crucible has a double structure of an inner crucible and an outer crucible.
- 請求項10に記載の窒化珪素焼結体基板の製造方法において、前記内側坩堝がBN製であり、前記外側坩堝がBNコーティングをした炭素製であることを特徴とする方法。 11. The method of manufacturing a silicon nitride sintered body substrate according to claim 10, wherein the inner crucible is made of BN, and the outer crucible is made of carbon coated with BN.
- 請求項1~11のいずれかに記載の方法により製造された窒化珪素焼結体基板であって、反りが2.5μm/mm以内であり、かつ表面うねりが2.0μm以上の領域の面積率が15%以下であることを特徴とする窒化珪素焼結体基板。 A silicon nitride sintered substrate produced by the method according to any one of claims 1 to 11, wherein the area ratio of a region having a warp of 2.5 μm / mm or less and a surface waviness of 2.0 μm or more is 15 % Of silicon nitride sintered body substrate.
- 請求項12に記載の窒化珪素焼結体基板において、厚さ方向のMg分布の変動係数が0.3以下であることを特徴とする窒化珪素焼結体基板。 13. The silicon nitride sintered substrate according to claim 12, wherein a variation coefficient of Mg distribution in the thickness direction is 0.3 or less.
- 請求項12又は13のいずれかに記載の窒化珪素焼結体基板において、空孔の面積率が2.0%以下であり、前記空孔の最大径が10.0μmであることを特徴とする窒化珪素焼結体基板。 14. The silicon nitride sintered substrate according to claim 12, wherein the area ratio of pores is 2.0% or less, and the maximum diameter of the pores is 10.0 μm. Bonded substrate.
- 請求項14に記載の窒化珪素焼結体基板において、前記窒化珪素焼結体基板に銅板をろう付けした場合に、接合界面に生じた100μm以上の径を有するボイドの面積率が3.0%以下であることを特徴とする窒化珪素焼結体基板。 15. The silicon nitride sintered body substrate according to claim 14, wherein when a copper plate is brazed to the silicon nitride sintered body substrate, an area ratio of voids having a diameter of 100 μm or more generated at a bonding interface is 3.0% or less. There is provided a silicon nitride sintered substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507919A JP5729519B2 (en) | 2012-03-26 | 2013-03-26 | Sintered silicon nitride substrate and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-068925 | 2012-03-26 | ||
JP2012068925 | 2012-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146789A1 true WO2013146789A1 (en) | 2013-10-03 |
Family
ID=49260040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/058813 WO2013146789A1 (en) | 2012-03-26 | 2013-03-26 | Sintered silicon nitride substrate and process for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5729519B2 (en) |
WO (1) | WO2013146789A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017178715A (en) * | 2016-03-31 | 2017-10-05 | 日立金属株式会社 | Method for producing ceramic sintered plate |
WO2017170247A1 (en) * | 2016-03-28 | 2017-10-05 | 日立金属株式会社 | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate |
JP2018010091A (en) * | 2016-07-12 | 2018-01-18 | 株式会社デンソー | Display device |
JP2018020929A (en) * | 2016-08-03 | 2018-02-08 | 日立金属株式会社 | Silicon nitride sintered substrate and production method thereof |
WO2018105333A1 (en) * | 2016-12-08 | 2018-06-14 | 株式会社村田製作所 | Multilayer ceramic substrate and electronic device |
JP2019059639A (en) * | 2017-09-26 | 2019-04-18 | 日立金属株式会社 | Silicon nitride sintered substrate |
WO2020090832A1 (en) * | 2018-11-01 | 2020-05-07 | 宇部興産株式会社 | Silicon nitride substrate production method and silicon nitride substrate |
JP2020093978A (en) * | 2016-08-03 | 2020-06-18 | 日立金属株式会社 | Method for manufacturing sintered silicon nitride substrate |
WO2020203787A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package |
WO2021095845A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards |
JP2021130595A (en) * | 2020-02-21 | 2021-09-09 | 京セラ株式会社 | Silicon nitride substrate and power module |
JP2021167276A (en) * | 2020-09-01 | 2021-10-21 | 日立金属株式会社 | Deposited body |
CN113800919A (en) * | 2021-10-26 | 2021-12-17 | 中材高新氮化物陶瓷有限公司 | High-precision silicon nitride ceramic microsphere and preparation method and application thereof |
JP2022010369A (en) * | 2017-09-26 | 2022-01-14 | 日立金属株式会社 | Silicon nitride sintered substrate |
WO2022034810A1 (en) * | 2020-08-12 | 2022-02-17 | 株式会社Fjコンポジット | Laminate for circuit board |
JP2022166444A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Sintered silicon nitride |
JP2022166447A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Sintered silicon nitride |
JP2022166446A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Silicon nitride sintered body |
JP2022166443A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Method for producing sintered silicon nitride |
JP2022166445A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Silicon nitride sintered body |
EP4059912A4 (en) * | 2019-11-15 | 2023-01-04 | Denka Company Limited | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
KR20230001692A (en) * | 2021-06-29 | 2023-01-05 | 주식회사 아모센스 | Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same |
CN116161970A (en) * | 2022-12-29 | 2023-05-26 | 无锡海古德新技术有限公司 | Lamination sintering process method of high-performance silicon nitride ceramic substrate |
WO2023190299A1 (en) | 2022-03-28 | 2023-10-05 | 株式会社 東芝 | Boron nitride plate surface treatment method, method for producing ceramic sintered body, and method for producing boron nitride plate |
CN116964020A (en) * | 2021-03-19 | 2023-10-27 | 株式会社博迈立铖 | Silicon nitride substrate |
WO2024062832A1 (en) * | 2022-09-20 | 2024-03-28 | 株式会社 東芝 | Ceramic substrate, ceramic circuit substrate, and semiconductor device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63151680A (en) * | 1986-12-16 | 1988-06-24 | 日本碍子株式会社 | High-strength normal pressure-sintering silicon nitride sintered body and manufacture |
JPS6487574A (en) * | 1987-09-29 | 1989-03-31 | Nippon Chemicon | Production of planar sintered ceramics body |
JPH09235165A (en) * | 1996-02-29 | 1997-09-09 | Chichibu Onoda Cement Corp | Production of sintered compact of silicon nitride |
JPH10279364A (en) * | 1997-04-01 | 1998-10-20 | Toray Ind Inc | Ceramic green sheet |
JP2002053376A (en) * | 2000-08-08 | 2002-02-19 | Toyota Central Res & Dev Lab Inc | Method for sintering silicon nitride ceramics |
JP2002290041A (en) * | 2001-03-27 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Manufacturing method of laminated ceramic board |
JP2003313079A (en) * | 2002-04-23 | 2003-11-06 | Hitachi Metals Ltd | Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact |
JP2009215142A (en) * | 2008-03-13 | 2009-09-24 | Hitachi Metals Ltd | Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module |
WO2010002001A1 (en) * | 2008-07-03 | 2010-01-07 | 日立金属株式会社 | Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board |
JP2011178598A (en) * | 2010-03-01 | 2011-09-15 | Hitachi Metals Ltd | Method for manufacturing silicon nitride substrate and silicon nitride substrate |
JP2012218983A (en) * | 2011-04-11 | 2012-11-12 | Hitachi Metals Ltd | Method of manufacturing silicon nitride ceramic sintered compact, and sintering vessel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012204357A (en) * | 2011-03-23 | 2012-10-22 | Hitachi Metals Ltd | Circuit board manufacturing method, and circuit board |
CN103781742B (en) * | 2011-10-11 | 2015-08-26 | 日立金属株式会社 | The manufacture method of silicon nitride board and silicon nitride board |
-
2013
- 2013-03-26 JP JP2014507919A patent/JP5729519B2/en active Active
- 2013-03-26 WO PCT/JP2013/058813 patent/WO2013146789A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63151680A (en) * | 1986-12-16 | 1988-06-24 | 日本碍子株式会社 | High-strength normal pressure-sintering silicon nitride sintered body and manufacture |
JPS6487574A (en) * | 1987-09-29 | 1989-03-31 | Nippon Chemicon | Production of planar sintered ceramics body |
JPH09235165A (en) * | 1996-02-29 | 1997-09-09 | Chichibu Onoda Cement Corp | Production of sintered compact of silicon nitride |
JPH10279364A (en) * | 1997-04-01 | 1998-10-20 | Toray Ind Inc | Ceramic green sheet |
JP2002053376A (en) * | 2000-08-08 | 2002-02-19 | Toyota Central Res & Dev Lab Inc | Method for sintering silicon nitride ceramics |
JP2002290041A (en) * | 2001-03-27 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Manufacturing method of laminated ceramic board |
JP2003313079A (en) * | 2002-04-23 | 2003-11-06 | Hitachi Metals Ltd | Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact |
JP2009215142A (en) * | 2008-03-13 | 2009-09-24 | Hitachi Metals Ltd | Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module |
WO2010002001A1 (en) * | 2008-07-03 | 2010-01-07 | 日立金属株式会社 | Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board |
JP2011178598A (en) * | 2010-03-01 | 2011-09-15 | Hitachi Metals Ltd | Method for manufacturing silicon nitride substrate and silicon nitride substrate |
JP2012218983A (en) * | 2011-04-11 | 2012-11-12 | Hitachi Metals Ltd | Method of manufacturing silicon nitride ceramic sintered compact, and sintering vessel |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10669210B2 (en) | 2016-03-28 | 2020-06-02 | Hitachi Metals, Ltd. | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate |
WO2017170247A1 (en) * | 2016-03-28 | 2017-10-05 | 日立金属株式会社 | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate |
CN108495831A (en) * | 2016-03-28 | 2018-09-04 | 日立金属株式会社 | The manufacturing method of silicon nitride sintered base plate, silicon nitride sintered base plate piece, loop substrate and silicon nitride sintered base plate |
JPWO2017170247A1 (en) * | 2016-03-28 | 2018-09-13 | 日立金属株式会社 | Circuit board and silicon nitride sintered substrate manufacturing method |
JP2017178715A (en) * | 2016-03-31 | 2017-10-05 | 日立金属株式会社 | Method for producing ceramic sintered plate |
JP2018010091A (en) * | 2016-07-12 | 2018-01-18 | 株式会社デンソー | Display device |
JP2018020929A (en) * | 2016-08-03 | 2018-02-08 | 日立金属株式会社 | Silicon nitride sintered substrate and production method thereof |
JP2020093978A (en) * | 2016-08-03 | 2020-06-18 | 日立金属株式会社 | Method for manufacturing sintered silicon nitride substrate |
JP2020174210A (en) * | 2016-12-08 | 2020-10-22 | 株式会社村田製作所 | Multilayer ceramic substrate and electronic apparatus |
CN110024498B (en) * | 2016-12-08 | 2021-12-31 | 株式会社村田制作所 | Multilayer ceramic substrate and electronic device |
WO2018105333A1 (en) * | 2016-12-08 | 2018-06-14 | 株式会社村田製作所 | Multilayer ceramic substrate and electronic device |
CN110024498A (en) * | 2016-12-08 | 2019-07-16 | 株式会社村田制作所 | Multilayer ceramic substrate and electronic device |
JPWO2018105333A1 (en) * | 2016-12-08 | 2019-10-24 | 株式会社村田製作所 | Multilayer ceramic substrate and electronic device |
JP7309666B2 (en) | 2016-12-08 | 2023-07-18 | 株式会社村田製作所 | Multilayer ceramic substrate and electronic device |
US11011441B2 (en) | 2016-12-08 | 2021-05-18 | Murata Manufacturing Co., Ltd. | Multilayer ceramic substrate and electronic device |
JP2019059639A (en) * | 2017-09-26 | 2019-04-18 | 日立金属株式会社 | Silicon nitride sintered substrate |
JP7075612B2 (en) | 2017-09-26 | 2022-05-26 | 日立金属株式会社 | Silicon nitride sintered substrate |
JP2022010369A (en) * | 2017-09-26 | 2022-01-14 | 日立金属株式会社 | Silicon nitride sintered substrate |
JP6992364B2 (en) | 2017-09-26 | 2022-01-13 | 日立金属株式会社 | Silicon nitride sintered substrate |
JP7272370B2 (en) | 2018-11-01 | 2023-05-12 | Ube株式会社 | Silicon nitride substrate manufacturing method and silicon nitride substrate |
WO2020090832A1 (en) * | 2018-11-01 | 2020-05-07 | 宇部興産株式会社 | Silicon nitride substrate production method and silicon nitride substrate |
JPWO2020090832A1 (en) * | 2018-11-01 | 2021-09-16 | 宇部興産株式会社 | Manufacturing method of silicon nitride substrate and silicon nitride substrate |
US20220177377A1 (en) * | 2019-03-29 | 2022-06-09 | Denka Company Limited | Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit board, and semiconductor package |
JPWO2020203787A1 (en) * | 2019-03-29 | 2020-10-08 | ||
EP3951853B1 (en) * | 2019-03-29 | 2024-02-21 | Denka Company Limited | Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package |
JP7219810B2 (en) | 2019-03-29 | 2023-02-08 | デンカ株式会社 | Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package |
WO2020203787A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package |
WO2021095845A1 (en) * | 2019-11-15 | 2021-05-20 | デンカ株式会社 | Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards |
EP4059912A4 (en) * | 2019-11-15 | 2023-01-04 | Denka Company Limited | Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards |
JP7351766B2 (en) | 2020-02-21 | 2023-09-27 | 京セラ株式会社 | Silicon nitride substrate and power module |
JP2021130595A (en) * | 2020-02-21 | 2021-09-09 | 京セラ株式会社 | Silicon nitride substrate and power module |
CN116075492A (en) * | 2020-08-12 | 2023-05-05 | 株式会社德山 | Laminate for circuit board |
WO2022034810A1 (en) * | 2020-08-12 | 2022-02-17 | 株式会社Fjコンポジット | Laminate for circuit board |
CN116075492B (en) * | 2020-08-12 | 2024-06-11 | 株式会社德山 | Laminate for circuit board |
JP7468769B2 (en) | 2020-09-01 | 2024-04-16 | 株式会社プロテリアル | Manufacturing method of silicon nitride sintered substrate |
JP7405121B2 (en) | 2020-09-01 | 2023-12-26 | 株式会社プロテリアル | assembly |
JP2021167276A (en) * | 2020-09-01 | 2021-10-21 | 日立金属株式会社 | Deposited body |
CN116964020A (en) * | 2021-03-19 | 2023-10-27 | 株式会社博迈立铖 | Silicon nitride substrate |
JP2022166443A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Method for producing sintered silicon nitride |
JP2022166445A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Silicon nitride sintered body |
JP7278325B2 (en) | 2021-04-21 | 2023-05-19 | 株式会社Maruwa | Silicon nitride sintered body |
JP2022166444A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Sintered silicon nitride |
JP7201734B2 (en) | 2021-04-21 | 2023-01-10 | 株式会社Maruwa | Silicon nitride sintered body |
JP7339980B2 (en) | 2021-04-21 | 2023-09-06 | 株式会社Maruwa | Manufacturing method of silicon nitride sintered body |
JP7339979B2 (en) | 2021-04-21 | 2023-09-06 | 株式会社Maruwa | Manufacturing method of silicon nitride sintered body |
JP2022166447A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Sintered silicon nitride |
JP2022166446A (en) * | 2021-04-21 | 2022-11-02 | 株式会社Maruwa | Silicon nitride sintered body |
JP7278326B2 (en) | 2021-04-21 | 2023-05-19 | 株式会社Maruwa | Manufacturing method of silicon nitride sintered body |
JP7432040B2 (en) | 2021-04-21 | 2024-02-15 | 株式会社Maruwa | silicon nitride sintered body |
KR20230001692A (en) * | 2021-06-29 | 2023-01-05 | 주식회사 아모센스 | Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same |
KR102704180B1 (en) * | 2021-06-29 | 2024-09-06 | 주식회사 아모센스 | Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same |
CN113800919A (en) * | 2021-10-26 | 2021-12-17 | 中材高新氮化物陶瓷有限公司 | High-precision silicon nitride ceramic microsphere and preparation method and application thereof |
WO2023190299A1 (en) | 2022-03-28 | 2023-10-05 | 株式会社 東芝 | Boron nitride plate surface treatment method, method for producing ceramic sintered body, and method for producing boron nitride plate |
WO2024062832A1 (en) * | 2022-09-20 | 2024-03-28 | 株式会社 東芝 | Ceramic substrate, ceramic circuit substrate, and semiconductor device |
CN116161970A (en) * | 2022-12-29 | 2023-05-26 | 无锡海古德新技术有限公司 | Lamination sintering process method of high-performance silicon nitride ceramic substrate |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013146789A1 (en) | 2015-12-14 |
JP5729519B2 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5729519B2 (en) | Sintered silicon nitride substrate and manufacturing method thereof | |
JP6399252B2 (en) | Circuit board and silicon nitride sintered substrate manufacturing method | |
JP5673847B2 (en) | Silicon nitride substrate and method for manufacturing silicon nitride substrate | |
US10308560B2 (en) | High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same | |
JP5673106B2 (en) | Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module | |
US11964919B2 (en) | Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength | |
JP3115238B2 (en) | Silicon nitride circuit board | |
JP5339214B2 (en) | Method for manufacturing silicon nitride substrate and silicon nitride substrate | |
JP2010103570A (en) | Ceramic circuit board | |
JP6992364B2 (en) | Silicon nitride sintered substrate | |
JP7468769B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
JP6891991B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
JP5439729B2 (en) | Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit substrate and semiconductor module using the same | |
JP7075612B2 (en) | Silicon nitride sintered substrate | |
US8791566B2 (en) | Aluminum nitride substrate, aluminum nitride circuit board, semiconductor apparatus, and method for manufacturing aluminum nitride substrate | |
JP6672960B2 (en) | Manufacturing method of ceramic sintered plate | |
JP5248381B2 (en) | Aluminum nitride substrate, method for manufacturing the same, circuit substrate, and semiconductor device | |
JP6766509B2 (en) | Manufacturing method of silicon nitride sintered substrate | |
JP2002176119A (en) | Silicon nitride substrate, silicon nitride circuit substrate using the same, and method of manufacturing the same | |
JPWO2022156634A5 (en) | ||
JP2023116214A (en) | Electrode embedded member and method of manufacturing the same | |
JP5595833B2 (en) | Aluminum nitride substrate | |
CN116835990A (en) | Composite ceramic substrate, copper-clad ceramic substrate, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768241 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507919 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13768241 Country of ref document: EP Kind code of ref document: A1 |