JP2009215142A - Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module - Google Patents

Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module Download PDF

Info

Publication number
JP2009215142A
JP2009215142A JP2008063426A JP2008063426A JP2009215142A JP 2009215142 A JP2009215142 A JP 2009215142A JP 2008063426 A JP2008063426 A JP 2008063426A JP 2008063426 A JP2008063426 A JP 2008063426A JP 2009215142 A JP2009215142 A JP 2009215142A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride substrate
substrate
circuit board
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063426A
Other languages
Japanese (ja)
Inventor
Yoichiro Kaga
洋一郎 加賀
Junichi Watanabe
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008063426A priority Critical patent/JP2009215142A/en
Priority to US12/379,868 priority patent/US7948075B2/en
Priority to KR1020090018856A priority patent/KR101569421B1/en
Priority to EP09154697.8A priority patent/EP2100865B1/en
Publication of JP2009215142A publication Critical patent/JP2009215142A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride substrate having high strength, and in which warpage is properly regulated, to provide a method for producing the same, to provide a silicon nitride circuit board using the same, and to provide a semiconductor module. <P>SOLUTION: Silicon nitride raw material powder is blended with magnesium oxide of 3 to 4 wt.% and the oxide of at least one kind of rare earth element of 2 to 5 wt.% in such a manner that the total is controlled to 5 to 8 wt.%, so as to be a sheet molded body, and sintering is performed thereto. Thereafter, in a superimposed state, a plurality of the sintered compacts are heated at 1,550 to 1,700°C while applying a load of 0.5 to 6.0 kPa thereto, so as to produce a silicon nitride substrate comprising β type silicon nitride, yttrium (Y) and magnesium (Mg), and in which a variation coefficient showing the distribution of the Mg content in the surface is ≤0.20 and warpage is ≤2.0 μm/mm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化珪素基板及びその製造方法に関する。また、本発明は、上記窒化珪素基板を使用した窒化珪素回路基板及び半導体モジュールに関する。   The present invention relates to a silicon nitride substrate and a method for manufacturing the same. The present invention also relates to a silicon nitride circuit board and a semiconductor module using the silicon nitride substrate.

近年、電動車両用インバータ等の分野において、高電圧・大電流動作が可能なパワー半導体モジュール(IGBT,パワーMOSFET等)が用いられている。パワー半導体モジュールに使用される基板としては、絶縁性セラミックス基板の一方の面に金属回路板を接合し、他方の面に金属放熱板を接合したセラミックス回路基板を用いることができる。また、金属回路板の上面には、半導体素子等が搭載される。上記絶縁性セラミックス基板と金属回路板及び金属放熱板との接合は、例えばろう材による活性金属法や銅板を直接接合する、いわゆる銅直接接合法が採用されている。   In recent years, power semiconductor modules (IGBT, power MOSFET, etc.) capable of high voltage and large current operation have been used in the field of inverters for electric vehicles. As a substrate used for the power semiconductor module, a ceramic circuit substrate in which a metal circuit board is bonded to one surface of an insulating ceramic substrate and a metal heat sink is bonded to the other surface can be used. A semiconductor element or the like is mounted on the upper surface of the metal circuit board. For joining the insulating ceramic substrate to the metal circuit board and the metal heat sink, for example, an active metal method using a brazing material or a so-called copper direct joining method in which a copper plate is directly joined is employed.

このようなパワー半導体モジュールにおいては、大電流を流すことにより発熱量が多くなるので、上記絶縁性セラミックス基板と金属回路板及び金属放熱板との間の熱膨張率の相異に基づく熱応力が発生する。これにより、絶縁性セラミックス基板にクラックを生じさせ破壊に至るか、あるいは金属回路板または金属放熱板の絶縁性セラミックス基板からの剥離を生じさせる場合がある。絶縁性セラミックス基板の材料としては、例えば窒化アルミニウムや窒化珪素が挙げられるが、窒化アルミニウムを使用した絶縁性セラミックス基板は、機械的強度が低いので、このようなクラックが生じやすく、パワー半導体モジュールに使用することは困難である。   In such a power semiconductor module, since a large amount of heat is generated by flowing a large current, a thermal stress based on a difference in thermal expansion coefficient between the insulating ceramic substrate, the metal circuit board, and the metal heat sink is generated. appear. As a result, the insulating ceramic substrate may be cracked and broken, or the metal circuit board or the metal heat radiating plate may be peeled off from the insulating ceramic substrate. Examples of the material for the insulating ceramic substrate include aluminum nitride and silicon nitride. However, since the insulating ceramic substrate using aluminum nitride has low mechanical strength, such a crack is likely to occur, and the power semiconductor module is used. It is difficult to use.

そこで、窒化珪素焼結体の例が開示されている。下記特許文献1では、粒界相を形成する焼結助剤として熱分解して酸化マグネシウム(MgO)となる炭酸マグネシウム(MgCO)や水酸化マグネシウム(Mg(OH))の微粉末を使用することで、粒界相が均一に分散した焼結体として強度を向上し、また強度ばらつきを低減している。また、下記特許文献2では、複数の焼結助剤成分を予め混合して均一に分散させた後に、主原料である窒化珪素粉末を混合して焼結助剤成分の凝集や偏析を抑制した高強度な焼結体を得ている。 Therefore, an example of a silicon nitride sintered body is disclosed. In Patent Document 1 below, a fine powder of magnesium carbonate (MgCO 3 ) or magnesium hydroxide (Mg (OH) 2 ) that is thermally decomposed into magnesium oxide (MgO) is used as a sintering aid for forming the grain boundary phase. By doing so, the strength is improved as a sintered body in which the grain boundary phase is uniformly dispersed, and the variation in strength is reduced. Moreover, in the following Patent Document 2, a plurality of sintering aid components are mixed in advance and uniformly dispersed, and then silicon nitride powder as a main material is mixed to suppress aggregation and segregation of the sintering aid components. A high-strength sintered body is obtained.

特開昭61−10069号公報JP-A-61-10069 特開2004−161605号公報JP 2004-161605 A

しかし、上記従来の技術を窒化珪素基板に適用する場合、窒化珪素基板の反りを適性に調整することができないという問題があった。一般に、窒化珪素基板は反りが大きくなると、金属回路板及び金属放熱板との密着性が低下し、窒化珪素基板と金属回路板及び金属放熱板との接合温度(約800℃)からの冷却過程またはパワー半導体モジュールを稼働させるときの加熱冷却サイクルにおいて発生する熱応力により、窒化珪素基板から金属回路板及び金属放熱板が剥離しやすくなる。このため、反りを適性に調整する必要があるが、上記従来の技術においては、窒化珪素基板の反りを調整する点について開示が無い。従って、上述した通り、窒化珪素基板の反りの値を適性に調整することができないという問題があった。   However, when the conventional technique is applied to a silicon nitride substrate, there is a problem in that the warpage of the silicon nitride substrate cannot be adjusted appropriately. Generally, when the warpage of a silicon nitride substrate increases, the adhesion between the metal circuit board and the metal heat sink decreases, and the cooling process from the bonding temperature (about 800 ° C.) between the silicon nitride substrate, the metal circuit board, and the metal heat sink. Alternatively, the metal circuit board and the metal heat sink are easily separated from the silicon nitride substrate due to thermal stress generated in the heating / cooling cycle when the power semiconductor module is operated. For this reason, it is necessary to adjust the warp appropriately, but the conventional technique described above does not disclose the point of adjusting the warp of the silicon nitride substrate. Therefore, as described above, there is a problem that the warp value of the silicon nitride substrate cannot be adjusted appropriately.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、高強度で反りが適性に調整された窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュールを提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a silicon nitride substrate having a high strength and a suitable warp, a manufacturing method thereof, and a silicon nitride circuit substrate and a semiconductor module using the silicon nitride substrate. It is to provide.

上記目的を達成するために、請求項1記載の窒化珪素基板の発明は、β型窒化珪素と、イットリウム(Y)と、マグネシウム(Mg)を含有する窒化珪素基板において、前記窒化珪素基板の表面におけるMg量の分布を示す変動係数が0.20以下であり、反りが2.0μm/mm以下であることを特徴とする。   In order to achieve the above object, a silicon nitride substrate according to claim 1 is a silicon nitride substrate containing β-type silicon nitride, yttrium (Y), and magnesium (Mg). The variation coefficient indicating the distribution of the Mg amount in the film is 0.20 or less, and the warpage is 2.0 μm / mm or less.

請求項2記載の発明は、請求項1記載の窒化珪素基板において、Mg(マグネシウム)を酸化マグネシウム(MgO)に換算し、同じく含有するY(イットリウム)を酸化イットリウム(Y)に換算したとき、MgO含有量が3.0〜4.2wt%、Y含有量が2.0〜5.0wt%、であることを特徴とする。本発明において好ましくはMgOとYの合計の含有量が5.0〜8.3wt%で、かつ(MgO)/(Y)が0.62〜2.2である。 The invention according to claim 2 is the silicon nitride substrate according to claim 1, wherein Mg (magnesium) is converted into magnesium oxide (MgO), and Y (yttrium), which is also contained, is converted into yttrium oxide (Y 2 O 3 ). The MgO content is 3.0 to 4.2 wt%, and the Y 2 O 3 content is 2.0 to 5.0 wt%. In the present invention, the total content of MgO and Y 2 O 3 is preferably 5.0 to 8.3 wt%, and (MgO) / (Y 2 O 3 ) is 0.62 to 2.2.

請求項3記載の窒化珪素回路基板の発明は、請求項1または請求項2記載の窒化珪素基板の一方の面に金属回路板を接合し、他方の面に金属放熱板を接合したことを特徴とする。   The invention of the silicon nitride circuit board according to claim 3 is characterized in that a metal circuit plate is joined to one surface of the silicon nitride substrate according to claim 1 or claim 2 and a metal heat radiating plate is joined to the other surface. And

請求項4記載の半導体モジュールの発明は、請求項3記載の窒化珪素回路基板と、前記窒化珪素回路基板上に搭載された半導体素子と、を有することを特徴とする。   According to a fourth aspect of the present invention, there is provided a semiconductor module comprising: the silicon nitride circuit board according to the third aspect; and a semiconductor element mounted on the silicon nitride circuit board.

請求項5記載の窒化珪素基板の製造方法の発明は、窒化珪素原料粉に、酸化マグネシウムを3〜4重量%、少なくとも1種の希土類元素の酸化物を2〜5重量%になるように配合し、シート成形体とし、焼結した後、複数枚重ねた状態で0.5〜6.0kPaの荷重を印加しながら1550〜1700℃で熱処理することを特徴とする。本発明では酸化マグネシウムと希土類元素の酸化物を合計5〜8wt%になるように配合することが好ましい。   The invention of the method for producing a silicon nitride substrate according to claim 5 is characterized in that the silicon nitride raw material powder is mixed with magnesium oxide at 3 to 4% by weight and at least one rare earth element oxide at 2 to 5% by weight. The sheet molded body is sintered and then heat-treated at 1550 to 1700 ° C. while applying a load of 0.5 to 6.0 kPa in a state where a plurality of sheets are stacked. In this invention, it is preferable to mix | blend magnesium oxide and the rare earth element oxide so that it may become 5-8 wt% in total.

請求項1及び請求項2の発明によれば、高強度で反りが適性に調整された窒化珪素基板を実現できる。   According to the first and second aspects of the invention, it is possible to realize a silicon nitride substrate with high strength and appropriate warpage.

請求項3の発明によれば、クラックの発生または金属回路板及び金属放熱板の剥離の発生が抑制された窒化珪素回路基板を実現できる。   According to the invention of claim 3, it is possible to realize a silicon nitride circuit board in which generation of cracks or peeling of the metal circuit board and the metal heat sink is suppressed.

請求項4の発明によれば、クラックの発生または金属回路板及び金属放熱板の剥離の発生が抑制された半導体モジュールを実現できる。   According to the invention of claim 4, it is possible to realize a semiconductor module in which generation of cracks or peeling of the metal circuit board and the metal heat sink is suppressed.

請求項5の発明によれば、高強度で反りが適性に調整された窒化珪素基板の製造方法を提供できる。   According to the invention of claim 5, it is possible to provide a method for manufacturing a silicon nitride substrate having high strength and appropriately adjusted warpage.

以下、本発明を実施するための最良の形態(以下、実施形態という)について説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described.

本発明の一実施形態は、上述したパワー半導体モジュール等に使用される絶縁性セラミックス基板としての窒化珪素基板であって、β型窒化珪素と、イットリウム(Y)と、マグネシウム(Mg)を含有する窒化珪素基板において、前記窒化珪素基板の表面におけるMg量の分布を示す変動係数が0.20以下となっている。また、その窒化珪素基板の反りは、2.0μm/mm以下となっている。   One embodiment of the present invention is a silicon nitride substrate as an insulating ceramic substrate used in the above-described power semiconductor module and the like, and includes β-type silicon nitride, yttrium (Y), and magnesium (Mg). In the silicon nitride substrate, the variation coefficient indicating the distribution of the amount of Mg on the surface of the silicon nitride substrate is 0.20 or less. Further, the warp of the silicon nitride substrate is 2.0 μm / mm or less.

ここで、上記基板表面とは、窒化珪素基板の最表面すなわち窒化珪素基板を製造した際の研削する前の表面、またはその最表面から基板厚さの10%以下または15μm以下の深さまで研磨して得られた面である。   Here, the surface of the substrate is the outermost surface of the silicon nitride substrate, that is, the surface before grinding when the silicon nitride substrate is manufactured, or polished from the outermost surface to a depth of 10% or less of the substrate thickness or 15 μm or less. This is the surface obtained.

また、上記Mg量の分布を示す変動係数は、上記基板表面の任意の位置においてEPMAによりビーム径1μmで1mmの範囲を走査し、2μm間隔で測定したMgのX線強度の値から、その標準偏差をその平均値で割ることによって求めた値である。   Further, the variation coefficient indicating the distribution of the amount of Mg is determined based on the X-ray intensity value of Mg measured at intervals of 2 μm by scanning a range of 1 mm with a beam diameter of 1 μm by EPMA at an arbitrary position on the substrate surface. It is a value obtained by dividing the deviation by its average value.

一般に、窒化珪素基板は窒化珪素粒子と焼結助剤として添加した成分を主とする粒界相から構成されている。添加した焼結助剤を主成分として生成される粒界相は窒化珪素粒子間の結合を保ち、また、粒子間の欠陥を抑制する役割を担っている。特に、窒化珪素基板の表面に粗大な欠陥がある場合、窒化珪素基板に応力が加わったとき、その欠陥が破壊の起点となり容易に破壊が起こるため、粒界相が均一に分散されて存在して粗大な欠陥の生成が抑制されている必要がある。   In general, a silicon nitride substrate is composed of a grain boundary phase mainly composed of silicon nitride particles and a component added as a sintering aid. The grain boundary phase generated by using the added sintering aid as a main component maintains the bonds between the silicon nitride particles and plays a role of suppressing defects between the particles. In particular, when there are coarse defects on the surface of the silicon nitride substrate, when the stress is applied to the silicon nitride substrate, the defect becomes the starting point of the breakage and easily breaks down, so that the grain boundary phase exists uniformly dispersed. And the generation of coarse defects must be suppressed.

窒化珪素基板において焼結助剤として添加したMgOおよびYはSiやSi中に含まれるSiOと反応して焼結工程で液相を形成する。このうちMgOは上記の液相を比較的低温で生成させる役割をするため、焼結の促進に寄与する一方で、MgOを含んだ液相は揮発や偏析を起こしやすく焼結工程で特に高温に曝されやすい基板表面で、液相から生成するMgを含んだ粒界相を不均一に形成しやすい。このMgを含んだ粒界相の均一性は窒化珪素基板の表面のMg量の分布を示す変動係数を調べることにより把握することができる。このため、窒化珪素基板の表面のMg量の分布を示す変動係数が大きい場合、窒化珪素基板の表面に粗大な欠陥が多数形成されて曲げ強度が低下し、窒化珪素基板と金属回路板及び金属放熱板との接合工程、パワー半導体モジュールの作製工程、もしくはパワー半導体モジュールの稼働に伴うヒートサイクルにより窒化珪素基板に応力が働いた場合にクラックが発生しやすくなる。以上に述べたことから、窒化珪素基板の表面のMg量の分布を示す変動係数を適切な値に調整する必要がある。一方、窒化珪素基板の表面のY量の分布は製造条件の影響をほとんど受けない。 MgO and Y 2 O 3 added as sintering aids in the silicon nitride substrate react with SiO 2 contained in Si 3 N 4 or Si 3 N 4 to form a liquid phase in the sintering process. Among these, MgO plays the role of generating the above liquid phase at a relatively low temperature, and thus contributes to the promotion of sintering. On the other hand, the liquid phase containing MgO is liable to volatilize and segregate, and is particularly high in the sintering process. It is easy to form a grain boundary phase containing Mg generated from the liquid phase non-uniformly on the substrate surface that is easily exposed. The uniformity of the grain boundary phase containing Mg can be grasped by examining the variation coefficient indicating the distribution of Mg content on the surface of the silicon nitride substrate. For this reason, when the coefficient of variation indicating the distribution of Mg content on the surface of the silicon nitride substrate is large, a large number of coarse defects are formed on the surface of the silicon nitride substrate and the bending strength is lowered, and the silicon nitride substrate, the metal circuit board, and the metal Cracks are likely to occur when stress is applied to the silicon nitride substrate due to the joining process with the heat sink, the manufacturing process of the power semiconductor module, or the heat cycle accompanying the operation of the power semiconductor module. As described above, it is necessary to adjust the coefficient of variation indicating the distribution of Mg content on the surface of the silicon nitride substrate to an appropriate value. On the other hand, the distribution of Y amount on the surface of the silicon nitride substrate is hardly affected by the manufacturing conditions.

そこで、本実施形態にかかる窒化珪素基板では、上述したように、Mg量の分布を示す変動係数が、基板表面において0.20以下に調整されている。これにより、窒化珪素基板の曲げ強度を向上させることができる。なお、変動係数の調整方法については後述する。   Therefore, in the silicon nitride substrate according to the present embodiment, as described above, the variation coefficient indicating the distribution of the Mg amount is adjusted to 0.20 or less on the substrate surface. Thereby, the bending strength of the silicon nitride substrate can be improved. A method for adjusting the coefficient of variation will be described later.

また、窒化珪素基板の反りが大きくなると、窒化珪素基板と金属回路板及び金属放熱板との間で密着性が低い部分が生じやすくなる。この結果、窒化珪素基板と金属回路板及び金属放熱板とが剥離しやすくなる。そこで、本実施形態にかかる窒化珪素基板では、上述したように反りが2.0μm/mm以下に抑制されている。反りを抑制する方法については後述する。   In addition, when the warp of the silicon nitride substrate is increased, a portion having low adhesion between the silicon nitride substrate, the metal circuit board, and the metal heat sink is likely to be generated. As a result, the silicon nitride substrate, the metal circuit board, and the metal heat sink are easily peeled off. Therefore, in the silicon nitride substrate according to the present embodiment, the warpage is suppressed to 2.0 μm / mm or less as described above. A method for suppressing warpage will be described later.

さらに、本実施形態にかかる窒化珪素基板においては、Mg(マグネシウム)を酸化マグネシウム換算で3.0〜4.2wt%とY(イットリウム)を酸化物換算で2.0〜5.0wt%(好ましくは合計で5.0〜8.3wt%)となるように含有している。また、Mg(マグネシウム)とY(イットリウム)を酸化物換算で(MgO)/(Y)が0.62〜2.2となる範囲で含有していることが好ましい。マグネシウム及びイットリウムは、窒化珪素基板を作製する際に焼結助剤として機能し、作製された窒化珪素基板内では主に粒界相として存在するため、含有量が少ないと空孔等の粗大な欠陥が生成されやすく、曲げ強度が低下する。一方、マグネシウム及びイットリウムの含有量が多くなると窒化珪素基板内に窒化珪素粒子と比較して強度の弱い粒界相が多量に形成されるため、粒界を経由する破壊が起こりやすく曲げ強度が低下する。また、マグネシウムとイットリウムの含有量の比が適正な範囲でない場合、焼結助剤としての役割が不十分となり窒化珪素基板の焼結が促進されなかったり、また、窒化珪素基板において脆弱な粒界相が形成されて曲げ強度が低下する。本実施形態では、これらの特性を調整するために、マグネシウム及びイットリウムの各含有量を上記範囲としている。 Furthermore, in the silicon nitride substrate according to the present embodiment, Mg (magnesium) is 3.0 to 4.2 wt% in terms of magnesium oxide and Y (yttrium) is 2.0 to 5.0 wt% in terms of oxide (preferably Is contained in a total amount of 5.0 to 8.3 wt%). Moreover, it is preferable to contain Mg (magnesium) and Y (yttrium) in a range where (MgO) / (Y 2 O 3 ) is 0.62 to 2.2 in terms of oxide. Magnesium and yttrium function as sintering aids in the production of a silicon nitride substrate, and are mainly present as grain boundary phases in the produced silicon nitride substrate. Defects are easily generated and bending strength is reduced. On the other hand, when the content of magnesium and yttrium increases, a large amount of grain boundary phases having weaker strength than silicon nitride particles are formed in the silicon nitride substrate, so that breakage easily occurs via the grain boundaries and the bending strength decreases. To do. In addition, when the ratio of the content of magnesium and yttrium is not in an appropriate range, the role as a sintering aid is insufficient, and the sintering of the silicon nitride substrate is not promoted. A phase is formed and the bending strength decreases. In the present embodiment, in order to adjust these characteristics, the contents of magnesium and yttrium are within the above ranges.

次に、本実施形態にかかる窒化珪素基板の製造方法について説明する。   Next, a method for manufacturing the silicon nitride substrate according to the present embodiment will be described.

図1には、本実施形態にかかる窒化珪素基板の製造方法の工程図が示される。図1において、原料調整・混合工程(a)では、窒化珪素原料粉に酸化マグネシウムが3〜4重量%、少なくとも1種の希土類元素の酸化物が2〜5重量%を合計5〜8wt%となるように混合し、溶剤、有機バインダー、可塑剤等とともにボールミル等で混合する。ここで、少なくとも1種の希土類元素の酸化物としては、上述した酸化イットリウム等を使用するのが好適である。   FIG. 1 shows a process diagram of a method for manufacturing a silicon nitride substrate according to the present embodiment. In FIG. 1, in the raw material adjustment / mixing step (a), the silicon nitride raw material powder contains 3 to 4% by weight of magnesium oxide and 2 to 5% by weight of oxide of at least one rare earth element, for a total of 5 to 8% by weight. And mixed with a solvent, an organic binder, a plasticizer, etc. by a ball mill or the like. Here, as the oxide of at least one kind of rare earth element, it is preferable to use the above-described yttrium oxide or the like.

次に、成形工程(b)では、上記混合した原料スラリーを脱泡・増粘した後、これを公知のドクターブレード法等により所定厚さの板にシート成形する。このときのシート成形体の板厚は、用途に応じて適宜決定できるが、例えば0.1〜1.0mm程度とすることができる。   Next, in the forming step (b), the mixed raw material slurry is defoamed and thickened, and then formed into a sheet having a predetermined thickness by a known doctor blade method or the like. Although the plate | board thickness of the sheet molded object at this time can be suitably determined according to a use, it can be about 0.1-1.0 mm, for example.

次に、焼結工程(c)では、上記シート成形体を焼結炉内で1800〜2000℃の温度で0.5〜1.0MPaの窒素加圧雰囲気中で焼結し、窒化珪素基板とする。   Next, in the sintering step (c), the sheet compact is sintered in a sintering furnace at a temperature of 1800 to 2000 ° C. in a nitrogen pressurized atmosphere of 0.5 to 1.0 MPa, To do.

次に、熱処理工程(d)では、焼結後の窒化珪素基板を複数枚重ねた状態で0.5〜6.0kPaの荷重(圧力)を印加しながら1550〜1700℃で熱処理する。このように、荷重を印加しながら熱処理することにより、窒化珪素基板の反りを抑制することができるとともに、基板表面にMgを含んだ粒界相を均一に分散でき曲げ強度を向上することができる。なお、このときの熱処理温度が1550℃よりも低くなると、反りの抑制効果が不十分となり、窒化珪素基板の反りが大きくなる。また、1700℃よりも高くなると、窒化珪素基板表面のマグネシウムを含有した粒界相成分の揮発や偏析が促進され窒化珪素基板表面に粗大な欠陥が形成されやすく曲げ強度が低下する。従って、熱処理温度は上記範囲が好適である。さらに、熱処理の際に印加する荷重が0.5kPaより低い場合には反りの抑制効果が不十分であるとともに、Mgを含む粒界相成分の揮発により、MgOの含有量が低下し、曲げ強度が低くなる。また、6.0kPaより高い場合には基板間の密着性が高くなり過ぎるため、基板間でのMgを含む粒界相成分の授受により、その偏析が促進されて窒化珪素基板表面に粗大な欠陥が形成されやすく曲げ強度が低下する。従って、熱処理の際に印加する荷重は上記範囲が好適である。なお、窒化珪素基板を複数枚重ねた状態で熱処理するのは、焼結助剤である酸化マグネシウムの揮発量を調整し、窒化珪素基板表面に含まれるMgが均一に分散するように制御するとともにMgOの含有量を調整するためである。   Next, in the heat treatment step (d), heat treatment is performed at 1550 to 1700 ° C. while applying a load (pressure) of 0.5 to 6.0 kPa in a state where a plurality of sintered silicon nitride substrates are stacked. Thus, by performing heat treatment while applying a load, it is possible to suppress warpage of the silicon nitride substrate and to uniformly disperse the grain boundary phase containing Mg on the substrate surface and to improve the bending strength. . If the heat treatment temperature at this time is lower than 1550 ° C., the effect of suppressing the warpage becomes insufficient, and the warpage of the silicon nitride substrate increases. When the temperature is higher than 1700 ° C., volatilization and segregation of the grain boundary phase component containing magnesium on the silicon nitride substrate surface is promoted, and coarse defects are easily formed on the silicon nitride substrate surface, resulting in a decrease in bending strength. Therefore, the above range is preferable for the heat treatment temperature. Furthermore, when the load applied during heat treatment is lower than 0.5 kPa, the effect of suppressing warpage is insufficient, and the content of MgO decreases due to volatilization of grain boundary phase components containing Mg, resulting in bending strength. Becomes lower. In addition, when it is higher than 6.0 kPa, the adhesion between the substrates becomes too high, so that the segregation is promoted by the transfer of grain boundary phase components including Mg between the substrates, and coarse defects are formed on the surface of the silicon nitride substrate. Is easily formed and the bending strength is lowered. Therefore, the above range is suitable for the load applied during the heat treatment. The heat treatment is performed in a state where a plurality of silicon nitride substrates are stacked, and the volatilization amount of magnesium oxide, which is a sintering aid, is adjusted and controlled so that Mg contained in the silicon nitride substrate surface is uniformly dispersed. This is for adjusting the content of MgO.

図2,図3には、上記熱処理工程(d)における荷重の印加方法の説明図が示される。図2では、窒化珪素基板10を、窒化ホウ素(BN)等のセラミックス製の板材14で挟み、重し16により荷重を印加する。なお、板材14を形成する材料は熱処理工程において窒化珪素基板に組成変動等の影響を及ぼすことのない材料であればBN以外の材料であってもよい。一般に入手が容易な材料の中ではBNが好適である。この重し16の材料は、窒化珪素が好適であり、タングステンまたはモリブデン等の高融点金属を使用することもできる。また、図3では、重し16の代わりにホットプレス18により荷重を印加している。   2 and 3 are explanatory views of a load application method in the heat treatment step (d). In FIG. 2, the silicon nitride substrate 10 is sandwiched between plate materials 14 made of ceramics such as boron nitride (BN), and a load is applied by a weight 16. The material for forming the plate member 14 may be a material other than BN as long as it does not affect the composition of the silicon nitride substrate in the heat treatment step. Among materials that are generally readily available, BN is preferred. The material of the weight 16 is preferably silicon nitride, and a refractory metal such as tungsten or molybdenum can also be used. In FIG. 3, a load is applied by a hot press 18 instead of the weight 16.

以上のようにして作製した窒化珪素基板は、高い曲げ強度、金属回路板及び金属放熱板等との高い密着性を有しており、高周波トランジスタ、パワー半導体モジュール等の回路用基板またはマルチチップモジュール用基板などの各種基板、あるいはペルチェ素子用熱伝板、または各種発熱素子用ヒートシンクなどの電子部品用部材に用いることができる。本実施形態にかかる窒化珪素基板を、例えば半導体素子搭載用基板として用いる場合、窒化珪素基板と金属回路板及び金属放熱板との接合工程、パワー半導体モジュールの作製工程、もしくはパワー半導体モジュールの稼働に伴う繰り返しのヒートサイクルを受けたときのクラックの発生を抑制することができ、耐熱衝撃性及び耐ヒートサイクル性が向上した基板を実現できる。   The silicon nitride substrate manufactured as described above has high bending strength, high adhesion to a metal circuit board, a metal heat sink, and the like, and is used for circuit boards such as high-frequency transistors and power semiconductor modules, or multichip modules. It can be used for various components such as a substrate for an electronic component, or a member for an electronic component such as a Peltier element heat transfer plate or a heat sink for various heating elements. When the silicon nitride substrate according to the present embodiment is used as, for example, a substrate for mounting a semiconductor element, the silicon nitride substrate is bonded to the metal circuit board and the metal heat sink, the power semiconductor module is manufactured, or the power semiconductor module is operated. The generation of cracks when subjected to repeated heat cycles can be suppressed, and a substrate with improved thermal shock resistance and heat cycle resistance can be realized.

また、本実施形態にかかる窒化珪素基板の一面または両面に、金属回路板及び金属放熱板であるCu(銅)回路板やAl(アルミニウム)回路板をDBC法(Direct Bonding Cupper 銅直接接合法)や活性金属ろう材法等を用いて接合することにより、窒化珪素回路基板が作製される。ここで、DBC法とは、窒化珪素基板とCu回路板またはAl回路板とを不活性ガスまたは窒素雰囲気中で共晶温度以上の温度に加熱し、生成したCu−O、Al−O共晶化合物液相を接合剤として上記回路板を窒化珪素基板の一面または両面に共晶化合物層を介して直接接合するものである。一方、活性金属ろう材法とは、チタン(Ti)、ジルコニウム(Zr)またはハフニウム(Hf)等の活性金属と低融点合金を作る銀(Ag)、銅(Cu)等の金属を混合または合金としたろう材を用いてCu回路板またはAl回路板を窒化珪素基板の一面または両面にろう材層を介して不活性ガスまたは真空雰囲気中で加熱圧着接合するものである。回路板を接合した後、窒化珪素基板上のCu回路板またはAl回路板をエッチング処理して回路パターンを形成し、さらに回路パターン形成後のCu回路板またはAl回路板にNi−Pめっきを施し、窒化珪素回路基板が作製される。   In addition, a Cu (copper) circuit board or an Al (aluminum) circuit board, which is a metal circuit board and a metal heat sink, is attached to one or both surfaces of the silicon nitride substrate according to the present embodiment by the DBC method (Direct Bonding Cupper copper direct bonding method). The silicon nitride circuit board is manufactured by bonding using the active metal brazing material method or the like. Here, the DBC method means that a silicon nitride substrate and a Cu circuit board or an Al circuit board are heated to a temperature equal to or higher than the eutectic temperature in an inert gas or nitrogen atmosphere, and formed Cu—O and Al—O eutectic crystals. The circuit board is directly bonded to one surface or both surfaces of the silicon nitride substrate via a eutectic compound layer using a compound liquid phase as a bonding agent. On the other hand, the active metal brazing method is a mixture or alloy of an active metal such as titanium (Ti), zirconium (Zr) or hafnium (Hf) and a metal such as silver (Ag) or copper (Cu) which forms a low melting point alloy. A Cu circuit board or an Al circuit board is bonded to one surface or both surfaces of a silicon nitride substrate by hot-press bonding in an inert gas or vacuum atmosphere through a brazing material layer. After the circuit boards are joined, the Cu circuit board or Al circuit board on the silicon nitride substrate is etched to form a circuit pattern, and the Cu circuit board or Al circuit board after the circuit pattern is formed is subjected to Ni-P plating. A silicon nitride circuit board is produced.

また、上記窒化珪素回路基板上に適宜な半導体素子を搭載することにより、所望の半導体モジュールを作製することができる。   Moreover, a desired semiconductor module can be manufactured by mounting an appropriate semiconductor element on the silicon nitride circuit board.

以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.

図1に示された製造方法に基づいて窒化珪素基板を製造し、その物性を測定した。製造条件の内、酸化マグネシウム(MgO)添加量、酸化イットリウム(Y)添加量、MgOとYの合計添加量、熱処理工程における熱処理温度並びに荷重及び窒化珪素基板の重ねの有無、窒化珪素基板の厚さの各項目は、表1に製造条件として示されるものを採用した(実施例1〜10)。なお、窒化珪素基板の重ねの有無については、重ねが有る場合を丸印で示した。また、重ねが無い場合とは、1枚の窒化珪素基板を2枚のBN製板材14で挟んで熱処理工程を実施したものである。 A silicon nitride substrate was manufactured based on the manufacturing method shown in FIG. 1, and its physical properties were measured. Among the manufacturing conditions, magnesium oxide (MgO) addition amount, yttrium oxide (Y 2 O 3 ) addition amount, total addition amount of MgO and Y 2 O 3 , heat treatment temperature and load in the heat treatment process, and presence / absence of silicon nitride substrate overlap For each item of the thickness of the silicon nitride substrate, those shown in Table 1 as manufacturing conditions were employed (Examples 1 to 10). In addition, the presence or absence of the overlap of the silicon nitride substrate is indicated by a circle. In the case where there is no overlap, a heat treatment process is performed by sandwiching one silicon nitride substrate between two BN plate members 14.

測定した物性としては、窒化珪素基板の表面のMg変動係数の他、酸化マグネシウム(MgO)含有量、酸化イットリウム(Y)含有量、MgO/Yの含有量の比、MgOとYの合計含有量、反り、曲げ強度、ワイブル係数、破壊靱性、熱伝導率及び熱衝撃試験結果がある。これらの項目の内、反り、曲げ強度及び破壊靱性について予め設定した範囲内(反り:2μm/mm以下、曲げ強度:820MPa以上、破壊靱性:6MPam1/2以上)にあるか否かを判定した。 As the measured physical properties, in addition to the Mg coefficient of variation of the surface of the silicon nitride substrate, magnesium oxide (MgO) content, yttrium oxide (Y 2 O 3 ) content, MgO / Y 2 O 3 content ratio, MgO And Y 2 O 3 total content, warpage, bending strength, Weibull modulus, fracture toughness, thermal conductivity and thermal shock test results. Among these items, it was determined whether or not the warpage, bending strength and fracture toughness were within the preset ranges (warpage: 2 μm / mm or less, bending strength: 820 MPa or more, fracture toughness: 6 MPam 1/2 or more). .

また、比較例として、上記製造条件を変更して製造した窒化珪素基板についても同様に物性を測定し、判定を行った。その結果が表2に示される(比較例1〜13)。   Further, as a comparative example, the physical properties of a silicon nitride substrate manufactured by changing the above manufacturing conditions were similarly measured and judged. The results are shown in Table 2 (Comparative Examples 1 to 13).

上記物性の内、Mg変動係数については、基板表面のEPMA分析により上述した方法で求めた。なお、上述した通り、基板表面は窒化珪素基板の最表面または最表面から基板厚さの10%以下の深さまで研磨して得られた面である。   Of the above physical properties, the Mg coefficient of variation was determined by the method described above by EPMA analysis of the substrate surface. As described above, the substrate surface is a surface obtained by polishing the outermost surface of the silicon nitride substrate or from the outermost surface to a depth of 10% or less of the substrate thickness.

酸化マグネシウム(MgO)含有量および酸化イットリウム(Y)含有量は窒化珪素基板をマイクロウェーブ分解処理及び酸溶解処理により溶液化した後、ICP発光分析法によりMg量及びY量を測定し、酸化マグネシウム(MgO)および酸化イットリウム(Y)に換算することにより求めた。また、MgO/Yの含有量の比およびMgOとYの合計含有量は求めた酸化マグネシウム(MgO)含有量および酸化イットリウム(Y)含有量から計算した。 Magnesium oxide (MgO) content and yttrium oxide (Y 2 O 3 ) content were measured by ICP emission analysis after measuring silicon nitride substrate by microwave decomposition treatment and acid dissolution treatment. It was determined by converting to magnesium oxide (MgO) and yttrium oxide (Y 2 O 3 ). Further, the content ratio of MgO / Y 2 O 3 and the total content of MgO and Y 2 O 3 were calculated from the obtained magnesium oxide (MgO) content and yttrium oxide (Y 2 O 3 ) content.

また、反りは、三次元レーザー計測器(キーエンス製 LT−8100)により測定した。図4(a),(b)には、反りの測定方法の説明図が示される。図4(a)において、適宜に設定したある面から基板表面Sまでの距離を三次元レーザー計測器で測定し、その距離が最小となる2点間を結ぶ面を基準面として設定する。次に、当該基準面からの高さ(距離)が最高となる最高点の高さDを反りの大きさとした。なお、図4(b)に示されるように、上記ある面から基板表面Sまでの距離の測定は、窒化珪素基板の対角線上で行った。上記反りの大きさを走査距離すなわち図4(b)に示された対角線の距離で除した値を反り量とした。   Further, the warpage was measured with a three-dimensional laser measuring instrument (LT-8100 manufactured by Keyence). FIGS. 4A and 4B are explanatory diagrams of a method for measuring warpage. In FIG. 4A, a distance from a suitably set surface to the substrate surface S is measured with a three-dimensional laser measuring instrument, and a surface connecting two points at which the distance is minimum is set as a reference surface. Next, the height D of the highest point at which the height (distance) from the reference surface is the highest was taken as the warpage magnitude. As shown in FIG. 4B, the measurement of the distance from the certain surface to the substrate surface S was performed on the diagonal line of the silicon nitride substrate. The value obtained by dividing the magnitude of the warpage by the scanning distance, that is, the diagonal distance shown in FIG.

曲げ強度は、JIS−R1601に基づき3点曲げ試験によって測定した。窒化珪素基板を幅4mmの試験片に加工し、支持ロール間距離7mmの3点曲げ治具にセット後、クロスヘッド速度0.5mm/分で荷重を印加して、破断時に試験片にかかる荷重から算出した。   The bending strength was measured by a three-point bending test based on JIS-R1601. A silicon nitride substrate is processed into a test piece with a width of 4 mm, set on a three-point bending jig with a distance between support rolls of 7 mm, and a load is applied at a crosshead speed of 0.5 mm / min. Calculated from

ワイブル係数は、上記曲げ強度の試験結果から、JIS−R1625に準拠してlnσに対してlnln(1−F)−1をプロットするワイブルプロットを作成し、その傾きのワイブル係数を求めた。ここで、σは曲げ強度であり、Fは累積破壊確率である。 For the Weibull coefficient, a Weibull plot in which lnln (1-F) −1 was plotted against lnσ was created from the bending strength test result in accordance with JIS-R1625, and the Weibull coefficient of the slope was obtained. Here, σ is the bending strength, and F is the cumulative failure probability.

破壊靱性は、JIS−R1607に準拠して、窒化珪素基板の側面にビッカース圧子を所定荷重(本実施例では2kgf(19.6N))で押し込むIF法で測定した。このとき、ビッカース圧子はビッカース圧痕の一方の対角線が窒化珪素基板の厚さ方向と垂直になるように押し込んだ。   Fracture toughness was measured by an IF method in which a Vickers indenter was pushed into a side surface of a silicon nitride substrate with a predetermined load (2 kgf (19.6 N) in this example) in accordance with JIS-R1607. At this time, the Vickers indenter was pushed so that one diagonal line of the Vickers indentation was perpendicular to the thickness direction of the silicon nitride substrate.

熱伝導率は、窒化珪素基板から5mm角の測定用試料を切り出し、JIS−R1611に準拠して測定した。   The thermal conductivity was measured in accordance with JIS-R1611 by cutting a 5 mm square measurement sample from a silicon nitride substrate.

熱衝撃試験では窒化珪素基板の表面にCu回路板を形成し、裏面にCu放熱板を形成した窒化珪素回路基板を350℃で10分間保持後、室温に急冷し、窒化珪素基板へのクラックの発生を調べた。この操作を10回繰り返しクラックが発生するか否かで合否を判定した。反りが2.0μm/mmより大きい場合は実質的に窒化珪素回路基板として使用できないため、熱衝撃試験は実施しなかった。

Figure 2009215142
Figure 2009215142
In the thermal shock test, a silicon nitride circuit substrate having a Cu circuit board formed on the surface of the silicon nitride substrate and a Cu heat sink formed on the back surface was held at 350 ° C. for 10 minutes, and then rapidly cooled to room temperature, and cracks in the silicon nitride substrate were observed. The occurrence was examined. This operation was repeated 10 times to determine whether or not a crack occurred. When the warp was larger than 2.0 μm / mm, it could not be used as a silicon nitride circuit board, so the thermal shock test was not performed.
Figure 2009215142
Figure 2009215142

上記表1に示されるように、MgO添加量を3〜4重量(wt)%、Y添加量を2〜5重量%、熱処理工程における熱処理温度を1550〜1700℃、荷重を0.5〜6.0kPa、重ね有りの条件で製造した厚み0.1〜1.0mmの窒化珪素基板では、上述した基板表面のMg変動係数(設定範囲0.20以下)、MgOの含有量(設定範囲3.0〜4.2wt%)、Yの含有量(設定範囲2.0〜5.0wt%)、MgO/Yの含有量の比(設定範囲0.62〜2.2)、MgOとYの合計含有量(設定範囲5.0〜8.3wt%)、反り(設定範囲2μm/mm以下)、曲げ強度(設定範囲820MPa以上)及び破壊靱性(設定範囲6MPa・m1/2以上)が全て設定範囲に入っている。また、ワイブル係数も設定範囲である15以上を満たしており、曲げ強度のばらつきが小さいことがわかる。これらの結果、熱衝撃試験においても窒化珪素基板の破壊が発生せず、全て合格の判定となっている。 As shown in Table 1 above, the added amount of MgO is 3 to 4% by weight (wt), the added amount of Y 2 O 3 is 2 to 5% by weight, the heat treatment temperature in the heat treatment step is 1550 to 1700 ° C., and the load is 0. In the case of a silicon nitride substrate having a thickness of 5 to 6.0 kPa and a thickness of 0.1 to 1.0 mm manufactured with overlapping, the above-described Mg variation coefficient (setting range of 0.20 or less) on the substrate surface and MgO content (setting) Range 3.0 to 4.2 wt%), Y 2 O 3 content (setting range 2.0 to 5.0 wt%), MgO / Y 2 O 3 content ratio (setting range 0.62 to 2 ) .2), the total content of MgO and Y 2 O 3 (setting range 5.0 to 8.3 wt%), warpage (setting range 2 μm / mm or less), bending strength (setting range 820 MPa or more) and fracture toughness (setting) The range of 6 MPa · m 1/2 or more is all within the set range. The Weibull coefficient also satisfies the setting range of 15 or more, and it can be seen that the variation in bending strength is small. As a result, even in the thermal shock test, the silicon nitride substrate was not broken, and all were judged to be acceptable.

熱処理工程において重ねた窒化珪素基板のうち最上段と最下段の窒化珪素基板は、各々一方の片面が板材14と接しているため板材14との接触面で焼結助剤(MgO、Y)の揮発が促進されるが、他方の片面が他の窒化珪素基板と接しているため、そこでは揮発が抑制され特性が大きく損なわれることはない。なお、板材14との接触面で焼結助剤の揮発が促進される理由については後述する。 Of the silicon nitride substrates stacked in the heat treatment step, the uppermost silicon nitride substrate and the lowermost silicon nitride substrate each have one surface in contact with the plate material 14, so that the sintering aid (MgO, Y 2 O) is in contact with the plate material 14. 3 ) Volatilization is promoted, but since the other surface is in contact with another silicon nitride substrate, volatilization is suppressed and the characteristics are not significantly impaired. The reason why volatilization of the sintering aid is promoted on the contact surface with the plate member 14 will be described later.

一方、表2に示されるように、比較例1として、MgO添加量を3重量%、Y添加量を2重量%とし、熱処理工程を実施しない条件で製造した厚み0.32mmの窒化珪素基板では、反りが2.9μm/mmと大きくなっている。これは、熱処理工程が無いので窒化珪素基板の反りを抑制することができなかったためである。また、Mgの変動係数が高くなり(0.45)、曲げ強度が低く(812MPa)なっている。これは、熱処理を実施しなかったため、基板表面のMg成分が均一に分散しなかったためである。 On the other hand, as shown in Table 2, as Comparative Example 1, a 0.32 mm thick nitridation manufactured under the conditions that the MgO addition amount was 3 wt% and the Y 2 O 3 addition amount was 2 wt% and the heat treatment step was not performed. In the silicon substrate, the warpage is as large as 2.9 μm / mm. This is because the warp of the silicon nitride substrate could not be suppressed because there was no heat treatment step. Further, the coefficient of variation of Mg is high (0.45), and the bending strength is low (812 MPa). This is because the Mg component on the substrate surface was not uniformly dispersed because no heat treatment was performed.

また、比較例2として、MgO添加量を3重量%、Y添加量を2重量%とし、熱処理温度1450℃、荷重2.2kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、比較例1と異なり熱処理工程を実施したものの熱処理温度が低いので、反りが2.5μm/mmと大きくなっている。 Further, as Comparative Example 2, a 0.32 mm-thick nitridation manufactured under the conditions that the MgO addition amount is 3 wt%, the Y 2 O 3 addition amount is 2 wt%, the heat treatment temperature is 1450 ° C., the load is 2.2 kPa, and there is an overlap. Unlike the comparative example 1, in the silicon substrate, although the heat treatment process was performed, the heat treatment temperature was low, and thus the warpage was as large as 2.5 μm / mm.

また、比較例3として、MgO添加量を3重量%、Y添加量を2重量%とし、熱処理温度1800℃、荷重2.4kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、Mgの変動係数が高くなり(0.32)、曲げ強度が低く(795MPa)なっている。これは、高温での熱処理により窒化珪素基板表面の粒界相成分の揮発や偏析が促進されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。なお、比較例3との相違点として、Y添加量を3重量%とし、荷重を2.6kPaとした比較例4、及びMgO添加量を4重量%とし、荷重を1.9kPaとした比較例5も、熱処理温度が1800℃と高く、いずれも基板表面のMgの変動係数が高く(比較例4が0.42、比較例5が0.27)、曲げ強度が低く(比較例4が812MPa、比較例5が808MPa)なっている。この結果、熱衝撃試験において、いずれも窒化珪素基板にクラックが発生した。 Further, as Comparative Example 3, a 0.32 mm thick nitridation manufactured under the conditions that the MgO addition amount is 3 wt%, the Y 2 O 3 addition amount is 2 wt%, the heat treatment temperature is 1800 ° C., the load is 2.4 kPa, and there is an overlap. In the silicon substrate, the coefficient of variation of Mg is high (0.32), and the bending strength is low (795 MPa). This is because volatilization and segregation of grain boundary phase components on the surface of the silicon nitride substrate are promoted by heat treatment at a high temperature. As a result, cracks occurred in the silicon nitride substrate in the thermal shock test. In addition, as a difference from Comparative Example 3, the amount of Y 2 O 3 added was 3 wt%, Comparative Example 4 in which the load was 2.6 kPa, and the amount of MgO added was 4 wt%, and the load was 1.9 kPa. In Comparative Example 5, the heat treatment temperature was as high as 1800 ° C., and the Mg coefficient of variation on the substrate surface was high (Comparative Example 4 was 0.42 and Comparative Example 5 was 0.27), and the bending strength was low (Comparative Example). 4 is 812 MPa, and Comparative Example 5 is 808 MPa). As a result, in the thermal shock test, cracks occurred in the silicon nitride substrate.

また、比較例6として、MgO添加量を3重量%、Y添加量を2重量%とし、熱処理温度1600℃、荷重6.5kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、基板表面のMgの変動係数が高くなり(0.46)、曲げ強度が低く(798MPa)なっている。これは、熱処理時の荷重を6.5kPaと大きくしたために、窒化珪素基板表面の粒界相成分の偏析が促進されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。 Further, as Comparative Example 6, a nitriding nitride having a thickness of 0.32 mm manufactured under the conditions that the MgO addition amount is 3 wt%, the Y 2 O 3 addition amount is 2 wt%, the heat treatment temperature is 1600 ° C., the load is 6.5 kPa, and there is an overlap. In the silicon substrate, the coefficient of variation of Mg on the substrate surface is high (0.46), and the bending strength is low (798 MPa). This is because segregation of grain boundary phase components on the surface of the silicon nitride substrate was promoted because the load during heat treatment was increased to 6.5 kPa. As a result, cracks occurred in the silicon nitride substrate in the thermal shock test.

また、比較例7として、MgO添加量を3重量%、Y添加量を2重量%とし、熱処理温度1600℃、荷重無し、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、熱処理工程における荷重が無かったために反りの抑制効果が十分でなく、反りが3.0μm/mmと大きくなっている。また、MgOの含有量が低く(2.9wt%)なり、曲げ強度が低く(802MPa)なっている。これは、荷重無しの条件での熱処理により窒化珪素基板表面の粒界相成分の揮発が促進されたからである。 Further, as Comparative Example 7, a silicon nitride substrate having a thickness of 0.32 mm manufactured under the conditions that the MgO addition amount is 3 wt%, the Y 2 O 3 addition amount is 2 wt%, the heat treatment temperature is 1600 ° C., no load is applied, and there is an overlap. Then, since there was no load in the heat treatment process, the effect of suppressing the warp was not sufficient, and the warp was as large as 3.0 μm / mm. Further, the content of MgO is low (2.9 wt%), and the bending strength is low (802 MPa). This is because the volatilization of the grain boundary phase component on the surface of the silicon nitride substrate was promoted by the heat treatment under the condition of no load.

また、比較例8として、MgO添加量を3重量%、Y添加量を3重量%とし、熱処理温度1600℃、荷重2.1kPa、重ね無しの条件で製造した厚み0.32mmの窒化珪素基板では、基板表面のMgの変動係数が高く(0.23)、MgOの含有量が低く(2.9wt%)なり、曲げ強度が低く(780MPa)、破壊靭性も低く(5.9MPam1/2)なっている。これは、熱処理工程において窒化珪素基板の重ねがなかったために、粒界相成分の揮発や偏析が促進されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生した。本比較例では1枚の窒化珪素基板を2枚のBN製板材14で挟んでいる。BN材は密度が80数%と空孔が多いため、熱処理工程において窒化珪素基板から蒸発した焼結助剤はBN材に吸着されるか、又はBN材を経由して雰囲気中に揮発するものと考えられる。 Further, as Comparative Example 8, a 0.32 mm thick nitridation manufactured under the conditions of 3% by weight of MgO and 3% by weight of Y 2 O 3 , heat treatment temperature of 1600 ° C., load of 2.1 kPa and no overlap. In a silicon substrate, the coefficient of variation of Mg on the substrate surface is high (0.23), the content of MgO is low (2.9 wt%), the bending strength is low (780 MPa), and the fracture toughness is also low (5.9 MPam 1 / 2 ) This is because volatilization and segregation of grain boundary phase components were promoted because the silicon nitride substrate was not overlapped in the heat treatment step. As a result, cracks occurred in the silicon nitride substrate in the thermal shock test. In this comparative example, one silicon nitride substrate is sandwiched between two BN plates 14. Since the BN material has a density of 80% and many vacancies, the sintering aid evaporated from the silicon nitride substrate in the heat treatment process is adsorbed by the BN material or volatilizes in the atmosphere via the BN material. it is conceivable that.

また、比較例9として、MgO添加量を3重量%、Y添加量を3重量%とし、熱処理温度1600℃、荷重無し、重ね無しの条件で製造した厚み0.32mmの窒化珪素基板では、熱処理工程における荷重が無いために反りが3.2μm/mmと大きくなり、また、重ね無しの条件で熱処理したため粒界相成分の揮発や偏析が促進され、基板表面のMgの変動係数が0.23と高く、MgOの含有量が2.9wt%に低下し、曲げ強度が788MPaに低下している。 Further, as Comparative Example 9, a silicon nitride substrate having a thickness of 0.32 mm manufactured under the conditions that the MgO addition amount is 3% by weight, the Y 2 O 3 addition amount is 3% by weight, the heat treatment temperature is 1600 ° C., no load is applied, and there is no overlap. Then, since there is no load in the heat treatment process, the warpage is as large as 3.2 μm / mm, and since the heat treatment is performed under the condition without overlapping, volatilization and segregation of grain boundary phase components are promoted, and the coefficient of variation of Mg on the substrate surface is increased. As high as 0.23, the MgO content is reduced to 2.9 wt%, and the bending strength is reduced to 788 MPa.

また、比較例10として、MgO添加量を3重量%、Y添加量を1重量%とし、熱処理温度1600℃、荷重3.0kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、曲げ強度及び破壊靱性が低下している(曲げ強度:734MPa、破壊靱性:5.1MPam1/2)。これは、焼結助剤であるYの添加量が1重量%と少ないので、Yの含有量が低く(1.0wt%)、MgOとYの含有量の総量も4.1wt%と低く、また、MgO/Yの含有量の比が3.2と高くなり、脆弱で欠陥の多い粒界相が形成されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生している。 Further, as Comparative Example 10, a 0.32 mm-thick nitridation manufactured under the conditions that the MgO addition amount was 3 wt%, the Y 2 O 3 addition amount was 1 wt%, the heat treatment temperature was 1600 ° C., the load was 3.0 kPa, and there was overlap. In the silicon substrate, bending strength and fracture toughness are lowered (bending strength: 734 MPa, fracture toughness: 5.1 MPam 1/2 ). This is because the amount of Y 2 O 3 as a sintering aid is as small as 1% by weight, so the content of Y 2 O 3 is low (1.0 wt%), and the content of MgO and Y 2 O 3 is low. This is because the total amount is as low as 4.1 wt% and the content ratio of MgO / Y 2 O 3 is as high as 3.2, and a brittle and defect-rich grain boundary phase is formed. As a result, cracks are generated in the silicon nitride substrate in the thermal shock test.

また、比較例11として、MgO添加量を3重量%、Y添加量を6重量%とし、熱処理温度1600℃、荷重2.1kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、焼結助剤であるYの添加量が6重量%と多いので、Yの含有量も6.0wt%と大きくなり、MgOとYの含有量の総量も9.1wt%と高く、また、MgO/Yの含有量の比が0.52と小さくなり、脆弱な粒界相が多量に形成されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生している。 Further, as Comparative Example 11, a 0.32 mm-thick nitride film manufactured under the conditions that the MgO addition amount is 3 wt%, the Y 2 O 3 addition amount is 6 wt%, the heat treatment temperature is 1600 ° C., the load is 2.1 kPa, and there is an overlap. In a silicon substrate, since the amount of Y 2 O 3 as a sintering aid is as large as 6% by weight, the content of Y 2 O 3 is also increased to 6.0 wt%, and the contents of MgO and Y 2 O 3 This is because the total amount of MgO / Y 2 O 3 is as high as 9.1 wt%, and the MgO / Y 2 O 3 content ratio is as small as 0.52, and a large amount of fragile grain boundary phases are formed. As a result, cracks are generated in the silicon nitride substrate in the thermal shock test.

また、比較例12として、MgO添加量を2重量%、Y添加量を2重量%とし、熱処理温度1600℃、荷重3.0kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、曲げ強度及び破壊靱性が低下している(曲げ強度:767MPa、破壊靱性:5.8MPam1/2)。これは、焼結助剤であるMgOの添加量が2重量%と少ないので、MgOの含有量が低く(2.1wt%)、MgOとYの含有量の総量も4.1wt%と低くなり、欠陥の多い粒界相が形成されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生している。 Further, as Comparative Example 12, a nitrided nitride having a thickness of 0.32 mm manufactured under the conditions of MgO addition amount of 2% by weight, Y 2 O 3 addition amount of 2% by weight, heat treatment temperature of 1600 ° C., load of 3.0 kPa, and overlap. In the silicon substrate, bending strength and fracture toughness are lowered (bending strength: 767 MPa, fracture toughness: 5.8 MPam 1/2 ). This is because the amount of MgO, which is a sintering aid, is as low as 2 wt%, so the content of MgO is low (2.1 wt%), and the total content of MgO and Y 2 O 3 is also 4.1 wt%. This is because a grain boundary phase with many defects was formed. As a result, cracks are generated in the silicon nitride substrate in the thermal shock test.

また、比較例13として、MgO添加量を5重量%、Y添加量を3重量%とし、熱処理温度1600℃、荷重2.3kPa、重ね有りの条件で製造した厚み0.32mmの窒化珪素基板では、焼結助剤であるMgOの添加量が5重量%と多いので、MgOの含有量も5.2wt%と大きくなり、脆弱な粒界相が多量に形成されたからである。この結果、熱衝撃試験において窒化珪素基板にクラックが発生している。 Further, as Comparative Example 13, a nitrided nitride having a thickness of 0.32 mm manufactured under conditions of MgO addition amount 5 wt%, Y 2 O 3 addition amount 3 wt%, heat treatment temperature 1600 ° C., load 2.3 kPa, and with overlap. This is because, in the silicon substrate, the amount of MgO, which is a sintering aid, is as large as 5% by weight, so the content of MgO is as large as 5.2% by weight, and a large amount of fragile grain boundary phases are formed. As a result, cracks are generated in the silicon nitride substrate in the thermal shock test.

以上述べた通り、表1に示された製造条件の設定範囲で製造した窒化珪素基板は、Mgの変動係数及びその他の特性が表1に示された設定範囲に入り、窒化珪素基板のクラックが発生し破壊に至ることがないが、何れかの製造条件が上記設定範囲を外れると、窒化珪素基板の反りが大きくなるか、窒化珪素基板の破壊が生ずることがわかる。   As described above, the silicon nitride substrate manufactured in the setting range of the manufacturing conditions shown in Table 1 has the Mg coefficient of variation and other characteristics in the setting range shown in Table 1, and the silicon nitride substrate has cracks. Although it does not occur and does not lead to destruction, it can be seen that if any of the manufacturing conditions are out of the set range, the warpage of the silicon nitride substrate increases or the silicon nitride substrate is destroyed.

本発明にかかる窒化珪素基板の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the silicon nitride board | substrate concerning this invention. 図1に示された熱処理工程における荷重の印加方法の説明図である。It is explanatory drawing of the application method of the load in the heat processing process shown by FIG. 図1に示された熱処理工程における荷重の印加方法の他の説明図である。FIG. 6 is another explanatory diagram of a load application method in the heat treatment step shown in FIG. 1. 反りの測定方法の説明図である。It is explanatory drawing of the measuring method of curvature.

符号の説明Explanation of symbols

10 窒化珪素基板
14 板材
16 重し
18 ホットプレス
10 Silicon nitride substrate 14 Plate material 16 Weight 18 Hot press

Claims (5)

β型窒化珪素と、イットリウム(Y)と、マグネシウム(Mg)を含有する窒化珪素基板において、前記窒化珪素基板の表面におけるMg量の分布を示す変動係数が0.20以下であり、反りが2.0μm/mm以下であることを特徴とする窒化珪素基板。   In a silicon nitride substrate containing β-type silicon nitride, yttrium (Y), and magnesium (Mg), the variation coefficient indicating the distribution of the amount of Mg on the surface of the silicon nitride substrate is 0.20 or less, and the warpage is 2 A silicon nitride substrate having a thickness of 0.0 μm / mm or less. 請求項1記載の窒化珪素基板において、Mg(マグネシウム)を酸化マグネシウム(MgO)に換算し、同じく含有するY(イットリウム)を酸化イットリウム(Y)に換算したとき、MgO含有量が3.0〜4.2wt%、Y含有量が2.0〜5.0wt%であることを特徴とする窒化珪素基板。 2. The silicon nitride substrate according to claim 1, wherein when Mg (magnesium) is converted into magnesium oxide (MgO) and Y (yttrium) contained therein is converted into yttrium oxide (Y 2 O 3 ), the MgO content is 3 A silicon nitride substrate, characterized by 0.0 to 4.2 wt% and a Y 2 O 3 content of 2.0 to 5.0 wt%. 請求項1または請求項2記載の窒化珪素基板の一方の面に金属回路板を接合し、他方の面に金属放熱板を接合したことを特徴とする窒化珪素回路基板。   3. A silicon nitride circuit board comprising: a metal circuit board bonded to one surface of the silicon nitride substrate according to claim 1; and a metal heat dissipation plate bonded to the other surface. 請求項3記載の窒化珪素回路基板と、前記窒化珪素回路基板上に搭載された半導体素子と、を有することを特徴とする半導体モジュール。   A semiconductor module comprising: the silicon nitride circuit board according to claim 3; and a semiconductor element mounted on the silicon nitride circuit board. 窒化珪素原料粉に、酸化マグネシウムを3〜4重量%、少なくとも1種の希土類元素の酸化物を2〜5重量%になるように配合し、シート成形体とし、焼結した後、複数枚重ねた状態で0.5〜6.0kPaの荷重を印加しながら1550〜1700℃で熱処理することを特徴とする窒化珪素基板の製造方法。
Silicon nitride raw material powder is mixed with magnesium oxide 3-4 wt% and at least one rare earth element oxide 2-5 wt%, formed into a sheet, sintered, and then stacked in layers A method for producing a silicon nitride substrate, wherein heat treatment is performed at 1550 to 1700 ° C. while applying a load of 0.5 to 6.0 kPa in a heated state.
JP2008063426A 2008-03-10 2008-03-13 Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module Pending JP2009215142A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008063426A JP2009215142A (en) 2008-03-13 2008-03-13 Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module
US12/379,868 US7948075B2 (en) 2008-03-10 2009-03-03 Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
KR1020090018856A KR101569421B1 (en) 2008-03-10 2009-03-05 Silicon nitride substrate method of manufacturing the same and silicon nitride circuit board and semiconductor module using the same
EP09154697.8A EP2100865B1 (en) 2008-03-10 2009-03-10 Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063426A JP2009215142A (en) 2008-03-13 2008-03-13 Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module

Publications (1)

Publication Number Publication Date
JP2009215142A true JP2009215142A (en) 2009-09-24

Family

ID=41187401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063426A Pending JP2009215142A (en) 2008-03-10 2008-03-13 Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module

Country Status (1)

Country Link
JP (1) JP2009215142A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146789A1 (en) * 2012-03-26 2013-10-03 日立金属株式会社 Sintered silicon nitride substrate and process for producing same
JP2015516362A (en) * 2012-04-18 2015-06-11 日東電工株式会社 Method and apparatus for sintering flat ceramics
JPWO2020203787A1 (en) * 2019-03-29 2020-10-08
CN113923858A (en) * 2021-11-12 2022-01-11 珠海粤科京华科技有限公司 Circuit substrate for new energy automobile and preparation method thereof
WO2023249322A1 (en) * 2022-06-22 2023-12-28 오씨아이 주식회사 Method for analysing silicon nitride substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117474A (en) * 1984-07-02 1986-01-25 日揮株式会社 Manufacture of ceramic substrate
JPH0340968A (en) * 1989-07-07 1991-02-21 Matsushita Electric Works Ltd Production of ceramic substrate
JP2000086346A (en) * 1998-07-10 2000-03-28 Sumitomo Electric Ind Ltd Ceramic substrate
JP2001010864A (en) * 1999-06-23 2001-01-16 Hitachi Metals Ltd Highly heat conductive silicon nitride-based sintered compact
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002173361A (en) * 2000-12-07 2002-06-21 Toshiba Corp Ceramic board, thin film printed circuit board and method of manufacturing ceramic board
JP2006069887A (en) * 2000-10-27 2006-03-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2009218322A (en) * 2008-03-10 2009-09-24 Hitachi Metals Ltd Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117474A (en) * 1984-07-02 1986-01-25 日揮株式会社 Manufacture of ceramic substrate
JPH0340968A (en) * 1989-07-07 1991-02-21 Matsushita Electric Works Ltd Production of ceramic substrate
JP2000086346A (en) * 1998-07-10 2000-03-28 Sumitomo Electric Ind Ltd Ceramic substrate
JP2001010864A (en) * 1999-06-23 2001-01-16 Hitachi Metals Ltd Highly heat conductive silicon nitride-based sintered compact
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2006069887A (en) * 2000-10-27 2006-03-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
JP2002173361A (en) * 2000-12-07 2002-06-21 Toshiba Corp Ceramic board, thin film printed circuit board and method of manufacturing ceramic board
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2009218322A (en) * 2008-03-10 2009-09-24 Hitachi Metals Ltd Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146789A1 (en) * 2012-03-26 2013-10-03 日立金属株式会社 Sintered silicon nitride substrate and process for producing same
JP5729519B2 (en) * 2012-03-26 2015-06-03 日立金属株式会社 Sintered silicon nitride substrate and manufacturing method thereof
JP2015516362A (en) * 2012-04-18 2015-06-11 日東電工株式会社 Method and apparatus for sintering flat ceramics
JPWO2020203787A1 (en) * 2019-03-29 2020-10-08
WO2020203787A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package
JP7219810B2 (en) 2019-03-29 2023-02-08 デンカ株式会社 Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
CN113923858A (en) * 2021-11-12 2022-01-11 珠海粤科京华科技有限公司 Circuit substrate for new energy automobile and preparation method thereof
WO2023249322A1 (en) * 2022-06-22 2023-12-28 오씨아이 주식회사 Method for analysing silicon nitride substrate

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP5245405B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module
KR101569421B1 (en) Silicon nitride substrate method of manufacturing the same and silicon nitride circuit board and semiconductor module using the same
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP5439729B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit substrate and semiconductor module using the same
US10308560B2 (en) High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
WO2001066488A1 (en) Ceramic substrate for manufacture/inspection of semiconductor
JP2009215142A (en) Silicon nitride substrate, method for producing the same, silicon nitride circuit board using the same, and semiconductor module
JP5667045B2 (en) Aluminum nitride substrate, aluminum nitride circuit substrate, and semiconductor device
JP6124103B2 (en) Silicon nitride circuit board and manufacturing method thereof
JP5248381B2 (en) Aluminum nitride substrate, method for manufacturing the same, circuit substrate, and semiconductor device
JP2005255462A (en) Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP3683067B2 (en) Aluminum nitride sintered body
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP5031147B2 (en) Method for producing aluminum nitride sintered body
JP2005101624A (en) Wiring board for power module
JP2002173373A (en) Aluminum nitride sintered compact, method of producing the same and electronic component using the same
JP4445500B2 (en) Manufacturing method of substrate for semiconductor device
JPH07257973A (en) Aluminum nitride sintered compact, production and use thereof
JP2007081429A (en) Ceramic-metal compound circuit board and method for manufacturing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130517