JP2003313079A - Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact - Google Patents

Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact

Info

Publication number
JP2003313079A
JP2003313079A JP2002121345A JP2002121345A JP2003313079A JP 2003313079 A JP2003313079 A JP 2003313079A JP 2002121345 A JP2002121345 A JP 2002121345A JP 2002121345 A JP2002121345 A JP 2002121345A JP 2003313079 A JP2003313079 A JP 2003313079A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
particles
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002121345A
Other languages
Japanese (ja)
Other versions
JP2003313079A5 (en
JP3775335B2 (en
Inventor
Toshiyuki Imamura
寿之 今村
Tsunehiro Kawada
常弘 川田
Masahisa Sofue
昌久 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002121345A priority Critical patent/JP3775335B2/en
Publication of JP2003313079A publication Critical patent/JP2003313079A/en
Publication of JP2003313079A5 publication Critical patent/JP2003313079A5/ja
Application granted granted Critical
Publication of JP3775335B2 publication Critical patent/JP3775335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride-based sintered compact having a high thermal conductivity in addition to high strength and high toughness, and to provide a method of producing the same. <P>SOLUTION: In the silicon nitride-based sintered compact, fine particles having diameters of ≤100 nm, which are composed of Mg or at least one rare earth element selected from La, Y, Gd and Yb and oxygen, and which are each composed of an amorphous nucleus part and an amorphous peripheral part, are contained in an amount of ≥5 pieces/μm<SP>2</SP>in silicon nitride particles. The method of producing the silicon nitride-based sintered compact comprises blending 1 to 50 parts by weight of silicon nitride-based powder containing β-fraction in an amount of 30 to 100% and oxygen in amount of ≤0.5 wt.% and having an average diameter of 0.2 to 10 μm and an aspect ratio of ≤10, 99 to 50 parts by weight of an α-type silicon nitride powder having an average diameter of 0.2 to 4 μm, and a sintering aid including Mg and at least one kind of element selected from the group of Y and rare earth elements (RE), then keeping the blend for 1 to 10 h at 1,400 to 1,600°C under a nitrogen atmosphere of 0.5 MPa, thereafter, raising the temperature to 1,800 to 1,950°C with a temperature rising speed of ≤5.0°C/min, and sintering for 5 to 40 h at a temperature of 1,800 to 1,950°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用基板や発
熱素子用ヒ−トシンク等の電子部品用部材、あるいは一
般機械器具用部材、溶融金属用部材、または熱機関用部
材等の構造用部材として好適な高強度・高熱伝導性に富
んだ窒化ケイ素質焼結体およびその製造方法、ならびに
前記窒化ケイ素質焼結体を用いて構成される回路基板に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for electronic parts such as a semiconductor substrate and a heat sink for a heat generating element, or a member for general machinery, a member for molten metal, a member for a heat engine and the like. The present invention relates to a silicon nitride sintered body having high strength and high thermal conductivity, a method for manufacturing the same, and a circuit board formed by using the silicon nitride sintered body.

【0002】[0002]

【従来の技術】窒化ケイ素質焼結体は、高温強度特性お
よび耐摩耗性等の機械的特性に加え、耐熱性、低熱膨張
性、耐熱衝撃性、および金属に対する耐食性に優れてい
るので、従来からガスタ−ビン用部材、エンジン用部
材、製鋼用機械部材、あるいは溶融金属の耐溶部材等の
各種構造用部材に用いられている。また、高い絶縁性を
利用して電気絶縁材料として使用されている。
2. Description of the Related Art Silicon nitride sintered bodies are excellent in heat resistance, low thermal expansion, thermal shock resistance, and corrosion resistance against metals in addition to mechanical characteristics such as high temperature strength characteristics and wear resistance. Are used for various structural members such as members for gas turbines, members for engines, machine members for steelmaking, and members for melting molten metal. Further, it is used as an electric insulating material by utilizing its high insulating property.

【0003】近年、高周波トランジスタ、パワーIC等
の発熱量の大きい半導体素子の発展に伴い、電気絶縁性
に加えて良好な放熱特性を得るために高い熱伝導率を有
するセラミックス基板の需要が増加している。このよう
なセラミックス基板として、窒化アルミニウム基板が用
いられているが、機械的強度や破壊靭性等が低く、基板
ユニットの組立て工程での締め付けによって割れを生じ
るという問題がある。また、Si半導体素子を窒化アル
ミニウム基板に実装した回路基板では、Siと窒化アル
ミニウム基板との熱膨張差が大きいため、熱サイクルに
より窒化アルミニウム基板にクラックや割れを発生し実
装信頼性が低下するという問題がある。
With the recent development of semiconductor devices such as high-frequency transistors and power ICs that generate a large amount of heat, there is an increasing demand for ceramic substrates having high thermal conductivity in order to obtain good heat dissipation characteristics in addition to electrical insulation. ing. Although an aluminum nitride substrate is used as such a ceramic substrate, there is a problem that mechanical strength, fracture toughness, and the like are low, and cracks occur due to tightening in a substrate unit assembling process. Further, in a circuit board in which a Si semiconductor element is mounted on an aluminum nitride substrate, since the thermal expansion difference between Si and the aluminum nitride substrate is large, cracks or breaks occur in the aluminum nitride substrate due to thermal cycles, and mounting reliability is reduced. There's a problem.

【0004】そこで、窒化アルミニウム基板より熱伝導
率は劣るものの、熱膨張率がSiに近く、かつ機械的強
度、破壊靭性および耐熱疲労特性に優れる高熱伝導窒化
ケイ素質焼結体からなる基板が注目され、種々の提案が
行われている。
Therefore, although the thermal conductivity is inferior to that of the aluminum nitride substrate, a substrate made of a high thermal conductive silicon nitride sintered body having a thermal expansion coefficient close to that of Si and excellent in mechanical strength, fracture toughness and thermal fatigue resistance is noted. And various proposals have been made.

【0005】例えば、特開平4−175268号公報に
は、実質的に窒化ケイ素からなり、不純物として含有さ
れるAlおよび酸素が共に3.5重量%以下であり、密度が
3.15Mg/m3(3.15g/cm3)以上であり、40W/(m・K) 以上
の熱伝導率を有する窒化ケイ素質焼結体が記載されてい
る。
For example, Japanese Patent Laid-Open No. 175268/1992 discloses that silicon nitride is substantially used, Al and oxygen contained as impurities are both 3.5 wt% or less, and the density is
A silicon nitride sintered body having a thermal conductivity of 3.15 Mg / m3 (3.15 g / cm3) or more and 40 W / (m · K) or more is described.

【0006】また、特開平9−30866号公報には、
85〜99重量%のβ型窒化ケイ素粒と残部が酸化物または
酸窒化物の粒界相とから構成され、粒界相中にMg,Ca,S
r,Ba,Y,La,Ce,Pr,Nd,Sm,Gd,Dy,Ho,Erおよび
Ybのうちから選ばれる少なくとも1種の元素を0.5〜10
重量%含有し、粒界相中のAl元素含有量が1重量%以下
であり、気孔率が5%以下であり、かつβ型窒化ケイ素
粒のうちで短軸径5μm以上を持つものの割合が10〜60
体積%である窒化ケイ素質焼結体が記載されている。
Further, Japanese Patent Laid-Open No. 9-30866 discloses that
It is composed of 85 to 99% by weight of β-type silicon nitride grains and the balance of the grain boundary phase of oxide or oxynitride, and Mg, Ca, S are contained in the grain boundary phase.
r, Ba, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er and
0.5-10 at least one element selected from Yb
% By weight, the Al element content in the grain boundary phase is 1% by weight or less, the porosity is 5% or less, and the proportion of β-type silicon nitride particles having a minor axis diameter of 5 μm or more is 10-60
A silicon nitride sintered body is described which is a volume percentage.

【0007】また、日本セラミックス協会1996年年会講
演予稿集1G11、同1G12、および特開平10−19484
2号公報には、原料粉末に柱状の窒化ケイ素粒子または
ウイスカーを予め添加し、ドクターブレード法あるいは
押出成形法を用いて、この粒子を2次元的に配向させた
成形体を形成し、焼結することにより熱伝導に異方性を
付与して特定方向の熱伝導率を高めた窒化ケイ素質焼結
体が記載されている。
The Proceedings 1G11 and 1G12 of the 1996 Annual Meeting of the Ceramic Society of Japan and JP-A-10-19484.
In Japanese Patent Laid-Open No. 2 (1994), columnar silicon nitride particles or whiskers are added in advance to a raw material powder, and a doctor blade method or an extrusion molding method is used to form a molded body in which the particles are two-dimensionally oriented and sintered. By doing so, anisotropy is imparted to the heat conduction to increase the thermal conductivity in a specific direction, and a silicon nitride sintered body is described.

【0008】また、特開2001−19557号公報に
は、窒化ケイ素質粒内の酸素、Al、Ca、Fe、の不純物量
の合計を1500ppm以下、かつ短軸径が2μm以上に制御す
ることで、熱伝導率と機械特性を向上させた窒化ケイ素
質焼結体ならびにその製造方法が記載されている。
Further, in Japanese Patent Laid-Open No. 2001-19557, by controlling the total amount of impurities of oxygen, Al, Ca, Fe in the silicon nitride grains to be 1500 ppm or less and the minor axis diameter to be 2 μm or more, A silicon nitride sintered body having improved thermal conductivity and mechanical properties and a method for producing the same are described.

【0009】さらに、特開2002−29848号公報
には、原料粉末に柱状のウイスカーを予め添加し、焼成
過程において当該ウイスカーを核として選択的に粒成長
させたミクロ組織を構築することで、熱伝導率を向上さ
せた窒化ケイ素質焼結体ならびに当該ウイスカーの製造
方法が記載されている。
Further, in Japanese Patent Laid-Open No. 2002-29848, columnar whiskers are added to the raw material powder in advance, and a microstructure is formed by selectively growing grains by using the whiskers as nuclei in the firing process. A silicon nitride sintered body having improved conductivity and a method for manufacturing the whiskers are described.

【0010】日本セラミックス協会1998年年会講演予稿
集2B04には、窒化ケイ素粉末の成形体を1.0MPaの窒素ガ
ス中で2000℃×4hrで焼結した後に、さらに30MPaの窒素
ガス中で2200℃×4hrの高温高圧での熱処理を行うこと
により、100w/(m・K)以上の高い熱伝導率を有する窒化ケ
イ素質焼結体が製造できることを記載している。これに
は、高熱伝導化の発現は焼結体中の窒化ケイ素粒子の成
長に加えて、高温熱処理による窒化ケイ素粒子内での六
角形の析出相が関与していると記載されている。
[0010] The Ceramic Society of Japan 1998 Annual Meeting Proceedings 2B04 shows that a compact of silicon nitride powder is sintered in nitrogen gas of 1.0 MPa at 2000 ° C. for 4 hours, and then 2200 ° C. in nitrogen gas of 30 MPa. It is described that a silicon nitride sintered body having a high thermal conductivity of 100 w / (m · K) or more can be produced by performing heat treatment at a high temperature and high pressure of × 4 hr. It is described that the development of high thermal conductivity involves not only the growth of silicon nitride particles in a sintered body but also the hexagonal precipitation phase in the silicon nitride particles by the high temperature heat treatment.

【0011】[0011]

【発明が解決しようとする課題】以下、上記した従来技
術の問題点について順を追って説明する。まず、特開平
4−175268号公報では40W/(m・K)以上の熱伝導率
が得られているが、昨今ではさらに熱伝導率を高めた、
機械的強度に優れる材料が望まれている。また、特開平
9−30866号公報、特開平10−194842号等
公報に記載の方法では、窒化ケイ素質焼結体中に巨大な
柱状粒子を得るために、成長核となる種結晶あるいはウ
ィスカ−を予め添加し、2000℃以上および10.1MPa(100
気圧)以上の窒素雰囲気下での焼成が不可欠である。し
たがって、ホットプレスあるいはHIP等の特殊な高温・
高圧設備が必要となりコストアップを招来する。また、
窒化ケイ素粒子を配向させた成形体を得るための成形プ
ロセスが複雑であるため、生産性が著しく低下するとい
う問題がある。
The problems of the above-mentioned prior art will be described below step by step. First, in Japanese Patent Application Laid-Open No. 4-175268, a thermal conductivity of 40 W / (m · K) or more is obtained, but recently, the thermal conductivity is further increased.
A material having excellent mechanical strength is desired. Further, according to the methods described in JP-A-9-30866 and JP-A-10-194842, seed crystals or whiskers to serve as growth nuclei are obtained in order to obtain huge columnar particles in a silicon nitride sintered body. Was added in advance, and the temperature was 2000 ° C or higher and 10.1 MPa (100
Baking under a nitrogen atmosphere above atmospheric pressure is essential. Therefore, special high temperature such as hot press or HIP
High-voltage equipment is required, resulting in higher costs. Also,
Since the molding process for obtaining the molded product in which the silicon nitride particles are oriented is complicated, there is a problem that the productivity is significantly reduced.

【0012】また、特開2001−19557号公報に
記載される窒化ケイ素質焼結体は、窒化ケイ素粒内の不
純物量を低減する(純化効果と表記)ことで、粒子自身
の熱伝導率を向上させ、これにより焼結体の熱伝導率を
向上させることを特徴としている。また、この純化効果
の助長に役立つ添加物として、Zrおよび/または、Hfを
選定し、これらを酸化物換算として0.5wt%〜3.0wt%添加
するとしている。しかしながら、ZrおよびHfの酸化物を
添加すると、焼結過程でSi3N4中のNと容易に反応して粒
界相中に電気伝導性のあるZrNおよびHfNが生成される。
よって、本来、セラミックス基板に必須とされる電気絶
縁性が保持できず、高周波で作動するパワー半導体モジ
ュール用の絶縁基板として使用し難いという問題があ
る。
Further, the silicon nitride sintered body described in Japanese Patent Laid-Open No. 2001-19557 reduces the amount of impurities in the silicon nitride grains (expressed as a purification effect) to improve the thermal conductivity of the grains themselves. It is characterized by improving the thermal conductivity of the sintered body. In addition, Zr and / or Hf is selected as an additive useful for promoting the purification effect, and 0.5 wt% to 3.0 wt% of these are added in terms of oxide. However, when the oxides of Zr and Hf are added, they easily react with N in Si3N4 during the sintering process to produce electrically conductive ZrN and HfN in the grain boundary phase.
Therefore, there is a problem that the electrical insulation that is essentially required for the ceramics substrate cannot be maintained, and it is difficult to use it as an insulating substrate for a power semiconductor module that operates at high frequency.

【0013】さらに、特開2002−29848号公報
に記載される製造方法は、構成する窒化ケイ素粒子の平
均円形度が、0.8以上あり、β化率が10%以上80%未
満、酸素量が0.5〜1.8質量%、比表面積が12〜22m2/g
である窒化ケイ素粉末に、希土類酸化物、酸化珪素、お
よび酸化マグネシウムよりなる群から選ればれる1種以
上を、合計が2.5〜14質量%となるように添加し、更
に、窒化珪素ウィスカ−を0.1〜8.5質量%添加した後、
混合し、成形し、窒化雰囲気下で焼結させるものであ
る。更に、焼結性向上のために窒化珪素ウィスカ−に対
して、水沸点以上(例えば、110℃〜140℃の温度範囲
下)で予め水熱処理することを特徴としている。しかし
ながら、この例で使用される窒化ケイ素ウィスカーの水
熱処理は、表面を酸化させ助剤として作用するSiO2成分
を増加させることで焼結性が改善できるが、その反面、
実施例に記載がある様に緻密な焼結体を得るための水熱
処理は、120℃で96hの処理が必要となりプロセスが煩
雑になる。また、水熱処理により焼結性は改善できるも
のの、焼結体の酸素量、しいては窒化ケイ素粒子内の酸
素量を低減することができず、高熱伝導材が得られ難い
と言う難点がある。
Further, in the manufacturing method described in JP-A-2002-29848, the average circularity of the constituent silicon nitride particles is 0.8 or more, the β conversion rate is 10% or more and less than 80%, and the oxygen content is 0.5%. 〜1.8% by mass, specific surface area 12〜22m 2 / g
1 or more selected from the group consisting of rare earth oxides, silicon oxides, and magnesium oxides are added to the silicon nitride powder, which is 2.5 to 14 mass%, and a silicon nitride whisker is further added. After adding 0.1-8.5% by mass,
They are mixed, molded, and sintered in a nitriding atmosphere. Further, in order to improve the sinterability, the silicon nitride whiskers are characterized in that they are previously hydrothermally treated at a boiling point of water or higher (for example, in a temperature range of 110 ° C. to 140 ° C.). However, the hydrothermal treatment of the silicon nitride whiskers used in this example can improve the sinterability by oxidizing the surface and increasing the SiO 2 component that acts as an auxiliary agent, but on the other hand,
As described in the examples, hydrothermal treatment for obtaining a dense sintered body requires treatment at 120 ° C. for 96 hours, which complicates the process. Moreover, although the sinterability can be improved by hydrothermal treatment, the oxygen content of the sintered body, and hence the oxygen content in the silicon nitride particles, cannot be reduced, and it is difficult to obtain a high thermal conductive material. .

【0014】次に、前述の日本セラミックス協会1998年
年会講演予稿集2B04に記載の焼結体は、1MPa窒素ガス中
2000℃での焼成後に、さらに30MPa窒素ガス中2200℃で
の高温高圧の熱処理を行うことにより100W/(m・K)以上の
高い熱伝導率が得られる利点がある。更に、高熱伝導化
の発現のメカニズムを、焼結体中の窒化ケイ素粒子の成
長に加えて、高温熱処理によって窒化ケイ素粒子内の六
角形の析出相が関与していると説明している。すなわ
ち、焼結および粒成長時にY-Nd-Si-Oから構成される助
剤成分が窒化ケイ素粒子内に取り込まれて固溶し、高温
での熱処理および冷却時にY-Nd-Si-O組成のアモルファ
ス相として、窒化ケイ素粒子内に析出し、析出物の一部
は結晶化したものと考え、窒化ケイ素粒子の高純度化作
用の1つとして考えられている。以上のことから上記の
焼結体を得るには、特殊な高温・高圧設備が必要となり
コストアップを招来する。更に焼結した上に熱処理を加
えるため生産性が著しく低下するという問題がある。ま
た、上記焼結体中の窒化ケイ素粒子内の析出相について
詳細な組成分析ならびに観察がなされておらず、熱伝導
率向上との関連性が明確にはなっていない。
Next, the sintered body described in the above-mentioned proceedings 2B04 of the 1998 Annual Meeting of the Ceramic Society of Japan was prepared in a nitrogen gas of 1 MPa.
There is an advantage that a high thermal conductivity of 100 W / (m · K) or more can be obtained by further performing high-temperature and high-pressure heat treatment at 2200 ° C. in 30 MPa nitrogen gas after firing at 2000 ° C. Furthermore, it is explained that the mechanism of manifestation of high thermal conductivity is related to the growth of silicon nitride particles in the sintered body and the hexagonal precipitation phase in the silicon nitride particles due to the high temperature heat treatment. That is, during sintering and grain growth, the auxiliary component composed of Y-Nd-Si-O is incorporated into the silicon nitride particles to form a solid solution, and the Y-Nd-Si-O composition during heat treatment and cooling at high temperature. It is considered that the amorphous phase is precipitated in the silicon nitride particles, and a part of the precipitate is crystallized, which is considered to be one of the purification effects of the silicon nitride particles. From the above, in order to obtain the above-mentioned sintered body, special high temperature and high pressure equipment is required, which causes an increase in cost. Further, there is a problem that productivity is markedly reduced because heat treatment is applied after sintering. Further, detailed composition analysis and observation of the precipitated phase in the silicon nitride particles in the above-mentioned sintered body have not been carried out, and the relationship with the improvement of thermal conductivity has not been clarified.

【0015】本発明は上記従来の問題点に鑑みてなされ
たものであり、2000℃以上でかつ10.1MPa(100気圧)以
上の高温・高圧焼成といったコストの高い焼成法を必要
とせず、機械的強度に優れ、熱伝導の方向に異方性を持
たずに従来に比べて熱伝導率を高めた高熱伝導型窒化ケ
イ素質焼結体を提供することを目的とする。また本発明
は、窒化ケイ素粒子内に析出する微細粒子の組成と形態
を詳細に調査することにより熱伝導率を高めた高熱伝導
型窒化ケイ素質焼結体を提供することを目的とする。ま
た本発明は、窒化ケイ素質粉末のβ分率、含有酸素量、
不純物量およびα型窒化ケイ素質粉末との混合比及び保
持過程を含む焼結工程等を規定することにより、高い熱
伝導率と高い強度を有する窒化ケイ素質焼結体およびそ
の製造方法を提供することを目的とする。また本発明
は、上記した高強度・高熱伝導性に富んだ窒化ケイ素質
焼結体用いて構成される放熱性の良好な回路基板を提供
することを目的とする。
The present invention has been made in view of the above conventional problems, and does not require a costly firing method such as high temperature / high pressure firing of 2000 ° C. or higher and 10.1 MPa (100 atm) or higher, and mechanical It is an object of the present invention to provide a high thermal conductivity type silicon nitride sintered material which is excellent in strength, has no anisotropy in the direction of thermal conduction, and has higher thermal conductivity than conventional ones. Another object of the present invention is to provide a high thermal conductivity type silicon nitride sintered material having a high thermal conductivity by investigating in detail the composition and morphology of fine particles precipitated in silicon nitride particles. Further, the present invention, β fraction of the silicon nitride powder, oxygen content,
A silicon nitride sintered body having high thermal conductivity and high strength and a method for producing the same are provided by defining a sintering process and the like including an impurity amount, a mixing ratio with an α-type silicon nitride powder, and a holding process. The purpose is to It is another object of the present invention to provide a circuit board having a good heat dissipation property, which is formed by using the above-mentioned silicon nitride sintered body rich in high strength and high thermal conductivity.

【0016】[0016]

【課題を解決するための手段】本発明者らは上記課題を
達成するため、窒化ケイ素粒子内に少なくとも酸素およ
び焼結助剤成分を組成に含む微細粒子を意識的に析出さ
せることで、窒化ケイ素粒子自身の熱伝導率を向上さ
せ、安定して100W/(m・K)以上の熱伝導率と十分な曲げ強
度を有する窒化ケイ素質焼結体が得られることを知見し
た。また、このとき焼結助剤成分はMgO基とすること
で焼結性が向上し、かつMgOと(RE)が特定
量と特定比を持って含有していることが有効なことを知
見した。また、上記窒化ケイ素質焼結体の製造方法にお
いては、用いる窒化ケイ素質粉末のβ分率、含有酸素
量、不純物およびα粉末との混合比等の粉末の特性及び
保持過程を含む焼結工程等を規定することが肝要である
ことを知見した。以上により本発明に至ったものであ
る。
In order to achieve the above object, the inventors of the present invention intentionally deposit fine particles containing at least oxygen and a sintering aid component in the composition in silicon nitride particles to achieve nitriding. It has been found that the thermal conductivity of the silicon particles themselves is improved, and a silicon nitride sintered body having a thermal conductivity of 100 W / (m · K) or more and a sufficient bending strength can be stably obtained. Further, at this time, it is effective that the sintering aid component is made MgO-based to improve the sinterability, and that MgO and (RE x O y ) are contained in a specific amount and specific ratio. I found out. Further, in the method for producing a silicon nitride-based sintered body, a sintering step including powder characteristics such as β-fraction of silicon nitride-based powder to be used, oxygen content, impurities and mixing ratio with α powder, and a holding process. It was found that it is essential to specify such rules. The present invention has been completed as described above.

【0017】即ち、本発明の窒化ケイ素質焼結体は、窒
化ケイ素粒子内に、MgあるいはY及び希土類元素(R
E)からなる群から選ばれた少なくとも1種の元素と、
O元素を含む粒径100nm以下の微細粒子が存在すること
を特徴とする。また、本発明の窒化ケイ素質焼結体は、
Mgと、Y及び希土類元素(RE)からなる群から選ば
れた少なくとも1種の元素を焼結助剤として添加する窒
化ケイ素質焼結体であって、窒化ケイ素粒子内に、Mg
あるいはLa,Y,Gd及びYbからなる群から選ばれ
た少なくとも1種の希土類元素と、O元素を含む粒径10
0nm以下の微細粒子が存在することを特徴としている。
当該微細粒子は、焼成過程で窒化ケイ素粒子の粒成長と
ともに極微量ではあるが粒内に取り込まれた助剤成分
が、窒化ケイ素粒子内に再析出したものであり、窒化ケ
イ素粒子自身の高熱伝導化に寄与する。このとき、透過
型電子顕微鏡(TEM)による直接倍率10,000倍以上の
観察像において、窒化ケイ素粒子内に粒径100nm以下の
前記微細粒子が5個/μm2以上存在することが望まし
く、この微細粒子の析出現象と割合により焼結体の熱伝
導率は向上する。
That is, in the silicon nitride sintered material of the present invention, Mg or Y and rare earth element (R
At least one element selected from the group consisting of E),
It is characterized by the presence of fine particles containing an O element and having a particle size of 100 nm or less. Further, the silicon nitride sintered body of the present invention,
What is claimed is: 1. A silicon nitride sintered body comprising Mg, and at least one element selected from the group consisting of Y and a rare earth element (RE) added as a sintering aid.
Alternatively, a grain size of 10 including at least one rare earth element selected from the group consisting of La, Y, Gd and Yb and an O element is provided.
It is characterized by the presence of fine particles of 0 nm or less.
The fine particles are those in which the auxiliary component taken in the particles in the grain growth of the silicon nitride particles during the firing process is re-precipitated in the silicon nitride particles, although the trace amount is extremely small, and the high thermal conductivity of the silicon nitride particles themselves. Contribute to At this time, in the observation image at a direct magnification of 10,000 times or more by a transmission electron microscope (TEM), it is desirable that the fine particles having a particle size of 100 nm or less be present in an amount of 5 particles / μm 2 or more. The thermal conductivity of the sintered body is improved by the precipitation phenomenon and the ratio.

【0018】また、本発明の窒化ケイ素質焼結体は、前
記微細粒子が少なくともSi−N-O−Mg−RE組成
を有し、当該組成割合が異なる核と周辺部とから構成さ
れることを特徴としている。この核部分についてはSi成
分が高く、かつ助剤成分として添加する(例えば、Mgお
よび希土類元素)成分量が小さいこと。一方周辺部分
は、逆にSi成分が小さく、助剤成分量が多いという構成
が望ましい。また当該微細粒子は、全体に非晶質相であ
ることが望ましい。
Further, in the silicon nitride sintered body of the present invention, the fine particles have at least a Si-N-O-Mg-RE composition, and are composed of a core and a peripheral portion having different composition ratios. Is characterized by. This core has a high Si component and a small amount of components (for example, Mg and rare earth elements) added as an auxiliary component. On the other hand, it is desirable that the peripheral portion, on the contrary, has a small Si component and a large amount of auxiliary component. Further, it is desirable that the fine particles are entirely in an amorphous phase.

【0019】本発明の窒化ケイ素質焼結体は、前記窒化
ケイ素質焼結体が含有するMgを酸化マグネシウム(Mg
O)に換算し、同じく含有するLa,Y,Gd及びYb
を含む希土類元素を希土類酸化物(REO)に換算し
たとき、これら酸化物に換算した酸化物含有量の合計が
0.6〜10wt%で、かつ(REO)/(MgO)>1であるこ
とを特徴とする。前記酸化物換算含有量の合計が0.6wt%
未満では焼結時の緻密化作用が不十分で相対密度が95%
未満となり好ましくなく、10wt%超では窒化ケイ素質焼
結体の第2のミクロ組織成分である熱伝導率の低い粒界
相の量が過剰となり焼結体の熱伝導率が100W/(m・K)未満
になる。これら酸化物含有量の合計は0.6〜6wt%がよ
り好ましい。尚且つ、(REO)/(MgO)>1である
ことが望ましく、この場合に特に高強度・高熱伝導性が
向上する。これについては後述するが、希土類酸化物
(REO)のイオン半径が酸化マグネシウム(MgO)の
イオン半径より大きく、窒化ケイ素粒子内に固溶するよ
りも析出した方が安定となることが新に知見されたこと
による。また、本発明の窒化ケイ素質焼結体は、常温に
おける熱伝導率が100〜300W/(m・K)であり、常温にお
ける3点曲げ強度が600〜1500MPaであり高強度・高熱伝
導性に富んでいる。
In the silicon nitride sintered body of the present invention, Mg contained in the silicon nitride sintered body is converted into magnesium oxide (Mg
Converted to O) and also contained La, Y, Gd and Yb
When a rare earth element containing is converted to a rare earth oxide (RE x O y ), the total oxide content converted to these oxides is
It is characterized by being 0.6 to 10 wt% and (RE x O y ) / (MgO)> 1. The total amount of oxide conversion is 0.6 wt%
If less than 100%, the densification effect during sintering is insufficient and the relative density is 95%.
If the content exceeds 10 wt%, the amount of the grain boundary phase having low thermal conductivity, which is the second microstructure component of the silicon nitride sintered body, becomes excessive, and the thermal conductivity of the sintered body becomes 100 W / (m ・Less than K). The total content of these oxides is more preferably 0.6 to 6 wt%. Further, it is desirable that (RE x O y ) / (MgO)> 1, and in this case, particularly high strength and high thermal conductivity are improved. Although this will be described later, the ionic radius of the rare earth oxide (RE x O y ) is larger than the ionic radius of magnesium oxide (MgO), and it may be more stable when precipitated than in solid solution in the silicon nitride particles. This is due to new findings. Further, the silicon nitride sintered body of the present invention has a thermal conductivity of 100 to 300 W / (m · K) at room temperature and a three-point bending strength of 600 to 1500 MPa at room temperature, which provides high strength and high thermal conductivity. Rich

【0020】また、本発明の窒化ケイ素質焼結体の製造
方法は、β分率が30〜100%であり、酸素含有量が0.5w
t%以下であり、平均粒子径が0.2〜10μmであり、アス
ペクト比が10以下である第一の窒化ケイ素質粉末1〜50
重量部と、平均粒子径が0.2〜4μmの第ニのα型窒化ケ
イ素粉末99〜50重量部と、Mgと、Y及び希土類元素
(RE)からなる群から選ばれた少なくとも1種の元素
とを含む焼結助剤とを配合し、1800℃以上の温度及び0.
5MPa以上の窒素加圧雰囲気にて焼結することを特徴とす
る。ここで、前記焼結工程において、昇温時1400℃〜16
00℃の温度で1〜10時間にわたる保持工程を少なくとも
1回有し、かつこの保持温度から前記焼結温度までの昇
温速度を5.0℃/min以下とすることが好ましく、さらに
好ましくは2.5℃/min以下である。
The method for producing a silicon nitride sintered body of the present invention has a β fraction of 30 to 100% and an oxygen content of 0.5 w.
1% to 50% of the first silicon nitride powder having an average particle size of 0.2 to 10 μm and an aspect ratio of 10 or less.
Parts by weight, 99 to 50 parts by weight of the second α-type silicon nitride powder having an average particle size of 0.2 to 4 μm, Mg, and at least one element selected from the group consisting of Y and rare earth elements (RE). Blended with a sintering aid containing a temperature of 1800 ° C. or higher and 0.
It is characterized in that it is sintered in a nitrogen pressure atmosphere of 5 MPa or more. Here, in the sintering step, the temperature rises from 1400 ° C to 16 ° C.
It is preferable to have at least one holding step at a temperature of 00 ° C for 1 to 10 hours, and to raise the temperature rising rate from the holding temperature to the sintering temperature at 5.0 ° C / min or less, more preferably 2.5 ° C. / min or less.

【0021】前記窒化ケイ素質粉末のβ分率が30%未満
では成長核としての効果はあるものの部分的に核として
作用するため、異常粒成長が起こり、最終的に得られる
窒化ケイ素質焼結体のミクロ組織中に大きな粒子を均一
分散できなくなり曲げ強度が低下する。したがって、窒
化ケイ素質粉末のβ分率は30%以上が望ましい。また前
記窒化ケイ素質粉末の平均粒子径が0.2μm未満では前記
同様に柱状粒子が均一に発達したミクロ組織を呈する窒
化ケイ素質焼結体を得られず、熱伝導率および曲げ強度
を高めることが困難である。また前記窒化ケイ素質粉末
の平均粒子径が10μmより大きいと焼結体の窒化ケイ素
質の緻密化が阻害される。したがって、窒化ケイ素質粉
末の平均粒子径は0.2〜10μmが好ましい。さらに、アス
ペクト比が10超の場合は窒化ケイ素質焼結体の緻密化が
阻害され、結果として、常温における3点曲げ強度は60
0MPa未満になる。したがって、窒化ケイ素質粉末のアス
ペクト比を10以下とすることが好ましい。
When the β fraction of the silicon nitride powder is less than 30%, it has an effect as a growth nucleus but partially acts as a nucleus, so that abnormal grain growth occurs and the finally obtained silicon nitride sintered material is obtained. Large particles cannot be uniformly dispersed in the microstructure of the body, and bending strength decreases. Therefore, the β fraction of the silicon nitride powder is preferably 30% or more. Further, if the average particle diameter of the silicon nitride powder is less than 0.2 μm, it is not possible to obtain a silicon nitride sintered body having a microstructure in which columnar particles are uniformly developed similarly to the above, and it is possible to increase the thermal conductivity and bending strength. Have difficulty. If the average particle size of the silicon nitride powder is larger than 10 μm, the densification of the silicon nitride in the sintered body is hindered. Therefore, the average particle diameter of the silicon nitride powder is preferably 0.2 to 10 μm. Further, if the aspect ratio exceeds 10, the densification of the silicon nitride sintered body is hindered, and as a result, the three-point bending strength at room temperature is 60.
It will be less than 0 MPa. Therefore, it is preferable to set the aspect ratio of the silicon nitride powder to 10 or less.

【0022】前記焼結工程において、昇温時1400℃〜16
00℃の温度で1〜10時間にわたる保持工程を入れるこ
と、およびこの保持温度から前記焼結温度までの昇温速
度を5.0℃/min以下にすることは、焼結体の密度(焼結
性)と最終ミクロ組織および窒化ケイ素粒子内への助剤
成分および酸素成分の固溶量に影響を与える。すなわち
1400℃〜1600℃の温度領域では、助剤成分とSi3N4粉末
表面のSiO2成分が反応して液相を形成し、αからβへの
相転位が起こり、続いて、粒成長が開始する。この温度
領域で保持することにより成長核となるβ粒子の形状を
均質化させる効果があり、この後の昇温工程における異
常粒成長を抑制することができる。また、助剤成分とし
て、希土類酸化物とともにMg成分を添加する利点は、液
相生成温度を低下させ、焼結性を改善できることにあ
る。しかしながら、Mg成分は蒸気圧が高いため、焼結過
程において焼結体の内部から表面部へのMg成分の拡散が
進行する。このため、内部と表面部との組成差が生じ、
とりわけ肉厚品を焼結する場合には両者間で色調差を呈
し、さらには焼結体内部の密度ならびに強度が著しく低
下するといった難点がある。この点1400℃〜1600℃の温
度領域における保持工程を追加することで、この傾向を
抑制する効果があり、緻密質かつ高強度の焼結体を得る
ために望ましい工程である。
In the sintering process, the temperature is raised from 1400 ° C. to 16 ° C.
The inclusion of a holding step at a temperature of 00 ° C for 1 to 10 hours, and the rate of temperature increase from this holding temperature to the sintering temperature of 5.0 ° C / min or less, are necessary for the density (sinterability) ) And the final microstructure and the amount of solid solution of the auxiliary component and the oxygen component in the silicon nitride particles. Ie
In the temperature range of 1400 ° C to 1600 ° C, the auxiliary component and the SiO2 component on the surface of the Si3N4 powder react to form a liquid phase, a phase transition from α to β occurs, and then grain growth starts. Holding in this temperature range has the effect of homogenizing the shape of β particles that are growth nuclei, and can suppress abnormal grain growth in the subsequent temperature raising step. Further, the advantage of adding the Mg component together with the rare earth oxide as an auxiliary component is that the liquidus formation temperature can be lowered and the sinterability can be improved. However, since the Mg component has a high vapor pressure, diffusion of the Mg component from the inside of the sintered body to the surface portion progresses during the sintering process. Therefore, there is a difference in composition between the inside and the surface,
In particular, when a thick product is sintered, there is a problem that a difference in color tone is exhibited between the two and that the density and strength inside the sintered body are significantly reduced. In this respect, the addition of the holding step in the temperature range of 1400 ° C to 1600 ° C has the effect of suppressing this tendency, and is a desirable step for obtaining a dense and high-strength sintered body.

【0023】次に、この保持温度から焼結温度への昇温
速度を5.0℃/min以下とすると、Mg成分の急激な系外へ
の揮発を抑制することができる。特に2.5℃/min以下と
すると、最終焼結体中のMg量を制御することが容易とな
り、とりわけ、薄物シート焼結体に対して、各試料間で
のMg量の組成差がなく、しいては、密度、強度等の諸特
性において差が無くなり、製品歩留りならびに品質を安
定させることができる。このため、焼結体中に気孔を生
成させることなく、低熱伝導の粒界相を効率よく低減す
ることができ、焼結体の熱伝導率向上に寄与する。ま
た、溶解・再析出を繰り返す粒成長過程で、窒化ケイ素
粒子内に取り込まれる助剤成分量ならびに酸素量を低減
することができ、この効果も焼結体の熱伝導率向上に繋
がる。したがって、昇温時の工程で保持すること、かつ
保持温度から焼結温度までの昇温速度を5.0℃/min以下
にすることは、焼結体の熱伝導率および強度を両立させ
るために望ましい工程である。
Next, when the temperature rising rate from the holding temperature to the sintering temperature is set to 5.0 ° C./min or less, rapid evaporation of the Mg component out of the system can be suppressed. Especially when it is 2.5 ° C / min or less, it becomes easy to control the amount of Mg in the final sintered body, and in particular, there is no difference in composition of the amount of Mg between the samples for the thin sheet sintered body. In addition, there is no difference in various characteristics such as density and strength, and product yield and quality can be stabilized. Therefore, it is possible to efficiently reduce the grain boundary phase having low heat conduction without generating pores in the sintered body, which contributes to the improvement of the thermal conductivity of the sintered body. Further, in the grain growth process in which dissolution and reprecipitation are repeated, it is possible to reduce the amount of auxiliary components and the amount of oxygen taken into the silicon nitride particles, and this effect also leads to an improvement in the thermal conductivity of the sintered body. Therefore, holding in the step of raising the temperature, and the temperature rising rate from the holding temperature to the sintering temperature is 5.0 ° C./min or less is desirable in order to achieve both thermal conductivity and strength of the sintered body. It is a process.

【0024】また、予め1650〜1850℃の焼結温度で成形
体を予備焼成し、次いで1850〜1900℃の熱処理を行うと
高熱伝導化が顕著になり120w/(m・K)を超える窒化ケイ素
質焼結体を得られ特に好ましい。この熱処理による高熱
伝導化は窒化ケイ粒子の成長と、蒸気圧の高いMgO基と
した粒界相成分が効率よく窒化ケイ素質焼結体外へ揮発
することの複合効果による。尚、1850℃〜1950℃の焼成
温度にて、焼成時間を延長することで、上記同様の高熱
伝導化の効果が達成できる。
If the compact is pre-fired at a sintering temperature of 1650 to 1850 ° C. and then heat-treated at 1850 to 1900 ° C., high thermal conductivity becomes remarkable, and the silicon nitride having a conductivity of more than 120 w / (m · K) is obtained. It is particularly preferable because an elemental sintered body can be obtained. The high thermal conductivity due to this heat treatment is due to the combined effect of the growth of silicon nitride particles and the efficient vaporization of MgO-based grain boundary phase components with high vapor pressure outside the silicon nitride sintered body. By extending the firing time at a firing temperature of 1850 ° C. to 1950 ° C., the same effect of high thermal conductivity as described above can be achieved.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態について
説明する。本発明の窒化ケイ素質焼結体において、高温
熱処理および焼成時間の延長により焼結体の熱伝導率は
向上するが、これは、窒化ケイ素粒子の粒成長および焼
結助剤成分の揮発による複合効果に加えて、窒化ケイ素
粒子内に微細粒子が析出することが窒化ケイ素粒子自身
の熱伝導率の上昇に影響を与えている。したがって、10
0 w/(m・K)以上の熱伝導率を得るためには、窒化ケイ素
粒子内の微細粒子析出効果は有効である。更に、強度と
熱伝導率を両立するためには、破壊の起点として作用す
る窒化ケイ素粒子の寸法を一定にし、この粒子内の高純
度化作用を適用することが肝要である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In the silicon nitride-based sintered body of the present invention, the thermal conductivity of the sintered body is improved by the high temperature heat treatment and the extension of the firing time, which is due to the grain growth of silicon nitride particles and the volatilization of the sintering additive component. In addition to the effect, the precipitation of fine particles in the silicon nitride particles affects the increase in the thermal conductivity of the silicon nitride particles themselves. Therefore, 10
In order to obtain a thermal conductivity of 0 w / (m · K) or more, the effect of precipitating fine particles in silicon nitride particles is effective. Further, in order to achieve both strength and thermal conductivity, it is important to make the size of the silicon nitride particles that act as the starting point of fracture constant and to apply the purifying action within the particles.

【0026】焼結助剤としてはMgおよびYは有用であ
り、窒化ケイ素質原料粉末の緻密化に有効である。これ
らの元素は窒化ケイ素質焼結体を構成する第1ミクロ組
織成分である窒化ケイ素質粒子に対する固溶度が小さい
ので、窒化ケイ素粒子、ひいては窒化ケイ素質焼結体の
熱伝導率を高い水準に保つことができる。また、Yと同
様に窒化ケイ素質粒子に対する固溶度が小さく、焼結助
剤として有用な元素として、La,Ce,Pr,Nd,
Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,YbおよびLuの群から選択される少なくとも1種
の希土類元素が挙げられる。そのうち、温度および圧力
が高くなり過ぎずに焼成ができる点でLa,Ce,G
d,DyおよびYbの群から選択される少なくとも1種
の希土類元素が好ましい。前記、微細粒子は、イオン半
径の大きい元素が主で構成されており、焼結助剤として
添加するMgを酸化マグネシウム(MgO)換算し、ま
た含有するLa,Y,GdおよびYbを含む希土類元素
(RE)から選択される少なくとも1種の元素を酸化物
(RE)換算した場合、RE /MgO>1
である場合に、微細粒子が析出し易くなる。換言すれば
焼結助剤として添加するMgO量が多い場合にこの微細
粒子が析出し難たくなる。
Mg and Y are useful as sintering aids.
It is effective for densifying the silicon nitride raw material powder. this
These elements are the 1st micro group that constitutes the silicon nitride sintered body
Small solid solubility for silicon nitride particles that are woven components
Therefore, the silicon nitride particles, and thus the silicon nitride sintered body
The thermal conductivity can be kept at a high level. Also, the same as Y
Similarly, the solid solubility in silicon nitride particles is small,
As elements useful as agents, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
at least one selected from the group consisting of m, Yb and Lu
Rare earth elements are listed. Of which, temperature and pressure
La, Ce, G in that it can be fired without the temperature becoming too high
at least one selected from the group of d, Dy and Yb
Rare earth elements are preferred. The fine particles are ionic half
Mainly composed of elements with a large diameter, and as a sintering aid
Convert the added Mg to magnesium oxide (MgO),
Rare earth elements containing La, Y, Gd and Yb
Oxide of at least one element selected from (RE)
(RExOy) When converted, RExO y/ MgO> 1
When it is, fine particles are likely to be deposited. In other words
If the amount of MgO added as a sintering aid is large,
It becomes difficult to deposit particles.

【0027】この理由は、前述の様にこの微細粒子は、
助剤成分とSi、OおよびNから構成されるが、Mg元
素のイオン半径(Mg2+)半径:0.07nmは、窒化ケイ素
(Si3N4)を構成するSi元素のイオン半径:0.04nmに
比較的近く、酸素と共に窒化ケイ素粒子内に固溶する形
態が安定である。一方、希土類元素酸化物(RE
)量が多い場合には、Yb以上の希土類元素のイ
オン半径(REx+)は、0.09nmでありSi元素のイオン
半径:0.04nmの2倍以上であり、またMg元素のイオン
半径(Mg2+)半径:0.07nmと比較して大きく、窒化ケ
イ素粒子内に固溶するよりも析出した形が安定となる。
したがって、微細粒子を析出させるためには、焼結体の
緻密化が達成できる範囲においては、希土類元素酸化物
(RE)基であることが望ましい。ここで、微細
粒子の粒子径が100nm超となると、それに伴い、窒化ケ
イ素粒子内に析出する100nm超の微細粒子の数が著しく
増加する。微細粒子は、Si−N-O−Mg−Rからなるガラス
相で構成されており、これ自身の熱伝導率は低い。この
ため、100nm超の微細粒子の存在が多くなると、逆に目
的とする窒化ケイ素粒子自身の熱伝導率向上が達成でき
ない。したがって、微細粒子は粒径100nm以下に制御す
ることが肝要である。
The reason for this is that the fine particles are
Comprised of auxiliary component and Si, O and N
Elemental ion radius (Mg2+) Radius: 0.07nm is silicon nitride
Ion radius of Si element composing (Si3N4): 0.04nm
Form that is relatively close and forms a solid solution with silicon nitride particles together with oxygen
The condition is stable. On the other hand, rare earth element oxide (RE
xO y) When the amount is large, the amount of rare earth elements of Yb or more
ON radius (REx +) Is 0.09 nm and is an ion of Si element
Radius: more than twice as large as 0.04 nm, and Mg element ion
Radius (Mg2+) Radius: Larger than 0.07 nm,
The precipitated form is more stable than solid solution in the silicon particles.
Therefore, in order to precipitate fine particles,
To the extent that densification can be achieved, rare earth element oxides
(RExOy) Group is desirable. Where the fine
If the particle size of the particles exceeds 100 nm, the nitriding
The number of fine particles of more than 100 nm deposited in the silicon particles is remarkable.
To increase. Fine particles are glass composed of Si-N-O-Mg-R
It is composed of phases, and its own thermal conductivity is low. this
Therefore, if the number of fine particles larger than 100 nm increases, the
It is possible to achieve the desired improvement in the thermal conductivity of the silicon nitride particles themselves.
Absent. Therefore, fine particles should be controlled to a particle size of 100 nm or less.
It is essential that

【0028】窒化ケイ素焼結体の熱伝導率は、ミクロ組
織と密接な関係にあり、これらを構成する窒化ケイ素粒
子と粒界相の熱伝導率に支配される。後者は、主にガラ
ス相として存在し、それらの熱伝導率は高々3W/(m・K)程
度である。また、所定の熱処理あるいは、焼結後の冷却
速度を緩やかにすることで粒界ガラス相を結晶化させた
場合でも30W/(m・K)程度である。前者の熱伝導率は、理
論値でAlNの319W/(m・K)に近い300W/(m・K)と推定されて
おり、また実測値でも180W/(m・K)が得られている。した
がって、焼結体の高熱伝導化は、窒化ケイ素粒子自身の
熱伝導率が多く関与している。ここで、窒化ケイ素粒子
自身の熱伝導率を低下させる阻害要因として、粒内転位
ならびに固溶元素がある。これらの阻害要因は、熱媒体
であるフォノンの散乱を引き起こし熱伝達を著しく低減
させる。このため、窒化ケイ素粒子の熱伝導率向上のた
め、しいては焼結体の熱伝導率向上のためには、これら
の阻害因子を抑制することが肝要である。これら阻害要
因のうち、粒内の固溶元素は焼結過程における液相生成
段階でSi、Nおよび助剤成分からなるSi−N-O−Mg−R
Eを生成し、更に粒成長段階で比較的小さな粒子がこの
液相に溶解して、続いてSi、Nが大きな粒子の表面に
再析出して粒成長が進行する。この際にSi、Nに混じ
ってMg、REの助剤成分および酸素(O)も粒子表面
に取り込まれる。上述した様に、元素のイオン半径が小
さい程、この傾向は大きくなる。
The thermal conductivity of the silicon nitride sintered body is closely related to the microstructure, and is governed by the thermal conductivity of the silicon nitride particles and the grain boundary phase constituting them. The latter exists mainly as a glass phase, and their thermal conductivity is at most about 3 W / (mK). Even when the grain boundary glass phase is crystallized by a predetermined heat treatment or a slow cooling rate after sintering, it is about 30 W / (m · K). The thermal conductivity of the former is estimated to be 300 W / (m ・ K), which is close to the theoretical value of 319 W / (m ・ K) of AlN, and the measured value is 180 W / (m ・ K). . Therefore, the high thermal conductivity of the sintered body is largely related to the thermal conductivity of the silicon nitride particles themselves. Here, intragranular dislocations and solid solution elements are factors that inhibit the thermal conductivity of the silicon nitride particles themselves. These impeding factors cause scattering of phonons, which are heat carriers, and significantly reduce heat transfer. Therefore, in order to improve the thermal conductivity of the silicon nitride particles, and thus the thermal conductivity of the sintered body, it is important to suppress these inhibiting factors. Among these inhibiting factors, the solid solution element in the grain is Si-NO-Mg-R composed of Si, N and auxiliary components in the liquid phase formation stage in the sintering process.
E is generated, and relatively small particles are dissolved in this liquid phase at the grain growth stage, and subsequently, Si and N are re-precipitated on the surface of the large particles, and grain growth proceeds. At this time, Mg, an auxiliary component of RE and oxygen (O) mixed with Si and N are also taken into the particle surface. As mentioned above, the smaller the ionic radius of the element, the greater this tendency.

【0029】よって、焼結後の最終のミクロ組織を構成
する窒化ケイ素粒子内には、極微量の助剤成分および酸
素が微細粒子に存在する。この固溶元素は例えばMg、
Y、La、Gd、Yb等の希土類元素であり、これらを粒子内
に微細に析出させれば、微細粒子の周りは高純度化さ
れ、粒子自身の熱伝導率は上昇する。このような固溶元
素の存在が本発明の特徴的な点であり、これにより焼結
体の高熱伝導化が達成できる。固溶元素の析出は上記し
た保持過程を含む焼結や焼結時間の延長また熱処理にて
調整できる。しかしながら、焼結後の窒化ケイ素粒子内
に固溶元素量が多い場合には、微細粒子析出による粒子
の高純度化作用は起こらないため、適切な焼結助剤の選
定ならびに焼結方法の適用が肝要である。
Therefore, in the silicon nitride particles constituting the final microstructure after sintering, a very small amount of auxiliary component and oxygen are present in the fine particles. This solid solution element is, for example, Mg,
Rare earth elements such as Y, La, Gd, and Yb. If these are finely precipitated in the particles, the surroundings of the fine particles are highly purified, and the thermal conductivity of the particles themselves is increased. The presence of such a solid solution element is a characteristic point of the present invention, whereby a high thermal conductivity of the sintered body can be achieved. The precipitation of the solid solution element can be adjusted by sintering including the above-mentioned holding process, extension of sintering time, or heat treatment. However, if the amount of solid solution elements in the silicon nitride particles after sintering is large, the effect of purifying the particles by fine particle precipitation does not occur, so select an appropriate sintering aid and apply the sintering method. Is essential.

【0030】次に、窒化ケイ素焼結体の製造方法におい
て、β分率が30〜100%の第一の窒化ケイ素質粉末と第
二のα型窒化ケイ素質粉末との比率は1〜50wt%:99
〜50wt%が好ましい。前記β分率が30〜100%の窒化
ケイ素質粉末の比率が1wt%未満では成長核としての
効果はあるものの、添加量が少ないために作用する成長
核の数が少なく、異常粒成長が起こりミクロ組織中に大
きな粒子を均一分散できなくなり、曲げ強度が低下す
る。また、50wt%超では成長核の数が多くなり、粒成
長の過程で、粒子同士が互いに衝突するため成長阻害が
起こり、強度は維持できるが、発達した柱状粒子からな
る窒化ケイ素質焼結体のミクロ組織を得られず、従来に
比べて高い熱伝導率を実現困難になる。前記窒化ケイ素
質粉末の酸素量を0.5wt%以下としたのは、前記窒化
ケイ素質粉末を成長核として作用させて窒化ケイ素質焼
結体を形成する場合、窒化ケイ素質焼結体を構成する窒
化ケイ素質粒子内に固溶する酸素量は、成長核として用
いる窒化ケイ素質粉末の酸素量に強く依存し、この窒化
ケイ素質粉末の酸素量が高いほど窒化ケイ素質粒子内に
固溶する酸素量が高くなる。そして窒化ケイ素質粒子中
に含有される酸素により熱伝導媒体であるフォノンの散
乱が発生し、窒化ケイ素質焼結体の熱伝導率が低下す
る。100W/(m・K)以上という従来の窒化ケイ素質焼結体で
は得られなかった高い熱伝導率を発現するには、窒化ケ
イ素質粉末の含有酸素量を0.5wt%以下に抑えて、最終的
に得られる窒化ケイ素質焼結体の酸素量を低減すること
が必要不可欠である。
Next, in the method for producing a silicon nitride sintered body, the ratio of the first silicon nitride powder having a β fraction of 30 to 100% and the second α-type silicon nitride powder is 1 to 50 wt%. : 99
~ 50 wt% is preferred. If the β fraction of the silicon nitride powder having a β fraction of 30 to 100% is less than 1 wt%, it has an effect as growth nuclei, but since the amount of addition is small, the number of growth nuclei acting is small and abnormal grain growth occurs. Large particles cannot be uniformly dispersed in the microstructure, and bending strength decreases. If it exceeds 50 wt%, the number of growth nuclei will increase, and particles will collide with each other during the grain growth process, resulting in growth inhibition and maintaining strength, but a silicon nitride sintered body composed of developed columnar particles. However, it is difficult to obtain a higher thermal conductivity than the conventional one. The oxygen content of the silicon nitride powder is set to 0.5 wt% or less. When the silicon nitride powder acts as a growth nucleus to form a silicon nitride sintered body, it constitutes a silicon nitride sintered body. The amount of oxygen solid-dissolved in the silicon nitride particles strongly depends on the amount of oxygen in the silicon nitride powder used as a growth nucleus. The higher the amount of oxygen in the silicon nitride powder, the more oxygen dissolved in the silicon nitride particles. Higher quantity. Then, the oxygen contained in the silicon nitride particles causes scattering of phonons, which are the heat conductive medium, and the thermal conductivity of the silicon nitride sintered body decreases. In order to develop a high thermal conductivity of 100 W / (mK) or higher, which was not possible with conventional silicon nitride sintered bodies, the oxygen content of silicon nitride powder should be kept below 0.5 wt% It is indispensable to reduce the amount of oxygen in the silicon nitride sintered body that is obtained as a result.

【0031】窒化ケイ素質粉末中のFe含有量およびA
l含有量がそれぞれ100ppm超では窒化ケイ素粒子内にF
eまたはAlが顕著に固溶し、この固溶部分で熱伝導媒
体であるフォノンの散乱を生じ、窒化ケイ素質焼結体の
熱伝導率を低下させる。したがって100W/m.K以上の熱伝
導率を得るには窒化ケイ素質粉末中のFe含有量および
Al含有量をそれぞれ100ppm以下に制御することが肝要
である。
Fe content and A in the silicon nitride powder
If the content of l is more than 100 ppm, F will be contained in the silicon nitride particles.
e or Al is remarkably solid-dissolved, and phonons, which are the heat-conducting medium, are scattered in this solid-solution portion, and the thermal conductivity of the silicon nitride sintered body is lowered. Therefore, in order to obtain a thermal conductivity of 100 W / mK or more, it is important to control the Fe content and the Al content in the silicon nitride powder to 100 ppm or less.

【0032】本発明の窒化ケイ素質焼結体からなる基板
は高強度、高靭性ならびに高熱伝導率の特性を生かし
て、パワ−半導体用基板またはマルチチップモジュ−ル
用基板などの各種基板、あるいはペルチェ素子用熱伝
板、または各種発熱素子用ヒ−トシンクなどの電子部品
用部材に好適である。例えば窒化ケイ素質焼結体を半導
体素子用基板として用いた場合、半導体素子の作動に伴
う繰り返しの熱サイクルを受けたときの基板のクラック
の発生が抑えられ、耐熱衝撃性ならびに耐熱サイクル性
が著しく向上し、信頼性に優れたものとなる。また、高
出力化および高集積化を指向する半導体素子を搭載した
場合でも、熱抵抗特性の劣化が少なく、優れた放熱特性
を発揮する。さらに、優れた機械的特性により本来の基
板材料としての機能だけでなく、それ自体が構造部材を
兼ねることができるため、基板ユニット自体の構造を簡
略化できる。
The substrate made of the silicon nitride sintered body of the present invention makes use of the characteristics of high strength, high toughness, and high thermal conductivity, and is used for various substrates such as substrates for power semiconductors or substrates for multi-chip modules, or It is suitable as a member for electronic parts such as a heat transfer plate for a Peltier element or a heat sink for various heating elements. For example, when a silicon nitride sintered body is used as a substrate for a semiconductor element, the occurrence of cracks in the substrate when subjected to repeated thermal cycles associated with the operation of the semiconductor element is suppressed, and thermal shock resistance and thermal cycle resistance are significantly improved. It is improved and has excellent reliability. Further, even when a semiconductor element directed to high output and high integration is mounted, thermal resistance characteristics are less deteriorated and excellent heat dissipation characteristics are exhibited. Furthermore, because of its excellent mechanical properties, it can function not only as an original substrate material but also as a structural member, so that the structure of the substrate unit itself can be simplified.

【0033】また、あるいは本発明の窒化ケイ素質焼結
体をペルチェ素子用熱伝板として用いた場合、ペルチェ
素子の印加電圧の極性の入れ替えに伴う繰り返し熱サイ
クルを受けたときの前記基板のクラックの発生が抑えら
れ、耐熱サイクル性が著しく向上し、信頼性に優れたも
のとなる。また、ゼーベック素子熱伝板として用いる場
合、吸熱側では600℃前後の高温になるため、ここで
も耐熱サイクル性かつ耐熱衝撃性が要求されるが、これ
に本発明の窒化ケイ素質焼結体を用いた場合には、これ
らの寿命特性が大幅に向上し、信頼性の優れたものとな
る。
Alternatively, when the silicon nitride sintered body of the present invention is used as a heat transfer plate for a Peltier device, cracks in the substrate when subjected to repeated heat cycles accompanied by switching of the polarity of the applied voltage of the Peltier device. Is suppressed, the thermal cycle resistance is remarkably improved, and the reliability is improved. Further, when used as a Seebeck element heat transfer plate, the heat absorption side has a high temperature of around 600 ° C., and therefore, thermal cycle resistance and thermal shock resistance are also required here. When it is used, these life characteristics are greatly improved and the reliability becomes excellent.

【0034】また、本発明の窒化ケイ素質焼結体は、上
述の電子部品用部材以外に熱衝撃および熱疲労の耐熱抵
抗特性が要求される材料に幅広く利用できる。構造用部
材として、各種の熱交換器部品や熱機関用部品、アルミ
ニウムや亜鉛等の金属溶解の分野で用いられるヒーター
チューブ、ストークス、ダイカストスリーブ、溶湯攪拌
用プロペラ、ラドル、あるいは熱電対保護管等に適用で
きる。また、アルミニウム、亜鉛等の溶融金属めっきラ
インで用いられるシンクロール、サポートロール、軸
受、あるいは軸等に適用することにより、急激な加熱や
冷却に対して耐割れ性に富んだ部材となり得る。また、
鉄鋼あるいは非鉄の加工分野では、圧延ロール、スキー
ズロール、ガイドローラ、線引きダイス、あるいは工具
用チップ等に用いれば、被加工物との接触時の放熱性が
良好なため、耐熱疲労性および耐熱衝撃性を改善するこ
とができ、これにより摩耗が少なく、熱応力割れを生じ
にくくできる。
Further, the silicon nitride sintered body of the present invention can be widely used for materials other than the above-mentioned members for electronic parts, which are required to have thermal shock resistance and thermal fatigue resistance. As structural members, various heat exchanger parts, heat engine parts, heater tubes used in the field of melting metals such as aluminum and zinc, Stokes, die casting sleeves, molten metal stirring propellers, ladles, or thermocouple protection tubes. Applicable to Further, by applying it to a sink roll, a support roll, a bearing, a shaft, or the like used in a molten metal plating line for aluminum, zinc, etc., it can be a member having excellent crack resistance against rapid heating and cooling. Also,
In the field of steel or non-ferrous metal processing, if it is used for rolling rolls, squeeze rolls, guide rollers, wire drawing dies, tool tips, etc., it has good heat dissipation when it comes into contact with the work piece, so it has good heat resistance Impact resistance can be improved, which results in less wear and less thermal stress cracking.

【0035】さらに、スパッタターゲット部材にも適用
でき、例えば磁気記録装置のMRヘッド、GMRヘッ
ド、またはTMRヘッドなどに用いられる電気絶縁膜の
形成や、熱転写プリンターのサーマルヘッドなどに用い
られる耐摩耗性皮膜の形成に好適である。スパッタして
得られる被膜は、本質的に高熱伝導特性を持つととも
に、スパッタレートも十分高くでき、被膜の電気的絶縁
耐圧が高いものとなる。このため、このスパッタターゲ
ットで形成したMRヘッド、GMRヘッド、またはTM
Rヘッド用の電気絶縁性被膜は高熱伝導ならびに高耐電
圧の特性を有するので、素子の高発熱密度化や絶縁性被
膜の薄膜化が図れる。また、このスパッタターゲットで
形成したサ−マルヘッド用の耐摩耗性被膜は、窒化ケイ
素本来の特性により耐摩耗性が良好であることはもとよ
り、高熱伝導性のため熱抵抗が小さくできるので印字速
度を高めることができる。
Further, it can be applied to a sputter target member, for example, it is used to form an electrically insulating film used in MR heads, GMR heads, TMR heads of magnetic recording devices, and wear resistance used in thermal heads of thermal transfer printers. Suitable for forming a film. The coating film obtained by sputtering essentially has a high thermal conductivity property, and the sputtering rate can be sufficiently high, so that the coating film has a high electrical withstand voltage. Therefore, the MR head, GMR head, or TM formed by this sputter target
Since the electrically insulating coating for the R head has the characteristics of high heat conduction and high withstand voltage, it is possible to increase the heat generation density of the element and thin the insulating coating. Further, the wear-resistant coating for the thermal head formed by this sputter target has good wear resistance due to the inherent characteristics of silicon nitride, and since it has high thermal conductivity, it can reduce the heat resistance, so that the printing speed can be reduced. Can be increased.

【0036】以下、実施例により本発明を説明するが、
それら実施例により本発明が限定されるものではない。 (実施例1)β化率が30%以上の第―の窒化ケイ素質粉
末1〜50wt%と、平均粒径が0.7〜1.2μm、酸素量が0.5
〜2.0wt%のα型の第二の窒化ケイ素質粉末を、1.0wt%ま
たは2.0wt%のMgOと、3wt%または6.0wt%のGd2O3あるいは
表1に示す焼結助剤を添加した混合粉末を作製した。な
お、第ニの窒化ケイ素粉末の割合は、第―の窒化ケイ素
粉末と焼結助剤粉末のバランスとした。さらに2wt%の分
散剤(商品名:レオカ゛-ト゛GP)を配合し、エタノールを満
たしたボ−ルミル容器中に投入し、次いで混合した。得
られた混合物を真空乾燥し、次いで目開き150μmの篩を
通して造粒した。次に、プレス機により直径20mm×厚さ
10mmおよび直径100mm×厚さ15mmのディスク状の成形体
を圧力3tonのCIP成形により得た。次いで1850℃〜1950
℃、0.7〜0.9MPa(7〜9気圧)の窒素ガス雰囲気中で5〜
40時間焼成した。なお、焼結工程において、昇温時1400
℃〜1600℃の温度で1〜10時間にわたる保持工程を設
け、かつこの保持温度から前記焼結温度までの昇温速度
を5.0℃/min以下にした。個々の試料の製造条件は表1
の試料No.1〜15の欄に示す。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. (Example 1) 1-50 wt% of the first silicon nitride powder having a β-conversion rate of 30% or more, an average particle size of 0.7-1.2 μm, and an oxygen content of 0.5
~ 2.0wt% α-type second silicon nitride powder, 1.0wt% or 2.0wt% MgO, and 3wt% or 6.0wt% Gd 2 O 3 or sintering aid shown in Table 1 is added. The mixed powder was prepared. The ratio of the second silicon nitride powder was a balance between the second silicon nitride powder and the sintering aid powder. Further, 2 wt% of a dispersant (trade name: Rheogade GP) was blended, charged into a ball mill container filled with ethanol, and then mixed. The obtained mixture was vacuum dried, and then granulated through a sieve having an opening of 150 μm. Next, with a press machine, diameter 20 mm × thickness
A disk-shaped compact having a diameter of 10 mm and a diameter of 100 mm and a thickness of 15 mm was obtained by CIP molding under a pressure of 3 tons. Then 1850 ℃ ~ 1950
5 to 5 in a nitrogen gas atmosphere of 0.7 to 0.9 MPa (7 to 9 atm)
It was baked for 40 hours. In the sintering process, the temperature rises to 1400
A holding step was performed at a temperature of ℃ to 1600 ℃ for 1 to 10 hours, and the temperature rising rate from the holding temperature to the sintering temperature was 5.0 ℃ / min or less. Table 1 shows the manufacturing conditions for each sample.
Sample No. 1 to 15 are shown.

【0037】また、得られた窒化ケイ素質焼結体の窒化
ケイ素粒子内の微細粒子の観察は、透過型電子顕微鏡
(日立製作所製HF2000)にて観察倍率×10,000倍
から600,000倍で行った。更に、微細粒子の組成分析は
付属のエネルギー分散型分析装置にて評価した。図1〜
図4は、本発明の窒化ケイ素焼結体(表1中のNo.1か
らNo.4の試料)のTEM観察像の写真である。また、
図5は比較例のTEM観察像(表3中のNo.31の試
料)の写真である。図6〜図9は、微細粒子の高分解能
観察像(表1中のNo.1からNo.4の試料)の写真、図1
0(表1中のNo.1試料)及び図11(表1中のNo.2試
料)は、微細粒子の核および周辺部のSTEM観察像の
写真である。
The fine particles in the silicon nitride particles of the obtained silicon nitride sintered material were observed with a transmission electron microscope (HF2000 manufactured by Hitachi, Ltd.) at an observation magnification of 10,000 to 600,000 times. Further, the composition analysis of fine particles was evaluated by an attached energy dispersive analyzer. Figure 1
FIG. 4 is a photograph of a TEM observation image of the silicon nitride sintered body of the present invention (samples No. 1 to No. 4 in Table 1). Also,
FIG. 5 is a photograph of a TEM observation image of the comparative example (sample No. 31 in Table 3). 6 to 9 are photographs of high-resolution observation images of fine particles (samples No. 1 to No. 4 in Table 1), and FIG.
0 (No. 1 sample in Table 1) and FIG. 11 (No. 2 sample in Table 1) are photographs of STEM observation images of the nuclei and peripheral portions of the fine particles.

【0038】次に得られた窒化ケイ素質焼結体から、直
径10mm×厚さ3mmの熱伝導率および密度測定用の試験
片、ならびに縦3mm×横4mm×長さ40mmの曲げ試験片を採
取した。密度はマイクロメ−タにより寸法を測定し、ま
た重量を測定し、算出した。熱伝導率はレーザーフラッ
シュ法により常温での比熱および熱拡散率を測定し熱伝
導率を算出した。3点曲げ強度は常温にてJIS R1
606に準拠して測定を行った。以上の製造条件の概略
および評価結果を、表1および表2の試料No.1〜15に
示す。
Next, a test piece for measuring thermal conductivity and density having a diameter of 10 mm and a thickness of 3 mm, and a bending test piece having a length of 3 mm, a width of 4 mm and a length of 40 mm were collected from the obtained silicon nitride sintered body. did. The density was calculated by measuring the dimensions by a micrometer and measuring the weight. The thermal conductivity was calculated by measuring the specific heat and the thermal diffusivity at room temperature by the laser flash method. 3-point bending strength is JIS R1 at room temperature
The measurement was performed according to 606. The outline of the above manufacturing conditions and the evaluation results are shown in Sample Nos. 1 to 15 of Table 1 and Table 2.

【0039】(比較例1)表1記載の試料No.31〜42の
製造条件とした以外は実施例1と同様にして評価した。
以上の製造条件の概略および評価結果を、表1および表
2の試料No.31〜42に示す。
(Comparative Example 1) Evaluation was made in the same manner as in Example 1 except that the manufacturing conditions of Sample Nos. 31 to 42 shown in Table 1 were used.
The outline of the above manufacturing conditions and the evaluation results are shown in Sample Nos. 31 to 42 of Table 1 and Table 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表1および表2に示したように、窒化ケイ
素粒子内に微細粒子が認めれた焼結体については、いず
れも100W/(m・K)以上の熱伝導率と600MPa以上の曲げ強度
が得られた。しかも微細粒子の存在割合が増すほど熱伝
導率が向上する傾向が確認できた。微細粒子が認められ
た焼結体について用いた焼結助剤成分のRExOy/MgO比
は1以上であった。一方、窒化ケイ素粒子内に微細粒子
が認められない焼結体については、いずれも100W/(m・K)
未満の熱伝導率となった。これに加えて、試料No.37〜4
2については、焼結工程において昇温時1400℃〜1600℃
の温度で保持しない場合、あるいはこの保持温度から焼
結温度までの昇温速度を5.0℃/min超とした場合には、
熱伝導率および強度ともに著しく低下した。
As shown in Tables 1 and 2, the sintered bodies in which fine particles were found in the silicon nitride particles had a thermal conductivity of 100 W / (m · K) or more and a bending strength of 600 MPa or more. was gotten. Moreover, it was confirmed that the thermal conductivity tends to improve as the proportion of the fine particles increases. The RExOy / MgO ratio of the sintering aid component used for the sintered body in which fine particles were recognized was 1 or more. On the other hand, 100 W / (mK) for all sintered bodies where fine particles are not found in the silicon nitride particles.
The thermal conductivity was less than. In addition to this, sample No. 37 ~ 4
For 2, the temperature rises from 1400 ℃ to 1600 ℃ in the sintering process.
If the temperature is not maintained at this temperature, or if the rate of temperature increase from this holding temperature to the sintering temperature is more than 5.0 ° C / min,
Both the thermal conductivity and the strength were significantly reduced.

【0043】図1〜図5のTEM観察像、図6〜図9の微
細粒子の高分解能電子顕微鏡(HREM)観察像及び図1
0、図11の微細粒子の核および周辺部のSTEM観察像に
ついて考察する。図1〜図4に、焼結助剤としてGd2O3
(図1)、Yb2O3(図2)、Y2O3(図3)およびLa2O3
(図4)を用いた本発明例の透過型電子顕微鏡(TEM)
像を示す。また、図5に比較例のTEM観察像を示す。図
1〜図4より、いずれにおいても窒化ケイ素粒子内に微
細粒子が存在する。図1では右下部に8〜45nmの範囲で
点在、図2では中央右部に10〜60nm範囲で点在、図3で
は中央左右部に8〜60nm範囲nmで点在、図4では右上部
に4〜85nmの範囲で点在していることが分かり、これら
の微細粒子の粒径はいずれも100nm以下であった。一
方、図5の比較例については、この様な微細粒子は観察
されなかった。なお、別の観察視野においても確認され
なかった。ここで、微細粒子の粒子径が100nm超となる
と、それに伴い、窒化ケイ素粒子内に析出する100nm超
の微細粒子の数が著しく増加し、所望の窒化ケイ素粒子
自身の熱伝導率向上に寄与しない。
TEM observation images of FIGS. 1 to 5, high resolution electron microscope (HREM) observation images of fine particles of FIGS. 6 to 9 and FIG.
0, the STEM observation image of the nuclei of fine particles and the peripheral portion thereof will be considered. 1 to 4 show that Gd2O3 is used as a sintering aid.
(Fig. 1), Yb2O3 (Fig. 2), Y2O3 (Fig. 3) and La2O3
Transmission electron microscope (TEM) of the present invention using (FIG. 4)
Show the image. Further, FIG. 5 shows a TEM observation image of the comparative example. From FIG. 1 to FIG. 4, fine particles are present in the silicon nitride particles in all cases. In Fig. 1, the lower right portion is scattered in the range of 8 to 45 nm, in Fig. 2, the central right portion is scattered in the 10 to 60 nm range, in Fig. 3, the central left and right portions are scattered in the 8 to 60 nm range nm, and in Fig. 4, the upper right portion. It was found that the particles were scattered in the range of 4 to 85 nm, and the particle size of these fine particles was 100 nm or less. On the other hand, in the comparative example of FIG. 5, such fine particles were not observed. In addition, it was not confirmed in another observation visual field. Here, when the particle diameter of the fine particles is more than 100 nm, the number of fine particles of more than 100 nm precipitated in the silicon nitride particles is significantly increased, and does not contribute to the improvement of the thermal conductivity of the desired silicon nitride particles themselves. .

【0044】次に図6〜図9に、焼結助剤としてGd2O3
(図6)、Yb2O3(図7)、Y2O3(図8)およびLa2O3
(図9)を用いた本発明例の高分解能観察(HREM)像を
示す。図6〜図9はそれぞれ図1〜図4で観察された微
細粒子についての観察像である。図6〜図9から、窒化
ケイ素粒子内に析出する微細粒子は、ランダムな格子像
および電子回折像がガラス相特有のハローパターンを示
したことから非晶質相からなることが判明した。更に、
図7のHREM像においては、組成のことなる核7と周辺部
8からなることを確認した。TEM−EDX分析の結果から、
核はSi成分が高く、MgおよびRE成分(本発明ではYbが該
当)が低く、また周辺部の組成は、これと逆の評価結果
であった。なお、HREM像においては極微小領域を長時間
観察した場合には、電子線によるダメージのため核と周
辺部を分離して観察することは困難であるが、このHREM
像は微細粒子の構成要素の分離、さらに組成の定量化ま
で言及できた点で非常に優れている。図10および図1
1は、焼結助剤としてGd2O3(図10)およびYb2O3(図
11)を用いた本発明例の走査透過型電子顕微鏡(STE
M)像を示す。これらの図は、それぞれ、図1および図
2にて観察された微細粒子についてのSTEM像である。ST
EM像は、ナノレベルの微小領域を観察する場合、特に、
組成や成分量の僅かな差を画像コントラストとして表現
するのに有効な観察方法である。図10および図11に
示した様に、個々の微細粒子は、核と周辺部から構成さ
れることが確認でき、核はSi成分が高く、かつMgおよび
RE(本発明ではGd、Ybが該当)が低く、一方、周辺部は
これとは逆の組成であることが判明した。
Next, as shown in FIGS. 6 to 9, Gd2O3 was used as a sintering aid.
(Fig. 6), Yb2O3 (Fig. 7), Y2O3 (Fig. 8) and La2O3
The high-resolution observation (HREM) image of the example of the present invention using (FIG. 9) is shown. 6 to 9 are observation images of the fine particles observed in FIGS. 1 to 4, respectively. From FIGS. 6 to 9, it was found that the fine particles precipitated in the silicon nitride particles consisted of an amorphous phase because the random lattice image and the electron diffraction image showed the halo pattern peculiar to the glass phase. Furthermore,
In the HREM image of FIG. 7, it was confirmed that the nucleus 7 and the peripheral portion 8 had different compositions. From the results of TEM-EDX analysis,
The core had a high Si component, a low Mg and RE components (Yb corresponds in the present invention), and the composition of the peripheral portion was the opposite evaluation result. In the HREM image, when observing a very small area for a long period of time, it is difficult to observe the nucleus and the peripheral part separately due to damage by the electron beam.
The image is excellent in that it can be referred to separation of constituents of fine particles and quantification of composition. 10 and 1
1 is a scanning transmission electron microscope (STE) of the example of the present invention using Gd2O3 (FIG. 10) and Yb2O3 (FIG. 11) as sintering aids.
M) Shows the image. These figures are STEM images of the fine particles observed in FIGS. 1 and 2, respectively. ST
EM images are especially useful when observing nano-level microscopic regions.
This is an effective observation method for expressing a slight difference in composition or component amount as image contrast. As shown in FIG. 10 and FIG. 11, it can be confirmed that each fine particle is composed of a nucleus and a peripheral portion. The nucleus has a high Si component, and Mg and
It was found that RE (Gd and Yb correspond in the present invention) is low, while the peripheral portion has a composition opposite to this.

【0045】(実施例2)β化率が30%以上、酸素含有
量が0.5wt%以下、平均粒子径が1μm〜10μm、アスヘ゜クト比
が10以下の第―の窒化ケイ素質粉末を1〜50wt%と平
均粒径が0.7〜1.2μm、酸素量が0.5〜2.0wt%のα型の
第二の窒化ケイ素質粉末に1wt%のMgO、3wt%%Gd2O3の焼
結助剤を添加した混合粉末を作製した。次いで、アミン
系の分散剤を2wt%添加したトルエン・ブタノール溶
液を満たしたボールミルの樹脂製ポット中に作製した混
合粉末および粉砕媒体の窒化ケイ素製ボールを投入し、
48時間湿式混合した。次いで、前記ポット中の混合粉末
100重量部に対しポリビニル系の有機バインダーを15重
量部および可塑剤(ジメチルフタレ−ト)を5重量部添
加し、次いで48時間湿式混合しシート成形用スラリーを
得た。この成形用スラリーを調整後、ドクターブレード
法によりグリーンシート成形した。次いで、成形したグ
リーンシートを空気中400〜600℃で2〜5時間加熱するこ
とにより、予め添加し有機バインダー成分を十分に脱脂
(除去)した。次いで脱脂体を0.9MPa(9気圧)の窒素
雰囲気中で1900℃×10時間の焼成を行い、その後室温に
冷却した。焼結工程においては、昇温時1400℃〜1600℃
の温度で1〜10時間にわたる保持工程を設け、かつこの
保持温度から前記焼結温度までの昇温速度を2.0℃/min
とした。得られた窒化ケイ素質焼結体シートに機械加工
を施し縦50mm×横50mm×厚さ0.6mmの半導体モジュール
用の基板を製造した。
(Example 2) 1 to 50 wt% of the second silicon nitride powder having a β-conversion rate of 30% or more, an oxygen content of 0.5 wt% or less, an average particle size of 1 μm to 10 μm, and an aspect ratio of 10 or less. %, An average particle size of 0.7 to 1.2 μm, and an oxygen content of 0.5 to 2.0 wt% α-type second silicon nitride powder with 1 wt% MgO and 3 wt% Gd 2 O 3 sintering aid added. The mixed powder was prepared. Then, the mixed powder prepared in a resin pot of a ball mill filled with a toluene-butanol solution added with 2 wt% of an amine-based dispersant and a silicon nitride ball of a grinding medium are charged,
Wet mixed for 48 hours. Then, the mixed powder in the pot
15 parts by weight of a polyvinyl organic binder and 5 parts by weight of a plasticizer (dimethyl phthalate) were added to 100 parts by weight, and the mixture was wet mixed for 48 hours to obtain a sheet forming slurry. After adjusting this forming slurry, a green sheet was formed by a doctor blade method. Then, the molded green sheet was heated in air at 400 to 600 ° C. for 2 to 5 hours to sufficiently degrease (remove) the organic binder component added in advance. Next, the degreased body was fired at 1900 ° C. for 10 hours in a nitrogen atmosphere of 0.9 MPa (9 atm), and then cooled to room temperature. In the sintering process, the temperature rises from 1400 ℃ to 1600 ℃
At a temperature of 1 to 10 hours, and the temperature rising rate from this holding temperature to the sintering temperature is 2.0 ° C / min.
And The obtained silicon nitride sintered body sheet was machined to produce a substrate for a semiconductor module having a length of 50 mm, a width of 50 mm and a thickness of 0.6 mm.

【0046】この窒化ケイ素質焼結体製基板を用いて図
12に示す回路基板を作製した。図12において、回路
基板11は作製した前記縦50mm×横50mm×厚さ0.6mmの
寸法の窒化ケイ素質焼結体製基板12の表面に銅製回路
板13を設け、前記基板12の裏面に銅板14をろう材
15により接合して構成されている。この回路基板11
に対し、3点曲げ強度の評価および耐熱サイクル試験を
行った。その結果、曲げ強度が600MPa以上と大きく、回
路基板11の実装工程における締め付け割れおよびはん
だ付け工程時の熱応力に起因するクラックの発生する頻
度がほぼ見られなくなり、回路基板を使用した半導体装
置の製造歩留まりを大幅に改善できることが実証され
た。また、耐熱サイクル試験は、−40℃での冷却を20
分、室温での保持を10分および180℃における加熱を20
分とする昇温/降温サイクルを1サイクルとし、これを
繰り返し付与し、基板部にクラック等が発生するまでの
サイクル数を測定した。その結果、1000サイクル経過後
においても窒化ケイ素質焼結体製基板12の割れや銅製
回路板13の剥離はなく、優れた耐久性と信頼性を兼備
することが確認された。また、1000サイクル経過後にお
いても耐電圧特性の低下は発生しなかった。
A circuit board shown in FIG. 12 was produced using this silicon nitride sintered body substrate. In FIG. 12, the circuit board 11 is provided with a copper circuit board 13 on the front surface of the silicon nitride sintered body substrate 12 having dimensions of 50 mm in length × 50 mm in width × 0.6 mm in thickness, and a copper plate on the back surface of the substrate 12. 14 is joined by a brazing material 15. This circuit board 11
On the other hand, a three-point bending strength evaluation and a heat cycle test were performed. As a result, the bending strength is as large as 600 MPa or more, and the frequency of occurrence of tightening cracks in the mounting process of the circuit board 11 and cracks caused by thermal stress in the soldering process is hardly seen. It was demonstrated that the manufacturing yield can be significantly improved. In the heat resistance cycle test, cooling at -40 ° C
For 10 minutes at room temperature and 20 minutes at 180 ° C.
The cycle of temperature increase / decrease for one minute was set as one cycle, and this cycle was repeatedly applied, and the number of cycles until cracks and the like occurred in the substrate part was measured. As a result, it was confirmed that, even after 1000 cycles, the silicon nitride sintered body substrate 12 was not cracked and the copper circuit board 13 was not peeled off, and it had excellent durability and reliability. In addition, the withstand voltage characteristics did not deteriorate even after 1000 cycles.

【0047】最後に実施例1および2で用いたβ分率が
30%以上の窒化ケイ素粉末について述べておく、含有酸
素量がSiO換算で2.0wt%未満、平均粒子径0.2〜
2.0μmのイミド分解法による窒化ケイ素質粉末をBN製
るつぼに充填し、次いで常圧〜1.0MPa(10気圧)のN2
雰囲気中にて1400℃〜1950℃で1〜20時間加熱する熱処
理を施し、次いで室温まで冷却した。得られた窒化ケイ
素質粉末のβ分率は90〜100%であり、酸素含有量は0.2
〜0.4wt%であった。図13に得られた窒化ケイ素質
粉末例のSEM観察像を示す。当該粉末のβ分率は100
%、酸素量は0.2wt%、FeおよびAl量はそれぞ
れ、50ppmおよび40ppmであった。当該粉末には粒子の長
軸方向と平行に溝部が形成されており、これは気相を介
して粒成長が起こる場合の特徴で、特に酸素量が微量で
あるほど顕著となる。得られた窒化ケイ素質粉末のF
e、Alの不純物分析はプラズマ発光分析(ICP)法に
より行った。また、酸素含有量は赤外線加熱吸収法によ
り測定した。
Finally, the β fraction used in Examples 1 and 2 was
The silicon nitride powder of 30% or more has an oxygen content of less than 2.0 wt% in terms of SiO 2 and an average particle diameter of 0.2 to
A BN crucible was filled with a silicon nitride powder by an imide decomposition method of 2.0 μm, and then N 2 at atmospheric pressure to 1.0 MPa (10 atm).
Heat treatment was performed by heating in an atmosphere at 1400 ° C to 1950 ° C for 1 to 20 hours, and then cooled to room temperature. The obtained silicon nitride powder has a β fraction of 90 to 100% and an oxygen content of 0.2.
It was ~ 0.4 wt%. FIG. 13 shows an SEM observation image of the obtained silicon nitride powder example. Β fraction of the powder is 100
%, The amount of oxygen was 0.2 wt%, and the amounts of Fe and Al were 50 ppm and 40 ppm, respectively. Grooves are formed in the powder in parallel with the major axis direction of the particles, which is a characteristic when grain growth occurs through the gas phase, and becomes more remarkable as the amount of oxygen is very small. F of the obtained silicon nitride powder
The impurities of e and Al were analyzed by plasma emission spectrometry (ICP). The oxygen content was measured by the infrared heating absorption method.

【0048】また得られた窒化ケイ素質粉末のβ分率は
Cu―Kα線を用いたX線回折強度比から式(1)により
求めた。 β分率(%)= {(Iβ(101)+Iβ(210))/(Iβ(101)+Iβ(210)+Iα(102)+Iα(201) )}×100 (1) Iβ(101) :β型Siの(101)面回折ヒ゜-ク強度, Iβ(210) :β型Siの(210)面回折ヒ゜-ク強度, Iα(102) :α型Siの(102)面回折ヒ゜-ク強度, Iα(210) :α型Siの(210)面回折ヒ゜-ク強度。
Further, the β fraction of the obtained silicon nitride powder was obtained from the formula (1) from the X-ray diffraction intensity ratio using Cu-Kα ray. β fraction (%) = {(I β (101) + I β (210) ) / (I β (101) + I β (210) + I α (102) + I α (201) )} × 100 (1) I β (101) : β -type Si 3 of N 4 (101) plane diffraction peak - click intensity, I β (210): β-type Si 3 of N 4 (210) plane diffraction peak - click intensity, I alpha (102): the alpha-type Si 3 N 4 (102) plane diffraction peak - click intensity, I α (210): the alpha-type Si 3 N 4 (210) plane diffraction peak - click strength.

【0049】また、得られた窒化ケイ素質粉末の平均粒
子径および平均アスペクト比は、SEM観察にて観察倍率
×2000倍で得られたSEM写真を用い、200μm×500μm視
野面積内にある計500個の窒化ケイ素質粒子を無作為に
選定して画像解析装置により最小径と最大径を測定し、
その平均値を求めて評価した。得られた窒化ケイ素質粉
末は、β分率が30%以上、平均粒子径が0.5〜10μm、アス
ヘ゜クト比が10以下、FeおよびAlの含有量が、いずれも
100ppm以下、また、酸素含有量は、0.5wt%以下であっ
た。
The average particle size and the average aspect ratio of the obtained silicon nitride powder were 500 in total in the visual field area of 200 μm × 500 μm, using the SEM photograph obtained by SEM observation at an observation magnification of × 2000. Randomly select silicon nitride particles and measure the minimum and maximum diameters with an image analyzer.
The average value was calculated and evaluated. The obtained silicon nitride powder has a β fraction of 30% or more, an average particle diameter of 0.5 to 10 μm, an aspect ratio of 10 or less, and Fe and Al contents of both.
The oxygen content was 100 ppm or less, and the oxygen content was 0.5 wt% or less.

【0050】[0050]

【発明の効果】以上の通り、本発明の窒化ケイ素質焼結
体は、窒化ケイ素粒子内にMgあるいはY、La、Gd、Yb等
の希土類元素の内の少なくとも1種の元素と、酸素元素
とを含む粒径100nm以下の微細粒子の存在により、本来
有する高強度/高靭性に加えて高い熱伝導率を具備した
ものとなる。これは、高温・高圧焼結といったコストの
高い焼成法、焼成装置を必要とせずに製造することが出
来る。また、これを半導体素子用基板として用いた場合
に半導体素子の作動に伴う繰り返しの熱サイクルによっ
て基板にクラックが発生することが少なく、耐熱衝撃性
ならびに耐熱サイクル性を著しく向上することができ
る。
As described above, the silicon nitride-based sintered body of the present invention is characterized in that at least one element of Mg or rare earth elements such as Y, La, Gd, and Yb is contained in the silicon nitride particles and the oxygen element. The presence of fine particles having a particle size of 100 nm or less containing and provides high thermal conductivity in addition to the original high strength / high toughness. This can be manufactured without the need for a costly firing method such as high temperature / high pressure sintering, and a firing apparatus. When this is used as a substrate for a semiconductor element, cracks are less likely to occur in the substrate due to repeated thermal cycles associated with the operation of the semiconductor element, and thermal shock resistance and thermal cycle resistance can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明例の希土類酸化物にGd2O3を用いた場合
の窒化ケイ焼結体の透過型電子顕微鏡(TEM)観察写
真を示す。
FIG. 1 shows a transmission electron microscope (TEM) observation photograph of a silicon oxynitride sintered body when Gd2O3 was used as the rare earth oxide of the present invention.

【図2】本発明例の希土類酸化物にYb2O3を用いた場合
の窒化ケイ焼結体の透過型電子顕微鏡(TEM)観察写
真を示す。
FIG. 2 shows a transmission electron microscope (TEM) observation photograph of a silicon nitride sintered body when Yb2O3 is used as the rare earth oxide of the present invention example.

【図3】本発明例の希土類酸化物にY2O3を用いた場合の
窒化ケイ焼結体の透過型電子顕微鏡(TEM)観察写真
を示す。
FIG. 3 shows a transmission electron microscope (TEM) observation photograph of a silicon nitride sintered body when Y2O3 is used as the rare earth oxide of the present invention.

【図4】本発明例の希土類酸化物にLa2O3を用いた場合
の窒化ケイ焼結体の透過型電子顕微鏡(TEM)観察写
真を示す。
FIG. 4 shows a transmission electron microscope (TEM) observation photograph of a silicon nitride sintered body when La2O3 is used as the rare earth oxide of the present invention.

【図5】比較例の窒化ケイ焼結体の透過型電子顕微鏡
(TEM)観察写真を示す。
FIG. 5 shows a transmission electron microscope (TEM) observation photograph of a silicon nitride sintered body of a comparative example.

【図6】本発明例の希土類酸化物にGd2O3を用いた場合
の窒化ケイ焼結体において、窒化ケイ素粒子内に析出し
た微細粒子の高分解能観察写真(HREM)を示す。
FIG. 6 shows a high-resolution observation photograph (HREM) of fine particles precipitated in silicon nitride particles in a silicon nitride sintered body when Gd2O3 is used as the rare earth oxide of the present invention.

【図7】本発明例の希土類酸化物にYb2O3を用いた場合
の窒化ケイ焼結体において、窒化ケイ素粒子内に析出し
た微細粒子の高分解能観察写真(HREM)を示す。
FIG. 7 shows a high-resolution observation photograph (HREM) of fine particles deposited in silicon nitride particles in a silicon nitride sintered body in which Yb2O3 is used as the rare earth oxide of the present invention example.

【図8】本発明例の希土類酸化物にY2O3を用いた場合の
窒化ケイ焼結体において、窒化ケイ素粒子内に析出した
微細粒子の高分解能観察写真(HREM)を示す。
FIG. 8 is a high-resolution observation photograph (HREM) of fine particles precipitated in silicon nitride particles in a silicon nitride sintered body in which Y2O3 is used as the rare earth oxide of the present invention example.

【図9】本発明例の希土類酸化物にLa2O3を用いた場合
の窒化ケイ焼結体において、窒化ケイ素粒子内に析出し
た微細粒子の高分解能観察写真(HREM)を示す。
FIG. 9 is a high-resolution observation photograph (HREM) of fine particles precipitated in silicon nitride particles in a silicon nitride sintered body in which La2O3 is used as the rare earth oxide of the present invention example.

【図10】本発明例の希土類酸化物にGd2O3を用いた場
合の窒化ケイ焼結体において、窒化ケイ素粒子内に析出
した微細粒子の走査型透過電子顕微鏡写真(STEM)
を示す。
FIG. 10 is a scanning transmission electron micrograph (STEM) of fine particles precipitated in silicon nitride particles in a silicon nitride sintered body using Gd2O3 as the rare earth oxide of the present invention.
Indicates.

【図11】本発明例の希土類酸化物にYb2O3を用いた場
合の窒化ケイ焼結体において、窒化ケイ素粒子内に析出
した微細粒子の走査型透過電子顕微鏡写真(STEM)
を示す。
FIG. 11 is a scanning transmission electron micrograph (STEM) of fine particles precipitated in silicon nitride particles in a silicon nitride nitride sintered body using Yb2O3 as the rare earth oxide of the present invention.
Indicates.

【図12】本発明例の窒化ケイ素質焼結体を用いた回路
基板の要部断面図を示す。
FIG. 12 is a cross-sectional view of a main part of a circuit board using the silicon nitride sintered body of the present invention.

【図13】本発明例の窒化ケイ素焼結体の製造に用いた
窒化ケイ素質粉末のSEM観察像写真を示す。
FIG. 13 shows an SEM observation image photograph of the silicon nitride powder used for manufacturing the silicon nitride sintered body of the example of the present invention.

【符号の説明】[Explanation of symbols]

11:回路基板 12:基板 13:銅製回路板 14:銅板 15:ろう材。 11: Circuit board 12: substrate 13: Copper circuit board 14: Copper plate 15: Brazing material.

【手続補正書】[Procedure amendment]

【提出日】平成15年1月10日(2003.1.1
0)
[Submission date] January 10, 2003 (2003.1.1
0)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】即ち、本発明の窒化ケイ素質焼結体は、倍
率10,000倍以上の透過型顕微鏡写真において、窒化ケイ
素粒子内に、MgあるいはY及び希土類元素(RE)か
らなる群から選ばれた少なくとも1種の元素と、O元素
とを含む100nm以下の平均粒径を有する微細粒子が存在
することを特徴とする。また、本発明の窒化ケイ素質焼
結体は、Mgと、Y及び希土類元素(RE)からなる群
から選ばれた少なくとも1種の元素を焼結助剤として添
加する窒化ケイ素質焼結体であって、倍率10,000倍以上
の透過型顕微鏡写真において、窒化ケイ素粒子内に、M
gあるいはLa,Y,Gd及びYbからなる群から選ば
れた少なくとも1種の元素と、O元素とを含む100nm以
下の平均粒径を有する微細粒子が存在することを特徴と
している。当該微細粒子は、焼成過程で窒化ケイ素粒子
の粒成長とともに極微量ではあるが粒内に取り込まれた
助剤成分が、窒化ケイ素粒子内に再析出したものであ
り、窒化ケイ素粒子自身の高熱伝導化に寄与する。この
とき、倍率10,000倍以上の透過型電子顕微鏡写真におい
て、窒化ケイ素粒子内に100nm以下の平均粒径を有する
微細粒子が5個/μm2以上存在することが望ましく、こ
の微細粒子の析出現象と割合により焼結体の熱伝導率は
向上する。
That is, the silicon nitride sintered body of the present invention is at least selected from the group consisting of Mg or Y and rare earth elements (RE) in silicon nitride particles in a transmission micrograph at a magnification of 10,000 or more. It is characterized by the presence of fine particles having an average particle diameter of 100 nm or less containing one kind of element and O element. The silicon nitride sintered body of the present invention is a silicon nitride sintered body to which Mg and at least one element selected from the group consisting of Y and rare earth elements (RE) are added as a sintering aid. Therefore, in a transmission type micrograph with a magnification of 10,000 times or more, in the silicon nitride particles, M
It is characterized by the presence of fine particles having an average particle size of 100 nm or less, which contains g or at least one element selected from the group consisting of La, Y, Gd and Yb, and O element. The fine particles are those in which the auxiliary component taken in the particles in the grain growth of the silicon nitride particles during the firing process is re-precipitated in the silicon nitride particles, although the trace amount is extremely small, and the high thermal conductivity of the silicon nitride particles themselves. Contribute to At this time, in a transmission electron micrograph with a magnification of 10,000 times or more, it is desirable that 5 / μm 2 or more of fine particles having an average particle diameter of 100 nm or less are present in the silicon nitride particles. The thermal conductivity of the sintered body is improved by the ratio.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】また、本発明の窒化ケイ素質焼結体は、前
記微細粒子が異なる核と周辺部とから構成されることを
特徴としている。この微細粒子は少なくともSi−N-
O−Mg−RE組成を有しており、当該組成割合は核部
分についてはSi成分が高く、かつ助剤成分として添加す
る(例えば、Mgおよび希土類元素)成分量が小さいこ
と。一方周辺部分は、逆にSi成分が小さく、助剤成分量
が多いという構成が望ましい。また当該微細粒子は、全
体に非晶質相であることが望ましい。
Further, the silicon nitride sintered body of the present invention is characterized in that the fine particles are composed of different nuclei and peripheral portions. The fine particles are at least Si-N-
It has an O-Mg-RE composition, and the composition ratio is such that the Si component is high in the core portion and the amount of the component (for example, Mg and rare earth element) added as an auxiliary component is small. On the other hand, in the peripheral portion, on the contrary, it is desirable that the Si component is small and the amount of the auxiliary component is large. Further, it is desirable that the fine particles are entirely in an amorphous phase.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA06 BA08 BA09 BA10 BA32 BB06 BB08 BB09 BB10 BB32 BC13 BC51 BC52 BC54 BD03 BD13 BD23 BE02 BE03 BE32   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G001 BA06 BA08 BA09 BA10 BA32                       BB06 BB08 BB09 BB10 BB32                       BC13 BC51 BC52 BC54 BD03                       BD13 BD23 BE02 BE03 BE32

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 窒化ケイ素粒子内に、MgあるいはY及
び希土類元素(RE)からなる群から選ばれた少なくと
も1種の元素と、O元素とを含む粒径100nm以下の微細
粒子が存在することを特徴とする窒化ケイ素質焼結体。
1. Fine particles having a particle size of 100 nm or less containing at least one element selected from the group consisting of Mg or Y and a rare earth element (RE) and an O element in the silicon nitride particles. A silicon nitride sintered body characterized by:
【請求項2】 Mgと、Y及び希土類元素(RE)から
なる群から選ばれた少なくとも1種の元素を焼結助剤と
して添加する窒化ケイ素質焼結体であって、前記、窒化
ケイ素粒子内に、MgあるいはLa,Y,Gd及びYb
からなる群から選ばれた少なくとも1種の元素と、O元
素とを含む粒径100nm以下の微細粒子が存在することを
特徴とする窒化ケイ素質焼結体。
2. A silicon nitride sintered body to which at least one element selected from the group consisting of Mg, Y and a rare earth element (RE) is added as a sintering aid, wherein the silicon nitride particles are Inside, Mg or La, Y, Gd and Yb
A silicon nitride sintered body, characterized in that fine particles having a particle size of 100 nm or less containing at least one element selected from the group consisting of and O element are present.
【請求項3】 透過型電子顕微鏡(TEM)による直接
倍率10,000倍以上の観察像において、窒化ケイ素粒子内
に粒径100nm以下の前記微細粒子が5個/μm2以上存在す
ることを特徴とする請求項1または2記載の窒化ケイ素
質焼結体。
3. An observation image with a direct magnification of 10,000 times or more by a transmission electron microscope (TEM), characterized in that the fine particles having a particle size of 100 nm or less are present in an amount of 5 particles / μm 2 or more. The silicon nitride sintered body according to claim 1.
【請求項4】 前記微細粒子は少なくともSi−N-O
−Mg−RE組成を有し、当該組成割合が異なる核と周
辺部とから構成されることを特徴とする請求項1〜3の
何れかに記載の窒化ケイ素質焼結体。
4. The fine particles are at least Si—N—O.
The silicon nitride sintered body according to any one of claims 1 to 3, which has a -Mg-RE composition and is composed of a core and a peripheral portion having different composition ratios.
【請求項5】 前記微細粒子が非晶質相であることを特
徴とする請求項1〜4の何れかに記載の窒化ケイ素質焼
結体。
5. The silicon nitride sintered body according to claim 1, wherein the fine particles have an amorphous phase.
【請求項6】 前記窒化ケイ素質焼結体が含有するMg
を酸化マグネシウム(MgO)に換算し、同じく含有す
るLa,Y,Gd及びYbを含む希土類元素を希土類酸
化物(RE)に換算したとき、これら酸化物に換
算した酸化物含有量の合計が0.6〜10wt%で、か
つ(RE)/(MgO)>1であることを特徴と
する請求項1〜5の何れかに記載の窒化ケイ素質焼結
体。
6. The Mg contained in the silicon nitride sintered body.
Is converted to magnesium oxide (MgO), and the rare earth elements containing La, Y, Gd, and Yb which are also contained are converted to rare earth oxides (RE x O y ), the oxide content converted to these oxides total at 0.6~10wt%, and (RE x O y) / ( MgO)> 1 a silicon nitride sintered body according to any one of claims 1 to 5, characterized in that.
【請求項7】 常温における熱伝導率が100W/(m・K)以
上であり、常温における3点曲げ強度が600MPa以上であ
る高強度・高熱伝導性に富んだ請求項1〜6の何れかに
記載の窒化ケイ素質焼結体。
7. The high thermal conductivity at room temperature is 100 W / (m · K) or more, and the three-point bending strength at room temperature is 600 MPa or more, which is rich in high strength and high thermal conductivity. The silicon nitride sintered body according to.
【請求項8】高強度・高熱伝導性に富んだ窒化ケイ素質
焼結体の製造方法であって、β分率が30〜100%であ
り、酸素含有量が0.5wt%以下であり、平均粒子径が
0.2〜10μmであり、アスペクト比が10以下である第一の
窒化ケイ素質粉末1〜50重量部と、平均粒子径が0.2〜4
μmの第ニのα型窒化ケイ素粉末99〜50重量部と、Mg
と、Y及び希土類元素(RE)からなる群から選ばれた
少なくとも1種の元素とを含む焼結助剤とを配合し、18
00℃以上の温度及び0.5MPa以上の窒素加圧雰囲気にて焼
結することを特徴とする窒化ケイ素質焼結体の製造方
法。
8. A method for producing a silicon nitride sintered body having high strength and high thermal conductivity, wherein the β fraction is 30 to 100%, the oxygen content is 0.5 wt% or less, and the average. Particle size is
0.2 to 10 μm, 1 to 50 parts by weight of a first silicon nitride powder having an aspect ratio of 10 or less, and an average particle size of 0.2 to 4
99-50 parts by weight of the second α-type silicon nitride powder of μm, and Mg
And a sintering aid containing Y and at least one element selected from the group consisting of rare earth elements (RE), 18
A method for producing a silicon nitride sintered body, comprising sintering at a temperature of 00 ° C. or higher and a nitrogen pressure atmosphere of 0.5 MPa or higher.
【請求項9】 前記焼結工程において、昇温時1400℃〜
1600℃の温度で1〜10時間にわたる保持工程を少なくと
も1回有し、かつこの保持温度から前記焼結温度までの
昇温速度を5.0℃/min以下にしたことを特徴とする請求
項8記載の窒化ケイ素質焼結体の製造方法。
9. In the sintering step, the temperature rises from 1400 ° C. to
9. A holding step at least once for 1 to 10 hours at a temperature of 1600 ° C., and a temperature rising rate from the holding temperature to the sintering temperature is 5.0 ° C./min or less. 1. A method for manufacturing a silicon nitride sintered body according to claim 1.
【請求項10】 請求項1〜9記載の窒化ケイ素質焼結
体を用いて構成されることを特徴とする高強度・高熱伝
導性に富んだ回路基板。
10. A circuit board having a high strength and a high thermal conductivity, which is constituted by using the silicon nitride sintered body according to any one of claims 1 to 9.
JP2002121345A 2002-04-23 2002-04-23 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same Expired - Lifetime JP3775335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121345A JP3775335B2 (en) 2002-04-23 2002-04-23 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121345A JP3775335B2 (en) 2002-04-23 2002-04-23 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005373302A Division JP4518020B2 (en) 2005-12-26 2005-12-26 A silicon nitride sintered body and a circuit board using the same.

Publications (3)

Publication Number Publication Date
JP2003313079A true JP2003313079A (en) 2003-11-06
JP2003313079A5 JP2003313079A5 (en) 2005-10-06
JP3775335B2 JP3775335B2 (en) 2006-05-17

Family

ID=29537306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121345A Expired - Lifetime JP3775335B2 (en) 2002-04-23 2002-04-23 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same

Country Status (1)

Country Link
JP (1) JP3775335B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255462A (en) * 2004-03-11 2005-09-22 Hitachi Metals Ltd Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
WO2008114752A1 (en) * 2007-03-22 2008-09-25 Ngk Spark Plug Co., Ltd. Insert and cutting tool
JP2010052969A (en) * 2008-08-27 2010-03-11 Kyocera Corp Silicon nitride sintered compact, its manufacturing method, circuit board, and power semiconductor module
EP2301906A1 (en) * 2008-07-03 2011-03-30 Hitachi Metals, Ltd. Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
WO2013121861A1 (en) * 2012-02-13 2013-08-22 三井金属鉱業株式会社 Silicon nitride sintered body and method for producing same
WO2013146789A1 (en) * 2012-03-26 2013-10-03 日立金属株式会社 Sintered silicon nitride substrate and process for producing same
WO2020045431A1 (en) * 2018-08-28 2020-03-05 京セラ株式会社 Insert and cutting tool
CN114787105A (en) * 2019-12-11 2022-07-22 宇部兴产株式会社 Plate-like silicon nitride sintered body and method for producing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255462A (en) * 2004-03-11 2005-09-22 Hitachi Metals Ltd Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
JP4556162B2 (en) * 2004-03-11 2010-10-06 日立金属株式会社 Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
WO2006118003A1 (en) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
US7915533B2 (en) 2005-04-28 2011-03-29 Hitachi Metals, Ltd. Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module
WO2008114752A1 (en) * 2007-03-22 2008-09-25 Ngk Spark Plug Co., Ltd. Insert and cutting tool
US8492300B2 (en) 2007-03-22 2013-07-23 Ngk Spark Plug Co., Ltd. Insert and cutting tool
JP5477289B2 (en) * 2008-07-03 2014-04-23 日立金属株式会社 Method for producing silicon nitride sintered body
EP2301906A1 (en) * 2008-07-03 2011-03-30 Hitachi Metals, Ltd. Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
EP2301906A4 (en) * 2008-07-03 2012-06-27 Hitachi Metals Ltd Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
US8586493B2 (en) 2008-07-03 2013-11-19 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
JP2010052969A (en) * 2008-08-27 2010-03-11 Kyocera Corp Silicon nitride sintered compact, its manufacturing method, circuit board, and power semiconductor module
WO2013121861A1 (en) * 2012-02-13 2013-08-22 三井金属鉱業株式会社 Silicon nitride sintered body and method for producing same
CN103813997A (en) * 2012-02-13 2014-05-21 三井金属矿业株式会社 Silicon nitride sintered body and method for producing same
WO2013146789A1 (en) * 2012-03-26 2013-10-03 日立金属株式会社 Sintered silicon nitride substrate and process for producing same
WO2020045431A1 (en) * 2018-08-28 2020-03-05 京セラ株式会社 Insert and cutting tool
JPWO2020045431A1 (en) * 2018-08-28 2021-08-26 京セラ株式会社 Inserts and cutting tools
JP7145222B2 (en) 2018-08-28 2022-09-30 京セラ株式会社 inserts and cutting tools
US11865624B2 (en) 2018-08-28 2024-01-09 Kyocera Corporation Insert and cutting tool
CN114787105A (en) * 2019-12-11 2022-07-22 宇部兴产株式会社 Plate-like silicon nitride sintered body and method for producing same
CN114787105B (en) * 2019-12-11 2024-03-05 Ube 株式会社 Plate-like silicon nitride sintered body and method for producing same

Also Published As

Publication number Publication date
JP3775335B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
KR100836150B1 (en) Sintered silicon nitride, method of manufacturing the same and sintered silicon nitride substrate
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
JP2002097005A5 (en)
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JPH09268069A (en) Highly heat conductive material and its production
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP5265859B2 (en) Aluminum nitride sintered body
JP4332824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body, sintered body thereof, substrate, circuit board for semiconductor element
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050822

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Ref document number: 3775335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term