JPS59199582A - Method of sintering sialon base sintering material - Google Patents
Method of sintering sialon base sintering materialInfo
- Publication number
- JPS59199582A JPS59199582A JP58073536A JP7353683A JPS59199582A JP S59199582 A JPS59199582 A JP S59199582A JP 58073536 A JP58073536 A JP 58073536A JP 7353683 A JP7353683 A JP 7353683A JP S59199582 A JPS59199582 A JP S59199582A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintering
- sialon
- container
- compacted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、焼結時に表面変質層の形成かない、すなわ
ち焼結のままの状態で実用に供することができるザイア
ロン焼結材料およびザイアロンを主成分とするサイアロ
ン基焼結材料(以下、これらを総称してサイアロン蒸焼
結材イ′」という)の焼結法に関するものである。Detailed Description of the Invention The present invention provides a sialon sintered material that does not form a surface altered layer during sintering, that is, can be put to practical use in the sintered state, and a sialon-based sintered material containing sialon as a main component. The present invention relates to a method for sintering materials (hereinafter collectively referred to as sialon sintered materials).
近年、タービンプレートなどの構造用材料として、種々
のニューセラミックス、中でも窒化月素(以下Si3N
4で示す)や、β型結晶構造を有するSi3N4のうち
のSlの一部をA、eで、またNの一部を0で置換した
化合物、すなわち組成式。In recent years, various new ceramics, especially silicon nitride (Si3N), have been used as structural materials for turbine plates and other materials.
4) or a compound in which a part of Sl in Si3N4 having a β-type crystal structure is replaced with A or e, and a part of N is replaced with 0, that is, a composition formula.
5i6−2.I!VzO2N8−z (ただし0 (z
= 4.3 )で表わされるβ−サイアロン、さらにα
型結晶構造を有するSi3N4の結晶格子中のSlの一
部を八βで、Nの一部’6oで置換し、かつ格子間位置
に原子半径の小さいLi、 Na、 Ca、 lvlハ
シおよび希土類元素などのうちの1種捷たけ2種以上(
下記の組成式でばJ・Aて示す)が侵入型に固溶した化
合物、すなわち組成式
Mx (Si、 A老)+2(0,N)+6(ただしO
<x≦2)で表わされるα−サイアロンで構成された焼
結材料、並びにこれらの成分を主成分とするSi3N4
基焼結材441やサイアロン基焼結材料が注目を集めて
いる。5i6-2. I! VzO2N8-z (but 0 (z
= 4.3), and then α
A part of Sl in the crystal lattice of Si3N4 having a type crystal structure is replaced with 8β and a part of N is replaced with '6o, and Li, Na, Ca, lvl and rare earth elements with small atomic radius are substituted at interstitial positions. 1 type and 2 or more types (
In the following compositional formula, J・A) is a solid solution in interstitial form, that is, the compositional formula Mx (Si, A) + 2 (0, N) + 6 (however, O
<x≦2) Sintered material composed of α-SiAlON, and Si3N4 containing these components as main components
Base sintered material 441 and Sialon-based sintered material are attracting attention.
しかし、これらの焼結材料、特にサイアロン基焼結材料
を製造するに際しては、
(a)その成形圧粉体を、直接Si3N4粉末やサイア
ロン粉末中に埋没した状態で焼結すると、前記成形圧粉
体の表面部分が焼結雰囲気や前記埋没粉末と反応して表
面変質層全形成し、さらに前記成形圧粉体の表面に穴や
凹みが存在する場合には、これらの部位に埋没用粉末が
入り込み、焼結の際の収縮時にこれらの粉末を強くかみ
込んで除去困511++と々るばかってなく、変形発生
の原因となる。However, when producing these sintered materials, especially sialon-based sintered materials, (a) If the compacted compact is directly sintered in a state embedded in Si3N4 powder or sialon powder, the compacted powder If the surface part of the body reacts with the sintering atmosphere and the embedding powder to form a surface-altered layer, and if there are holes or depressions on the surface of the compacted compact, the embedding powder may be present in these areas. These powders are not only hard to remove, but also become the cause of deformation because they are strongly trapped during shrinkage during sintering.
(b) その成形圧粉体を、黒鉛製るつぼ内に装入し
た状態で焼結すると、前記成形圧粉体の表面部分と焼結
ぢ)囲気との間で反応が起って表面変質層が形成される
ようになり、このことは黒鉛製るつぼの場合はど顕著で
はないが、S i3 N4基焼結利イ・1製るつぼ中で
の焼結でも同様に起るものである。(b) When the compacted compact is sintered in a graphite crucible, a reaction occurs between the surface of the compact and the sintering atmosphere, resulting in a surface-altered layer. Although this is not as remarkable in the case of a graphite crucible, it occurs similarly when sintering in a Si3N4 base sintering yield I-1 crucible.
などの問題点が発生し、したかつてサイアロン基焼結材
料においては、焼結後(に、その表面に形成された表面
変質層や粉末かみ込み層全除去しなければならないが、
この表面変質層は、サイアロン基焼結材料が研削が困難
な材料であることと合且つて、その除去には手間と時間
を要するものである。In the past, problems such as these occurred, and in the case of sialon-based sintered materials, after sintering, it was necessary to completely remove the surface-altered layer and powder-incorporated layer formed on the surface.
This surface-altered layer requires effort and time to remove, in addition to the fact that the sialon-based sintered material is difficult to grind.
そこで、本発明者等は、上述のような観点から、表面部
分に変質層や粉末かみ込み層の形成がないサイアロン基
焼結材料を得べぐ、その焼結態様に関して研究を行なっ
た結果、第1図に実施態様が概略縦断面図で示されるよ
うに、
捷ず、成形圧粉体1を、前記成形圧粉体と同一または近
似の組成を有するザイアロン基焼結イ/Iイ;・1製容
器2、あるいは内面を前記成形圧粉体と同一または近似
の組成を有する混合粉末で塗布したSi3N4基焼結材
料(Si3歯焼結材料も含む)製容器2内に、Si3N
4粉末、あるいはS′1−3N4粉末を主成分とする混
合粉末全下敷き3にして装入し、ついで、上記の容器2
全黒鉛るつは4内に、Si3N4粉末5、あるいはSi
3N4粉末を主成分とする混合粉末5中に埋没した状態
で装入し、この状態の黒鉛るつは全、窒素含有雰囲気中
で焼結すると、焼結中の成形圧粉体を取り囲む雰囲気が
、成形圧粉体自身の揮発成分、例えばSi3N4の一部
が分解して生ずるSiOガスなどと類似したものとなり
、この分解ガス雰囲気によって外部の:/’)囲気が遮
断され、この結果成形圧粉体には外部′雰囲気との反応
によって生ずる表面変質層の形成がないようになるもの
と推定されることから、表面性状の良好なサイアロン基
焼結材料が得られるようにな9、しかも前記成形圧粉体
は粉末中に埋没されていないので、粉末かみ込み層の形
成もないという知見をイ↓)だのである。Therefore, from the above-mentioned viewpoint, the present inventors conducted research on the sintering mode of the sialon-based sintered material in order to obtain a sialon-based sintered material free from the formation of altered layers or powder-incorporated layers on the surface portion. As the embodiment is shown in a schematic longitudinal cross-sectional view in FIG. 1, a compacted powder body 1 is formed into a Zialon-based sintered powder having the same or similar composition as the compacted compact. 1 or a container 2 made of Si3N4-based sintered material (including Si3-toothed sintered material) whose inner surface is coated with a mixed powder having the same or similar composition to that of the compacted compact.
4 powder or a mixed powder containing S'1-3N4 powder as the main component, and then charged in the container 2.
All graphite melt 4 contains Si3N4 powder 5 or Si
When the graphite melt in this state is charged in a mixed powder 5 whose main component is 3N4 powder and sintered in a nitrogen-containing atmosphere, the atmosphere surrounding the compacted compact during sintering changes. , the volatile components of the compacted compact itself, such as SiO gas generated by the decomposition of a part of Si3N4, are similar, and this decomposed gas atmosphere blocks the outside air, and as a result, the compacted compact Since it is presumed that there will be no formation of a surface-altered layer on the body due to reaction with the external atmosphere, it is possible to obtain a sialon-based sintered material with good surface properties. Since the green compact is not embedded in the powder, there is no formation of a powder-incorporated layer (↓).
この発明は、上記知見にもとづいてなされたものであっ
て、以下に実施例により具体的に説明する。This invention was made based on the above findings, and will be specifically explained below using Examples.
実施例
原料粉末として、平均粒径: 0.871+11のS
j、3 N 4粉末(α相含有率 90重量%)、同0
6μmのα−AA203粉末、同10μ??7のY2O
3粉末、いずれも同15pmのMN粉末、 Ti0N
(TiC/TiN=2/85重聞比)粉末、およびカー
ボンブランク粉末全用意し、これら原料粉末をそれぞれ
第1表に示される配合組成に配合し、さらに粘結剤とし
てのパラフィンを配合粉末に対して4重量%添加して3
N間ボールミルにて湿式混合した後、乾燥し、ついでこ
の結果の混合粉末をプレス成形した後、真空中、確度8
00℃に1時間保持して粘結剤としてのパラフィンを揮
発させることによって成形圧粉体a〜0を製造した。As the example raw material powder, average particle size: 0.871+11 S
j, 3 N4 powder (α phase content 90% by weight), 0
6μm α-AA203 powder, same 10μ? ? 7 Y2O
3 powders, all 15pm MN powder, Ti0N
(TiC/TiN=2/85 weight ratio) powder and carbon blank powder are all prepared, these raw powders are blended into the composition shown in Table 1, and paraffin as a binder is added to the blended powder. Add 4% by weight to 3
After wet mixing in a ball mill between N and drying, the resulting mixed powder was press-molded and then molded in a vacuum with an accuracy of 8.
Molded green compacts a to 0 were produced by holding at 00° C. for 1 hour to volatilize paraffin as a binder.
つぎに、これらの成形圧粉体a、 −Off用い、以下
に示す状態、すなわち、
(1)成形圧粉体aを、前記成形圧粉体aと同一の組成
を有するザイアロン焼結4シ料製容器内に、Si3N4
粉末を敷いて配置し、との容器全体を黒鉛るつぼ内にS
i3N4粉末中に埋没させて装入(以下」\イ辻明方法
1という)、
(2)成形圧粉体すと同一の組成を有する混合粉末で内
面を(≠布したSi3N4焼糸^(オ料製容器内に、成
形圧粉体すを813 N4粉末を敷いて配置し、この容
?1;全体金黒鉛るつは内にSi3N4粉末中(で埋没
させて装入(以下、本発明法2という)、(:3)
成形圧粉体Cと同一の組成を有する混合粉末で内面を塗
布した8 13−焼結42別製容器内に、成形圧粉体C
k Sj、3N4粉宋金敷いて配置し、この容器全体を
黒鉛るつは内にSj、3N4粉末中に埋没させて装入(
以下、本発明法3という)、(4)成形圧粉体aと同一
の組成を有する混合粉末で内面を塗布したSj、3N4
焼結材別製容器内に、成形圧粉体d f Si3N4粉
末を敷いて配置し、この容器全体を黒鉛るつぼ内にSi
3N4粉末中に埋没させて装入(以下、本発明法4とい
う)、(5)成形圧粉体Cと同一の組成を有する混合粉
末で内面を塗布しプヒ513N4焼結拐料製容器内に、
成形圧粉体e ’f、(Si3N4粉末を敷いて配置し
、この容器全体を黒鉛るつは内にS :L 3 N 、
+粉末中に埋没させて装入(以下、本発明法5という)
、(6)成形圧粉体a15黒鉛るつ(・1内にSi3N
4粉末中に埋没させて装入(以下、比較法1という)、
(7) 容器を黒鉛製とする以外は、本発明法1と同
一の条件で成形圧粉体l)全装入(以1・−1比較法2
という)、
(8) 容器を黒鉛製とする以外は、本発明法1と同
一の条件で成形圧粉体Cを装入(以下、比較法3という
)、
(9) 容器を黒鉛製とする以外嬬1、本発明法4と
同一の条件で成形圧粉体J装入(したかつて、この場合
容器内面塗布は成形圧粉体aと同一組成となる、以下、
比較法4という)、
(10) 5iaN4焼結材刺製容器内に成形圧粉体
0をSi3N4粉末を敷いて配置し、この容器全体を黒
鉛るつぼ内にSi3N4粉末中に埋没させて装入(以下
、比較法5という)、
以上(1)〜(10)のうちのいずれかの状態で、1気
圧の窒素雰囲気中、温度: ] 700℃((2時間保
持の条件で焼結することによって本発明/1:1〜5お
よ第 1 表
第 2 表
び比較法1〜5を実施し、この結果得られたサイアロン
基焼結材利の断面を研摩し、表面変質層の平均厚みを測
定した。これらの結果を第2表Vこ示した。Next, using these compacted powder compacts a, -Off, the following conditions are performed: Inside the manufactured container, Si3N4
Place the powder and place the whole container in the graphite crucible.
immersed in i3N4 powder and charged (hereinafter referred to as \A Tsujiaki method 1); A molded compact was placed in a material preparation container with 813 N4 powder spread thereon, and the entire gold graphite melt was immersed in Si3N4 powder (hereinafter referred to as the method of the present invention). 2), (:3)
8 13-Sintering 42 In a separate container, the molded green compact C was coated with a mixed powder having the same composition as the compacted powder body C.
k Sj, 3N4 powder is laid out on an anvil, and the entire container is immersed in Sj, 3N4 powder in a graphite crucible and charged (
(hereinafter referred to as the present invention method 3), (4) Sj, 3N4 whose inner surface was coated with a mixed powder having the same composition as the compacted compact a
A molded green compact d f Si3N4 powder is spread and placed in a container made separately for the sintered material, and the entire container is placed in a graphite crucible with Si3N4 powder.
3N4 powder and charged (hereinafter referred to as the method 4 of the present invention). (5) The inner surface was coated with a mixed powder having the same composition as the compacted compact C and placed in a container made of Puhi 513N4 sintered powder. ,
Molded compact e'f, (Si3N4 powder is spread and arranged, and the entire container is placed in a graphite melting ring S:L3N,
+ Charging by immersing it in powder (hereinafter referred to as the method 5 of the present invention)
, (6) Molded green compact A15 graphite melt (・Si3N in 1
4 Burying and charging in powder (hereinafter referred to as comparative method 1),
(7) Complete charging of compacted powder l) under the same conditions as method 1 of the present invention except that the container was made of graphite (hereinafter referred to as 1.-1 Comparative method 2)
(8) Charge the compacted compact C under the same conditions as method 1 of the present invention, except that the container is made of graphite (hereinafter referred to as comparative method 3), (9) The container is made of graphite Other than that, the molded green compact J was charged under the same conditions as the method 4 of the present invention.
(referred to as Comparative Method 4), (10) The compacted compact 0 was placed in a 5iaN4 sintered material container with Si3N4 powder spread thereon, and the entire container was immersed in the Si3N4 powder in a graphite crucible and charged ( (hereinafter referred to as Comparative Method 5), in any of the above (1) to (10), in a nitrogen atmosphere of 1 atm, at a temperature of 700°C (by sintering under the condition of holding for 2 hours). Invention/1: 1 to 5 and Comparative Methods 1 to 5 were carried out, and the cross section of the resulting sialon-based sintered material was polished to determine the average thickness of the surface altered layer. The results are shown in Table 2.
第2表に示される結果から、本発明法1〜5によって得
られたサイア1コン基焼結Aシ泊1(Cおいては、いず
れも表面変質層が全くa忍められないのに対して、比較
法1〜5(・Cおいては、いずれも表面変質層の形成が
認められるものであった。From the results shown in Table 2, it can be seen that in the sintered 1-container-based sintered A-1 (C) obtained by methods 1 to 5 of the present invention, the surface deterioration layer was not tolerated at all. In Comparative Methods 1 to 5 (.C), the formation of a surface-altered layer was observed in all of them.
上述のように、この発明の方法によれば、焼結後のザイ
アロン基焼結第2料には、表面変質層や粉末かみ込み層
の形成がなく、したがって研削などを行なうことなく、
焼結の1、才の状態で実用に供するととができるなど実
用上イ]′用な効果かもたらされるのである。As described above, according to the method of the present invention, there is no formation of a surface-altered layer or a powder-incorporated layer on the Zialon-based sintered second material after sintering, and therefore, without grinding, etc.
When put to practical use in the sintered state, it brings about practical effects such as the ability to burnish.
第1図はこの発明の実施態様を示す概略縦断面図である
。図面において、
1・・・成形圧粉体、 2・・・容器、:3 下敷き
、 4・黒鉛るつぼ、5 埋没用粉末。
出願人 三菱金属株式会社
代理人 富 1)和 夫 外1名FIG. 1 is a schematic vertical sectional view showing an embodiment of the present invention. In the drawings: 1. Molded compact; 2. Container; 3. Underlay; 4. Graphite crucible; 5. Powder for burial. Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo and 1 other person
Claims (1)
粉体を、 捷ず、上記成形圧粉体と同一または近似の組成を有する
サイアロン基焼結材料製容器、あるいは内面全上記成形
圧粉体と同一または近似の組成を有する混合粉末で塗布
した窒化珪素基焼結材料製容器内に、窒化珪素粉末、あ
るいは窒化珪素粉末を主成分とする混合粉末をT敷きに
して装入し、ついで、上記の容器を黒鉛るつぼ内に、窒
化珪素粉末、あるいは窒化珪素粉末を主成分とする混合
粉末中に埋没した状態で装入し、 この状態の黒鉛るつぼを、窒素含有雰囲気中で焼結する
こと全特徴とするサイアロン基焼結材料の焼結法。[Scope of Claims] When sintering the sialon-based sintered material, the compacted powder is not crushed, and the container or inner surface made of the sialon-based sintered material has the same or similar composition as the compacted powder. In a container made of a silicon nitride-based sintered material coated with a mixed powder having the same or similar composition to that of the above-mentioned compacted compact, silicon nitride powder or a mixed powder mainly composed of silicon nitride powder is spread on a T. Then, the container is placed in a graphite crucible in a state where it is buried in silicon nitride powder or a mixed powder mainly composed of silicon nitride powder, and the graphite crucible in this state is placed in a nitrogen-containing atmosphere. A sintering method for sialon-based sintered materials, which is characterized by sintering in a medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58073536A JPS59199582A (en) | 1983-04-26 | 1983-04-26 | Method of sintering sialon base sintering material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58073536A JPS59199582A (en) | 1983-04-26 | 1983-04-26 | Method of sintering sialon base sintering material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59199582A true JPS59199582A (en) | 1984-11-12 |
JPS6230152B2 JPS6230152B2 (en) | 1987-06-30 |
Family
ID=13521045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58073536A Granted JPS59199582A (en) | 1983-04-26 | 1983-04-26 | Method of sintering sialon base sintering material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59199582A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265970A (en) * | 1985-09-17 | 1987-03-25 | 日立金属株式会社 | Production of mn-zn type ferrite |
JP2012218983A (en) * | 2011-04-11 | 2012-11-12 | Hitachi Metals Ltd | Method of manufacturing silicon nitride ceramic sintered compact, and sintering vessel |
JP2016040224A (en) * | 2015-09-03 | 2016-03-24 | 日立金属株式会社 | Method for producing sintered board of silicon nitride-based ceramic |
WO2024070470A1 (en) * | 2022-09-27 | 2024-04-04 | 株式会社 東芝 | Silicon nitride sintered body, wear-resistant member, substrate for semiconductor devices, and method for producing silicon nitride sintered body |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230194774A1 (en) | 2020-05-13 | 2023-06-22 | Haute Ecole Arc | Optical waveguide and method of fabrication thereof |
-
1983
- 1983-04-26 JP JP58073536A patent/JPS59199582A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265970A (en) * | 1985-09-17 | 1987-03-25 | 日立金属株式会社 | Production of mn-zn type ferrite |
JP2012218983A (en) * | 2011-04-11 | 2012-11-12 | Hitachi Metals Ltd | Method of manufacturing silicon nitride ceramic sintered compact, and sintering vessel |
JP2016040224A (en) * | 2015-09-03 | 2016-03-24 | 日立金属株式会社 | Method for producing sintered board of silicon nitride-based ceramic |
WO2024070470A1 (en) * | 2022-09-27 | 2024-04-04 | 株式会社 東芝 | Silicon nitride sintered body, wear-resistant member, substrate for semiconductor devices, and method for producing silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPS6230152B2 (en) | 1987-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05506422A (en) | Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body | |
US4019913A (en) | Process for fabricating silicon carbide articles | |
JPS59199582A (en) | Method of sintering sialon base sintering material | |
JPS6385060A (en) | Manufacture of self-supporting ceramic composite material | |
JPH04500497A (en) | Improving thermal conductivity of aluminum nitride through pre-densification treatment | |
JPS6241768A (en) | Manufacture of aluminum nitride sintered body | |
JP2005298304A (en) | Highly dense silicon carbide ceramic and its producing method | |
JPH09278524A (en) | Production of silicon carbide sintered compact | |
WO1987003866A1 (en) | Ceramics containing alpha-sialon | |
JPH0891960A (en) | Base material for circuit board | |
JPH09227233A (en) | Production of silicon carbide sintered compact | |
JPS5864270A (en) | Silicon nitride sintered body | |
JPS598670A (en) | High tenacity silicon nitride base sintered body | |
JPS58125667A (en) | Composite carborundum sintered shape and its manufacture | |
JPH0627029B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH02501382A (en) | Method for hot isostatic pressing of silicon nitride bodies reinforced with carbide fibers and carbide whiskers | |
JPS60186469A (en) | Manufacture of silicon nitride sintered body | |
JP3978789B2 (en) | Diamond sintered body and method for producing the same | |
JPS6163570A (en) | Manufacture of silicon nitride sintered body | |
JP2916934B2 (en) | Method for producing sialon-based sintered body | |
JPH06509316A (en) | Hardened cermet and method for producing hardened cermet | |
JPS59232972A (en) | Abrasion resistant sialon base ceramics | |
JPH0625037B2 (en) | Manufacturing method of ceramic products | |
JPH01320268A (en) | Dense silicon nitride ceramic and its production | |
JPS63185866A (en) | Manufacture of silicon nitride sintered body |