JPS6230152B2 - - Google Patents

Info

Publication number
JPS6230152B2
JPS6230152B2 JP58073536A JP7353683A JPS6230152B2 JP S6230152 B2 JPS6230152 B2 JP S6230152B2 JP 58073536 A JP58073536 A JP 58073536A JP 7353683 A JP7353683 A JP 7353683A JP S6230152 B2 JPS6230152 B2 JP S6230152B2
Authority
JP
Japan
Prior art keywords
powder
sialon
compacted
sintered material
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58073536A
Other languages
Japanese (ja)
Other versions
JPS59199582A (en
Inventor
Teruyoshi Tanase
Yoshifumi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58073536A priority Critical patent/JPS59199582A/en
Publication of JPS59199582A publication Critical patent/JPS59199582A/en
Publication of JPS6230152B2 publication Critical patent/JPS6230152B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、焼結時に表面変質層の形成がな
い、すなわち焼結のままの状態で実用に供するこ
とができるサイアロン焼結材料およびサイアロン
を主成分とするサイアロン基焼結材料(以下、こ
れらを総称してサイアロン基焼結材料という)の
焼結法に関するものである。 近年、タービンブレードなどの構造用材料とし
て、種々のニユーセラミツクス、中でも窒化珪素
(以下Si3N4で示す)や、β型結晶構造を有する
Si3N4のうちのSiの一部をAlで、またNの一部を
Oで置換した化合物、すなわち組成式: Si6-zAlzOzN8-z (ただし0<z≦4.3) で表わされるβ−サイアロン、さらにα型結晶構
造を有するSi3N4の結晶格子中のSiの一部をAl
で、Nの一部をOで置換し、かつ格子間位置に原
子半径の小さいLi、Na、Ca、Mg、Y、および希
土類元素などのうちの1種または2種以上(下記
の組成式ではMで示す)が侵入型に固溶した化合
物、すなわち組成式: Mx(Si、Al)12(O、N)16 (ただし0<x≦2) で表わされるα−サイアロンで構成された焼結材
料、並びにこれらの成分を主成分とするSi3N4
焼結材料やサイアロン基焼結材料が注目を集めて
いる。 しかし、これらの焼結材料、特にサイアロン基
焼結材料を製造するに際しては、 (a) その成形圧粉体を、直接Si3N4粉末やサイア
ロン粉末中に埋没した状態で焼結すると、前記
成形圧粉体の表面部分が焼結雰囲気や前記埋没
粉末と反応して表面変質層を形成し、さらに前
記成形圧粉体の表面に穴や凹みが存在する場合
には、これらの部位に埋没用粉末が入り込み、
焼結の際の収縮時にこれらの粉末を強くかみ込
んで除去困難となるばかりではなく、変形発生
の原因となる。 (b) その成形圧粉体を、黒鉛製るつぼ内に装入し
た状態で焼結すると、前記成形圧粉体の表面部
分と焼結雰囲気との間で反応が起つて表面変質
層が形成されるようになり、このことは黒鉛製
るつぼの場合ほど顕著ではないが、Si3N4基焼
結材料製るつぼ中での焼結でも同様に起るもの
である。などの問題点が発生し、したがつてサ
イアロン基焼結材料においては、焼結後に、そ
の表面に形成された表面変質層や粉末かみ込み
層を除去しなければならないが、この表面変質
層は、サイアロン基焼結材料が研削が困難な材
料であることと合まつて、その除去には手間と
時間を要するものである。 そこで、本発明者等は、上述のような観点か
ら、表面部分に変質層や粉末かみ込み層の形成が
ないサイアロン基焼結材料を得べく、その焼結態
様に関して研究を行なつた結果、第1図に実施態
様が概略縦断面図で示されるように、 まず、成形圧粉体1を、前記成形圧粉体と同一
または近似の組成を有するサイアロン基焼結材料
製容器2、あるいは内面を前記成形圧粉体と同一
または近似の組成を有する混合粉末で塗布した
Si3N4基焼結材料(Si3N4焼結材料も含む)製容器
2内に、Si3N4粉末、あるいはSi3N4粉末を主成分
とする混合粉末を下敷き3にして装入し、 ついで、上記の容器2を黒鉛るつぼ4内に、
Si3N4粉末5、あるいはSi3N4粉末を主成分とする
混合粉末5中に埋没した状態で装入し、 この状態の黒鉛るつぼを、窒素含有雰囲気中で
焼結すると、焼結中の成形圧粉体を取り囲む雰囲
気が、成形圧粉体自身の揮発成分、例えばSi3N4
の一部が分解して生ずるSiOガスなどと類似した
ものとなり、この分解ガス雰囲気によつて外部の
雰囲気が遮断され、この結果成形圧粉体には外部
雰囲気との反応によつて生ずる表面変質層の形成
がないようになるものと推定されることから、表
面性状の良好なサイアロン基焼結材料が得られる
ようになり、しかも前記成形圧粉体は粉末中に埋
没されていないので、粉末かみ込み層の形成もな
いという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に実施例により具体的に説明す
る。 実施例 原料粉末として、平均粒径:0.8μmのSi3N4
末(α相含有率:90重量%)、同0.6μmのα−
Al2O3粉末、同1.0μmのY2O3粉末、いずれも同
1.5μmのAlN粉末、TiCN(TiC/TiN=2/
8、重量比)粉末、およびカーボンブラツク粉末
を用意し、これら原料粉末をそれぞれ第1表に示
される配合組成に配合し、さらに粘結剤としての
パラフインを配合粉末に対して4重量%添加して
3日間ボールミルにて湿式混合した後、乾燥し、
ついでこの結果の混合粉末をプレス成形した後、
真空中、温度:800℃に1時間保持して粘結剤と
してのパラフインを揮発させることによつて成形
圧粉体a〜eを製造した。 つぎに、これらの成形圧粉体a〜eを用い、以
下に示す状態、すなわち、 (1) 成形圧粉体aを、前記成形圧粉体aと同一の
組成を有するサイアロン焼結材料製容器内に、
Si3N4粉末を敷いて配置し、この容器全体を黒
鉛るつぼ内にSi3N4粉末中に埋没させて装入
(以下、本発明方法1という)、 (2) 成形圧粉体bと同一の組成を有する混合粉末
で内面を塗布したSi3N4焼結材料製容器内に、
成形圧粉体bをSi3N4粉末を敷いて配置し、こ
の容器全体を黒鉛るつぼ内にSi3N4粉末中に埋
没させて装入(以下、本発明法2という)、 (3) 成形圧粉体cと同一の組成を有する混合粉末
で内面を塗布したSi3N4焼結材料製容器内に、
成形圧粉体cをSi3N4粉末を敷いて配置し、こ
の容器全体を黒鉛るつぼ内にSi3N4粉末中に埋
没させて装入(以下、本発明法3という)、 (4) 成形圧粉体aと同一の組成を有する混合粉末
で内面を塗布したSi3N4焼結材料製容器内に、
成形圧粉体dをSi3N4粉末を敷いて配置し、こ
の容器全体を黒鉛るつぼ内にSi3N4粉末中に埋
没させて装入(以下、本発明法4という)、 (5) 成形圧粉体cと同一の組成を有する混合粉末
で内面を塗布したSi3N4焼結材料製容器内に、
成形圧粉体eをSi3N4粉末を敷いて配置し、こ
の容器全体を黒鉛るつぼ内にSi3N4粉末中に埋
没させて装入(以下、本発明法5という)、 (6) 成形圧粉体aを黒鉛るつぼ内にSi3N4粉末中
に埋没させて装入(以下、比較法1という)、 (7) 容器を黒鉛製とする以外は、本発明法1と同
一の条件で成形圧粉体bを装入(以下、比較法
2という)、 (8) 容器を黒鉛製とする以外は、本発明法1と同
一の条件で成形圧粉体cを装入(以下、比較法
3という)、 (9) 容器を黒鉛製とする以外は、本発明法4と同
一の条件で成形圧粉体dを装入(したがつて、
この場合容器内面塗布は成形圧粉体aと同一組
成となる、以下、比較法4という)、 (10) Si3N4焼結材料製容器内に成形圧粉体eを
Si3N4粉末を敷いて配置し、この容器全体を黒
鉛るつぼ内にSi3N4粉末中に埋没させて装入
(以下、比較法5という)、 以上(1)〜(10)のうちのいずれかの状態で、1気圧
の窒素雰囲気中、温度:1700℃に2時間保持の条
件で焼結することによつて本発明法1〜5およ
This invention relates to sialon sintered materials and sialon-based sintered materials containing sialon as a main component (hereinafter referred to as This invention relates to a sintering method for sialon-based sintered materials. In recent years, various new ceramics, including silicon nitride (hereinafter referred to as Si 3 N 4 ) and those with a β-type crystal structure, have been used as structural materials for turbine blades and other materials.
A compound in which part of Si in Si 3 N 4 is replaced with Al and part of N is replaced with O, that is, the composition formula: Si 6-z Al z O z N 8-z (0<z≦4.3 ), and a part of the Si in the crystal lattice of Si 3 N 4 , which has an α-type crystal structure, is replaced with Al.
Then, a part of N is replaced with O, and one or more of Li, Na, Ca, Mg, Y, and rare earth elements with small atomic radius are placed in the interstitial position (in the composition formula below, A sintered compound composed of α-sialon represented by the composition formula: Mx (Si, Al) 12 (O, N) 16 (where 0<x≦2) materials, as well as Si 3 N 4 -based sintered materials and Sialon-based sintered materials that have these components as their main components, are attracting attention. However, when producing these sintered materials, especially sialon-based sintered materials, (a) if the compacted compact is directly sintered in a state embedded in Si 3 N 4 powder or sialon powder, the above-mentioned If the surface portion of the compacted compact reacts with the sintering atmosphere and the buried powder to form a surface-altered layer, and if there are holes or depressions on the surface of the compact, the buried powder may be buried in these areas. powder gets into the
During shrinkage during sintering, these powders are strongly entrapped and not only difficult to remove, but also cause deformation. (b) When the compacted compact is sintered in a graphite crucible, a reaction occurs between the surface of the compact and the sintering atmosphere, forming a surface-altered layer. Although this is not as pronounced as in graphite crucibles, it also occurs when sintering in Si 3 N 4 -based sintered material crucibles. Therefore, after sintering the sialon-based sintered material, it is necessary to remove the surface-altered layer and powder-incorporated layer formed on the surface. In addition to the fact that the sialon-based sintered material is difficult to grind, its removal requires time and effort. Therefore, from the above-mentioned viewpoint, the present inventors conducted research on the sintering mode of the sialon-based sintered material in order to obtain a sialon-based sintered material free from the formation of altered layers or powder-incorporated layers on the surface portion. As the embodiment is shown in a schematic longitudinal cross-sectional view in FIG. was coated with a mixed powder having the same or similar composition to the compacted compact.
A container 2 made of Si 3 N 4- based sintered material (including Si 3 N 4 sintered material) is filled with Si 3 N 4 powder or a mixed powder mainly composed of Si 3 N 4 powder as an underlay 3. Then, place the container 2 in the graphite crucible 4,
When the graphite crucible in this state is charged in a buried state in the Si 3 N 4 powder 5 or the mixed powder 5 whose main component is Si 3 N 4 powder, and is sintered in a nitrogen-containing atmosphere, the sintering progresses. The atmosphere surrounding the compacted compact contains volatile components of the compact, such as Si 3 N 4
This gas is similar to SiO gas, etc., which is generated when a part of Since it is presumed that there will be no formation of layers, a sialon-based sintered material with good surface properties can be obtained.Moreover, since the compacted powder is not buried in the powder, They found that there was no formation of an embedded layer. This invention was made based on the above findings, and will be specifically explained below using Examples. Examples As raw material powders, Si 3 N 4 powder (α phase content: 90% by weight) with an average particle size of 0.8 μm and α-
Al 2 O 3 powder, 1.0μm Y 2 O 3 powder, both the same
1.5μm AlN powder, TiCN (TiC/TiN=2/
8. Weight ratio) powder and carbon black powder were prepared, and these raw material powders were blended into the composition shown in Table 1, and 4% by weight of paraffin as a binder was added to the blended powder. After wet mixing in a ball mill for 3 days, drying,
Then, after press-molding the resulting mixed powder,
Molded green compacts a to e were produced by holding the powder at a temperature of 800° C. for 1 hour in vacuum to volatilize paraffin as a binder. Next, using these compacted compacts a to e, the following conditions are established: (1) The compacted compact a is placed in a container made of a sialon sintered material having the same composition as the compact compact a. Inside,
Si 3 N 4 powder is laid out and placed, and the entire container is placed in a graphite crucible by immersing it in the Si 3 N 4 powder (hereinafter referred to as the method 1 of the present invention), (2) compacted powder body b and In a container made of Si 3 N 4 sintered material, whose inner surface was coated with a mixed powder with the same composition,
Place the compacted compact b on Si 3 N 4 powder and charge the entire container into a graphite crucible by immersing it in the Si 3 N 4 powder (hereinafter referred to as the method 2 of the present invention); (3) In a container made of Si 3 N 4 sintered material whose inner surface was coated with a mixed powder having the same composition as the compacted powder c,
Place the compacted compact c on a sheet of Si 3 N 4 powder, and charge the entire container into a graphite crucible by immersing it in the Si 3 N 4 powder (hereinafter referred to as the method 3 of the present invention); (4) In a container made of Si 3 N 4 sintered material whose inner surface is coated with a mixed powder having the same composition as the compacted compact a,
Place the compacted compact d on a sheet of Si 3 N 4 powder, and charge the entire container into a graphite crucible by immersing it in the Si 3 N 4 powder (hereinafter referred to as the method 4 of the present invention); (5) In a container made of Si 3 N 4 sintered material whose inner surface was coated with a mixed powder having the same composition as the compacted powder c,
Place the compacted compact e with Si 3 N 4 powder, and charge the entire container into a graphite crucible by immersing it in the Si 3 N 4 powder (hereinafter referred to as the method 5 of the present invention), (6) The compacted powder compact a is buried in Si 3 N 4 powder and charged into a graphite crucible (hereinafter referred to as Comparative Method 1). (7) Same as the method 1 of the present invention except that the container is made of graphite (8) Charge the compacted powder compact b under the same conditions as in method 1 of the present invention (hereinafter referred to as comparative method 2), except that the container is made of graphite (hereinafter referred to as comparative method 2). (referred to as comparative method 3), (9) The compacted compact d was charged under the same conditions as method 4 of the present invention, except that the container was made of graphite (therefore,
In this case, the inner surface of the container is coated with the same composition as the compacted compact a, hereinafter referred to as comparative method 4). (10) The compacted compact e is placed in a container made of Si 3 N 4 sintered material.
Si 3 N 4 powder is laid out and placed, and the entire container is immersed in the Si 3 N 4 powder and charged into a graphite crucible (hereinafter referred to as Comparative Method 5), among the above (1) to (10) Methods 1 to 5 of the present invention are performed by sintering in a nitrogen atmosphere of 1 atm at a temperature of 1700°C for 2 hours under any of the following conditions.

【表】【table】

【表】【table】

【表】 び比較法1〜5を実施し、この結果得られたサイ
アロン基焼結材料の断面を研摩し、表面変質層の
平均厚みを測定した。これらの結果を第2表に示
した。 第2表に示される結果から、本発明法1〜5に
よつて得られたサイアロン基焼結材料において
は、いずれも表面変質層が全く認められないのに
対して、比較法1〜5においては、いずれも表面
変質層の形成が認められるものであつた。 上述のように、この発明の方法によれば、焼結
後のサイアロン基焼結材料は、表面変質層や粉末
かみ込み層の形成がなく、したがつて研削などを
行なうことなく、焼結のままの状態で実用に供す
ることができるなど実用上有用な効果がもたらさ
れるのである。
[Table] Comparative Methods 1 to 5 were carried out, the cross section of the resulting sialon-based sintered material was polished, and the average thickness of the surface altered layer was measured. These results are shown in Table 2. From the results shown in Table 2, in the sialon-based sintered materials obtained by methods 1 to 5 of the present invention, no surface deterioration layer was observed at all, whereas in the comparative methods 1 to 5, no surface deterioration layer was observed. In all cases, the formation of a surface-altered layer was observed. As described above, according to the method of the present invention, the sialon-based sintered material after sintering does not have a surface altered layer or a powder-incorporated layer, and therefore can be sintered without grinding or the like. This brings about practical effects such as being able to put it to practical use in its original state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施態様を示す概略縦断面
図である。図面において、 1……成形圧粉体、2……容器、3……下敷
き、4……黒鉛るつぼ、5……埋没用粉末。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the present invention. In the drawings, 1... Molded compact, 2... Container, 3... Underlay, 4... Graphite crucible, 5... Powder for burial.

Claims (1)

【特許請求の範囲】 1 サイアロン基焼結材料を焼結するに際して、
その成形圧粉体を、 まず、上記成形圧粉体と同一または近似の組成
を有するサイアロン基焼結材料製容器、あるいは
内面を上記成形圧粉体と同一または近似の組成を
有する混合粉末で塗布した窒化珪素基焼結材料製
容器内に、窒化珪素粉末、あるいは窒化珪素粉末
を主成分とする混合粉末を下敷きにして装入し、 ついで、上記の容器を黒鉛るつぼ内に、窒化珪
素粉末、あるいは窒化珪素粉末を主成分とする混
合粉末中に埋没した状態で装入し、 この状態の黒鉛るつぼを、窒素含有雰囲気中で
焼結することを特徴とするサイアロン基焼結材料
の焼結法。
[Claims] 1. When sintering the sialon-based sintered material,
The compacted powder body is first coated with a container made of a sialon-based sintered material having the same or similar composition as the compacted compact, or the inner surface is coated with a mixed powder having the same or similar composition as the compacted compact. Silicon nitride powder or a mixed powder containing silicon nitride powder as a main component is placed in a container made of a silicon nitride-based sintered material, and then the container is placed in a graphite crucible, and silicon nitride powder, silicon nitride powder, Alternatively, a method for sintering a sialon-based sintered material, which is characterized in that it is charged in a mixed powder containing silicon nitride powder as a main component, and the graphite crucible in this state is sintered in a nitrogen-containing atmosphere. .
JP58073536A 1983-04-26 1983-04-26 Method of sintering sialon base sintering material Granted JPS59199582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073536A JPS59199582A (en) 1983-04-26 1983-04-26 Method of sintering sialon base sintering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073536A JPS59199582A (en) 1983-04-26 1983-04-26 Method of sintering sialon base sintering material

Publications (2)

Publication Number Publication Date
JPS59199582A JPS59199582A (en) 1984-11-12
JPS6230152B2 true JPS6230152B2 (en) 1987-06-30

Family

ID=13521045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073536A Granted JPS59199582A (en) 1983-04-26 1983-04-26 Method of sintering sialon base sintering material

Country Status (1)

Country Link
JP (1) JPS59199582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228497A1 (en) 2020-05-13 2021-11-18 Haute Ecole Arc Optical waveguide and method of fabrication thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635343B2 (en) * 1985-09-17 1994-05-11 日本フェライト株式会社 Method for producing high magnetic permeability Mn-Zn ferrite
JP5811391B2 (en) * 2011-04-11 2015-11-11 日立金属株式会社 Method for producing silicon nitride ceramic sintered body and firing container
JP2016040224A (en) * 2015-09-03 2016-03-24 日立金属株式会社 Method for producing sintered board of silicon nitride-based ceramic
WO2024070470A1 (en) * 2022-09-27 2024-04-04 株式会社 東芝 Silicon nitride sintered body, wear-resistant member, substrate for semiconductor devices, and method for producing silicon nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228497A1 (en) 2020-05-13 2021-11-18 Haute Ecole Arc Optical waveguide and method of fabrication thereof
WO2021228380A1 (en) 2020-05-13 2021-11-18 Haute Ecole Arc Optical waveguide and method of fabrication thereof

Also Published As

Publication number Publication date
JPS59199582A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
KR102588091B1 (en) Non-oxidized ceramic powder manufacturing method
Biswas et al. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC
JPS6230152B2 (en)
US4946630A (en) Making hot pressed silicon nitride by use of low density reaction bonded body
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPS6256110B2 (en)
JPS6241768A (en) Manufacture of aluminum nitride sintered body
JPS60210575A (en) Manufacture of silicon nitride sintered body
EP0432215A1 (en) Increasing aluminum nitride thermal conductivity via vapour-phase carbon
JPH0627029B2 (en) Silicon nitride sintered body and method for producing the same
JPH0891960A (en) Base material for circuit board
JPH05229871A (en) Production of ceramic sintered compact
JP2000193241A (en) Silicon nitride sintered body, and ceramic heater using it
US4689189A (en) Composite of Si3 N4 by infiltration
JPH09278524A (en) Production of silicon carbide sintered compact
JPH09227233A (en) Production of silicon carbide sintered compact
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2543353B2 (en) Method for producing silicon nitride based sintered body
JPS5930672B2 (en) Silicon carbide powder composition for sintered bodies
JPH05294748A (en) Production of porous aluminum nitride sintered compact
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2916934B2 (en) Method for producing sialon-based sintered body
JPS6127357B2 (en)