JPH0625037B2 - Manufacturing method of ceramic products - Google Patents

Manufacturing method of ceramic products

Info

Publication number
JPH0625037B2
JPH0625037B2 JP61255384A JP25538486A JPH0625037B2 JP H0625037 B2 JPH0625037 B2 JP H0625037B2 JP 61255384 A JP61255384 A JP 61255384A JP 25538486 A JP25538486 A JP 25538486A JP H0625037 B2 JPH0625037 B2 JP H0625037B2
Authority
JP
Japan
Prior art keywords
sintering
intermediate product
sintered body
sio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61255384A
Other languages
Japanese (ja)
Other versions
JPS63107863A (en
Inventor
光雄 桑原
輝興 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61255384A priority Critical patent/JPH0625037B2/en
Publication of JPS63107863A publication Critical patent/JPS63107863A/en
Publication of JPH0625037B2 publication Critical patent/JPH0625037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は、SiまたはSiC粉末を用いたセラミ
ック製品の製造方法に関する。
Detailed Description of the Invention A. Object of the Invention (1) Field of Industrial Application The present invention relates to a method for producing a ceramic product using Si 3 N 4 or SiC powder.

(2) 従来の技術 従来、この種製品を製造する場合は、Si等の粉
末に、それら粉末の焼結温度にて焼結作用を発揮するY
、Al、MgO等の多量の焼結助剤粉末等
を分散させた混合粉末を用いて成形体を得、次いでその
成形体を常圧または高圧下で焼結して焼結体を得、その
後焼結体に機械加工を施すといった手法が採用されてい
る(NIKKEI NEW MATERIALS 19
86年2月24日号参照)。
(2) Conventional technology Conventionally, when manufacturing this kind of product, Y which exerts a sintering action on powder such as Si 3 N 4 at a sintering temperature of the powder.
A compact is obtained by using a mixed powder in which a large amount of sintering aid powder such as 2 O 3 , Al 2 O 3 and MgO is dispersed, and then the compact is sintered under normal pressure or high pressure and fired. A method of obtaining a bonded body and then performing mechanical processing on the sintered body is adopted (NIKKEI NEW MATERIALS 19
See the February 24, 1986 issue).

(3) 発明が解決しようとする問題点 しかしながら、前記工程を経て得られた焼結体は大きな
硬さを有するため、ダイヤモンド工具以外のものでは加
工が困難である上、そのダイヤモンド工具を用いても多
くの加工時間を要し、セラミック製品の生産性が悪いと
いう問題がある。また前記のように多量の焼結助剤を使
用すると、その焼結助剤の殆どがセラミック製品に残留
する関係からセラミック製品の高温強度が劣化するとい
う問題もある。
(3) Problems to be solved by the invention However, since the sintered body obtained through the above steps has a large hardness, it is difficult to process with a tool other than the diamond tool, and the diamond tool is used. However, it takes a lot of processing time and the productivity of ceramic products is poor. Further, when a large amount of the sintering aid is used as described above, there is a problem that the high temperature strength of the ceramic product deteriorates because most of the sintering aid remains in the ceramic product.

本発明は上記に鑑み、所定の強度を有する仮焼結体を
得、その仮焼結体に機械加工を施すことによってその加
工作業を能率化を図り、延いてはセラミック製品の生産
性を向上させ、また高温強度の優秀なセラミック製品を
得ることのできる前記製造方法を提供することを目的と
する。
In view of the above, the present invention obtains a pre-sintered body having a predetermined strength and improves the productivity of ceramic products by machining the pre-sintered body to improve the efficiency of the processing work. In addition, it is an object of the present invention to provide the above-mentioned manufacturing method capable of obtaining a ceramic product excellent in high temperature strength.

B.発明の構成 (1) 問題点を解決するための手段 本発明は、SiまたはSiCよりなるセラミック
粉末に、該セラミック粉末の焼結温度よりも低い温度に
て該セラミック粉末に対し仮焼結作用を発揮する、アル
カリ金属酸化物およびSiOの両者を含む焼結助剤を
一種以上分散させた混合物を用いて成形体を得、次いで
該成形体を前記焼結温度よりも低い前記温度にて仮焼結
して仮焼結体を得る工程;前記仮焼結体に機械加工を施
して1次中間製品を得る工程;前記1次中間製品より前
記アルカリ金属酸化物を酸により溶出して2次中間製品
を得る工程;および前記2次中間製品を前記焼結温度に
て焼結すると共に前記SiOをSiまたはSi
Cに変える工程;を用いることを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems The present invention provides a ceramic powder of Si 3 N 4 or SiC that is calcined at a temperature lower than the sintering temperature of the ceramic powder. A molded body is obtained by using a mixture in which one or more sintering aids containing both an alkali metal oxide and SiO 2 which exert a binding action are dispersed, and then the molded body is subjected to the temperature lower than the sintering temperature. To obtain a temporary sintered body by temporary sintering; a step of machining the temporary sintered body to obtain a primary intermediate product; eluting the alkali metal oxide with an acid from the primary intermediate product To obtain a secondary intermediate product, and sintering the secondary intermediate product at the sintering temperature and converting the SiO 2 into Si 3 N 4 or Si.
And a step of changing to C.

また本発明はSiまたはSiCよりなるセラミッ
ク粉末に、該セラミック粉末の焼結温度よりも低い温度
にて該セラミック粉末に対し仮焼結作用を発揮する、ア
ルカリ金属酸化物およびSiOの両者を含む焼結助剤
を一種以上分散させた混合物を用いて成形体を得、次い
で該成形体を前記焼結温度よりも低い前記温度にて仮焼
結して仮焼結体を得る工程;前記仮焼結体に機械加工を
施して1次中間製品を得る工程;前記1次中間製品を前
記焼結温度にて焼結すると共に前記SiOをSi
またはSiCに変えて2次中間製品を得る工程;およ
び前記2次中間製品より前記アルカリ金属酸化物を酸に
より溶出する工程;を用いること特徴とする。
In addition, the present invention provides a ceramic powder of Si 3 N 4 or SiC containing alkali metal oxides and SiO 2 which exert a pre-sintering action on the ceramic powder at a temperature lower than the sintering temperature of the ceramic powder. A step of obtaining a compact using a mixture in which one or more sintering aids containing both are dispersed, and then presintering the compact at the temperature lower than the sintering temperature to obtain a temporary sintered body Machining the temporary sintered body to obtain a primary intermediate product; sintering the primary intermediate product at the sintering temperature and converting the SiO 2 into Si 3 N
4 or SiC to obtain a secondary intermediate product; and a step of eluting the alkali metal oxide with an acid from the secondary intermediate product.

(2) 作 用 前記特定の焼結助剤の仮焼結作用によって、機械加工に
耐え得る強度および通常の超硬合金工具による機械加工
が可能な硬さを備えた仮焼結体を得ることができる。
(2) Operation To obtain a pre-sintered body having a strength that can withstand machining and a hardness that can be machined by ordinary cemented carbide tools by the pre-sintering action of the specific sintering aid. You can

したがって、この仮焼結体に対する機械加工を能率良く
行って、セラミック製品の生産性を向上させると共にそ
の寸法精度を良好にすることができる。
Therefore, it is possible to efficiently machine the temporary sintered body, improve the productivity of the ceramic product, and improve the dimensional accuracy.

前記焼結助剤において、大部分のアルカリ金属酸化物は
酸による溶出処理により除去され、また大部分のSiO
はSiまたはSiC、即ち、セラミック粉末と
同種物質に変えられるので、セラミック製品に高温強度
劣化の要因となる前記焼結助剤が殆ど残留することがな
い。
In the sintering aid, most of the alkali metal oxides are removed by the elution treatment with acid, and most of the SiO
Since 2 can be changed to Si 3 N 4 or SiC, that is, the same kind of material as the ceramic powder, the sintering aid, which causes high temperature strength deterioration, hardly remains in the ceramic product.

これにより高温強度の高いセラミック製品を得ることが
できる。
This makes it possible to obtain a ceramic product having high strength at high temperature.

(3) 実施例 SiまたはSiCよりなるセラミック粉末はセラ
ミック製品の主体をなすもので、直径0.1〜1μmの
ものが用いられる。
(3) Example A ceramic powder made of Si 3 N 4 or SiC is a main component of a ceramic product, and has a diameter of 0.1 to 1 μm.

前記セラミック粉末に対し、それの焼結温度よりも低い
温度にて仮焼結作用を発揮する焼結助剤、即ちアルカリ
金属酸化物およびSiOの両者を含む化合物として
は、xNaO・ySiO、xKO・ySiO
xLiO・ySiO(ただし、x=1〜2、y=1
〜3)が該当し、これらから選択される一種以上の化合
物が用いられる。
A sintering aid that exerts a pre-sintering effect on the ceramic powder at a temperature lower than the sintering temperature, that is, a compound containing both an alkali metal oxide and SiO 2 is xNa 2 O.ySiO. 2 , xK 2 O · ySiO 2 ,
xLiO 2 · ySiO 2 (where x = 1 and 2, y = 1
To 3) are applicable, and one or more compounds selected from these are used.

これらの化合物は、前記焼結温度よりも低い温度でガラ
ス質物質を生成して仮焼結作用を発揮するもので、この
ガラス質物質の生成を容易にする目的で、前記化合物に
微量のB、MgO等を配合することもある。
These compounds produce a vitreous substance at a temperature lower than the sintering temperature and exert a pre-sintering action. For the purpose of facilitating the production of the vitreous substance, a small amount of B is added to the compound. 2 O 3 , MgO, etc. may be blended.

前記焼結助剤は、30〜40重量%の分散媒を用いた分
散液の状態にて使用される。分散媒としては、水が適当
である。このように焼結助剤を分散質の形態で用いる
と、焼結助剤が微細化され、その反応性が向上する。
The sintering aid is used in the state of a dispersion liquid using a dispersion medium of 30 to 40% by weight. Water is suitable as the dispersion medium. When the sintering aid is used in the form of dispersoid as described above, the sintering aid is miniaturized and its reactivity is improved.

前記化合物においてアルカリ金属酸化物、B、M
gO等は酸としての硝酸、塩酸の単一酸、またはこれら
の混酸により溶出され、またSiOは焼結工程にてN
ガス雰囲気下でSiに、またC粉末を含む還元
性雰囲気化でSiCにそれぞれ変えられる。
In the above compound, an alkali metal oxide, B 2 O 3 , M
gO and the like are eluted with nitric acid as an acid, a single acid such as hydrochloric acid, or a mixed acid thereof, and SiO 2 undergoes N in the sintering process.
It can be changed to Si 3 N 4 in a two- gas atmosphere, and to SiC in a reducing atmosphere containing C powder.

また、成形性を良好にする目的で、必要に応じてステア
リン酸アンモニウム等の有機系潤滑剤が用いられる。
Further, an organic lubricant such as ammonium stearate is used if necessary for the purpose of improving moldability.

前記セラミック粉末、焼結助剤および有機系潤滑剤の配
合量は、 セラミック粉末 92〜99.9重量% 焼 結 助 剤 0.1〜3重量% 有機系潤滑剤 0〜5重量% である。
The blending amounts of the ceramic powder, the sintering aid and the organic lubricant are as follows: ceramic powder 92 to 99.9% by weight sintering aid 0.1 to 3% by weight organic lubricant 0 to 5% by weight.

前記のように各成分の配合量を限定する理由は以下の通
りである。
The reason for limiting the blending amount of each component as described above is as follows.

焼結助剤の場合、その配合量が0.1重量%を下回る
と、焼結助剤の有する仮焼結効果を十分に得ることがで
きないので、仮焼結体の強度が低くなって機械加工中に
仮焼結体が崩壊するおそれがある。一方、3重量%を上
回ると、焼結助剤が過剰となり、それに起因して仮焼結
体の強度が低下し、またセラミック製品に残留してその
高温強度が低下する。
In the case of the sintering aid, if the blending amount is less than 0.1% by weight, the pre-sintering effect of the sintering aid cannot be sufficiently obtained, so that the strength of the pre-sintered body becomes low and the mechanical strength of the machine is reduced. The temporary sintered body may collapse during processing. On the other hand, if it exceeds 3% by weight, the sintering aid becomes excessive, resulting in a decrease in strength of the pre-sintered body and residual in the ceramic product, resulting in a decrease in high temperature strength thereof.

有機系潤滑剤の場合は、その配合量が5重量%を上回っ
ても成形性向上効果が殆ど変わらず、むしろその除去の
ために生産能率を低下させることになる。
In the case of an organic lubricant, even if its content exceeds 5% by weight, the effect of improving the formability hardly changes, and rather its removal lowers the production efficiency.

前記セラミック粉末に焼結助剤および必要に応じて有機
系潤滑剤を分散させた混合物を用いて成形体を得る場合
は、スリップキャスティング法、加圧成形法、射出成形
法等の各種成形法が用いられる。成形圧力は25〜15
0MPaが適当である。
When a molded product is obtained by using a mixture in which a sintering aid and an organic lubricant are dispersed in the ceramic powder, various molding methods such as a slip casting method, a pressure molding method, and an injection molding method can be used. Used. Molding pressure is 25-15
0 MPa is suitable.

また前記成形体より仮焼結体を得る場合の仮焼結条件は
1200〜1500℃で、0.5〜5時間である。この
仮焼結処理により成形体は0.1〜5%の線収縮率を示
す。この線収縮率は主として焼結助剤の配合量に起因し
て変化する。仮焼結体の曲げ強さは70〜350MP
a、ビッカース硬さHmvは200〜600、相対密度
は65〜77%、気孔率は23〜35%である。
In addition, the temporary sintering conditions for obtaining a temporary sintered body from the above-mentioned molded body are 1200 to 1500 ° C. and 0.5 to 5 hours. By this temporary sintering treatment, the molded body exhibits a linear shrinkage rate of 0.1 to 5%. This linear shrinkage rate changes mainly due to the blending amount of the sintering aid. Bending strength of temporary sintered body is 70 ~ 350MP
a, Vickers hardness Hmv is 200 to 600, relative density is 65 to 77%, and porosity is 23 to 35%.

このように仮焼結体は多孔質体であり、しかもセラミッ
ク粉末等の結晶粒の成長は焼結の極初期段階にあって、
比較的硬さが低く、また所定の強度を有するので、レー
ス加工、ドリル加工等の機械加工性が良好で、例えばレ
ース加工において通常の超硬合金製バイトを用いて3〜
10mm/min の切削速度を得ることができ、また加工中
に崩壊することもない。この機械加工性を最良にするた
めには仮焼結体のビッカース硬さHmvを300〜50
0に設定するとよい。
Thus, the pre-sintered body is a porous body, and the growth of crystal grains such as ceramic powder is in the very initial stage of sintering.
Since it has a relatively low hardness and has a predetermined strength, it has good machinability such as lace processing and drilling.
A cutting speed of 10 mm / min can be obtained and it does not collapse during processing. In order to optimize this machinability, the Vickers hardness Hmv of the pre-sintered body is 300-50.
Set it to 0.

焼結法としては、常圧焼結法、ホットプレス法、カプセ
ル法によるHIP処理(熱間静水圧プレス処理)等が採
用される。
As the sintering method, an atmospheric pressure sintering method, a hot pressing method, a HIP treatment (hot isostatic pressing treatment) by a capsule method, or the like is adopted.

焼結条件はセラミック粉末によって異なり、Si
の場合は1500〜1750℃で、30分間以上、また
SiCの場合は1600〜2200℃で、30分間以上
である。
Sintering conditions vary depending on the ceramic powder, and Si 3 N 4
In the case of, the temperature is 1500 to 1750 ° C. for 30 minutes or more, and in the case of SiC, the temperature is 1600 to 2200 ° C. for 30 minutes or more.

〔実施例I〕[Example I]

セラミック粉末 Si 96.7〜99.9重量% 焼 結 助 剤 NaO・SiO 0.1〜3.0重量% 有機系潤滑剤 ステアリン酸アンモニウム 0.3重量% 前記範囲において、SiおよびNaO・SiO
の配合量を変えて各種配合割合の原料粉末を調製し、
各原料粉末をボールミルにて24時間混合した後、各原
料粉末に加圧成形法を適用して、成形圧力100MPa
にて第1図(a)に示す円柱状成形体1を得る。各成形体
1において、a=35mm、b=120mmである。
Ceramic powder Si 3 N 4 96.7-99.9% by weight Firing aid Na 2 O · SiO 2 0.1-3.0% by weight Organic lubricant ammonium stearate 0.3% by weight In the above range, Si 3 N 4 and Na 2 O.SiO
The raw material powders of various mixing ratios are prepared by changing the mixing amount of 2 ,
After mixing each raw material powder in a ball mill for 24 hours, a pressure molding method is applied to each raw material powder to obtain a molding pressure of 100 MPa.
Then, the cylindrical molded body 1 shown in FIG. 1 (a) is obtained. In each molded body 1, a = 35 mm and b = 120 mm.

乾燥後の各成形体1を真空炉に設置し、炉内にNガス
を30ml/min の条件で流通させ、炉内圧0.8Tor
r、炉内温度1200℃、焼結時間2時間の条件の下に
仮焼結処理を行い、仮焼結体を得る。炉内温度の昇温過
程でその温度を650℃に1時間保持してステアリン酸
アンモニウムの除去を行う。
Each of the dried compacts 1 was placed in a vacuum furnace, and N 2 gas was circulated in the furnace under the condition of 30 ml / min, and the furnace pressure was 0.8 Torr.
r, the temperature in the furnace is 1200 ° C., and the calcination process is performed for 2 hours to obtain a calcination body. During the process of raising the temperature in the furnace, the temperature is maintained at 650 ° C. for 1 hour to remove ammonium stearate.

第2図は仮焼結体におけるNaO・SiO配合量と
仮焼結体の曲げ強さとの関係を示し、例えばNaO・
SiOの配合量が1重量%にて約340MPaの曲げ
強さを有する仮焼結体を得ることができる。
Figure 2 shows the relationship between the bending strength of the Na 2 O · SiO 2 amount and the temporary sintered body in presintered body, for example, Na 2 O ·
It is possible to obtain a pre-sintered body having a bending strength of about 340 MPa when the content of SiO 2 is 1% by weight.

第3図は仮焼結体におけるNaO・SiO配合量と
仮焼結体のビッカース硬さとの関係を示し、NaO・
SiO配合量0.5〜3.0重量%が機械加工性の良
好な範囲である。
Figure 3 shows the relationship between the Vickers hardness of Na 2 O · SiO 2 amount and calcined body of presintered body, Na 2 O ·
SiO 2 amount 0.5 to 3.0% by weight is a good range of machinability.

第4図は仮焼結体におけるNaO・SiO配合量と
仮焼結体の相対密度との関係を示し、各仮焼結体は相対
密度約67%以上の多孔質体であることが分かる。
FIG. 4 shows the relationship between the blended amount of Na 2 O / SiO 2 in the temporary sintered body and the relative density of the temporary sintered body. Each temporary sintered body is a porous body having a relative density of about 67% or more. I understand.

各仮焼結体に通常の超硬合金製バイトを用いて切削加工
を施し、第1図(b)に示すように、大径部2、中径部3
および小径部4からなり、大径部2に盲孔5を、また小
径部4に雄ねじ6をそれぞれ有する1次中間製品7を得
る。1次中間製品7の各部の寸法は、a=30mm、a
=16mm、a=20mm、a=18mm、b=25
mm、b=15mm、b=30mm、b=3mm、b
40mmである。
Each temporary sintered body is cut using a normal cemented carbide bite, and as shown in FIG. 1 (b), a large diameter portion 2 and a medium diameter portion 3
And a primary intermediate product 7 comprising a small diameter portion 4 and a large diameter portion 2 having a blind hole 5 and a small diameter portion 4 having a male screw 6 is obtained. The size of each part of the primary intermediate product 7 is a 1 = 30 mm, a
2 = 16 mm, a 3 = 20 mm, a 4 = 18 mm, b 1 = 25
mm, b 2 = 15 mm, b 3 = 30 mm, b 4 = 3 mm, b 5 =
It is 40 mm.

前記切削速度は3〜10mm/min で、工具にはチッピン
グの発生は認められない。
The cutting speed was 3 to 10 mm / min, and no chipping was observed in the tool.

各1次中間製品7に、焼結処理としてカプセル法による
HIP処理を、Nガス雰囲気中、1000気圧、17
50℃、2時間の条件の下で施し、2次中間製品を得
る。
HIP treatment by the capsule method was performed on each of the primary intermediate products 7 as a sintering treatment in an atmosphere of N 2 gas at 1000 atm.
It is applied under the condition of 50 ° C. for 2 hours to obtain a secondary intermediate product.

第5図は2次中間製品におけるNaO・SiO配合
量と2次中間製品の相対密度との関係を示し、各2次中
間製品は相対密度略85%以上であり、仮焼結体のそれ
に比べて大幅に向上している。
FIG. 5 shows the relationship between the content of Na 2 O · SiO 2 in the secondary intermediate product and the relative density of the secondary intermediate product. Each secondary intermediate product has a relative density of about 85% or more. It is significantly improved compared to that.

前記焼結処理により、各1次中間製品に含まれる焼結助
剤のうち、大部分のSiOはSi、したがって
セラミック粉末と同種物質に変えられている。
By the sintering process, of the sintering aid included in the first intermediate product, SiO 2 most are changed to Si 3 N 4, thus the ceramic powder and the same type material.

各2次中間製品を30%の硝酸に浸漬し、焼結助剤のう
ちNaOを溶出してセラミック製品を得る。この溶出
処理によりNaOの80〜90%が除去され、残部は
EPMA(X線マイクロアナライザ)によっても殆ど観
測されないことが確認されている。
Each secondary intermediate product is immersed in 30% nitric acid, and Na 2 O of the sintering aid is eluted to obtain a ceramic product. It has been confirmed that 80 to 90% of Na 2 O is removed by this elution treatment, and the rest is hardly observed by EPMA (X-ray microanalyzer).

第6図はセラミック製品の曲げ強さと温度との関係を示
し、線(v)は本発明により得られたセラミック製品
に、また線(w)は従来のものにそれぞれ該当する。従
来のものは、90重量%のSiに、焼結温度で焼
結作用を発揮する焼結助剤として6重量%のY
よび4重量%のAlを配合して、1750℃、2
時間の条件の下に焼結して得られたものである。線
(x)は本発明における2次中間製品、即ち酸による溶
出処理前のものに該当する。
FIG. 6 shows the relationship between the bending strength and the temperature of the ceramic product. The line (v) corresponds to the ceramic product obtained by the present invention and the line (w) corresponds to the conventional product. In the conventional type, 90 wt% of Si 3 N 4 was mixed with 6 wt% of Y 2 O 3 and 4 wt% of Al 2 O 3 as a sintering aid that exerts a sintering action at a sintering temperature. 1750 ° C, 2
It was obtained by sintering under the condition of time. Line (x) corresponds to the secondary intermediate product of the present invention, that is, before the elution treatment with acid.

第6図線(v)から明らかなように、本発明により得ら
れたセラミック製品は、従来の線(w)に示すものに比
べて700℃以上の高温域において優れた強度を有する
ものである。また、この高温強度は、線(v)と線
(x)を比較してから明らかなように、酸による溶出処
理によって大幅に向上するものである。
As is clear from FIG. 6 line (v), the ceramic product obtained according to the present invention has superior strength in the high temperature range of 700 ° C. or higher as compared with the conventional product (w). . Further, this high temperature strength is significantly improved by the elution treatment with an acid, as is clear from the comparison between the line (v) and the line (x).

〔実施例II〕Example II

セラミック粉末 Si 99.0重量% 焼 結 助 剤 NaO・SiO 0.5重量% B 0.2重量% MgO 0.3重量% を配合して調製された原料粉末をボールミルにて24時
間混合した後、その原料粉末にスリップキャスティング
法を適用して、縦40mm、横80mm、長さ100mmの角
柱状の成形体を得る。
Ceramic powder Si 3 N 4 99.0% by weight Sintering aid Na 2 O / SiO 2 0.5% by weight B 2 O 3 0.2% by weight MgO 0.3% by weight Raw material powder prepared by blending Is mixed in a ball mill for 24 hours, and then the slip casting method is applied to the raw material powder to obtain a prismatic shaped body having a length of 40 mm, a width of 80 mm and a length of 100 mm.

乾燥後の成形体を真空炉に設置し、実施例Iと同様の仮
焼結条件の下で焼結処理を行い、仮焼結体を得る。
The dried molded body is placed in a vacuum furnace and subjected to a sintering treatment under the same temporary sintering conditions as in Example I to obtain a temporary sintered body.

この仮焼結体において、焼結助剤のうちNaO、B
およびMgOがNa、NaMgB
といったガラス質で酸に溶解し得る化合物を生成してい
る。
In this temporary sintered body, Na 2 O, B 2
O 3 and MgO are Na 3 B 4 O 7 , NaMgB 4 O 7
It produces a glassy compound that is soluble in acid.

前記仮焼結体に研削、穿孔といった機械加工を施して1
次中間製品を得る。
Mechanical processing such as grinding and drilling is applied to the temporary sintered body 1
Next get intermediate products.

1次中間製品を、50℃に加温された25%の硝酸に浸
漬して前記Na、NaMgB、したが
ってNaO、BおよびMgO成分を殆ど溶出し
て2次中間製品を得る。
The first intermediate product was immersed in 25% nitric acid heated to 50 ° C. to elute most of the Na 3 B 4 O 7 , NaMgB 4 O 7 , and thus Na 2 O, B 2 O 3 and MgO components. To obtain a secondary intermediate product.

2次中間製品と共にSi粉末およびC粉末を真空
下でカプセルに封入し、焼結処理として1000気圧、
1750℃、2時間の条件の下でHIP処理を行い、セ
ラミック製品を得る。
Si 3 N 4 powder and C powder together with the secondary intermediate product were encapsulated under vacuum, and 1000 atm as a sintering process,
HIP treatment is performed at 1750 ° C. for 2 hours to obtain a ceramic product.

この焼結処理において、焼結助剤のうちSiOはSi
+2C→SiC+2COのように還元されてセラミ
ック粉末と同種物質であるSiCに変えられる。この場
合、COが生成するが、その生成量は少なく、したがっ
てセラミック製品の緻密化を阻害することはない。カプ
セルにSi粉末を封入する理由は、2次中間製品
の酸化を防止するためである。
In this sintering process, among the sintering aids, SiO 2 is Si
It is reduced like O 2 + 2C → SiC + 2CO and converted into SiC, which is the same substance as the ceramic powder. In this case, CO is generated, but the amount thereof is small and therefore does not hinder the densification of the ceramic product. The reason for encapsulating the Si 3 N 4 powder in the capsule is to prevent the oxidation of the secondary intermediate product.

第7図はセラミック製品の破壊確率分布と破壊応力との
関係をワイブル分布で示したものであり、線(y)は本
発明により得られたセラミック製品に、また線(z)は
従来のものにそれぞれ該当する。従来のものは、86重
量%のSiに、それの焼結温度で焼結作用を発揮
する焼結助剤として7重量%のMgOおよび7重量%の
を配合して、1750℃、2時間の条件の下に
焼結したものである。
FIG. 7 shows the relationship between the fracture probability distribution and the fracture stress of a ceramic product in a Weibull distribution. The line (y) is the ceramic product obtained by the present invention, and the line (z) is the conventional one. Corresponding to each. In the conventional one, 86 wt% of Si 3 N 4 was mixed with 7 wt% of MgO and 7 wt% of Y 2 O 3 as a sintering aid which exerts a sintering action at its sintering temperature. , 1750 ° C., and sintered for 2 hours.

第7図線(y)から明らかなように、本発明により得ら
れたセラミック製品は、従来の線(z)に示すものに比
べて破壊応力約550〜約750MPaといった実用可
能範囲において破壊確率分布が低く、したがって強度へ
の信頼性が極めて高いものである。
As is clear from FIG. 7 line (y), the ceramic product obtained according to the present invention has a fracture probability distribution within a practicable range of a fracture stress of about 550 MPa to about 750 MPa as compared with the conventional product shown by the line (z). Is low, and therefore the reliability of the strength is extremely high.

C.発明の効果 以上のように本発明によれば、前記特定の焼結助剤を用
い、その仮焼結作用により得られる仮焼結体に機械加工
を施して1次中間製品を得、その1次中間製品を基にし
て焼結工程を経てセラミック製品を得るので、セラミッ
ク製品の生産性を向上させると共にその寸法精度を良好
にすることができる。
C. EFFECTS OF THE INVENTION As described above, according to the present invention, a primary intermediate product is obtained by machining the temporary sintered body obtained by the temporary sintering action using the specific sintering aid, and Since the ceramic product is obtained through the sintering process based on the next intermediate product, the productivity of the ceramic product can be improved and the dimensional accuracy thereof can be improved.

また前記焼結助剤のうち大部分のアルカリ金属酸化物を
酸により溶出し、また大部分のSiOをSi
たはSiCといったセラミック粉末と同種物質に変える
ので、セラミック製品に高温強度劣化の要因となる前記
焼結助剤が殆ど残留することがない。これにより高温強
度の高いセラミック製品を提供することができる。
Further, most of the above-mentioned sintering aids are eluted with an acid, and most of SiO 2 is changed into a substance similar to the ceramic powder such as Si 3 N 4 or SiC, so that the ceramic product is deteriorated in high temperature strength. The sintering aid, which is a factor of, hardly remains. This makes it possible to provide a ceramic product having high strength at high temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は成形体の斜視図、第1図(b)は1次中間製品
の縦断正面図、第2図はNaO・SiO配合量と仮
焼結体の曲げ強さとの関係を示すグラフ、第3図はNa
O・SiO配合量と仮焼結体のビッカース硬さとの
関係を示すグラフ、第4図はNaO・SiO配合量
と仮焼結体の相対密度との関係を示すグラフ、第5図は
焼結工程後におけるNaO・SiO配合量と2次中
間製品の相対密度との関係を示すグラフ、第6図はセラ
ミック製品の曲げ強さと温度との関係を示すグラフ、第
7図はセラミック製品の破壊確率分布と破壊応力との関
係を示すグラフである。 1……成形体、7……1次中間製品
Fig. 1 (a) is a perspective view of the molded body, Fig. 1 (b) is a vertical sectional front view of the primary intermediate product, and Fig. 2 is the blending amount of Na 2 O / SiO 2 and the bending strength of the temporary sintered body. Is a graph showing the relationship between
A graph showing the relationship between the amount of 2 O / SiO 2 compounded and the Vickers hardness of the pre-sintered body, and FIG. 4 is a graph showing the relationship between the amount of Na 2 O / SiO 2 compounded and the relative density of the temporary sintered body, Fig. 5 is a graph showing the relationship between the amount of Na 2 O / SiO 2 compounded and the relative density of the secondary intermediate product after the sintering step, and Fig. 6 is a graph showing the relationship between the bending strength of the ceramic product and the temperature. FIG. 7 is a graph showing the relationship between the fracture probability distribution and the fracture stress of ceramic products. 1 …… Molded body, 7 …… Primary intermediate product

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/58 X Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C04B 35/58 X

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiまたはSiCよりなるセラミッ
ク粉末に、該セラミック粉末の焼結温度よりも低い温度
にて該セラミック粉末に対し仮焼結作用を発揮する、ア
ルカリ金属酸化物およびSiOの両者を含む焼結助剤
を一種以上分散させた混合物を用いて成形体を得、次い
で該成形体を前記焼結温度よりも低い前記温度にて仮焼
結して仮焼結体を得る工程;前記仮焼結体に機械加工を
施して1次中間製品を得る工程;前記1次中間製品より
前記アルカリ金属酸化物を酸により溶出して2次中間製
品を得る工程;および前記2次中間製品を前記焼結温度
にて焼結すると共に前記SiOをSiまたはS
iCに変える工程;を用いることを特徴とするセラミッ
ク製品の製造方法。
1. A ceramic powder made of Si 3 N 4 or SiC, which exhibits a pre-sintering action on the ceramic powder at a temperature lower than the sintering temperature of the ceramic powder, and an alkali metal oxide and SiO 2. A mixture is obtained by dispersing one or more sintering aids containing both of the above, and a molded body is obtained, and then the molded body is presintered at a temperature lower than the sintering temperature to obtain a temporary sintered body. A step of machining the temporary sintered body to obtain a primary intermediate product; a step of eluting the alkali metal oxide with an acid from the primary intermediate product to obtain a secondary intermediate product; and the secondary The intermediate product is sintered at the sintering temperature and the SiO 2 is mixed with Si 3 N 4 or S.
a step of converting to iC;
【請求項2】SiまたはSiCよりなるセラミッ
ク粉末に、該セラミック粉末の焼結温度よりも低い温度
にて該セラミック粉末に対し仮焼結作用を発揮する、ア
ルカリ金属酸化物およびSiOの両者を含む焼結助剤
を一種以上分散させた混合物を用いて成形体を得、次い
で該成形体を前記焼結温度よりも低い前記温度にて仮焼
結して仮焼結体を得る工程;前記仮焼結体に機械加工を
施して1次中間製品を得る工程;前記1次中間製品を前
記焼結温度にて焼結すると共に前記SiOをSi
またはSiCに変えて2次中間製品を得る工程;およ
び前記2次中間製品より前記アルカリ金属酸化物を酸に
より溶出する工程;を用いることを特徴とするセラミッ
ク製品の製造方法。
2. A ceramic powder made of Si 3 N 4 or SiC, which exhibits a pre-sintering action on the ceramic powder at a temperature lower than the sintering temperature of the ceramic powder, and an alkali metal oxide and SiO 2. A mixture is obtained by dispersing one or more sintering aids containing both of the above, and a molded body is obtained, and then the molded body is presintered at a temperature lower than the sintering temperature to obtain a temporary sintered body. Step: Machining the pre-sintered body to obtain a primary intermediate product; Sintering the primary intermediate product at the sintering temperature and converting the SiO 2 into Si 3 N
4 or SiC to obtain a secondary intermediate product; and a step of eluting the alkali metal oxide from the secondary intermediate product with an acid;
JP61255384A 1986-10-27 1986-10-27 Manufacturing method of ceramic products Expired - Lifetime JPH0625037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255384A JPH0625037B2 (en) 1986-10-27 1986-10-27 Manufacturing method of ceramic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255384A JPH0625037B2 (en) 1986-10-27 1986-10-27 Manufacturing method of ceramic products

Publications (2)

Publication Number Publication Date
JPS63107863A JPS63107863A (en) 1988-05-12
JPH0625037B2 true JPH0625037B2 (en) 1994-04-06

Family

ID=17278008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255384A Expired - Lifetime JPH0625037B2 (en) 1986-10-27 1986-10-27 Manufacturing method of ceramic products

Country Status (1)

Country Link
JP (1) JPH0625037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100179A (en) * 1995-07-26 1997-04-15 Sumitomo Electric Ind Ltd Porous silicon nitride and its production

Also Published As

Publication number Publication date
JPS63107863A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
EP0739326B1 (en) Low temperature, pressureless sintering of silicon nitride
EP0082370B1 (en) Method of producing dense silicon nitride ceramic articles having controlled surface layer composition
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPS61111970A (en) Silicon nitride sintered body and manufacture
EP0520211B1 (en) Silicon nitride ceramics containing a dispersed pentamolybdenum trisilicide phase
EP0540671B1 (en) Preparing silicon nitride with densification aid, and results
US4526875A (en) Ceramic material for cutting tools and process for the production thereof
EP0540668B1 (en) Process for making nitridable silicon material
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
US4650498A (en) Abrasion resistant silicon nitride based articles
JPS6256110B2 (en)
JPH0625037B2 (en) Manufacturing method of ceramic products
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
WO1988009778A1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JP2742619B2 (en) Silicon nitride sintered body
JPH0639344B2 (en) Manufacturing method of ceramic products
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JP3114302B2 (en) Silicon nitride sintered body and method for producing the same
JPH02501382A (en) Method for hot isostatic pressing of silicon nitride bodies reinforced with carbide fibers and carbide whiskers
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JPS62235260A (en) Si3n4 base composite material
JP2700925B2 (en) Fiber reinforced ceramics and manufacturing method
JPH0566903B2 (en)
JPH0411503B2 (en)