JP5804881B2 - Semiconductor laser module for direct writing exposure equipment - Google Patents

Semiconductor laser module for direct writing exposure equipment Download PDF

Info

Publication number
JP5804881B2
JP5804881B2 JP2011217932A JP2011217932A JP5804881B2 JP 5804881 B2 JP5804881 B2 JP 5804881B2 JP 2011217932 A JP2011217932 A JP 2011217932A JP 2011217932 A JP2011217932 A JP 2011217932A JP 5804881 B2 JP5804881 B2 JP 5804881B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
adjustment
fixing
lens
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011217932A
Other languages
Japanese (ja)
Other versions
JP2013077768A5 (en
JP2013077768A (en
Inventor
光一 齊木
光一 齊木
英喜 芦川
英喜 芦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Mechanics Ltd filed Critical Via Mechanics Ltd
Priority to JP2011217932A priority Critical patent/JP5804881B2/en
Publication of JP2013077768A publication Critical patent/JP2013077768A/en
Publication of JP2013077768A5 publication Critical patent/JP2013077768A5/ja
Application granted granted Critical
Publication of JP5804881B2 publication Critical patent/JP5804881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直接描画露光装置の光源光学系に関するものである。   The present invention relates to a light source optical system of a direct drawing exposure apparatus.

プリント基板、液晶ディスプレイのTFT基板、カラーフィルタ基板あるいはプラズマディスプレイ等の基板にパターンを露光するため、従来は、パターンの原版となるマスクを製作し、このマスクをマスク露光装置により上記の基板に露光していた。   In order to expose a pattern on a substrate such as a printed circuit board, a TFT substrate of a liquid crystal display, a color filter substrate, or a plasma display, conventionally, a mask serving as a pattern original is manufactured, and this mask is exposed to the above substrate by a mask exposure device. Was.

しかし、基板の寸法は近年ますます大きくなると共に、これら基板の設計、製作に要求される時間はますます短くなっている。このため、マスクを必要としない、液晶やDMD(Digital Mirror Device)等の2次元空間変調器を用いて2次元パターンを発生させ、これを投影レンズで基板上に露光する直接描画露光装置が実用化された。   However, as the dimensions of the substrates become larger and larger in recent years, the time required for designing and manufacturing these substrates is becoming shorter and shorter. For this reason, a direct drawing exposure apparatus that does not require a mask, generates a two-dimensional pattern using a two-dimensional spatial modulator such as liquid crystal or DMD (Digital Mirror Device), and exposes it on a substrate with a projection lens is practical. It became.

このような直接描画露光装置の従来の光源光学系は、特許文献1に記載されているように、複数の半導体レーザおよび非球面レンズをアレイ状に配列後、非球面レンズを微調整機構によりxyz方向に微動調整することで光学性能を得ていた。微調整機構を図で示すと、図14のようになる。   As described in Patent Document 1, the conventional light source optical system of such a direct drawing exposure apparatus is configured by arranging a plurality of semiconductor lasers and aspherical lenses in an array, and then adjusting the aspherical lenses by a fine adjustment mechanism. Optical performance was obtained by fine adjustment in the direction. FIG. 14 shows the fine adjustment mechanism.

従来は光軸の調整をする際、半導体レーザ11がLDスタンド51に完全固定されているため、非球面レンズ21を光軸に直交するxy方向に移動して調整していた。調整のためにXY軸調整固定ねじ124を緩めると、非球面レンズ21が光軸に平行なz方向に移動し、半導体レーザ11と非球面レンズ21との距離が変わってしまうことから、z方向の調整が必要になった。そのためxy方向とz方向の調整を何度か繰り返し行なわなければならず、調整作業に時間がかかっていた。   Conventionally, when adjusting the optical axis, since the semiconductor laser 11 is completely fixed to the LD stand 51, the aspherical lens 21 is moved and adjusted in the xy direction orthogonal to the optical axis. If the XY-axis adjustment fixing screw 124 is loosened for adjustment, the aspherical lens 21 moves in the z-direction parallel to the optical axis, and the distance between the semiconductor laser 11 and the aspherical lens 21 changes. It became necessary to adjust. Therefore, the adjustment in the xy direction and the z direction has to be repeated several times, and the adjustment work takes time.

従来の光源光学系は、図15および図16で示すように、複数の半導体レーザ11をアレイ状に配列させた構造に非球面レンズ21および調整機構を合わせた構造であり、各半導体レーザ11のアレイ状の配列ピッチが数mmであるため、μオーダの非常に繊細な調整技術が必要であり、また光源光学系の組み立てから調整までの作業を作業者1名が連続で行うことになり、作業効率に問題があった。さらに、このような構成の光源光学系は複雑な構造のため冷却効率が悪く、半導体レーザ11の出力や寿命について十分に性能を発揮できないという問題もあった。   As shown in FIGS. 15 and 16, the conventional light source optical system has a structure in which a plurality of semiconductor lasers 11 are arranged in an array and an aspheric lens 21 and an adjusting mechanism are combined. Since the arrangement pitch of the array is several millimeters, a very delicate adjustment technique on the order of μ is necessary, and one operator continuously performs the work from assembly to adjustment of the light source optical system. There was a problem with work efficiency. Furthermore, since the light source optical system having such a configuration has a complicated structure, the cooling efficiency is poor, and there is a problem that the output and life of the semiconductor laser 11 cannot be sufficiently exhibited.

発光素子の交換作業が容易な描画装置の光源光学系について、特許文献2に開示されている。   Patent Document 2 discloses a light source optical system of a drawing apparatus in which a light emitting element can be easily replaced.

特許文献2の光源光学系は、鏡筒内に各々配設された半導体レーザとコリメータレンズと位置合わせスリーブとを備え、半導体レーザは、鏡筒内において完全固定され、コリメータレンズは、鏡筒内に配設された筒体の先端部に固定され、この筒体の外周部と鏡筒の内面には互いに螺合するねじ部が設けられ、鏡筒に対して筒体を回転させることにより、コリメータレンズを光軸方向に移動させて、光軸方向の調整をしている。筒体の外周部に設けられたねじ部と螺合する固定筒を利用することにより、鏡筒に対して筒体を固定している。   The light source optical system of Patent Document 2 includes a semiconductor laser, a collimator lens, and an alignment sleeve that are respectively disposed in a lens barrel. The semiconductor laser is completely fixed in the lens barrel, and the collimator lens is disposed in the lens barrel. Is fixed to the distal end of the cylindrical body disposed on the outer peripheral portion of the cylindrical body and the inner surface of the barrel is provided with a threaded portion that is screwed together, and by rotating the cylindrical body with respect to the barrel, The collimator lens is moved in the optical axis direction to adjust in the optical axis direction. The cylindrical body is fixed to the lens barrel by using a fixed cylinder that is screwed with a screw portion provided on the outer peripheral portion of the cylindrical body.

鏡筒の外周部には、複数個のねじが鏡筒の側壁を貫通する状態で立設され、このねじを回転させることにより、ねじが筒体を押圧してコリメータレンズを光軸と直交する方向に弾性変形させることにより、光軸と直交する方向の調整をしている。   A plurality of screws are erected on the outer peripheral portion of the lens barrel so as to penetrate the side wall of the lens barrel. By rotating the screws, the screws press the tube and the collimator lens is orthogonal to the optical axis. The direction perpendicular to the optical axis is adjusted by elastically deforming in the direction.

しかしながら、ねじ締めの押圧による筒体の弾性変形により、コリメータレンズも歪むこととなる。これは、コリメータレンズの光学特性が変化(光弾性効果)する原因となり、軸調整を難しくする。さらに、加圧状態が続くため、コリメータレンズの劣化(ヒビ等)も早くなるという問題があった。   However, the collimator lens is also distorted due to the elastic deformation of the cylinder due to the pressing of the screw tightening. This causes changes in the optical characteristics of the collimator lens (photoelastic effect), and makes axis adjustment difficult. Further, since the pressurization state continues, there is a problem that deterioration (cracking, etc.) of the collimator lens is accelerated.

特開2005−316349号公報(段落0057〜段落0061)JP 2005-316349 A (paragraph 0057 to paragraph 0061)

特開平10−339836号公報(段落0018〜段落0024、段落0031〜段落0033)JP-A-10-339836 (paragraphs 0018 to 0024, paragraphs 0031 to 0033)

そこで、調整が容易でありメンテナンス性の優れた直接描画露光装置の光源光学系を形成することを課題とする。   Accordingly, it is an object to form a light source optical system of a direct drawing exposure apparatus that is easy to adjust and has excellent maintainability.

上記の課題を解決するため、本発明では、光源光学系を、光軸に直交するxy方向の調整機構と光軸に平行なz方向の調整機構を切り離したモジュール構造にし、モジュール単体で調整し、調整済みのモジュールをアレイ状に配列することを特徴とする。   In order to solve the above-described problems, in the present invention, the light source optical system has a module structure in which an adjustment mechanism in the xy direction orthogonal to the optical axis and an adjustment mechanism in the z direction parallel to the optical axis are separated, and the module is adjusted by itself. The adjusted modules are arranged in an array.

これにより、光源光学系の組み立て・調整効率が向上し、半導体レーザの冷却効率も向上することから、安定した光源で工数を低減することを可能とする。   As a result, the assembly / adjustment efficiency of the light source optical system is improved, and the cooling efficiency of the semiconductor laser is also improved. Therefore, the man-hour can be reduced with a stable light source.

本発明に係る半導体レーザモジュールの全体構成図である。1 is an overall configuration diagram of a semiconductor laser module according to the present invention. 本発明に係る半導体レーザアレイユニットの正面図である。It is a front view of the semiconductor laser array unit which concerns on this invention. 本発明に係る半導体レーザアレイユニットの側面図である。It is a side view of the semiconductor laser array unit which concerns on this invention. LD調整部の構成図である。It is a block diagram of LD adjustment part. LD調整部の分解図である。It is an exploded view of LD adjustment part. LD調整部の分解図(ねじ部を有する場合)である。It is an exploded view (when it has a screw part) of an LD adjustment part. レンズ調整部の構成図である。It is a block diagram of a lens adjustment part. レンズ調整部の分解図である。It is an exploded view of a lens adjustment part. レンズ調整部の分解図(ねじ部を有する場合)である。It is an exploded view (when it has a screw part) of a lens adjustment part. レンズホルダ固定リングの構成図である。It is a block diagram of a lens holder fixing ring. 調整治具を示す図である。It is a figure which shows an adjustment jig. 調整方法を説明する図である。It is a figure explaining the adjustment method. LDベーススタンドを示す図である。It is a figure which shows LD base stand. 従来の光源光学系の構成図である。It is a block diagram of the conventional light source optical system. 従来の半導体レーザアレイユニットの正面図である。It is a front view of the conventional semiconductor laser array unit. 従来の半導体レーザアレイユニットの側面図である。It is a side view of the conventional semiconductor laser array unit.

以下、本発明を図示の実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on illustrated embodiments.

本発明の光源光学系は、図1で示す調整済みの半導体レーザモジュール1を図2および図3のようにアレイ状に配列した半導体レーザアレイユニットである。   The light source optical system of the present invention is a semiconductor laser array unit in which the adjusted semiconductor laser modules 1 shown in FIG. 1 are arranged in an array as shown in FIGS.

半導体レーザモジュール1の組み立て方法を説明する。半導体レーザモジュール1は、半導体レーザ11を光軸に直交する方向(xy方向)に移動させてxy方向の調整をするLD調整部10と、非球面レンズ21を光軸に平行な方向(z方向)に移動させてz方向の調整をするレンズ調整部20とからなる。   A method for assembling the semiconductor laser module 1 will be described. The semiconductor laser module 1 includes an LD adjustment unit 10 that adjusts the xy direction by moving the semiconductor laser 11 in a direction orthogonal to the optical axis (xy direction), and an aspheric lens 21 in a direction parallel to the optical axis (z direction). ) To adjust the z direction.

まず、LD調整部10を組み立てる。LD調整部10は、半導体レーザ11、LD固定ホルダ12およびLD固定キャップ13とからなる。   First, the LD adjustment unit 10 is assembled. The LD adjustment unit 10 includes a semiconductor laser 11, an LD fixing holder 12, and an LD fixing cap 13.

図4および図5で示すように、半導体レーザ11はLD固定ホルダ12とLD固定キャップ13とで挟持され、z方向に固定されるが、LD固定キャップ13の調整スペース部18の2つの貫通孔19に差し込まれた図11で示される調整ピン42でLD台座14を押して、xy方向へ動く程度に締め付けられる。   As shown in FIGS. 4 and 5, the semiconductor laser 11 is sandwiched between the LD fixing holder 12 and the LD fixing cap 13 and fixed in the z direction, but the two through-holes in the adjustment space portion 18 of the LD fixing cap 13. The LD pedestal 14 is pushed by the adjusting pin 42 shown in FIG.

LD固定ホルダ12の筒部15の内径は半導体レーザ11の位置調整のためにLD外形より大きく形成されている。また、LD固定キャップ13の調整スペース部18の内径は半導体レーザ11の位置調整のためにLD台座外形より大きく形成されている。本実施例では、半導体レーザ11は、中心線より1.5mm移動できるようになっている。   The inner diameter of the cylindrical portion 15 of the LD fixing holder 12 is formed larger than the outer shape of the LD for adjusting the position of the semiconductor laser 11. Further, the inner diameter of the adjustment space portion 18 of the LD fixing cap 13 is formed larger than the outer shape of the LD base for adjusting the position of the semiconductor laser 11. In this embodiment, the semiconductor laser 11 can move 1.5 mm from the center line.

本実施例では、図6で示すように、LD固定ホルダ12の筒部15の外周とLD固定キャップ13のキャップ部17の内側にはねじ溝が設けられており、ねじ込むことで半導体レーザ11が固定される。   In this embodiment, as shown in FIG. 6, screw grooves are provided on the outer periphery of the cylindrical portion 15 of the LD fixing holder 12 and on the inner side of the cap portion 17 of the LD fixing cap 13. Fixed.

次に、レンズ調整部20を組み立てる。レンズ調整部20は、非球面レンズ21、非球面レンズ固定スリーブ22および非球面レンズ固定ホルダ23とからなる。   Next, the lens adjustment unit 20 is assembled. The lens adjustment unit 20 includes an aspheric lens 21, an aspheric lens fixing sleeve 22, and an aspheric lens fixing holder 23.

図7および図8で示すように、非球面レンズ固定スリーブ22を圧入し、非球面レンズ21を非球面レンズ固定スリーブ22のテーパー部25で中心線を合わせて挟みz方向に固定する。非球面レンズ21は回転方向に対して対称であり、テーパー部25と接触する位置に丸みを帯びているため、またテーパー部25の角度を非球面レンズ21の形状に合わせることで、非球面レンズ21は非球面レンズ固定スリーブ22の中心に固定される。   As shown in FIGS. 7 and 8, the aspherical lens fixing sleeve 22 is press-fitted, and the aspherical lens 21 is sandwiched by the taper portion 25 of the aspherical lens fixing sleeve 22 and fixed in the z direction. Since the aspherical lens 21 is symmetric with respect to the rotation direction and is rounded at a position in contact with the tapered portion 25, the angle of the tapered portion 25 is adjusted to the shape of the aspherical lens 21. 21 is fixed to the center of the aspherical lens fixing sleeve 22.

非球面レンズ21を保持した非球面レンズ固定スリーブ22を非球面レンズホルダ23の円筒管部26に差し込み、嵌め合い部27で非球面レンズ固定スリーブ22を中心線を合わせてz方向に固定する。   The aspherical lens fixing sleeve 22 holding the aspherical lens 21 is inserted into the cylindrical tube portion 26 of the aspherical lens holder 23, and the fitting portion 27 fixes the aspherical lens fixing sleeve 22 in the z direction with the center line aligned.

そして、LD調整部10とレンズ調整部を20を組み合わせる。図1で示すように、非球面レンズ21および非球面レンズ固定スリーブ22を保持する非球面レンズホルダ23を、半導体レーザ11およびLD固定キャップ13を保持するLD固定ホルダ12に差し込み固定する。   Then, the LD adjustment unit 10 and the lens adjustment unit 20 are combined. As shown in FIG. 1, an aspheric lens holder 23 holding an aspheric lens 21 and an aspheric lens fixing sleeve 22 is inserted and fixed in an LD fixing holder 12 holding a semiconductor laser 11 and an LD fixing cap 13.

本実施例では、図6および図9で示すように、LD固定ホルダ12の開口部16の内側と非球面レンズホルダ23の円筒管部26の外周にはねじ溝が設けられており、ねじ込むことでLD調整部10とレンズ調整部20がz方向に固定され、半導体レーザモジュール1の組み立てが完了する。   In this embodiment, as shown in FIGS. 6 and 9, screw grooves are provided on the inner side of the opening 16 of the LD fixing holder 12 and the outer periphery of the cylindrical tube portion 26 of the aspheric lens holder 23. Thus, the LD adjusting unit 10 and the lens adjusting unit 20 are fixed in the z direction, and the assembly of the semiconductor laser module 1 is completed.

さらに本実施例では、図10で示すように、リング部31の内側にねじ溝を有するレンズホルダ固定リング30を設け、非球面レンズホルダ23の円筒管部26の外周のねじ溝と合わせてねじ込むことで、LD調整部10とレンズ調整部20を固定する。   Further, in this embodiment, as shown in FIG. 10, a lens holder fixing ring 30 having a thread groove is provided inside the ring portion 31 and screwed together with the thread groove on the outer periphery of the cylindrical tube portion 26 of the aspheric lens holder 23. Thus, the LD adjustment unit 10 and the lens adjustment unit 20 are fixed.

半導体レーザモジュール1の調整方法を図11および図12を用いて説明する。組み立てられた半導体レーザモジュール1を、図11で示すように調整治具40に固定する。調整治具40は、XY軸ステージ41、複数の調整ピン42、x方向およびy方向のマイクロメータヘッド43で構成されている。   A method for adjusting the semiconductor laser module 1 will be described with reference to FIGS. 11 and 12. The assembled semiconductor laser module 1 is fixed to an adjustment jig 40 as shown in FIG. The adjustment jig 40 includes an XY axis stage 41, a plurality of adjustment pins 42, and micrometer heads 43 in the x and y directions.

まず、z方向の調整をし、次にxy方向の調整を行う。調整治具のターゲットでレーザ光が平行光束であり、光軸の中心が半導体レーザモジュール1の中心にあることを確認できれば、調整は完了である。   First, adjustment in the z direction is performed, and then adjustment in the xy direction is performed. The adjustment is completed if it can be confirmed that the laser beam is a parallel light beam at the target of the adjustment jig and the center of the optical axis is at the center of the semiconductor laser module 1.

z方向の調整方法について説明する。調整治具40に固定された状態で、非球面レンズ21を保持している非球面レンズ固定ホルダ23を、LD固定ホルダ12の奥まで入っている状態から半時計回りに手で回してスポット形状を観察する。本実施例では、発散した状態からスポット形状が米粒大に変化して収束し、また米粒大になって発散していく状態が確認できるので、初めに米粒大になる位置が平行光束であるため、この位置で固定する。このようにz方向の調整を行い、レンズホルダ固定リング30で固定する。   A method for adjusting the z direction will be described. In a state of being fixed to the adjustment jig 40, the aspherical lens fixing holder 23 holding the aspherical lens 21 is turned by hand counterclockwise from the state where it is fully inserted into the LD fixing holder 12 to form a spot shape. Observe. In this embodiment, since the spot shape changes from the divergent state to a rice grain size and converges, and the state where the rice grain size becomes divergent can be confirmed, the position where the rice grain size becomes the first is a parallel light beam. , Fix in this position. In this way, adjustment in the z direction is performed, and the lens holder fixing ring 30 is used for fixing.

xy方向の調整方法について説明する。LD固定キャップ13の調整スペース部18に明けられた2つの貫通孔19のそれぞれに調整ピン42を差し込み、2つの調整ピン42がLD台座14を押した状態で、XY軸ステージ41にあるマイクロメータヘッド43のつまみを回しながら2つの調整ピン42をxy方向に移動させることで半導体レーザ11をxy方向に移動し、微調整する。調整が済んだら、LD固定キャップ13を締めて固定する。   An adjustment method in the xy direction will be described. An adjustment pin 42 is inserted into each of the two through holes 19 opened in the adjustment space portion 18 of the LD fixing cap 13, and the micrometer provided on the XY axis stage 41 with the two adjustment pins 42 pressing the LD base 14. By moving the two adjustment pins 42 in the xy direction while turning the knob of the head 43, the semiconductor laser 11 is moved in the xy direction for fine adjustment. After the adjustment, the LD fixing cap 13 is tightened and fixed.

調整後、調整ピン42を取り外し、半導体レーザモジュール1を調整治具40から取り外して、半導体レーザモジュール1の調整が完了する。   After the adjustment, the adjustment pin 42 is removed, the semiconductor laser module 1 is removed from the adjustment jig 40, and the adjustment of the semiconductor laser module 1 is completed.

組み立ておよび調整が済んだ半導体レーザモジュール1から出射されるレーザ光は楕円ビームであるが、その後の光学系で円形スポットとなるように調整される。   The laser beam emitted from the assembled and adjusted semiconductor laser module 1 is an elliptical beam, but is adjusted so as to be a circular spot in the subsequent optical system.

組み立ておよび調整が済んだ複数の半導体レーザモジュール1を、調整治具のターゲットで確認しながら楕円ビームの長いほうが縦になるような向きにそろえて、図13で示す規則的に穴が開いた構造のLDベーススタンド50に圧入して挿入し、半導体レーザアレイユニットが完成する。光軸の微調整には、特許文献1で開示されている楔状のウエッジガラス等の光軸補正システムを使用する。   A structure in which a plurality of semiconductor laser modules 1 that have been assembled and adjusted are aligned in a direction in which the longer one of the elliptical beams becomes vertical while checking with the target of the adjusting jig, and the holes are regularly opened as shown in FIG. The semiconductor laser array unit is completed by press-fitting into the LD base stand 50. For fine adjustment of the optical axis, an optical axis correction system such as a wedge-shaped wedge glass disclosed in Patent Document 1 is used.

このように、LD調整部で半導体レーザ11をxy方向に移動させることで光軸に垂直なxy方向の調整を行い、レンズ調整部で非球面レンズ21をz方向に移動させることで光軸に平行なz方向の調整を行い、xy方向とz方向の調整機構を分離したことで、調整を繰り返し行なわなくてよくなった。   As described above, the LD adjustment unit moves the semiconductor laser 11 in the xy direction to adjust the xy direction perpendicular to the optical axis, and the lens adjustment unit moves the aspheric lens 21 in the z direction to the optical axis. Since the adjustment in the parallel z direction is performed and the adjustment mechanism in the xy direction and the z direction is separated, the adjustment need not be repeated.

また、従来技術では、半導体レーザおよび調整機構をアレイ状に配列した後に調整を行なうのに対して、本発明では、調整機構をモジュール化させ、半導体レーザモジュール1をxyz方向に調整した後に、LDベーススタンド50に配列することが可能になり、調整スペースを大きく確保できることから、調整が容易になった。   In the prior art, the adjustment is performed after the semiconductor laser and the adjustment mechanism are arranged in an array. In the present invention, the adjustment mechanism is modularized, and after the semiconductor laser module 1 is adjusted in the xyz direction, the LD is adjusted. Since it can be arranged on the base stand 50 and a large adjustment space can be secured, the adjustment becomes easy.

さらに、工数の多くを占める調整作業を従来では一人でしか行なえなかったのが、複数人で行なえるようになり、短納期にも対応することが可能になった。   In addition, adjustment work, which occupies a large amount of man-hours, can be done by multiple people, but it has become possible to cope with short delivery times.

さらに、メンテナンスのために半導体レーザモジュール1を取り外したときの調整も容易に行えるようになった。   Furthermore, the adjustment when the semiconductor laser module 1 is removed for maintenance can be easily performed.

1 半導体レーザモジュール
2 半導体レーザアレイユニット
10 LD調整部
11 半導体レーザ(LD)
12 LD固定ホルダ
13 LD固定キャップ
20 レンズ調整部
21 非球面レンズ(コリメータレンズ)
22 非球面レンズ固定スリーブ
23 非球面レンズホルダ
30 レンズホルダ固定リング
40 調整治具
50 LDベーススタンド
DESCRIPTION OF SYMBOLS 1 Semiconductor laser module 2 Semiconductor laser array unit 10 LD adjustment part 11 Semiconductor laser (LD)
12 LD fixing holder 13 LD fixing cap 20 Lens adjustment part 21 Aspherical lens (collimator lens)
22 Aspherical lens fixing sleeve 23 Aspherical lens holder 30 Lens holder fixing ring 40 Adjustment jig 50 LD base stand

Claims (3)

半導体レーザと、該半導体レーザを差し込むための筒部および開口部を有し、該筒部の内径は前記半導体レーザの位置調整のためにLD外径より大きく形成されているLD固定ホルダと、前記LD固定ホルダの筒部を差し込むためのキャップ部および調整スペース部を有し、該調整スペース部の内径は前記半導体レーザの位置調整のためにLD台座外径より大きく形成され、該LD台座を押して移動させるためのLD調整ピンを差し込む複数の貫通孔が設けられているLD固定キャップと、
前記半導体レーザから出射されたレーザ光を平行光にする非球面レンズと、前記非球面レンズを中心線を合わせて挟むためのテーパー部および円筒スリーブ部を有する非球面レンズ固定スリーブと、前記LD固定ホルダの開口部に差し込まれるための円筒管部を有し、該円筒管部の内側には前記非球面レンズ固定スリーブを圧入して前記テーパー部で前記非球面レンズの中心線を合わせて保持するための嵌め合い部を有する非球面レンズホルダとからなることを特徴とする半導体レーザモジュール。
An LD fixing holder having a semiconductor laser, and a cylindrical portion and an opening for inserting the semiconductor laser, the inner diameter of the cylindrical portion being formed larger than the outer diameter of the LD for position adjustment of the semiconductor laser; A cap portion and an adjustment space portion for inserting the cylindrical portion of the LD fixing holder are formed, and the inner diameter of the adjustment space portion is formed larger than the outer diameter of the LD base for adjusting the position of the semiconductor laser. An LD fixing cap provided with a plurality of through holes into which LD adjustment pins for moving are inserted;
An aspheric lens that collimates laser light emitted from the semiconductor laser, an aspheric lens fixing sleeve having a tapered portion and a cylindrical sleeve portion for sandwiching the aspheric lens with a center line aligned, and the LD fixing A cylindrical tube portion to be inserted into the opening of the holder is provided, and the aspheric lens fixing sleeve is press-fitted inside the cylindrical tube portion, and the center line of the aspheric lens is aligned and held by the tapered portion. A semiconductor laser module comprising an aspherical lens holder having a fitting portion for the purpose.
前記非球面レンズホルダを差し込むためのリング部を有するレンズホルダ固定リングを備えている
ことを特徴とする請求項1に記載の半導体レーザモジュール。
2. The semiconductor laser module according to claim 1, further comprising a lens holder fixing ring having a ring portion for inserting the aspheric lens holder.
請求項1に記載の複数の前記半導体レーザモジュール
からなることを特徴とする半導体レーザアレイユニット。
A semiconductor laser array unit comprising the plurality of semiconductor laser modules according to claim 1.
JP2011217932A 2011-09-30 2011-09-30 Semiconductor laser module for direct writing exposure equipment Active JP5804881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217932A JP5804881B2 (en) 2011-09-30 2011-09-30 Semiconductor laser module for direct writing exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217932A JP5804881B2 (en) 2011-09-30 2011-09-30 Semiconductor laser module for direct writing exposure equipment

Publications (3)

Publication Number Publication Date
JP2013077768A JP2013077768A (en) 2013-04-25
JP2013077768A5 JP2013077768A5 (en) 2014-04-24
JP5804881B2 true JP5804881B2 (en) 2015-11-04

Family

ID=48481013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217932A Active JP5804881B2 (en) 2011-09-30 2011-09-30 Semiconductor laser module for direct writing exposure equipment

Country Status (1)

Country Link
JP (1) JP5804881B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381871B2 (en) 2019-12-24 2023-11-16 東亜ディーケーケー株式会社 Light source unit and analyzer
US11754782B2 (en) * 2021-05-06 2023-09-12 Stmicroelectronics (Research & Development) Limited Mechanically held polymer lenses for photonics device maintaining placement reference to die
CN115548856B (en) * 2022-12-01 2023-04-11 中国科学院西安光学精密机械研究所 Direction-adjustable laser emission light source, adjusting method thereof and optical instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196424A (en) * 1984-10-17 1986-05-15 Fujitsu Ltd Optical semiconductor module structure
JPH0324614U (en) * 1989-07-21 1991-03-14
JPH0529170U (en) * 1991-09-27 1993-04-16 三菱電機株式会社 Laser diode module
JPH10339836A (en) * 1997-06-06 1998-12-22 Dainippon Screen Mfg Co Ltd Plotting head for light beam plotting device
JP2004165304A (en) * 2002-11-11 2004-06-10 Furukawa Electric Co Ltd:The Semiconductor laser module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing

Also Published As

Publication number Publication date
JP2013077768A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5804881B2 (en) Semiconductor laser module for direct writing exposure equipment
US9310620B2 (en) Laser beam collimation apparatus and manufacturing method thereof
JP2011096789A (en) Light source device
KR20100054094A (en) Defect correction device
US20150033886A1 (en) Driving apparatus with taper screw and elastic driving member to displace object
JP2010169915A (en) Projection lens and method for manufacturing projection lens
KR101607776B1 (en) Shape variable mirror and laser processing apparatus
CN210042053U (en) Adjusting device and projection device
CN106918330B (en) Laser module and laser line marking instrument
US8934161B2 (en) Method of manufacturing optical scanning apparatus and optical scanning apparatus
KR101599936B1 (en) Lens unit, the light irradiation unit, the light irradiation apparatus
JP4019995B2 (en) Line indicator
JP2006011051A (en) Aspherical collimating mirror and method for adjusting same
JP2015204320A (en) Exposure device and method for fixing the same
CN103219643B (en) Fixing device for laser collimating lenses
JP2001100071A (en) Lens device
US8254032B2 (en) Test object used for projecting a set of marks to infinity
KR20200002328U (en) F-theta objective having a first and at least one second optical assembly
JP2005352349A (en) Optical unit and its manufacturing method, projection type display device
JP5881382B2 (en) Laser irradiation device
JP2001281514A (en) Optical element holding mechanism and optical equipment including the same
WO2018003157A1 (en) Light source module
CN105319817B (en) Light-source system
JP2005305950A (en) Multibeam laser light source system and multibeam scanning optical device
JP2024048111A (en) Light source

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5804881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250