JP5802489B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP5802489B2
JP5802489B2 JP2011191025A JP2011191025A JP5802489B2 JP 5802489 B2 JP5802489 B2 JP 5802489B2 JP 2011191025 A JP2011191025 A JP 2011191025A JP 2011191025 A JP2011191025 A JP 2011191025A JP 5802489 B2 JP5802489 B2 JP 5802489B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
theoretical capacity
lioh
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011191025A
Other languages
Japanese (ja)
Other versions
JP2013054860A (en
Inventor
武男 野上
武男 野上
秀典 都築
秀典 都築
鈴木 拓也
拓也 鈴木
祐紀 夏目
祐紀 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2011191025A priority Critical patent/JP5802489B2/en
Publication of JP2013054860A publication Critical patent/JP2013054860A/en
Application granted granted Critical
Publication of JP5802489B2 publication Critical patent/JP5802489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明はアルカリ電池に関し、具体的には、アルカリ電池における放電性能と信頼性を両立させるための技術に関する。   The present invention relates to an alkaline battery, and specifically to a technique for achieving both discharge performance and reliability in an alkaline battery.

図1に本発明の対象となるアルカリ電池の一般的な構造を示した。当該図は、LR6型の円筒形アルカリ電池1であり、円筒軸10の延長方向を縦方向としたときの縦断面図である。このアルカリ電池1は、有底筒状の金属製電池缶(正極缶)2と、環状に成形された正極合剤3、この正極合剤3の内側に配設された有底円筒状のセパレーター4、亜鉛合金を含んでセパレーター4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された負極集電子6、負極端子板7、封口ガスケット8、および正極缶2内に充填される電解液などにより構成される。   FIG. 1 shows a general structure of an alkaline battery which is an object of the present invention. The figure is an LR6 type cylindrical alkaline battery 1 and is a longitudinal sectional view when the extending direction of the cylindrical shaft 10 is a longitudinal direction. The alkaline battery 1 includes a bottomed cylindrical metal battery can (positive electrode can) 2, an annularly formed positive electrode mixture 3, and a bottomed cylindrical separator disposed inside the positive electrode mixture 3. 4. Negative electrode gel 5 filled with zinc alloy inside separator 4, negative electrode current collector 6 inserted in negative electrode gel 5, negative electrode terminal plate 7, sealing gasket 8, and positive electrode can 2 are filled It consists of an electrolyte solution.

具体的には、正極缶2は、Niメッキ鋼鈑をプレス加工するなどして作製されたものであり、発電要素を収納する電池ケースであるとともに、正極合剤3に直接接触することによって正極集電体としても機能する。そして、正極缶2の底面には正極端子9が形成されている。   Specifically, the positive electrode can 2 is manufactured by pressing a Ni-plated steel plate, and is a battery case that houses a power generation element. Also functions as a current collector. A positive electrode terminal 9 is formed on the bottom surface of the positive electrode can 2.

正極合剤3は、二酸化マンガンやオキシ水酸化ニッケルなどの正極活物質、導電材(黒鉛など)、バインダー、電解液である水酸化カリウム(KOH)水溶液を混合し、この混合体をコンパクティング、解砕、造粒等の工程によって、所定の粒度に調整された粉体状の造粒物(合剤粒)を作製するとともに、その合剤粒を金型などを用いて環状に成形することで得られる。また、負極ゲル5は、ゲル化剤と電解液との混合物に活物質となる粉末状の亜鉛合金(亜鉛粉末)を加えたり、亜鉛粉末とゲル化剤との混合物に電解液を加えて混合したりして作製される。   The positive electrode mixture 3 is a mixture of a positive electrode active material such as manganese dioxide or nickel oxyhydroxide, a conductive material (such as graphite), a binder, and an aqueous potassium hydroxide (KOH) solution that is an electrolytic solution. A powdered granulated product (mixture granule) adjusted to a predetermined particle size is produced by processes such as crushing and granulation, and the mixture granule is formed into a ring shape using a mold or the like. It is obtained by. The negative electrode gel 5 is mixed by adding a powdery zinc alloy (zinc powder) as an active material to a mixture of a gelling agent and an electrolytic solution, or adding an electrolytic solution to a mixture of zinc powder and a gelling agent. Or made.

負極ゲル5は、有底円筒状の不織布などからなる袋状のセパレーター4を介して環状の正極合剤3の内側に配置され、当該負極ゲル5中に挿入された棒状の金属製負極集電子6は、皿状の金属製負極端子板7における電池内方側の面に溶接により立設固定されている。負極端子板7、負極集電子6および封口ガスケット8は、封口体としてあらかじめ一体に組み合わせられており、封口ガスケット8の外周部が正極缶2の開口縁部と負極端子板7の周縁部との間にかしめられるなどして挟持されて正極缶2が気密シールされる。   The negative electrode gel 5 is disposed inside the annular positive electrode mixture 3 via a bag-like separator 4 made of a bottomed cylindrical nonwoven fabric or the like, and is a rod-shaped metal negative electrode current collector inserted into the negative electrode gel 5. 6 is erected and fixed to the inner surface of the battery in the plate-shaped metal negative electrode terminal plate 7 by welding. The negative electrode terminal plate 7, the negative electrode current collector 6, and the sealing gasket 8 are combined in advance as a sealing body, and the outer periphery of the sealing gasket 8 is formed between the opening edge of the positive electrode can 2 and the peripheral edge of the negative electrode terminal plate 7. The positive electrode can 2 is hermetically sealed by being clamped in between.

ところで、アルカリ電池は、放電反応によって負極を構成する亜鉛合金の表面に高抵抗の亜鉛酸化物の被膜が形成されるため、負極活物質である亜鉛の利用率が低くなる。すなわち、全ての負極活物質が放電反応に寄与するわけではない。そこで、アルカリ電池では、正極容量に対して負極容量を10〜20%程度多くすることが一般的である(例えば、特許文献1参照)。   By the way, since the alkaline battery forms a high-resistance zinc oxide film on the surface of the zinc alloy constituting the negative electrode by a discharge reaction, the utilization factor of zinc as the negative electrode active material is lowered. That is, not all negative electrode active materials contribute to the discharge reaction. Therefore, in an alkaline battery, the negative electrode capacity is generally increased by about 10 to 20% with respect to the positive electrode capacity (see, for example, Patent Document 1).

しかし、負極容量を正極容量より大きくすると、アルカリ電池の放電終了後において未反応の亜鉛が電池内に残るため、例えば、放電終了後のアルカリ電池を、その電池を使用している機器から取り出さずに放置して過放電状態にすると、漏液の原因となる多量のガスが発生する、という問題がある。なお、以下の特許文献2、3には、無水銀の亜鉛を負極活物質として用いた場合に、亜鉛が腐食してガスが発生するのを防止するために、電解液に水酸化リチウムなどのリチウム塩を添加する技術について記載さている。また、以下の特許文献4には、オキシ水酸化ニッケル系の正極活物質を用いたアルカリ電池において、電解液にリチウム塩を添加することで、放電性能を維持しつつ過放電時のガス発生を抑制する技術について記載されている。   However, when the negative electrode capacity is made larger than the positive electrode capacity, unreacted zinc remains in the battery after the discharge of the alkaline battery. For example, the alkaline battery after the discharge is not taken out from the device using the battery. When left in an overdischarged state, a large amount of gas that causes leakage is generated. In Patent Documents 2 and 3 below, in order to prevent zinc from corroding and generating gas when anhydrous silver zinc is used as the negative electrode active material, the electrolytic solution is made of lithium hydroxide or the like. A technique for adding a lithium salt is described. In addition, in Patent Document 4 below, in an alkaline battery using a nickel oxyhydroxide-based positive electrode active material, a lithium salt is added to the electrolytic solution, thereby generating gas during overdischarge while maintaining discharge performance. The technology to suppress is described.

特開昭61−54157号公報JP-A-61-54157 特開平5−135776号公報Japanese Patent Application Laid-Open No. 5-135576 特開2000−36318号公報JP 2000-36318 A 特開2007−250451号公報JP 2007-250451 A

上記特許文献2〜4に記載の技術から、過放電時のガスの発生を抑制するために、電解液にリチウム塩を添加することがある程度有用であることが分かる。しかしながら、放電性能の向上と過放電時のガス発生を抑制することを、高いレベルで両立させるまでには至っていない。これは、周知のごとく、リチウム塩の溶解度が小さいため、リチウム塩を電解液に添加したとしても、放電性能の向上効果が十分に得られないためであると思われる。   From the techniques described in Patent Documents 2 to 4, it can be seen that it is useful to some extent to add a lithium salt to the electrolytic solution in order to suppress gas generation during overdischarge. However, improvement in discharge performance and suppression of gas generation during overdischarge have not been achieved at a high level. As is well known, this is probably because the solubility of the lithium salt is small, and even if the lithium salt is added to the electrolytic solution, the effect of improving the discharge performance cannot be obtained sufficiently.

また、上記特許文献2〜4には、正極容量に対する負極の容量比(負極容量/正極容量)をさらに大きくして放電特性をより向上させる、という目的がなく、主に、ガスの発生を抑えることを目的としている。例えば、特許文献4に記載されたアルカリ電池では、容量比を0.85〜1.05としており、特許文献1に記載のアルカリ電池における容量比に対して低い値となっている。   In addition, Patent Documents 2 to 4 do not have the purpose of further increasing discharge capacity by further increasing the capacity ratio of the negative electrode to the positive electrode capacity (negative electrode capacity / positive electrode capacity), and mainly suppress the generation of gas. The purpose is that. For example, in the alkaline battery described in Patent Document 4, the capacity ratio is set to 0.85 to 1.05, which is lower than the capacity ratio in the alkaline battery described in Patent Document 1.

そこで、本発明は、放電性能を向上させるために正極容量に対する負極の容量比を増大させても、過放電時のガスの発生を抑制して漏液を防止し、信頼性の高いアルカリ電池を提供することを目的としている。   In view of this, the present invention suppresses the generation of gas during overdischarge to prevent leakage even when the capacity ratio of the negative electrode to the positive electrode capacity is increased in order to improve the discharge performance. It is intended to provide.

上記目的を達成するための本発明は、 MnO を正極活物質として含んで環状に成形された正極合剤と、当該正極合剤の中空部に亜鉛合金を負極活物質として含む負極ゲルがセパレーターを介して配置されてなるアルカリ電池であって、
前記正極合剤には、正極の理論容量に対して、LiOHが1.0mmol/Ah以上、10.0mmol/Ah以下添加され、
前記正極の理論容量に対する負極の理論容量の比(負極の理論容量/正極の理論容量)が1.2以上、1.3以下である、
ことを特徴とするアルカリ電池としている。
In order to achieve the above object, the present invention provides a positive electrode mixture formed in a ring shape containing MnO 2 as a positive electrode active material, and a negative electrode gel containing a zinc alloy as a negative electrode active material in a hollow portion of the positive electrode mixture. An alkaline battery arranged via
LiOH is added to the positive electrode mixture in an amount of 1.0 mmol / Ah to 10.0 mmol / Ah with respect to the theoretical capacity of the positive electrode,
The ratio of the theoretical capacity of the negative electrode to the theoretical capacity of the positive electrode (theoretical capacity of the negative electrode / theoretical capacity of the positive electrode) is 1.2 or more and 1.3 or less,
The alkaline battery is characterized by this.

あるいは、MnO を正極活物質として含んで環状に成形された正極合剤と、当該正極合剤の中空部に亜鉛合金を負極活物質として含む負極ゲルがセパレーターを介して配置されてなるアルカリ電池であって、
前記負極ゲルには、負極の理論容量に対して、LiOHが0.8mmol/Ah以上、8.0mmol/Ah以下添加され、
正極の理論容量に対する前記負極の理論容量の比(負極の理論容量/正極の理論容量)が1.2以上、1.3以下である、
ことを特徴とするアルカリ電池としている。
Alternatively, an alkaline battery in which a positive electrode mixture formed into a ring shape containing MnO 2 as a positive electrode active material and a negative electrode gel containing a zinc alloy as a negative electrode active material in a hollow portion of the positive electrode mixture is disposed via a separator. Because
LiOH is added to the negative electrode gel in an amount of 0.8 mmol / Ah or more and 8.0 mmol / Ah or less with respect to the theoretical capacity of the negative electrode,
The ratio of the theoretical capacity of the negative electrode to the theoretical capacity of the positive electrode (theoretical capacity of the negative electrode / theoretical capacity of the positive electrode) is 1.2 or more and 1.3 or less,
The alkaline battery is characterized by this.

本発明のアルカリ電池によれば、正極容量に対する負極容量の比を増大させることが可能となり、放電性能を向上させることができるともに、過放電状態でもガスの発生を抑制して漏液を確実に防止し、高い信頼性を確保することができる。   According to the alkaline battery of the present invention, the ratio of the negative electrode capacity to the positive electrode capacity can be increased, the discharge performance can be improved, and gas generation is suppressed even in an overdischarged state, thereby reliably preventing liquid leakage. Can be prevented and high reliability can be ensured.

アルカリ電池の構成を示す図である。It is a figure which shows the structure of an alkaline battery.

本発明の実施例に係るアルカリ電池の構造は、図1に示した一般的なアルカリ電池1と同様である。しかし、正極合剤か負極ゲルの少なくとも一方にリチウム塩が添加されていることが従来のアルカリ電池と異なっている。そして、本実施例におけるアルカリ電池と従来のアルカリ電池との性能を比較するために、正極合剤、あるいは負極ゲルに対するリチウム塩の添加の有無、リチウム塩の添加量、および正極容量に対する負極容量の比などを変えたLR6型のアルカリ電池をサンプルとして各種作製し、各サンプルの性能を評価した。   The structure of the alkaline battery according to the embodiment of the present invention is the same as that of the general alkaline battery 1 shown in FIG. However, it differs from the conventional alkaline battery in that a lithium salt is added to at least one of the positive electrode mixture or the negative electrode gel. Then, in order to compare the performance of the alkaline battery and the conventional alkaline battery in this example, the presence or absence of the addition of lithium salt to the positive electrode mixture or the negative electrode gel, the addition amount of lithium salt, and the negative electrode capacity relative to the positive electrode capacity Various types of LR6 type alkaline batteries with different ratios were produced as samples, and the performance of each sample was evaluated.

===サンプルの製造条件===
各サンプルは、正極合剤、あるいは負極ゲルに対するリチウム塩の添加の有無、その添加量、および正極容量に対する負極容量の比などの条件以外は同じ条件で作製されたものである。以下に、正極合剤と負極ゲルの製造条件を示す。
=== Sample manufacturing conditions ===
Each sample was produced under the same conditions except for the positive electrode mixture or the presence / absence of addition of lithium salt to the negative electrode gel, the addition amount, and the ratio of the negative electrode capacity to the positive electrode capacity. The production conditions for the positive electrode mixture and the negative electrode gel are shown below.

正極合剤3は、電解二酸化マンガン(EMD)を正極活物質として、その正極活物質に導電材である黒鉛、バインダーであるポリアクリル酸、および電解液であるKOH水溶液を混合して造粒したものを環状にプレス成型したものである。なお、サンプルによっては、そのサンプルの条件に応じて、リチウム塩として水酸化リチウム(LiOH)を、正極理論容量に対して所定量添加している。   The positive electrode mixture 3 was granulated by using electrolytic manganese dioxide (EMD) as a positive electrode active material and mixing the positive electrode active material with graphite as a conductive material, polyacrylic acid as a binder, and an aqueous KOH solution as an electrolytic solution. This is a product that is press-molded in an annular shape. Depending on the sample, lithium hydroxide (LiOH) is added as a lithium salt in a predetermined amount with respect to the theoretical capacity of the positive electrode depending on the conditions of the sample.

負極ゲル5は、亜鉛粉末、ゲル化剤であるポリアクリル酸、およびKOH水溶液を混合したものである。また、負極ゲル5についても、サンプルによっては、そのサンプルの条件に応じて、LiOHを、負極理論容量に対して所定量添加している。以上のようにして作製した各種条件の異なる正極合剤3と負極ゲル5を含む発電要素を正極缶2内に収納し、当該正極缶2の開口を密閉封止して、最終的に、23種類のサンプル(s1〜s23)を作製した。   The negative electrode gel 5 is a mixture of zinc powder, polyacrylic acid as a gelling agent, and a KOH aqueous solution. In addition, with respect to the negative electrode gel 5, depending on the sample, LiOH is added in a predetermined amount with respect to the negative electrode theoretical capacity according to the conditions of the sample. The power generation element including the positive electrode mixture 3 and the negative electrode gel 5 produced in the above-described manner under different conditions is housed in the positive electrode can 2, and the opening of the positive electrode can 2 is hermetically sealed. Various types of samples (s1 to s23) were prepared.

表1に各サンプルの製造条件を示した。

Figure 0005802489
Table 1 shows the production conditions for each sample.
Figure 0005802489

表1において、s1〜s5が、正極合剤と負極ゲルのいずれにもLiOHが添加されていない従来構成のアルカリ電池に相当するサンプルである。そして、サンプルs6〜s23は、正極合剤と負極ゲルのいずれか一方にLiOHを添加したアルカリ電池であり、LiOHの添加対象(正極合剤、負極ゲル)、添加量、および理論容量比などが異なっている。   In Table 1, s1 to s5 are samples corresponding to a conventional alkaline battery in which LiOH is not added to either the positive electrode mixture or the negative electrode gel. Samples s6 to s23 are alkaline batteries in which LiOH is added to any one of the positive electrode mixture and the negative electrode gel, and the addition target of the LiOH (positive electrode mixture, negative electrode gel), the addition amount, the theoretical capacity ratio, and the like. Is different.

===放電性能試験、漏液試験===
表1に示したサンプルs1〜s23に対し、放電性能試験と漏液試験とを行った。放電性能試験は、10Ωの負荷で1日1時間放電させ、0.9Vの終止電圧となるまでの累積時間を測定することで行った。なお、各サンプルの放電性能は、所定の累積時間を100としたときの相対値によって評価した。また、漏液試験は、過放電状態を再現するために、各サンプルを10Ωの負荷で48時間連続して放電させ、連続放電の終了後に漏液の有無を目視により確認した。
=== Discharge performance test, leak test ===
The samples s1 to s23 shown in Table 1 were subjected to a discharge performance test and a liquid leakage test. The discharge performance test was carried out by discharging for 1 hour a day with a load of 10Ω and measuring the cumulative time until a final voltage of 0.9V was reached. In addition, the discharge performance of each sample was evaluated by a relative value when a predetermined cumulative time was 100. Further, in the liquid leakage test, each sample was continuously discharged for 48 hours under a load of 10Ω in order to reproduce the overdischarge state, and the presence or absence of liquid leakage was visually confirmed after the completion of the continuous discharge.

<従来構成のアルカリ電池>
正極合剤あるいは負極ゲルにLiOHを添加することよる効果を確認するために、まず、LiOHを添加していない従来構成のアルカリ電池であるサンプルs1〜s5についての放電性能試験と漏液試験を行った。
<Conventional alkaline battery>
In order to confirm the effect of adding LiOH to the positive electrode mixture or the negative electrode gel, first, a discharge performance test and a liquid leakage test were performed on samples s1 to s5 that are alkaline batteries having a conventional configuration to which no LiOH was added. It was.

以下の表2に当該サンプルs1〜s5における試験結果を示した。

Figure 0005802489
Table 2 below shows the test results of the samples s1 to s5.
Figure 0005802489

表2を含め、以下の表3、4では、漏液試験の結果として、漏液がなかった場合を「○」で示し、漏液が発生した場合を「×」で示している。そして、表2に示した結果より、正極理論容量に対する負極理論容量の比(以下、理論容量比)を増加させることで、放電性能が向上することが確認できた。しかし、理論容量比が1.20以上のサンプルs2〜s5で漏液が発生した。すなわち、実用上、単純に理論容量比を増加させることで放電性能を向上させることができない、ということが分かった。そこで、従来構成のサンプルs1〜s5のうち、漏液が発生しなかったサンプルs1の放電性能を他の全てのサンプルs2〜s23に対する基準とし、当該サンプルs1の放電性能を100としたときの相対値で他の各サンプルs2〜s23の放電性能を評価した。なお、以下では、サンプルs1を基準電池s1と称することとする。   In Tables 3 and 4 including Table 2, as a result of the leakage test, the case where there was no leakage was indicated by “◯”, and the case where leakage occurred was indicated by “X”. From the results shown in Table 2, it was confirmed that the discharge performance was improved by increasing the ratio of the negative electrode theoretical capacity to the positive electrode theoretical capacity (hereinafter, the theoretical capacity ratio). However, liquid leakage occurred in samples s2 to s5 having a theoretical capacity ratio of 1.20 or more. In other words, it was found that the discharge performance cannot be improved by simply increasing the theoretical capacity ratio in practice. Therefore, among the samples s1 to s5 of the conventional configuration, the discharge performance of the sample s1 in which no leakage occurred is used as a reference for all the other samples s2 to s23, and the relative discharge when the discharge performance of the sample s1 is 100. The discharge performance of each of the other samples s2 to s23 was evaluated by the value. Hereinafter, the sample s1 is referred to as a reference battery s1.

<LiOHの添加量>
LiOHを正極合剤と負極ゲルのいずれか一方に添加したサンプルs6〜s23について、まず、表1におけるサンプルs6〜s15により、LiOHを添加することによって、放電性能を向上させることができるか否かを評価した。すなわち、従来構成のアルカリ電池では、理論容量比が基準電池の1.19が上限であったが、その上限を超えてもガスの発生を抑止して漏液の発生を防止できるか否かを評価した。
<Addition amount of LiOH>
Regarding samples s6 to s23 in which LiOH is added to either the positive electrode mixture or the negative electrode gel, first, whether or not the discharge performance can be improved by adding LiOH according to samples s6 to s15 in Table 1 Evaluated. That is, in the alkaline battery of the conventional configuration, the theoretical capacity ratio was 1.19 of the reference battery, which was the upper limit. However, whether the generation of liquid leakage can be prevented by suppressing the generation of gas even when the upper limit is exceeded. evaluated.

表3にサンプルs6〜s15における試験結果を示した。

Figure 0005802489
Table 3 shows the test results of samples s6 to s15.
Figure 0005802489

表3では、正極合剤にLiOHを添加量を変えて添加したしたサンプルs6〜s10と、負極ゲルにLiOHを添加量を変えて添加したしたサンプルs11〜s15についての試験結果が示されている。サンプルs6〜s15では、理論容量比を基準電池s1に対して25%増加させている。その結果、正極合剤にLiOHを添加したサンプルs6〜s10の内、LiOHの添加量が正極合剤の理論容量当たり1.0mmol以上添加したサンプルs7〜s10では漏液が発生しなかった。また、LiOHの添加量を11.0mmol/Ahとしたサンプルs10では、放電性能が基準電池s1と同等であった。   Table 3 shows the test results for samples s6 to s10 in which LiOH is added to the positive electrode mixture with different addition amounts, and samples s11 to s15 to which LiOH is added in the negative electrode gel with different addition amounts. . In samples s6 to s15, the theoretical capacity ratio is increased by 25% with respect to the reference battery s1. As a result, no leakage occurred in samples s7 to s10 in which LiOH was added to the positive electrode mixture in an amount of 1.0 mmol or more per theoretical capacity of the positive electrode mixture. Further, in sample s10 in which the addition amount of LiOH was 11.0 mmol / Ah, the discharge performance was equivalent to that of reference battery s1.

負極ゲルにLiOHを添加したサンプルs11〜s15では、LiOHの添加量が負極ゲルの理論容量当たり0.8mmol以上のサンプルs12〜s15で漏液が発生しなかった。また、LiOHの添加量を9.0mmol/Ahとしたサンプルs15では、放電性能が基準電池s1と同等であった。   In samples s11 to s15 in which LiOH was added to the negative electrode gel, no leakage occurred in samples s12 to s15 in which the amount of LiOH added was 0.8 mmol or more per theoretical capacity of the negative electrode gel. Further, in sample s15 in which the amount of LiOH added was 9.0 mmol / Ah, the discharge performance was equivalent to that of reference battery s1.

以上のs6〜s15における試験結果は、LiOHの添加量が少ないとガス発生の抑制効果が低下し、多いと正極、あるいは負極の容量に対してLiOHが相対的に多くなり放電性能が阻害される、ということを示唆している。そして、正極合剤に対するLiOHの最適添加量範囲は、1.0mmol/Ah以上、10.0mmol/Ah以下であり、負極ゲルに対するLiOHの最適添加量範囲は、0.8mmol/Ah以上、8.0mmol/Ah以下である、ということが分かった。なお、上記の最適添加量範囲以下であっても、サンプルs6とs11は、理論容量比を基準電池s1より25%も増加させており、このことを考慮すれば、理論容量比が基準電池s1の1.19よりも大きくできることは容易に予想できる。また、最適添加量範囲以上のサンプルs10とs15では、基準電池s1と同等の放電性能を維持できており、電池が使用される環境や状況を考慮して、アルカリ電池が過放電状態に置かれた際の信頼性を確保したい場合では、若干の放電性能の低下が許容される場合もあり得る。すなわち、LiOHを正極合剤あるいは負極合剤に添加すれば、少なくとも、放電性能の向上と漏液の発生防止の一方の性能を維持しつつ、他方の効果を得ることが期待できる。そして、上記最適添加量範囲は、放電性能の向上と漏液の発生防止を高いレベルで両立させるための条件である。   The above test results in s6 to s15 show that the effect of suppressing gas generation is reduced when the amount of LiOH added is small, and that the amount of LiOH is relatively large with respect to the capacity of the positive electrode or the negative electrode and the discharge performance is hindered. , Suggests that. And the optimal addition amount range of LiOH with respect to positive electrode mixture is 1.0 mmol / Ah or more and 10.0 mmol / Ah or less, and the optimal addition amount range of LiOH with respect to negative electrode gel is 0.8 mmol / Ah or more, and 8. It was found that it was 0 mmol / Ah or less. Even when the amount is less than the optimum addition amount range, the samples s6 and s11 have a theoretical capacity ratio increased by 25% from the reference battery s1, and considering this fact, the theoretical capacity ratio is the reference battery s1. It can be easily predicted that it can be larger than 1.19. In addition, the samples s10 and s15 having the optimum addition amount range or more maintain discharge performance equivalent to that of the reference battery s1, and the alkaline battery is placed in an overdischarged state in consideration of the environment and the situation in which the battery is used. When it is desired to ensure the reliability at the time of discharge, a slight decrease in discharge performance may be allowed. That is, if LiOH is added to the positive electrode mixture or the negative electrode mixture, it can be expected that at least one of the performances of improving the discharge performance and preventing the occurrence of liquid leakage is maintained and the other effect is obtained. And the said optimal addition amount range is the conditions for making the improvement of discharge performance and generation | occurrence | production prevention of a leak compatible at a high level.

<理論容量比の最適化>
正極合剤、および負極ゲルにLiOHを添加することによる放電性能の向上や漏液の発生防止効果が確認できた。また、LiOHの添加量には最適な数値範囲が存在することも確認できた。そこで、理論容量比の最適数値範囲についても検討することとした。当該検討に当たり、まず、正極合剤、および負極ゲルへのLiOHの添加量として、上記表3の結果より得られた最適添加量範囲の中央値を採用しつつ、各種理論容量比を変えたサンプルs16〜s23、s8、s14について、放電性能試験と漏液試験とを行った。
<Optimization of theoretical capacity ratio>
It was confirmed that the discharge performance was improved and the leakage was prevented by adding LiOH to the positive electrode mixture and the negative electrode gel. It was also confirmed that there was an optimal numerical range for the amount of LiOH added. Therefore, the optimum numerical range of the theoretical capacity ratio was also examined. In the examination, first, samples with various theoretical capacity ratios changed while adopting the median value of the optimum addition amount range obtained from the results of Table 3 above as the addition amount of LiOH to the positive electrode mixture and the negative electrode gel. About s16-s23, s8, and s14, the discharge performance test and the liquid leakage test were done.

表4に、サンプルs16〜s23、s8、s14における試験結果を示した。

Figure 0005802489
Table 4 shows the test results of samples s16 to s23, s8, and s14.
Figure 0005802489

サンプルs16〜s19、s8は、正極合剤にLiOHを添加したサンプルであり、理論容量比が1.30より大きいサンプルs19で漏液が発生した。また、理論容量比を基準電池s1と同じ1.19としたサンプルs16では、放電性能が基準電池s1と同じであった。また、負極ゲルにLiOHを添加したサンプルs20〜s23、s14においても、同様に、理論容量比が1.30より大きいサンプルs23で漏液が発生し、理論容量比が基準電池s1と同じサンプルs20では、放電性能が基準電池s1と同じになった。   Samples s16 to s19 and s8 were samples in which LiOH was added to the positive electrode mixture, and leakage occurred in sample s19 having a theoretical capacity ratio of greater than 1.30. Further, in the sample s16 in which the theoretical capacity ratio is 1.19 which is the same as that of the reference battery s1, the discharge performance is the same as that of the reference battery s1. Similarly, in the samples s20 to s23 and s14 in which LiOH is added to the negative electrode gel, liquid leakage occurs in the sample s23 having a theoretical capacity ratio of greater than 1.30, and the theoretical capacity ratio is the same as that of the reference battery s1. Then, the discharge performance became the same as that of the reference battery s1.

以上より、正極合剤、あるいは負極ゲルにLiOHが添加されたアルカリ電池では、理論容量比に最適数値範囲が存在し、当該数値範囲は、1.2以上、1.3以下であることが分かった。なお、この理論容量比の最適数値範囲は、LiOHの最適添加量範囲の中央値に対するものであり、当該最適添加量範囲の下限、あるいは上限を採用すれば、理論容量比の最適数値範囲は、さらに広がるものと思われる。上記表4より求めた理論容量比の最適数値範囲は、放電性能の向上と漏液の防止とをより高いレベルで両立させるための条件である、と言える。   From the above, it can be seen that in the alkaline battery in which LiOH is added to the positive electrode mixture or the negative electrode gel, there is an optimum numerical range in the theoretical capacity ratio, and the numerical range is from 1.2 to 1.3. It was. The optimum numerical range of this theoretical capacity ratio is relative to the median value of the optimum addition amount range of LiOH, and if the lower limit or upper limit of the optimum addition amount range is adopted, the optimum numerical range of the theoretical capacity ratio is It seems to expand further. It can be said that the optimum numerical range of the theoretical capacity ratio obtained from Table 4 is a condition for achieving both higher discharge performance and prevention of leakage at a higher level.

なお、当然のことながら、LiOHを添加することによる効果は、添加対象が正極合剤と負極ゲルとで個別に発現するものであり、LiOHを正極合剤と負極ゲルの双方に添加しても、性能が相殺されることはない。また、漏液の原因となるガスの発生が主に負極の亜鉛に由来していることから、正極活物質を、二酸化マンガンとオキシ水酸化ニッケルとの混合物としたり、二酸化マンガンに代えてオキシ水酸化ニッケルとしたりしても、その正極活物質を含む正極合剤にLiOHを添加すれば、漏液を防止しつつ、理論容量比を高めて放電性能の向上できることができる、と予想される。   As a matter of course, the effect of adding LiOH is that the addition target is expressed separately in the positive electrode mixture and the negative electrode gel, and even if LiOH is added to both the positive electrode mixture and the negative electrode gel. , Performance will not be offset. In addition, since the generation of gas causing leakage is mainly derived from the zinc of the negative electrode, the positive electrode active material can be a mixture of manganese dioxide and nickel oxyhydroxide, or oxywater can be used instead of manganese dioxide. Even if nickel oxide is used, if LiOH is added to the positive electrode mixture containing the positive electrode active material, it is expected that the discharge capacity can be improved by increasing the theoretical capacity ratio while preventing leakage.

この発明に係るアルカリ電池は、例えば、長期間に亘って装着されつつ、日常的に頻繁に利用される電子機器(家電製品のリモコン装置など)に好適である。   The alkaline battery according to the present invention is suitable, for example, for an electronic device (such as a remote control device for home appliances) that is frequently used on a daily basis while being mounted over a long period of time.

1 アルカリ電池、2 電池缶(正極缶)、3 正極合剤、4 セパレーター、
5 負極ゲル、6 負極集電子、7 負極端子板、8 ガスケット、9 正極端子
1 alkaline battery, 2 battery can (positive electrode can), 3 positive electrode mixture, 4 separator,
5 Negative gel, 6 Negative current collector, 7 Negative terminal plate, 8 Gasket, 9 Positive terminal

Claims (2)

MnO を正極活物質として含んで環状に成形された正極合剤と、当該正極合剤の中空部に亜鉛合金を負極活物質として含む負極ゲルがセパレーターを介して配置されてなるアルカリ電池であって、
前記正極合剤には、正極の理論容量に対して、LiOHが1.0mmol/Ah以上、10.0mmol/Ah以下添加され、
前記正極の理論容量に対する負極の理論容量の比(負極の理論容量/正極の理論容量)が1.2以上、1.3以下である、
ことを特徴とするアルカリ電池。
An alkaline battery in which a positive electrode mixture formed into a ring shape containing MnO 2 as a positive electrode active material and a negative electrode gel containing a zinc alloy as a negative electrode active material in a hollow portion of the positive electrode mixture are arranged via a separator. And
LiOH is added to the positive electrode mixture in an amount of 1.0 mmol / Ah to 10.0 mmol / Ah with respect to the theoretical capacity of the positive electrode,
The ratio of the theoretical capacity of the negative electrode to the theoretical capacity of the positive electrode (theoretical capacity of the negative electrode / theoretical capacity of the positive electrode) is 1.2 or more and 1.3 or less,
An alkaline battery characterized by that.
MnO を正極活物質として含んで環状に成形された正極合剤と、当該正極合剤の中空部に亜鉛合金を負極活物質として含む負極ゲルがセパレーターを介して配置されてなるアルカリ電池であって、
前記負極ゲルには、負極の理論容量に対して、LiOHが0.8mmol/Ah以上、8.0mmol/Ah以下添加され、
正極の理論容量に対する前記負極の理論容量の比(負極の理論容量/正極の理論容量)が1.2以上、1.3以下である、
ことを特徴とするアルカリ電池。
An alkaline battery in which a positive electrode mixture formed into a ring shape containing MnO 2 as a positive electrode active material and a negative electrode gel containing a zinc alloy as a negative electrode active material in a hollow portion of the positive electrode mixture are arranged via a separator. And
LiOH is added to the negative electrode gel in an amount of 0.8 mmol / Ah or more and 8.0 mmol / Ah or less with respect to the theoretical capacity of the negative electrode,
The ratio of the theoretical capacity of the negative electrode to the theoretical capacity of the positive electrode (theoretical capacity of the negative electrode / theoretical capacity of the positive electrode) is 1.2 or more and 1.3 or less,
An alkaline battery characterized by that.
JP2011191025A 2011-09-01 2011-09-01 Alkaline battery Active JP5802489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191025A JP5802489B2 (en) 2011-09-01 2011-09-01 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191025A JP5802489B2 (en) 2011-09-01 2011-09-01 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2013054860A JP2013054860A (en) 2013-03-21
JP5802489B2 true JP5802489B2 (en) 2015-10-28

Family

ID=48131690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191025A Active JP5802489B2 (en) 2011-09-01 2011-09-01 Alkaline battery

Country Status (1)

Country Link
JP (1) JP5802489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297863A (en) * 1989-05-12 1990-12-10 Matsushita Electric Ind Co Ltd Alkaline battery
DE19615845A1 (en) * 1996-04-20 1997-10-23 Varta Batterie Cathode additive for alkaline primary cells
JP2000082503A (en) * 1998-09-07 2000-03-21 Sony Corp Air cell
JP4322472B2 (en) * 2002-05-31 2009-09-02 東芝電池株式会社 Sealed nickel zinc primary battery
JP4736345B2 (en) * 2004-04-23 2011-07-27 パナソニック株式会社 Alkaline battery
JP4739691B2 (en) * 2004-05-13 2011-08-03 パナソニック株式会社 Alkaline battery
JP2005353447A (en) * 2004-06-11 2005-12-22 Matsushita Electric Ind Co Ltd Alkaline dry battery
JP2007035506A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Alkaline battery
JP5419256B2 (en) * 2008-12-26 2014-02-19 日立マクセル株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Also Published As

Publication number Publication date
JP2013054860A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JPH08510355A (en) Additive for primary electrochemical cells with manganese dioxide cathode
EP3295498B1 (en) Alkaline cell with improved discharge efficiency
KR20120023806A (en) Pasted zinc electrode for rechargeable zinc batteries
US20100003596A1 (en) Alkaline battery
WO2018163485A1 (en) Alkaline dry-cell battery
JP4736345B2 (en) Alkaline battery
US10804536B2 (en) Substituted lambda manganese dioxides in an alkaline electrochemical cell
JP5348717B2 (en) Alkaline battery
JP5802489B2 (en) Alkaline battery
US20140087240A1 (en) Alkaline battery
US11637278B2 (en) Alkaline dry batteries
JP2010010012A (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP6691738B2 (en) Alkaline battery
JP2002117859A (en) Alkaline battery
JP5019634B2 (en) Alkaline battery
JP2012028240A (en) Alkaline manganese dry cell
US11133499B2 (en) Substituted ramsdellite manganese dioxides in an alkaline electrochemical cell
JP2007048623A (en) Alkaline dry cell
WO2022130682A1 (en) Aqueous primary battery
JP2007250451A (en) Alkaline cell
JP2017069097A (en) Alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP5541692B2 (en) Alkaline battery and positive electrode mixture for alkaline battery
JP6573518B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery using the negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5802489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250