JP5801906B2 - ガス状流体圧縮デバイス - Google Patents

ガス状流体圧縮デバイス Download PDF

Info

Publication number
JP5801906B2
JP5801906B2 JP2013552949A JP2013552949A JP5801906B2 JP 5801906 B2 JP5801906 B2 JP 5801906B2 JP 2013552949 A JP2013552949 A JP 2013552949A JP 2013552949 A JP2013552949 A JP 2013552949A JP 5801906 B2 JP5801906 B2 JP 5801906B2
Authority
JP
Japan
Prior art keywords
chamber
piston
enclosure
compression device
gaseous fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013552949A
Other languages
English (en)
Other versions
JP2014510865A (ja
Inventor
ジャン−マルク・ジョフロワ
Original Assignee
ブーストヒート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブーストヒート filed Critical ブーストヒート
Publication of JP2014510865A publication Critical patent/JP2014510865A/ja
Application granted granted Critical
Publication of JP5801906B2 publication Critical patent/JP5801906B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Description

本発明は、ガス状流体を圧縮するためのデバイスに関し、特に再生熱圧縮機に関するものである。
熱源からのガスを圧縮するために、いくつかの技術的解決策が既に存在する。
まず、熱エンジンと従来型圧縮機との結合に基づくデバイスが存在する。これらの解決策は、(発電機を介して)熱を機械的あるいは電気的エネルギーへと変換するために熱エンジン(一般に内燃エンジン)を使用し、続いて、機械的伝達システムを介して直接、あるいはモーターを介して間接的に圧縮機に、このエネルギーを伝達する。これらの解決策は複雑であり、汚染を発生させ、そして大掛かりなメンテナンスを必要とする。
冷凍サイクルで使用されるアンモニア圧縮システム(吸収ヒートポンプまたは冷蔵庫)など、特定の用途においてのみ使用可能な特定の流体(熱化学的プロセス)に固有の解決策も存在する。吸収ヒートポンプの欠点は、制限された熱力学的効率、そして有害な可燃性流体によってもたらされる安全性の問題であり、それを住宅暖房に関して全く魅力が乏しいものとしている。
熱圧縮機と呼ばれるデバイスも存在する。熱圧縮機は、外部のエンジンに対するカップリングを介した機械的なソースからではなく、直接的に、一体化された交換器によって伝達される熱のソースからのガスの取り入れ、圧縮、放出、および膨張のサイクル(たとえば機械式往復圧縮機の従来のサイクル)を実施するデバイスである。
特許文献1および2に記載されたもののような上記熱圧縮機においては、受け取った熱は、直接、圧縮される流体に伝達されるが、これは、圧縮および放出ステップにおける機械要素の必要性を排除する。
熱圧縮機では、可動ピストンなどの機械的手段は、サイクルの異なるステップの間、圧縮される流体の一部を、低温ゾーンおよび高温ゾーンを画定する異なる熱交換器を通過させる。圧力の変動は、本質的に一定の体積において熱交換によって引き起こされる。
これらのデバイスはまた再生熱交換器の存在によって特徴付けられるが、これを経て、流体の一部は、サイクルの異なるステップの間、ある方向に、そして続いて別の方向に流れる。これらの再生熱交換器技術は、開発途上で高価なままであり、しかも著しい圧力降下を発生させる。
これらのデバイスは、圧縮のレベルが限定された単段システムとして設計される。ある圧縮用途に関しては、直列配置で3個または4個を配置することによって単段圧縮機の数を増大させ、そして機械的にさまざまな段を同期させるための機構を設けることが必要になるであろう。そうした手法は、コストがかかりかつ複雑であり、しかも、機械損失は、機械的デバイスの増殖によって増大するであろう。同期機構の存在に起因する漏れのリスクも存在する。
さらに、これらのシステムは自己駆動式ではない。変位要素の移動は、ピストンの前後動作を保証する外部機械的システムによって制御される必要がある。これは、付加的な複雑さと、開放型機械式圧縮機と同じ漏れの問題を伴う。
米国特許第2,157,229号明細書 米国特許第3,413,815号明細書
本発明の目的は、上記欠点の一部または全部を解決することによって従来技術に対する改良をもたらすことである。
したがって本発明はガス状流体圧縮デバイスを提供するが、当該デバイスは、
・第1のエンクロージャと、
・圧縮されるガス状流体のための取り入れ口と、
・第1のエンクロージャ内で移動可能であるように組み付けられかつ第1のエンクロージャ内で第1のチャンバーおよび第2のチャンバーを流体封止様式で区切っている第1のピストンと、
・第2のチャンバーに対して接続された圧縮されたガス状流体のための取り出し口(取り入れ口は第1のチャンバーに対して接続されている)と、
・第2のエンクロージャと、
・第2のエンクロージャ内で移動可能であるように組み付けられかつ第2のエンクロージャ内で第3のチャンバーおよび第4のチャンバーを流体封止様式で区切っている第2のピストンと、
・ヒートシンクにカロリーを輸送する第1の熱交換器を有する、第1のチャンバーと第4のチャンバーとの間での流体の連通を確立する第1の交換回路と、
・熱源からカロリーを輸送する第2の熱交換器を有する、第2のチャンバーと第3のチャンバーとの間での流体の連通を確立する第2の交換回路と、
・介在させられた逆流防止デバイスを備えた、第1のチャンバーから第2のチャンバーへの流体の連通を確立する移送路と、を具備し、
第1および第2ピストンは機械的な接続要素によって接続されており、これによって、ピストンの前後移動が、取り出し口の方向へのガス状流体の圧縮をもたらす。
こうした構成によって、二つの圧縮段は、ピストンの機械的接続およびチャンバー間の流体の連通によって簡単な方式で結合される。得られる圧縮レベルは、特定の熱伝達流体回路にとって適切なものとなる。
本発明のさまざまな実施形態では、以下の構成の一つ以上を採用することができる。
本発明の一態様では、第1および第2のエンクロージャは、この第1および第2のエンクロージャが軸方向に隣り合って配置された状態で、主軸線を有する密閉シリンダー内部に形成される。そして、機械的な接続要素は第1および第2のピストンを堅固に接続するロッドであり、第2のピストンは主軸線に沿って移動可能である。これは、一つのユニットへと二つの圧縮段を統合するための特にコンパクトでかつ簡素な解決策である。
本発明の別の態様では、第1の交換回路および第2の交換回路はいずれもさらに、第1および第2のピストンが移動するときガス状流体が向流流れで移動するように二流向流熱交換器を通過する。こうして回生機能のために標準的な熱交換器を使用することが可能となるが、これは、従来技術に比べて、大幅に回生機能の設計を簡素化する。
本発明の別の態様において、第2の熱交換器は、取り入れ回路および取り出し回路を含むが、これはいずれも向流を伴う節約熱交換器を通過する。これは、熱源からの熱伝達の効率を最適化する。
本発明の別の態様では、移送路は補助冷却回路により冷却される。これは、第2圧縮段に入るときに適度な温度を得るために、それが第1の圧縮段を出るときにガスの温度を低下させる。
本発明の別の態様では、移送路は、チェックバルブを備えた開口として第1のピストン内に配置されている。これにより、第1および第2のチャンバーを接続する外部配管が不要になる。
本発明の別の態様では、圧縮デバイスはさらに、ピストンを駆動するための駆動システムを備え、この駆動システムは、補助チャンバーと、この補助チャンバーから第1のチャンバーを気密状態で分離させる補助ピストンと、フライホイールと、このフライホイールを補助ピストンに対して連結する連結ロッドとを備え、補助ピストンは機械的に第1および第2ピストンに連結されており、これによってピストンの前後移動は駆動システムによって自己維持されることが可能である。自己駆動システムはエンクロージャ内に収容され、可動要素はケーシングを貫通しておらず、これは、従来技術におけるような外部駆動システムのための流体封止シールを保証するための回転ジョイントあるいはスリップシールの必要性を排除する。
本発明の別の態様では、圧縮デバイスはさらに、フライホイールに接続された電気モーターを備え、このモーターは、自律駆動が初期化されるようにモーターフライホイールに対して初期回転運動を付与するように構成される。
本発明の別の態様では、モーターは制御ユニットによって発電機モードで制御することができ、これによってモーターフライホイールを遅くすることができ、かつ、モーターフライホイールの回転速度を調節することができる。
本発明の別の態様では、上記デバイスはさらに、密閉シリンダーの端部に配置された第2のシリンダーを備え、この第2のシリンダーは、
・第3のエンクロージャと、
・第3のエンクロージャ内に移動可能に組み付けられ、かつ、第3のエンクロージャ内で第5のチャンバーおよび第6のチャンバーを流体封止様式で区切る第3のピストンと、
・第4のエンクロージャと、
・第4のエンクロージャ内に移動可能に組み付けられ、かつ、第4のエンクロージャ内で第7のチャンバーおよび第8のチャンバーを流体封止様式で区切る第4のピストンと、
・ヒートシンクにカロリーを輸送する第3の熱交換器を有する、第5のチャンバーと第8のチャンバーとの間での流体の連通を確立する第3の交換回路と、
・熱源からカロリーを輸送する第4の熱交換器を有する、第6のチャンバーと第7のチャンバーとの間での流体の連通を確立する第4の交換回路と、
・介在させられた逆流防止デバイスを備えた、第5のチャンバーと第6のチャンバーとの間の流体の連通を確立する第2の移送路とを具備し、
第3および第4のピストンはロッドに取り付けられ、かつ、第2のチャンバーからの取り出し口は第5のチャンバーに接続される。したがって、四つの段を一つのユニット内で簡単な様式で一体化することができる。
本発明の別の態様では、第3および第4エンクロージャの内部断面は、第1および第2のエンクロージャの内部断面よりも小さい。これは、全てのピストンの移動ストロークは同じであるが、より高い圧縮段では圧力がより高くかつガス状流体はより小さな体積を占めるという事実に対応する。
最後に、本発明はまた、熱伝達回路と、上記の態様のいずれか一つに基づく圧縮機とを備えた熱システムに関する。当該熱システムは、密閉空間からのカロリーの除去のために意図されてもよく、この場合、それは空調あるいは冷却システムであり、あるいは当該熱システムは、密閉空間にカロリーをもたらすために意図されてもよく、この場合、それは住宅暖房あるいは産業暖房のためのシステムといった加熱システムである。
本発明の他の特徴および利点は、非限定的な例として提供される、その実施形態のうちの二つの以下の説明から明らかとなるであろう。本発明はまた、添付の図面を検討することによって、より良く理解されるであろう。
本発明に係るガス状流体圧縮デバイスの概略図である。 図1の圧縮デバイスによって実現されるサイクルの圧力‐時間グラフである。 図1の圧縮デバイスによって実現されるサイクルに関する圧力‐温度グラフである。 図1のものと類似した図であるが、さらに自己駆動システムを示している。 端部から見て図4のV−V面で図4のデバイスを示す図である。 図5のものに対する代替例を示す図である。 自己駆動デバイスによって実施されるサイクルのグラフである。 いくつかの変更を伴って図1の圧縮デバイスを示す図である。 四つの圧縮段を有する圧縮デバイスの第2実施形態を示す図である。
各図面における同じ参照符号は同一または類似の要素を示す。
図1は本発明に係るガス状流体圧縮デバイスを示しており、これは、圧力P1で、インテークすなわち取り入れ口81によってガス状流体を受け容れ、そして、P1よりも高い圧力P2で、取り出し口82において圧縮された流体を提供するよう構成されている。取り入れ口81にはバルブ81a(すなわち「チェックバルブ」81a)を取り付けることができ、一方、取り出し口にはバルブ82a(すなわち「チェックバルブ」82a)を取り付けることができる。これら二つのチェックバルブは必ずしも圧縮デバイスに近接していない。
図示の例では、圧縮デバイスは円筒形ケーシング1を備えるが、これは二つのエンクロージャ31,32を含んでおり、これらは円筒形状であり、同一の断面を有し、主軸線Xと同軸であり、そして気密壁91によって分離させられている。第1のピストン71は、第1のエンクロージャ31内で移動可能に組み付けられ、したがって第1のエンクロージャ31内で第1のチャンバー11および第2のチャンバー12を区切っている。同様に、第2ピストン72は、第2のエンクロージャ32内で移動可能に組み付けられ、したがって第2のエンクロージャ32内で第3のチャンバー13および第4のチャンバー14を区切っている。
ピストン71,72はディスクの形態であり、このディスクは、それらが分離するチャンバーを気密状態で隔離するために、その周囲に沿ってピストンリングを有する。
(図示の例では小さな断面を有するロッド19の形態の)機械的な接続要素は、壁91を貫通することによって第1および第2のピストン71,72を機械的に接続する。二つのピストン71,72は、主軸線Xの方向と平行に、ロッド19と共に移動する。ロッド19が壁91を貫通する位置においては、以下の説明から分かるように圧力差はゼロであるので、シールを考慮する必要はない。
補助ロッド19aはまた、第1のピストン79を、以下に説明するようにピストントレインを駆動する外部デバイス90と接続することができる。
図1に示すように、上記デバイスはさらに以下のものを備える。
・ヒートシンク50にカロリーを搬送するための第1の熱交換器5を有する、第1のチャンバー11と第4のチャンバー14との間の流体の連続的な連通を確立する第1の交換回路21
・熱源60からカロリーを搬送するための第2の熱交換器6を有する、第2のチャンバー12と第3のチャンバー13との間の流体の連続的な連通を確立する第2の交換回路22
・ガス状流体が第1のチャンバー11から第2のチャンバー12へと流れることができ、逆に流れることができないように、介在させられた逆流防止デバイス29aを備えた、第1のチャンバーと第2チャンバーとの間の流体の連通を確立する移送路29
図示の例では、第1の交換回路21および第2の交換回路22は、再生熱交換器とも呼ばれる二流向流熱交換器4を通過する。この再生熱交換器4は2本のパイプ41,42を備えるが、その中では、ピストンの移動中、ガス流は向流である。
第1の交換回路21は、第1のチャンバー11に接続された端部21aから延び、続いて第1の交換器のパイプ52を通り、続いて二流熱交換器6のパイプ41の一方を通り、その他端21bにおいて第4のチャンバー14に再びつながる。
第2の交換回路22は、第2のチャンバー12に接続された端部22aから延び、続いて二流熱交換器4の別なパイプ42を通り、続いて第2の交換器6のパイプ62を通り、その他端22bにおいて第3のチャンバー13に再びつながる。
第2の熱交換器6においては、熱寄与流体は、圧縮されるガス状流体とは関係なく、既に述べたパイプ62に熱的に接続された交換パイプ61を経て移動する。第1の熱交換器5においては、冷熱寄与流体は、やはり圧縮されるガス状流体に関係なく、既に述べたパイプ52に熱的に接続された交換パイプ51を通って移動する。
第1のチャンバー11、第4のチャンバー14および第1の交換回路21は、実質的に同じ圧力(PE1で示す)であり、これは以下で説明するように、温度変化の影響下で経時的に変化することに留意されたい。第1のチャンバー11および第4のチャンバー14の容積の和は、ピストン71,72が移動するとき、実質的に一定のままであることにも留意されたい。第1のチャンバー11、第4のチャンバー14および第1の交換回路21は第1の圧縮段を構成している。
同様に、第2のチャンバー12、第3のチャンバー13および第2の交換回路22は、実質的に同じ圧力(PE2で示す)であり、これは以下で説明するように、温度変化の影響下で経時的に変化する。同様に、第2のチャンバー12および第3のチャンバー13の容積の和は、ピストン71,72が移動するとき、実質的に一定のままである。第2のチャンバー12、第3のチャンバー13および第2の交換回路22は第2の圧縮段を構成している。
有利には、本発明においては、ピストントレインに作用する圧力の総和はバランスがとられる。実際には、第1のピストン71への圧力差PE2−PE1は、第2のピストン72への圧力差PE−PE2によって補償される(ロッド断面の影響は無視できることに留意されたい)。
有利なことに、本発明においては、第1のエンクロージャ31(チャンバー11,12)は低温ガスを含み、かつ、第2のエンクロージャ32(チャンバー13,14)は高温ガスを含んでいる。二つのエンクロージャを分離する壁部91は、断熱材料、例えばスチールあるいは高性能ポリマーからなる。同様に、外側ケーシング1(好ましくはステンレススチール、インコネル、または高性能ポリマーからなる)は、好ましくは、たとえば50W/m/K未満の比較的低い熱伝導率を有する。同様に、ロッド19(好ましくはスチールまたは高性能ポリマー材料からなる)は、好ましくは、たとえば50W/m/K未満の比較的低い熱伝導率を有する。
動作について、以下で、さらに詳しく説明する。
圧縮機の動作は、ピストン71,72のトレインの交互の動作によって、そして、取り入れ口の取り入れバルブ81a、取り出し口における放出のためのチェックバルブ82aおよび移送9内の移動のためにチェックバルブ29aの作用によって保証される。
以下、図2および図3に示される圧力の変化と共に、サイクル動作について説明する。
第1および第2の交換器(5,6)内の温度の長手方向のプロファイルは、実質的に一定である。本発明の代表的実施形態では、(冷却用の)第1の交換器5内で温度は50℃周辺で安定し、一方、(加熱用の)第2の交換器6内で温度は650℃周辺で安定する。
以下で説明する各ステップA,B,C,Dは、図1、図2および図3に示されている。
ステップA
ピストンは、最初に図1の左側において、右に向かって移動する。各バルブが閉じられる。図から分かるように、この時点で圧力は、第1の段ではPE1=P1であり、かつ、第2の段ではPE2=P2である。第1の段では、ガスは、(第1の交換回路21を経て)第1の交換器を、続いて二流交換器4を通って流動することによって、第1のチャンバー11(低温部)から第4のチャンバー14へと移動し、約50°の温度から650℃へと変化する。圧力PE1は、実質的に一定容積での加熱によって増大する。同時に第2の段では、ガスは、第2の交換器6を、続いて二流交換器4を通って移動することによって、(第2の交換回路22を介して)約650℃の温度である第3のチャンバー13から第2のチャンバー12へと移動する。圧力PE2は、実質的に一定の体積での冷却によって低下する。このプロセスは、移送チェックバルブ(中間放出バルブとも呼ばれる)が開くように、圧力PE1がPE2よりも少し大きくなるまで継続される。
ピストンは、この場合、図1の左側のピストンに関する矢印Aの先端によって示される中間ポジションにある。
ステップB
移送チェックバルブ29aが開くとき、ピストン71,72のその後の右方向への移動は、第2の段に向う第1の段からの逆流を引き起こす。このステップの間、圧力PE1およびPE2は、図2および図3にPTで示す中間レベルにあって実質的に等しいままである。このステップは、ピストンの右方向の移動が終わるまで続く。
ステップC
ピストンはいま左に向かって移動する。第1の段では、高温ガスには、第4のチャンバー14から第1のチャンバー11へと移動し、(第1の交換回路21を介して)二流交換器4のパイプ41を通り、そして第1の交換器5を通って移動する(これがガスを冷却する)。圧力PE1は低下する。逆に第2の段では、ガスは、第2のチャンバー12から第3のチャンバー13へと移動し、(第2の交換回路22を介して)パイプ41に対して向流の二流交換器4のパイプ42を通り、そして第2の交換器6を通って移動する(これがガスを再加熱し、圧力PE2が上昇する)。中間放出バルブ29aはそれゆえ、このステップの開始時に閉じる。
このプロセスは、圧力PE1が僅かにP1を下回りかつ圧力PE2が僅かにP2を上回るまで繰り返される。
取り入れバルブ81aおよび放出バルブ82aは、その時点で開く。ピストンは、この時点で、図1における左側のピストンに関する矢印Cの先端で示す中間ポジションにある。
ステップD
ピストンの左方向移動が終了する間、第1の段は、(タンク上流が十分なサイズを有する場合に)一定値Pであると仮定された圧力で取り入れバルブ81aを経てガスを吸い込み、一方、第2の段は、(タンク下流が十分なサイズを有する場合)一定値P2であると仮定された圧力で放出バルブ82aを経てガスを放出する。このステップは、ピストンの左方向の移動が終わるまで続く。
図1に示すように、ピストントレインは、ケーシング1の外部でシステム90によって駆動され、ロッド19を押圧するガスケット88が存在する。
このタイプのガスケットまたはシールの使用が回避されることが本発明においては好ましい。図4、図5、図5bおよび図6はケーシング内に組み込まれたピストン駆動システム9を示しており、これは、補助チャンバー10と、この補助チャンバー10から第1のチャンバー11を気密状態で分離する補助ピストン79とを備える。当該システムはまた、フライホイール77と、このフライホイール77を補助ピストン79に連結する連結ロッド78とを備える。連結ロッドは、補助ピストンに対するピボット連結により取り付けられた第1の端部78aと、フライホイールに対するピボット連結によって取り付けられた第2の端部78bとを有する。補助ピストン79は、補助ロッド19bによって、第1のおよび第2ピストン(71,72)に対して機械的に連結されている。
有利なことには、本発明によれば、ガスの取り入れ口は、圧力Pである補助チャンバー10を通過する。したがって、圧力PE1は、補助ピストン79の側に対して支配的であり、一方、圧力Pは、補助ピストン79の側に対して支配的である。図6に示すように、ピストントレインに加えられる力は、ステップA,BおよびDの間、フライホイールにエネルギーを供給し、一方、ステップCでは、ピストンにエネルギーを供給するのはフライホイールである(ピストントレインは常にピストンリングからの摩擦力に打ち勝つ必要があることに留意されたい)。この結果、ピストンの往復運動は、この駆動システムによって自己維持することができる。
モーターフライホイールの回転速度、したがってピストンストロークの周波数は、摩擦で費やさるパワーが熱力学的サイクルによって補助ピストンに供給されるパワーに到達したときに確定される。
図5に示すように、補助チャンバーを囲むハウジング98は、従来の取り付け手段99によってシリンダー1に取り付けられたベース93を有する。さらに、駆動システム9は、Y軸上に中心が置かれたシャフト4を介してモーターフライホイール77に連結された電気モーター95を含むことができる。図5に示される例では、モーター95は、ハウジング98の内部に、したがってガスが取り入れ圧力Pに閉じ込められるエンクロージャの内部にある。モーターに電力を供給する配線96のみが相対移動を伴わずにハウジングの壁を貫通しており、これは高効率のシールを実現することを可能とする。
図5bに示される変形例では、モーターは、壁と向き合ってエンクロージャの内部に配置されたロータディスク97(たとえば永久磁石タイプ)と、壁と向ってエンクロージャの外部に配置されたステータとを有する特定の形式のものである。この場合、電磁制御回路および配線96は外部ある。
だが、モーターは外部に、完全にハウジング98の外側に存在してもよいが、この場合にはシャフトの周りにシールが必要であることは明らかである。
さらに、フライホイールに結合された電動モーター95は、自律駆動を初期化するために、フライホイールモータに対して初期回転運動を付与するよう構成されている。さらに、モーターは、制御ユニット(図示せず)によって発電機モードで制御することができ、これによって、モーターフライホイールを減速させることができ、かつ、モーターフライホイールの回転速度を調節することができる。
通常動作中、自己駆動デバイス9に供給される機械的パワーは、摩擦による損失よりも大きなものとなり、この結果、残余電力が利用可能である(発電機としての動作の通常モード)。この予備電力は、冷凍サイクルのポンプあるいはファンを駆動するために、始動バッテリーを充電するために、そしてコージェネレーションニーズのために、その調節システムを含む圧縮機外部の電気機器によって使用可能である。
図7に示されるように、特定の変形例が、別個に、あるいは既に説明した特徴と組み合わせて使用されてもよい。
補助冷却回路8は搬送路29の冷却を可能とするが、これは、第2の圧縮段への入り口において適度な温度を得るために、それが第1の圧縮段から出るときに、ガスの温度を低下させる。ヒートシンクとして機能するためのこの補助冷却器8に供給される流体は、第1の交換器5のパイプ51を通って移動する流体と同じであってもよい。住宅や産業用暖房を含む用途では、ヒートシンク50として使用される流体は、一般的な加熱回路の流体であってもよい。
外部移送路29に代えて、第1のピストン71の内部でチェックバルブ29bとして具現化される内部移送路29bを使用することも可能である。
第2の交換器6に接続された節約熱交換器7は、取り入れ口7dと、リターン回路7bに熱的に接続された供給回路7aと、取り出し口7cとを備える。熱寄与流体は圧縮されるガス状流体から独立しており、この向流節約熱交換器を経て反対方向に外に出て戻るように移動する。熱60の寄与は、供給回路7aと第2の交換器6のパイプ61との間でなされる。リターン回路7bは供給回路7aに熱を輸送するが、これは、熱源60からの熱寄与の効率を最適化する。
別の変形例は、選択的に第1および第2の交換器5,6を通過する熱交換流を導くことを可能とするために、第1および第2の交換回路に補助部53,63を追加することからなる。さらに詳しく言うと、一連の12個のソレノイドバルブ(55〜59および65〜69)が交換回路に付加される。
図7に示すように、ピストンが左から右へ移動するとき、ソレノイドバルブ54,58,59,65,66,69は閉状態にセットされ、一方、ソレノイドバルブ55,56,57,64,67,68は閉状態にセットされる。第1のチャンバー11を出る流れは、第1の熱交換器5を通過しない。それはソレノイドバルブ55を通過し、したがって第1の交換器5をバイパスし、続いて、それは交換器4のパイプ41に入り、そしてバルブ67および68を経て第2の交換器6に流入する(この流れは点線矢印で示されている)。同様に、第3のチャンバー13を出る流れは第2の熱交換器6を通過しない。それは、ソレノイドバルブ64を通過し、続いて、それは交換器4のパイプ42に入り、バルブ57および56を経て第1の交換器5に流入する(この流れは実線矢印によって示されている)。
一方、ピストンが右から左に移動するとき、ソレノイドバルブ54,58,59,65,66,69は開状態にセットされ、一方、ソレノイドバルブ55,56,57,64,67,68は閉状態にセットされる。第2のチャンバー12を出る流れは、第1の熱交換器5を通過しない。それはソレノイドバルブ54を通過し、続いて、それは交換器4のパイプ42に入り、弁69および66を経て第2の交換器6に流入する(この流れは点線および破線の矢印で示されている)。同様に、第4のチャンバー14を出る流れは第2の熱交換器6を通過しない。それはソレノイドバルブ65を通過して、したがって第2の交換器6をバイパスし、続いて、それは交換器4のパイプ41に入り、バルブ59および58を経て第1の交換器5に流入する(この流れは破線矢印で示されている)。
回路に付加された、これら12個のソレノイドバルブおよび適切な制御によって、熱の流れを改善することができ、熱交換器5および6は、第1および第2の段によって共有することができる。
図8に示す第2実施形態は、第1実施形態において示される二段構成を二重にすることによって構成された四段を備えた圧縮機に関し、以下のものが付加されている。
・第3のエンクロージャ33
・第3のエンクロージャの中に移動できるように組み付けられ、かつ、第3のエンクロージャ内で第5のチャンバー15および第6のチャンバー16を流体封止様式で区切っている第3のピストン73
・第4のエンクロージャ34
・第4のエンクロージャの中に移動できるように組み付けられ、かつ、第4のエンクロージャ内で第7のチャンバー17および第8のチャンバー18を流体封止様式で区切っている第4のピストン74
・ヒートシンクへとカロリーを輸送するために第3の熱交換器5bを有する、第5のチャンバーと第8のチャンバーとの間の流体の連通を確立する第3の交換回路23
・熱源からカロリーを輸送するために第4の熱交換器6bを有する、第6のチャンバーと第7のチャンバーとの間の流体の連通を確立する第4の交換回路24
・介在させられた逆流防止デバイス28aを備える、第5のチャンバー15と第6のチャンバー16との間の流体の連通を確立する第2の移送路28
第3および第4のピストンは、既に説明した第1の壁91と同様、第3および第4のエンクロージャを分離する第2の壁92を貫通すると共にチャンバー14および15を分離する壁95もまた貫通するロッド19に対して取り付けられている。
第2のチャンバーから出る第2の段からの取り出し口は、チェックバルブ82aを介して、第5のチャンバーへの取り入れ口(第3の段の取り入れ口)に接続されている。各段間の移送路は、好ましくは、ガス状流体の過度の加熱を避けるために、冷却回路8,8a,8bを通過する。好ましくは、加熱用途においては、冷却のために使用される流体は、一般的な加熱回路の流体である。
第3および第4の段の動作については、第1および第2の段に関する説明を準用する。
第4段からの取り出し口は、バルブ83aを経て圧力P4で圧縮ガスを供給する。
説明した構造物は、本発明の範囲内にある、いかなる形態および寸法を、特にいかなるボア/ストローク比、チェックバルブ形態、第1および第2のエンクロージャの配置状態などを有していてもよいことに留意されたい。
本発明の有利な実施形態によれば、使用されるガス状流体は、R410A、R407C、R744などのようなHFC(ハイドロフルオロカーボン)標準冷媒の中から選択できる。
本発明の有利な実施形態によれば、ピストントレインの動作周波数は、5Hzないし10Hz(300ないし600rpm)の範囲内で選択することができる。
本発明の有利な実施形態によれば、圧縮機全容積(全てのチャンバー容積の和)は、10ないし20kWのパワーを有するヒートポンプ用途に関して、0.2リットルから0.5リットルの範囲で選択することができる。
本発明の有利な実施形態によれば、ガス状流体の作動圧力は40バールないし120バールへと変化し得る。
1 円筒形ケーシング
4 二流向流熱交換器
5 第1の熱交換器
6 第2の熱交換器
9 ピストン駆動システム
10 補助チャンバー
11 第1のチャンバー
12 第2のチャンバー
13 第3のチャンバー
14 第4のチャンバー
19 ロッド
19a 補助ロッド
21 第1の交換回路
22 第2の交換回路
29 搬送路
29a 逆流防止デバイス
31,32 エンクロージャ
41,42 パイプ
50 ヒートシンク
51,52 パイプ
60 熱源
61,62 パイプ
71,72 ピストン
74 シャフト
77 フライホイール
78 連結ロッド
79 補助ピストン
81 取り入れ口
81a バルブ
82 取り出し口
82a バルブ
88 ガスケット
90 外部デバイス
91 気密壁
93 ベース
95 電気モーター
98 ハウジング
99 取り付け手段

Claims (12)

  1. ガス状流体圧縮デバイスであって、
    ・圧縮されるガス状流体のための取り入れ口と、
    ・第1のエンクロージャ(31)と、
    ・第1のピストン(71)であって、前記第1のエンクロージャ内で動作可能であるように組み付けられ、かつ、前記第1のエンクロージャ内で第1のチャンバー(11)および第2のチャンバー(12)を流体封止様式で区切っている第1のピストン(71)と、
    ・前記第1のチャンバーに対して接続された圧縮されたガス状流体のための取り出し口であって、前記取り入れ口は前記第1のチャンバーに対して接続されている取り出し口と、
    ・第2のエンクロージャ(32)と、
    ・第2のピストン(72)であって、前記第2のエンクロージャ内で動作可能であるように組み付けられ、かつ、前記第2のエンクロージャ内で第3のチャンバー(13)および第4のチャンバー(14)を流体封止様式で区切っている第2のピストン(72)と、
    ・ヒートシンクに対してカロリーを輸送するための第1の熱交換器(5)を有する、前記第1のチャンバーと前記第4のチャンバーとの間での流体の連通を確立する第1の交換回路(21)と、
    ・熱源からカロリーを輸送するための第2の熱交換器(6)を有する、前記第2のチャンバーと前記第3のチャンバーとの間での流体の連通を確立する第2の交換回路(22)と、
    ・介在させられた逆流防止デバイスを備えた、前記第1のチャンバーから前記第2のチャンバーへの流体の連通を確立する移送路(29)と、
    を備え、
    前記第1および第2のピストンは機械的な接続要素(19)によって接続されており、これによって、前記第1および第2のピストンの前後移動は、前記取り出し口の方向への前記ガス状流体の圧縮をもたらすことを特徴とするガス状流体圧縮デバイス。
  2. 前記第1および第2のエンクロージャ(31,32)は、主軸線(X)を有する密閉シリンダー(1)の内部に形成され、前記第1および第2のエンクロージャは軸方向に隣り合って配置されており、かつ、前記機械的接続要素は前記第1および第2のピストンを堅固に接続するロッド(19)であり、前記第1および第2のピストンは前記主軸線に沿って移動可能であることを特徴とする請求項1に記載のガス状流体圧縮デバイス。
  3. 前記ガス状流体圧縮デバイスはさらに、前記密閉シリンダー(1)の端部でかつ前記主軸線(X)上に配置された第2のシリンダーを備え、この第2のシリンダーは、
    ・第3のエンクロージャ(33)と、
    ・前記第3のエンクロージャ内で移動可能に組み付けられかつ前記第3のエンクロージャ内で第5のチャンバー(15)および第6のチャンバー(16)を流体封止様式で区切っている第3のピストン(73)と、
    ・第4のエンクロージャ(34)と、
    ・前記第4のエンクロージャ内で移動可能に組み付けられかつ前記第4のエンクロージャ内で第7のチャンバー(17)および第8のチャンバー(18)を流体封止様式で区切っている第4のピストン(74)と、
    ・ヒートシンクに対してカロリーを輸送するための第3の熱交換器(5b)を有する、前記第5のチャンバーと前記第8のチャンバーとの間での流体の連通を確立する第3の交換回路(23)と、
    ・熱源からカロリーを輸送するための第4の熱交換器(6b)を有する、前記第6のチャンバーと前記第7のチャンバーとの間での流体の連通を確立する第4の交換回路(24)と、
    ・介在させられた逆流防止デバイス(28a)を備えた、前記第5のチャンバー(15)と前記第6のチャンバー(16)との間での流体の連通を確立する第2の移送路(28)と、
    を備え、
    前記第3および第4のピストンは前記ロッド(19)に対して取り付けられ、かつ、前記第2のチャンバーからの前記取り出し口は前記第5のチャンバーに対して接続されていることを特徴とする請求項2に記載のガス状流体圧縮デバイス。
  4. 前記第3および第4のエンクロージャ(33,34)の内部断面は、前記第1および第2のエンクロージャ(31,32)の内部断面よりも小さいことを特徴とする請求項3に記載のガス状流体圧縮デバイス。
  5. 前記第1の交換回路および前記第2の交換回路(21,22)はいずれも、さらに二流向流熱交換器(4)を通過し、これによって、前記第1および第2のピストンが動作するとき、前記ガス状流体は向流流れ内を移動することを特徴とする請求項1ないし請求項4のいずれか一項に記載のガス状流体圧縮デバイス。
  6. 前記第2の熱交換器(6)は取り入れ回路および取り出し回路を備え、これらの回路はいずれも、向流流れを伴う節約熱交換器(7)を通過することを特徴とする請求項1ないし請求項のいずれか1項に記載のガス状流体圧縮デバイス。
  7. 前記第1のエンクロージャは補助冷却回路(8)によって冷却されることを特徴とする請求項1ないし請求項のいずれかに1項に記載のガス状流体圧縮デバイス。
  8. 前記移送路(29)が、チェックバルブ(29b)を備えた開口として前記第1のピストン内に配置されていることを特徴とする請求項1ないし請求項のいずれか1項に記載のガス状流体圧縮デバイス。
  9. 前記第1および第2のピストンを駆動するための駆動システム(9)をさらに備え、前記駆動システムは、補助チャンバー(10)と、この補助チャンバー(10)から前記第1のチャンバー(11)を気密状態で分離させる補助ピストン(79)と、フライホイール(77)と、このフライホイールを前記補助ピストンに対して連結する連結ロッド(78)と、を備え、前記補助ピストンは機械的に前記第1および第2ピストン(71,72)に連結されており、これによって前記第1および第2のピストンの前後移動は前記駆動システムによって自己維持されることが可能であることを特徴とする請求項1ないし請求項のいずれか1項に記載のガス状流体圧縮デバイス。
  10. 前記フライホイールに接続された電気モーターをさらに備え、前記電気モーターは、自律駆動が初期化されるように、前記フライホイールに対して初期回転動作を付与することを特徴とする請求項に記載のガス状流体圧縮デバイス。
  11. 前記電気モーターは、制御ユニットによって発電機モードで制御されることが可能であり、これによって前記フライホイールを減速させることが可能であり、かつ、前記フライホイールの回転速度を調整することが可能であることを特徴とする請求項10に記載のガス状流体圧縮デバイス
  12. 伝達回路と、請求項1ないし請求項11のいずれか1項に記載のガス状流体圧縮デバイスと、を含むことを特徴とする熱システム。
JP2013552949A 2011-02-10 2012-02-08 ガス状流体圧縮デバイス Active JP5801906B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1151098 2011-02-10
FR1151098A FR2971562B1 (fr) 2011-02-10 2011-02-10 Dispositif de compression de fluide gazeux
PCT/EP2012/052114 WO2012107480A1 (en) 2011-02-10 2012-02-08 Gaseous fluid compression device

Publications (2)

Publication Number Publication Date
JP2014510865A JP2014510865A (ja) 2014-05-01
JP5801906B2 true JP5801906B2 (ja) 2015-10-28

Family

ID=45562351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552949A Active JP5801906B2 (ja) 2011-02-10 2012-02-08 ガス状流体圧縮デバイス

Country Status (10)

Country Link
US (1) US9273681B2 (ja)
EP (1) EP2673507B1 (ja)
JP (1) JP5801906B2 (ja)
CN (1) CN103502641B (ja)
CA (1) CA2826038C (ja)
DK (1) DK2673507T3 (ja)
ES (1) ES2532876T3 (ja)
FR (1) FR2971562B1 (ja)
RU (1) RU2581469C2 (ja)
WO (1) WO2012107480A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012005297A1 (de) * 2012-03-19 2013-09-19 Gea Bock Gmbh Verdichtereinheit, sowie Verdichter
FR3005150B1 (fr) * 2013-04-24 2016-11-04 Boostheat Methode et dispositif pour indiquer la consommation et/ou l'efficacite d'une installation de chauffage
FR3007077B1 (fr) * 2013-06-18 2017-12-22 Boostheat Dispositif de compression thermique de fluide gazeux
FR3042857B1 (fr) * 2015-10-23 2019-06-28 Boostheat Chaudiere thermodynamique a compresseur thermique
KR20190077102A (ko) * 2016-11-20 2019-07-02 조슈아 엠. 슈미트 높은 동적 밀도 범위 열 사이클 엔진
IT201700025301A1 (it) * 2017-03-07 2018-09-07 Nova Somor S R L Motore termodinamico
FR3065515B1 (fr) * 2017-04-20 2019-09-27 Boostheat Chaudiere thermodynamique a co2 et compresseur thermique
IT201700119044A1 (it) * 2017-10-20 2019-04-20 Turboden Spa Apparato per compressione isocora di gas
CN107638283B (zh) * 2017-11-15 2019-09-24 河南省人民医院 一种可调节排痰机振动气体发生装置
CN107693331B (zh) * 2017-11-15 2020-04-03 张云 一种用于排痰背心的振动气体发生装置
FR3093543B1 (fr) * 2019-03-07 2022-07-15 Boostheat Compresseur thermodynamique hybride
CN211474198U (zh) * 2019-06-09 2020-09-11 天津融渌众乐科技有限公司 一种三位一体联动及往动储能单元装置系统
DE102019133576B3 (de) * 2019-12-09 2020-12-17 Maximator Gmbh Kompressor und Verfahren zur Förderung und Verdichtung eines Förderfluids in ein Zielsystem
GB2617010A (en) * 2020-12-30 2023-09-27 Tpe Midstream Llc Reduced size fluid transfer and depressurization apparatus, control, and associated methods

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157229A (en) 1935-07-17 1939-05-09 Research Corp Apparatus for compressing gases
SU49652A1 (ru) * 1935-08-11 1936-08-31 В.И. Калмыков Двигатель внутреннего горени компаунд с введением сжатого воздуха в продукты горени
US3165172A (en) * 1962-05-25 1965-01-12 Cleveland Pneumatic Ind Inc Seal for piston and cylinder devices
US3413815A (en) * 1966-05-02 1968-12-03 American Gas Ass Heat-actuated regenerative compressor for refrigerating systems
US3921400A (en) * 1972-12-04 1975-11-25 Philips Corp Cryo-electric engine-refrigerator combination
US4139991A (en) * 1977-07-18 1979-02-20 Barats Jury M Gas conditioner
US4390322A (en) * 1981-02-10 1983-06-28 Tadeusz Budzich Lubrication and sealing of a free floating piston of hydraulically driven gas compressor
JPS57183580A (en) * 1981-05-09 1982-11-11 Aisin Seiki Co Ltd Stirling engine compressor
JPS5929784A (ja) * 1982-07-23 1984-02-17 マ−ク・シユ−マン 熱式圧縮機及びエネルギ−変換機
JPS5934489A (ja) * 1982-08-18 1984-02-24 ハイドロ−パツク・インコ−ポレ−テツド 高圧流体圧縮機
IT1187318B (it) * 1985-02-22 1987-12-23 Franco Zanarini Compressore volumetrico alternato ad azionamento idraulico
JPS6210479A (ja) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd スタ−リング機関駆動圧縮機
JPH062971A (ja) * 1992-06-22 1994-01-11 Aisin Seiki Co Ltd スターリング機関一体型圧縮機
CN1109229C (zh) * 1996-06-21 2003-05-21 张继科 一种制冷剂超量循环的蒸汽压缩式制冷机系统
JPH10288158A (ja) * 1997-04-10 1998-10-27 Kobe Steel Ltd ピストン式ガス圧縮機及びガス圧縮設備
GB0123881D0 (en) * 2001-10-04 2001-11-28 Bg Intellectual Pty Ltd A stirling engine assembly
JP4106319B2 (ja) * 2003-10-06 2008-06-25 住友重機械工業株式会社 多段圧縮機、これを用いた液体循環装置、及び冷凍装置
EP1813887B1 (en) * 2006-01-31 2009-05-06 Sanyo Electric Co., Ltd. Air conditioning device
ITGE20060067A1 (it) * 2006-06-28 2007-12-29 Dott Ing Mario Cozzani Srl Apparato per la regolazione continua della portata di compressori alternativi.
JP2010071481A (ja) * 2008-09-16 2010-04-02 Aisin Seiki Co Ltd 熱式圧縮機および冷暖房装置
US8181460B2 (en) * 2009-02-20 2012-05-22 e Nova, Inc. Thermoacoustic driven compressor
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
RU99831U1 (ru) * 2010-08-30 2010-11-27 Учреждение Российской академии наук Объединенный институт высоких температур (ОИВТ РАН) Автономный газоперекачивающий агрегат
DE102011118042A1 (de) * 2011-11-09 2013-05-16 Blz Geotechnik Gmbh Verfahren und Anordnung für einen thermisch angetriebenen Verdichter im Kreisprozess

Also Published As

Publication number Publication date
JP2014510865A (ja) 2014-05-01
US20130323102A1 (en) 2013-12-05
WO2012107480A1 (en) 2012-08-16
CN103502641A (zh) 2014-01-08
RU2013141448A (ru) 2015-03-20
RU2581469C2 (ru) 2016-04-20
FR2971562A1 (fr) 2012-08-17
EP2673507B1 (en) 2015-01-14
DK2673507T3 (en) 2015-04-07
FR2971562B1 (fr) 2013-03-29
US9273681B2 (en) 2016-03-01
CN103502641B (zh) 2016-03-23
EP2673507A1 (en) 2013-12-18
CA2826038A1 (en) 2012-08-16
CA2826038C (en) 2018-06-12
ES2532876T3 (es) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5801906B2 (ja) ガス状流体圧縮デバイス
CN101896779B (zh) 用于转子冷却的方法和系统
CN105841383B (zh) 开式双向热力循环与第一类热驱动压缩式热泵
EP2604814A1 (en) Closed cycle system for recovering waste heat
US20150211440A1 (en) Device for compressing a gaseous fluid
JP2017501364A (ja) 流れ効率を改善した磁気冷凍システム
JP2011504574A (ja) 極低温冷凍方法及びデバイス
JP2013092144A (ja) 補助動力発生装置
WO2020143554A1 (en) A mechano-caloric stage with inner and outer sleeves
JP2015042847A (ja) スクリュー圧縮機
CN102374170B (zh) 密闭型压缩机
JP4963971B2 (ja) ヒートポンプ式設備機器
JP5272941B2 (ja) ターボ圧縮機及び冷凍機
AU2007322707B2 (en) Fluid machine
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
WO2020143553A1 (en) A leveraged mechano-caloric heat pump
JP2000088373A (ja) 圧縮式冷凍機
WO2002050481A1 (en) Refrigerating system with an integrated turbocompressor
WO2015077275A1 (en) Compressor with an oil separator
CN104114959A (zh) 压缩机
CN102628442B (zh) 压缩机
JP2022538671A (ja) 空調装置
KR100664843B1 (ko) 난방용 히트펌프
JPH0116327B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250