JP5801647B2 - High N content stainless steel having excellent surface resistance and method for producing the same - Google Patents

High N content stainless steel having excellent surface resistance and method for producing the same Download PDF

Info

Publication number
JP5801647B2
JP5801647B2 JP2011177366A JP2011177366A JP5801647B2 JP 5801647 B2 JP5801647 B2 JP 5801647B2 JP 2011177366 A JP2011177366 A JP 2011177366A JP 2011177366 A JP2011177366 A JP 2011177366A JP 5801647 B2 JP5801647 B2 JP 5801647B2
Authority
JP
Japan
Prior art keywords
δfe
amount
stainless steel
neq
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177366A
Other languages
Japanese (ja)
Other versions
JP2012207301A (en
Inventor
成雄 福元
成雄 福元
優武 北條
優武 北條
洋 本村
洋 本村
浩一郎 吉野
浩一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2011177366A priority Critical patent/JP5801647B2/en
Publication of JP2012207301A publication Critical patent/JP2012207301A/en
Application granted granted Critical
Publication of JP5801647B2 publication Critical patent/JP5801647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳造時に鋳片の表面近傍に発生するピンホールや、これに起因して圧延時に発生する表面疵、および熱間圧延割れに起因する表面疵等を低減した高N含有ステンレス鋼およびその製造方法に関する。   The present invention relates to a high-N content stainless steel with reduced pinholes generated near the surface of a slab during casting, surface defects generated during rolling due to this, surface defects caused by hot rolling cracks, and the like, and It relates to the manufacturing method.

近年、構造用ステンレス鋼の強度向上の要請が増大している。これに対応して、窒素を添加し、その固溶強化作用によって強度を向上させ、同時に耐食性の向上も図った鋼種が適用されてきている。   In recent years, demands for improving the strength of structural stainless steel have increased. Correspondingly, a steel type has been applied in which nitrogen is added and the strength is improved by its solid solution strengthening action, and at the same time the corrosion resistance is improved.

窒素濃度を高めた鋼種では、凝固時の偏析により溶鋼中の窒素濃度が濃化し、溶解度を超えた場合にはピンホールが発生する。このようなピンホールが存在すると、圧延時にピンホールが拡大して製品の表面疵の原因となるという問題がある。また、高N含有ステンレス鋼では強度の上昇に伴い、延性が低下して熱間圧延時の割れが発生しやすいという問題もあった。   In steel types with increased nitrogen concentration, the concentration of nitrogen in the molten steel increases due to segregation during solidification, and pinholes are generated when the solubility is exceeded. When such a pinhole exists, there exists a problem that a pinhole expands at the time of rolling and causes the surface flaw of a product. In addition, the high N-containing stainless steel has a problem that the ductility is lowered and cracking during hot rolling is likely to occur as the strength increases.

特許文献1では、凝固過程でδ相を生成し、そのδ相における窒素溶解度を超える窒素含有率を有するステンレス鋼または高合金鋼を鋳造する方法において、溶鋼中の水素含有率を10ppm未満とし、硫黄含有率を20ppm未満とする方法が開示されている。水素の含有率がその溶解度を超えると、水素の気泡が形成され、その気泡の内部には窒素も容易に放出されるため、凝固の進行にともないピンホールが成長する。これに対して、水素の含有率が低いと、窒素ガスの放出を受け入れる水素気泡が形成されないため、窒素の含有率が高くても、容易にはピンホールが形成されないというものである。   In Patent Document 1, in a method of producing a δ phase in the solidification process and casting stainless steel or high alloy steel having a nitrogen content exceeding the nitrogen solubility in the δ phase, the hydrogen content in the molten steel is less than 10 ppm, A method is disclosed in which the sulfur content is less than 20 ppm. When the hydrogen content exceeds the solubility, hydrogen bubbles are formed, and nitrogen is easily released inside the bubbles, so that pinholes grow as solidification progresses. On the other hand, when the hydrogen content is low, hydrogen bubbles that accept the release of nitrogen gas are not formed. Therefore, even if the nitrogen content is high, pinholes are not easily formed.

特許文献2では、高Mn・高Nオーステナイト系ステンレス鋼の鋳片に発生する気泡について詳細に調査した結果、気泡中のガスは、溶鋼がγ相凝固する際に、溶鋼の窒素溶解度が大幅に減少するために放出された窒素ガスであること、そして鋳片における気泡の発生の有無は、溶鋼中の窒素濃度と液相線温度における溶鋼の窒素溶解度との比および溶鋼の成分組成から算出されるδFe量の関係で整理でき、鋳片の気泡発生を阻止するためには、これらの値を調整すればよいことを見出している。   In Patent Document 2, as a result of a detailed investigation of bubbles generated in a cast slab of high Mn / N austenitic stainless steel, the gas in the bubbles greatly increases the nitrogen solubility of the molten steel when the molten steel solidifies in the γ phase. The nitrogen gas released to decrease and the presence or absence of bubbles in the slab are calculated from the ratio of the nitrogen concentration in the molten steel to the nitrogen solubility of the molten steel at the liquidus temperature and the composition of the molten steel. It has been found that these values can be adjusted in order to prevent the generation of bubbles in the slab.

特許文献3では、高N含有二相ステンレス鋼を連続鋳造する方法であって、不純物である水素の含有率を8.3ppm以下とし、かつ、鋳型内のメニスカス近傍の溶鋼を、水平面内において適正範囲の流速で周回する方向に電磁撹拌を行う。
鋳型内のメニスカス近傍において溶鋼を電磁撹拌し、凝固シェル前面の溶鋼を撹拌することにより、凝固界面の液相側に濃化されやすい水素などの液体成分を分散させ、気泡の生成を抑制するとともに、生成した気泡を凝固界面から離脱させて、針状ピンホールの形成を抑制することができるというものである。
Patent Document 3 is a method of continuously casting a high-N content duplex stainless steel, in which the content of hydrogen as an impurity is 8.3 ppm or less, and the molten steel near the meniscus in the mold is appropriate in a horizontal plane. Electromagnetic stirring is performed in the direction of circulation at a flow rate in the range.
By stirring the molten steel electromagnetically in the vicinity of the meniscus in the mold and stirring the molten steel in front of the solidified shell, liquid components such as hydrogen that tend to concentrate on the liquid phase side of the solidification interface are dispersed, and generation of bubbles is suppressed. The generated bubbles can be separated from the solidification interface to suppress the formation of needle pinholes.

特開2007−275903号公報JP 2007-275903 A 特開平7−90471号公報JP-A-7-90471 特開2010−52026号公報JP 2010-52026 A

前記の従来におけるピンホールの生成防止方法には下記の問題があった。すなわち、本発明者らの検討によれば、水素含有率と硫黄含有率の調査を行う特許文献1に開示された方法では、窒素濃度に許容範囲が存在するため、高N含有ステンレス鋼では窒素ガスのみによるピンホールの生成が充分に抑制されていないことが判明した。   The conventional method for preventing the generation of pinholes has the following problems. That is, according to the study by the present inventors, in the method disclosed in Patent Document 1 for investigating the hydrogen content and the sulfur content, there is an allowable range in the nitrogen concentration. It has been found that the generation of pinholes by gas alone is not sufficiently suppressed.

また、特許文献2は、主に初晶γ凝固で生成する気泡を抑制する知見であり、本発明の対象とするδFe量が高い領域では、凝固前面での窒素の偏析挙動が異なるため、適用できないことが本発明者らの検討において判明した。   Further, Patent Document 2 is a finding that mainly suppresses bubbles generated by primary crystal γ solidification, and in a region where the amount of δFe targeted by the present invention is high, the segregation behavior of nitrogen on the front surface of solidification is different. It became clear in the examination of the present inventors that it was not possible.

さらに、特許文献3は、特許文献1に対して水素含有量を低減し、さらに電磁撹拌を適用しても、前述のように窒素含有量が高い場合にはピンホールを完全に抑制できず、窒素濃度の適正範囲が存在することが分かった。   Further, Patent Document 3 reduces the hydrogen content with respect to Patent Document 1, and even when electromagnetic stirring is applied, if the nitrogen content is high as described above, pinholes cannot be completely suppressed, It was found that there was an appropriate range of nitrogen concentration.

本発明は、上記の問題に鑑みてなされたものであり、高N含有ステンレス鋼において、窒素濃度を適正な範囲に制御することで、ピンホールの生成および成長を抑制し、鋳片表面研削によるピンホール欠陥等の除去を省略または簡略化でき、さらに熱間圧延時の割れも防止できる耐表面疵性に優れた高N含有ステンレス鋼およびその製造方法を提供することを課題とする。   The present invention has been made in view of the above problems, and in high-N content stainless steel, by controlling the nitrogen concentration within an appropriate range, the generation and growth of pinholes can be suppressed, and by slab surface grinding. It is an object of the present invention to provide a high N-containing stainless steel excellent in surface resistance that can eliminate or simplify removal of pinhole defects and the like, and can prevent cracking during hot rolling, and a method for producing the same.

鋭意検討を重ねた結果、δFe量に応じた窒素濃度の制御を行うこと、また、電磁攪拌を併用することで上記課題を解決できることを見出し、本発明の完成に至ったものであり、その要旨とするところは特許請求の範囲に記載の通りの下記内容である。
(1)質量%で、C;0.005%〜0.03%、Si;0.8%以下、Mn;0.1%〜7.0%、P ;0.04%以下、S ;0.002%以下、Ni;1.0%〜13.0%、Cr;17.0%〜26.0%、Al;0.06%以下、N ;0.10%〜0.30%、Mo;0.05%〜4.0%、Cu;0.05%〜3.5%を含有し、残部がFeおよび不可避不純物からなるステンレス鋼であって、前記成分組成から算出されるδFe量(%)と、窒素濃度[%N]および液相線温度における溶鋼の窒素溶解度[%Neq]が、(a)式または(b)式を満足し、且つ、該ステンレス鋼の表層1mmに存在する幅20μm以上の介在物個数が0.15個/mm以下であることを特徴とする耐表面疵性に優れた高N含有ステンレス鋼。
10%<δFe量では、
35≦[%N]/[%Neq]≦50 ・・・(a)
1%≦δFe量≦10% では、−3.75×δFe+72.5
≦[%N]/[%Neq]≦−3.75×δFe量+87.5 ・・・(b)
ここで、δFe量(%)=2.9(Cr+Mo+0.3Si)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
[%Neq]=10−(518/T)−1.063−h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]
(2)質量%で、C;0.005%〜0.03%、Si;0.8%以下、Mn;0.1%〜7.0%、P;0.04%以下、S;0.002%以下、Ni;1.0%〜13.0%、Cr;17.0%〜26.0%、Al;0.06%以下、N;0.10%〜0.35%、Mo;0.05%〜4.0%、Cu;0.05%〜3.5%、を含有し、更に、Ta:0.05〜0.3%、V:0.02〜0.5%、及びZr:0.005〜0.1%の1種以上を含有し、残部がFeおよび不可避不純物からなるステンレス鋼であって、前記成分組成から算出されるδFe量(%)と、窒素濃度[%N]および液相線温度における溶鋼の窒素溶解度[%Neq]が、下記(a)式または(b)式を満足し、且つ、該ステンレス鋼の表層1mmに存在する幅20μm以上の介在物個数が0.15個/mm以下であることを特徴とする耐表面疵性に優れた高N含有ステンレス鋼。
10%<δFe量では、
35≦[%N]/[%Neq]≦50 ・・・(a)
1%≦δFe量≦10% では、
−3.75×δFe量+72.5≦[%N]/[%Neq]
≦−3.75×δFe量+87.5 ・・・(b)
ここで、δFe量(%)=2.9(Cr+Mo+0.3Si+0.21Ta+2.27V+1.25Zr)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
[%Neq]=10−(518/T)−1.063−h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]−0.07[Ta]−0.18[V]−0.63[Zr]
(3)前記(1)又は(2)に記載の耐表面疵性に優れた高N含有ステンレス鋼の製造方法であって、前記成分組成および(a)式または(b)式を満足する溶鋼を鋳造する工程において、鋳型内ステンレス溶鋼の水平旋回流の流速V(cm/sec)が、10〜30(cm/sec)となるように電磁攪拌することを特徴とする高N含有フェライト系ステンレス鋼の製造方法。
As a result of intensive studies, it has been found that the above problems can be solved by controlling the nitrogen concentration according to the amount of δFe, and also using electromagnetic stirring, and the present invention has been completed. The following is the contents as described in the claims.
(1) By mass%, C: 0.005% to 0.03%, Si: 0.8% or less, Mn: 0.1% to 7.0%, P: 0.04% or less, S: 0 0.002% or less, Ni: 1.0% to 13.0%, Cr: 17.0% to 26.0%, Al: 0.06% or less, N: 0.10% to 0.30%, Mo 0.05% to 4.0%, Cu; 0.05% to 3.5%, the balance being stainless steel made of Fe and inevitable impurities, the amount of δFe calculated from the above component composition ( %), Nitrogen concentration [% N], and nitrogen solubility [% Neq] of the molten steel at the liquidus temperature satisfy the formula (a) or (b) and exist in the surface layer of the stainless steel 1 mm. high N-containing stainless steel inclusions number than the width 20μm and excellent resistance to surface scratches properties, characterized in that 0.15 pieces / mm 2 or less
For 10% <δFe amount,
35 ≦ [% N] / [% Neq] ≦ 50 (a)
When 1% ≦ δFe content ≦ 10%, −3.75 × δFe + 72.5
≦ [% N] / [% Neq] ≦ −3.75 × δFe amount + 87.5 (b)
Here, δFe amount (%) = 2.9 (Cr + Mo + 0.3Si) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18
[% Neq] = 10− (518 / T) −1.063−h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu]
(2) By mass%, C; 0.005% to 0.03%, Si; 0.8% or less, Mn; 0.1% to 7.0%, P; 0.04% or less, S; 0 0.002% or less, Ni; 1.0% to 13.0%, Cr; 17.0% to 26.0%, Al; 0.06% or less, N; 0.10% to 0.35%, Mo 0.05% to 4.0%, Cu; 0.05% to 3.5%, Ta: 0.05 to 0.3%, V: 0.02 to 0.5% And Zr: a stainless steel containing at least one of 0.005 to 0.1%, the balance being Fe and inevitable impurities, the amount of δFe (%) calculated from the above component composition, and the nitrogen concentration [% N] and the nitrogen solubility [% Neq] of the molten steel at the liquidus temperature satisfy the following formula (a) or (b) and exist in the surface layer of the stainless steel 1 mm. High N-containing stainless steel inclusions number of more than 20μm and excellent resistance to surface scratches properties, characterized in that 0.15 pieces / mm 2 or less.
For 10% <δFe amount,
35 ≦ [% N] / [% Neq] ≦ 50 (a)
1% ≦ δFe amount ≦ 10%
−3.75 × δFe amount + 72.5 ≦ [% N] / [% Neq]
≦ −3.75 × δFe amount + 87.5 (b)
Here, δFe amount (%) = 2.9 (Cr + Mo + 0.3Si + 0.21Ta + 2.27V + 1.25Zr) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18
[% Neq] = 10− (518 / T) −1.063−h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu] −0.07 [Ta] −0.18 [V] −0.63 [Zr]
(3) A method for producing a high N-containing stainless steel having excellent surface resistance as described in (1) or (2) above, wherein the molten steel satisfies the above component composition and formula (a) or (b) High N content ferritic stainless steel characterized by electromagnetic stirring so that the flow velocity V (cm / sec) of the horizontal swirling flow of the molten stainless steel in the mold is 10 to 30 (cm / sec) Steel manufacturing method.

本発明によれば、成分の調整に加えて、δFe量に応じた[%N]/[%Neq]制御をし、また、電磁撹拌装置への印加電流を調整して鋳型内ステンレス溶鋼の水平旋回流の流速Vを制御することで、ピンホールなど、高N含有ステンレス鋼鋳片の表層部欠陥が防止でき、鋳片表面研削の省略または簡略化が可能となり、熱間加工時の表面疵発生率が皆無となって製品歩留を向上することができる。また、Ta、V、及びZrから1種以上の元素を添加することによって、許容できるN量を増加させることができ、更なる高強度化が可能となる。   According to the present invention, in addition to the adjustment of the components, [% N] / [% Neq] control according to the amount of δFe is performed, and the current applied to the electromagnetic stirrer is adjusted to adjust the level of the molten stainless steel in the mold. By controlling the flow velocity V of the swirl flow, surface layer defects such as pinholes in high-N content stainless steel slabs can be prevented, and slab surface grinding can be omitted or simplified. There is no incidence and product yield can be improved. Further, by adding one or more elements from Ta, V, and Zr, the allowable N amount can be increased, and further increase in strength is possible.

ピンホール生成に及ぼすδFe量、[%N]/[%Neq]の影響を示す図である。It is a figure which shows the influence of (delta) Fe amount and [% N] / [% Neq] which exert on pinhole production | generation. 表面欠陥発生に及ぼす電磁撹拌による溶鋼流速の影響を示す図である。It is a figure which shows the influence of the molten steel flow velocity by electromagnetic stirring which acts on surface defect generation | occurrence | production.

凝固過程でδ相が生成し、窒素含有率がその溶解度を超えると、溶解しきれない窒素が凝固シェルの凝固界面から液相側に排出されて凝固界面に窒素気泡が形成される。これが凝固界面の進行にともなって固相に捕捉されながらのピンホールを形成する。また、δFe量が増加すると、凝固途中で生成する窒素溶解度の高いγ相が減少するため、ピンホールが生成しやすくなる。この影響は特に下記式で表されるδFe量10%超の領域で顕著に現れる。したがって、δFe量に応じた成分の調整が必要になる。なお、δFe量が1%未満では、凝固がγ相で開始する。γ相はδ相に比べて、PおよびSの固溶度が小さく、熱間加工割れが多数発生する問題がある。
δFe量(%)=2.9(Cr+Mo+0.3Si)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
When the δ phase is generated in the solidification process and the nitrogen content exceeds the solubility, nitrogen that cannot be dissolved is discharged from the solidification interface of the solidification shell to the liquid phase side, and nitrogen bubbles are formed at the solidification interface. This forms pinholes while being captured by the solid phase as the solidification interface progresses. Further, when the amount of δFe increases, the γ phase having a high nitrogen solubility that is generated during solidification decreases, so that pinholes are easily generated. This effect is particularly prominent in the region where the amount of δFe expressed by the following formula exceeds 10%. Therefore, it is necessary to adjust the component according to the amount of δFe. If the amount of δFe is less than 1%, solidification starts in the γ phase. The γ phase has a problem that the solid solubility of P and S is smaller than that of the δ phase, and many hot working cracks are generated.
δFe amount (%) = 2.9 (Cr + Mo + 0.3Si) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18

鋳型内のメニスカス近傍において溶鋼を電磁撹拌し、凝固シェル前面の溶鋼を撹拌することにより、凝固界面の液相側に濃化された溶質が洗浄されて、ピンホールの形成を抑制することができる。また、適正な溶鋼流動を付与することにより凝固均一化が図れ、鋳片表面欠陥が抑制できる効果もある。   By magnetically stirring the molten steel near the meniscus in the mold and stirring the molten steel in front of the solidified shell, the solute concentrated on the liquid phase side of the solidification interface can be washed and the formation of pinholes can be suppressed. . Further, by imparting an appropriate molten steel flow, solidification and homogenization can be achieved, and there is an effect that slab surface defects can be suppressed.

図1にピンホール生成に及ぼすδFe量、[%N]/[%Neq]の影響について、本発明者らが調査した結果を示す。下記に示したように、δFe量が1〜10%の範囲ではδFe量に応じて[%N]/[%Neq]の適正な領域が存在し、10%超では一定の[%N]/[%Neq]範囲に制御すれば良いことを見出した。また、それぞれのδFe量範囲で[%N]/[%Neq]制御のみでピンホール生成を抑制できる領域と、更に電磁撹拌の適用(図1では溶鋼流速は20cm/secで攪拌している。)が必要な領
域があることが確認できた。なお、ピンホールなどの表面欠陥の発生有無は鋳片表面を約1mm研削した後に、約2m長さについて目視観察で調査した。ここでは、○、●、×に分けて評価した。●は[%N]/[%Neq]の制御のみで鋳片表面欠陥がないもの、○は更に電磁攪拌することで鋳片表面欠陥が無くなるもの、×は再度表面切削が必要なものである。
10%<δFe量では、
35≦[%N]/[%Neq]≦50 ・・・(a)
1%≦δFe量≦10% では、
−3.75×δFe量+72.5≦[%N]/[%Neq]
≦−3.75×δFe量+87.5 ・・・(b)
なお、[%Neq]は、
[%Neq]=10-(518/T)-1.063-h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]
で表される。
FIG. 1 shows the results of investigation by the present inventors on the influence of the amount of δFe and [% N] / [% Neq] on pinhole generation. As shown below, there is an appropriate region of [% N] / [% Neq] depending on the amount of δFe when the amount of δFe is in the range of 1 to 10%, and constant [% N] / It has been found that control should be made within the [% Neq] range. Further, in each δFe amount range, the region where pinhole generation can be suppressed only by [% N] / [% Neq] control, and application of electromagnetic stirring (in FIG. 1, the molten steel flow rate is 20 cm / sec.). ) Was confirmed to be necessary. The occurrence of surface defects such as pinholes was examined by visual observation about a length of about 2 m after grinding the surface of the slab by about 1 mm. Here, the evaluation was divided into ○, ●, and ×. ● indicates that there is no slab surface defect only by controlling [% N] / [% Neq], ○ indicates that the slab surface defect is eliminated by further electromagnetic stirring, and × indicates that surface cutting is required again. .
For 10% <δFe amount,
35 ≦ [% N] / [% Neq] ≦ 50 (a)
1% ≦ δFe amount ≦ 10%
−3.75 × δFe amount + 72.5 ≦ [% N] / [% Neq]
≦ −3.75 × δFe amount + 87.5 (b)
[% Neq] is
[% Neq] = 10- (518 / T) -1.063-h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu]
It is represented by

図1において、○印の範囲は、窒素添加の許容量が高いため、構造用ステンレス鋼の高強度化および高耐食性の要求に十分答えることができるものであり、高い性能と製造性および生産性が両立できるものである。   In FIG. 1, the range marked with ○ has a high tolerance for nitrogen addition, so that it can fully satisfy the demands for high strength and high corrosion resistance of structural stainless steel, and has high performance, manufacturability and productivity. Are compatible.

図2に表面欠陥発生に及ぼす電磁撹拌による溶鋼流速の影響を示す。鋳型内のメニスカス近傍の溶鋼を、水平面内において10cm/sec以上の流速で周回する方向に電磁撹拌することによってピンホールを抑制できる。なお、ここで、メニスカス近傍の溶鋼とは、メニスカスから下方に150〜500mmの領域内の溶鋼を意味する。また、周回する溶鋼の流速とは、周回する溶鋼の水平方向の流速を意味する。例えば、鋳型内電磁撹拌時の電流値と鋳片の横断面におけるデンドライト偏向角と凝固速度および溶鋼流速の関係式を予め求めておくことにより、操業時の電磁撹拌時の電流値が決まれば、溶鋼流速を求めることができる。   FIG. 2 shows the influence of the molten steel flow rate by electromagnetic stirring on the occurrence of surface defects. Pinholes can be suppressed by electromagnetically stirring the molten steel near the meniscus in the mold in a direction to circulate at a flow rate of 10 cm / sec or more in a horizontal plane. Here, the molten steel in the vicinity of the meniscus means molten steel in a region of 150 to 500 mm downward from the meniscus. Moreover, the flow velocity of the circulating molten steel means the horizontal flow velocity of the circulating molten steel. For example, if the current value during electromagnetic stirring during operation is determined by determining in advance the relationship between the current value during electromagnetic stirring in the mold and the dendrite deflection angle in the cross section of the slab and the solidification speed and molten steel flow rate, The molten steel flow rate can be obtained.

鋳型内のメニスカス近傍において周回する溶鋼流速は、10〜30cm/secの範囲内とすることが適切である。溶鋼流速が10cm/sec未満では、凝固界面の液相側に濃化された溶質の洗浄効果や、凝固界面において生成した気泡の離脱効果が得られない。一方、溶鋼流速が30cm/secを超えて大きくなると、メニスカスの湯面変動が大きくなるなどの理由により、モールドパウダー巻き込みなどの鋳片表面疵が発生する。   It is appropriate that the molten steel flow speed circulating around the meniscus in the mold is in the range of 10 to 30 cm / sec. When the molten steel flow rate is less than 10 cm / sec, it is not possible to obtain the effect of cleaning the solute concentrated on the liquid phase side of the solidification interface and the separation effect of bubbles generated at the solidification interface. On the other hand, when the molten steel flow rate increases beyond 30 cm / sec, slab surface flaws such as mold powder entrainment occur due to increased meniscus level fluctuation.

なお、上記のような電磁攪拌を行うことにより、鋳型内に混入した介在物の浮上が促進される。介在物の粒径が大きいほど攪拌による浮上が促進されるため、鋳造後の鋼表層に残存する粗大介在物は少なくなる。したがって、本発明の高N含有ステンレス鋼は、ピンホールに起因する表面疵が少ないと共に、熱間圧延後の鋼表面近傍の粗大介在物が少ない。したがって、本発明の溶鋼流動制御が適正に行われているかどうかの指標とすることができる。調査の結果、本発明の適正な流動を溶鋼に与えることで、熱間圧延後の表層1mmに存在する幅20μm以上の介在物個数は0.15個/mm2以下となることが分かった。なお、本発明における熱間圧延の条件は常法同様で良く、加熱温度は1100〜1200℃、圧延仕上温度は900〜980℃で、その後の冷却は空冷、圧減比は4〜18であれば良い。冷却については、適宜水冷に変更することもできる。また、熱間圧延後の焼鈍によって上記介在物個数は影響を受けないため、焼鈍の有無は問わない。 In addition, by performing electromagnetic stirring as described above, the floating of inclusions mixed in the mold is promoted. As the particle size of the inclusion is larger, the floating by stirring is promoted, so that the coarse inclusion remaining in the steel surface layer after casting is reduced. Therefore, the high N content stainless steel of the present invention has few surface defects due to pinholes and few coarse inclusions in the vicinity of the steel surface after hot rolling. Therefore, it can be used as an index of whether or not the molten steel flow control of the present invention is properly performed. As a result of the investigation, it was found that the number of inclusions having a width of 20 μm or more present in the surface layer of 1 mm after hot rolling was 0.15 / mm 2 or less by giving the molten steel the proper flow of the present invention. The conditions for hot rolling in the present invention may be the same as in the conventional method, the heating temperature is 1100 to 1200 ° C., the rolling finishing temperature is 900 to 980 ° C., the subsequent cooling is air cooling, and the reduction ratio is 4 to 18. It ’s fine. About cooling, it can also change into water cooling suitably. Moreover, since the said inclusion number is not influenced by the annealing after hot rolling, the presence or absence of annealing does not ask | require.

本発明に係わる成分組成(質量%)の限定理由を各元素の作用と共に説明する。 Cは強力なオーステナイト化元素であるとともに、固溶強化するので0.005%以上添加するが、含有量が多くなると炭化物を生成して耐食性を劣化させるため、0.03%以下とした。 The reason for limiting the component composition (mass%) according to the present invention will be described together with the action of each element. C is a strong austenitizing element and strengthens the solid solution, so 0.005% or more is added. However, if the content is increased, carbide is generated and the corrosion resistance is deteriorated.

Siはステンレス鋼の溶製時に脱酸剤として作用する元素であるため、0.1%以上添加するが、本発明では熱間加工性確保の面から、0.8%以下にコントロールする必要がある。   Since Si is an element that acts as a deoxidizer during the melting of stainless steel, it is added in an amount of 0.1% or more. In the present invention, it is necessary to control it to 0.8% or less from the viewpoint of ensuring hot workability. is there.

Mnは脱酸剤であるとともに、熱間加工性向上させる効果があり、SをMnSとして固定してFeSの生成による赤熱脆性の発生を防止するのに有効な元素であるため0.1%以上とする。また、MnはNの溶解度を増大させることができる。しかし、多量に含有すると溶製中の耐火物溶損を増大させることや耐食性が劣化することになるので7.0%以下とする。好ましくは0.5以上、5.5%以下とする。   Mn is a deoxidizer and has an effect of improving hot workability, and is an element effective for fixing S as MnS and preventing the occurrence of red hot brittleness due to the formation of FeS. And Moreover, Mn can increase the solubility of N. However, if contained in a large amount, the refractory melting loss during melting will increase and the corrosion resistance will deteriorate, so the content is made 7.0% or less. Preferably it is 0.5 to 5.5%.

Pは製鋼工程では不純物であるが、多量に含有されていると熱間加工性を害するので上限を0.04%以下としている。一方、含有量を極端に低減することはコストアップにつながるため、好ましくは下限を0.001%とする。   P is an impurity in the steelmaking process, but if it is contained in a large amount, hot workability is impaired, so the upper limit is made 0.04% or less. On the other hand, since extremely reducing the content leads to an increase in cost, the lower limit is preferably made 0.001%.

Sは熱間加工性を低下させて熱間圧延時の割れ欠陥を発生させやすく、耐食性も劣化させるので、0.002%以下とする。一方、含有量を極端に低減することはコストアップにつながるため、好ましくは下限を0.001%とする。   S lowers the hot workability, easily causes cracking defects during hot rolling, and deteriorates the corrosion resistance. Therefore, the content is made 0.002% or less. On the other hand, since extremely reducing the content leads to an increase in cost, the lower limit is preferably made 0.001%.

Crはステンレス鋼の基本元素で、耐食性および耐酸化性の向上に寄与する。また、CrはNの溶解度を増大させられる有効な元素である。しかし、濃度レベルによってδFe量への影響が変化するため、本発明におけるδFe量の制御を安定して達成するために、Cr濃度は17.0〜26.0%とする。好ましくは22.0〜26.0%である。   Cr is a basic element of stainless steel and contributes to improvement of corrosion resistance and oxidation resistance. Cr is an effective element that can increase the solubility of N. However, since the influence on the amount of δFe varies depending on the concentration level, the Cr concentration is set to 17.0 to 26.0% in order to stably control the amount of δFe in the present invention. Preferably it is 22.0 to 26.0%.

Niは鋼の耐食性および靭性を向上させる作用を有する元素であるため1.0%以上とするが、高価なものともなることから、13.0%以下とする。   Ni is an element having an effect of improving the corrosion resistance and toughness of steel, so it is set to 1.0% or more. However, Ni is also expensive, so it is set to 13.0% or less.

Alは脱酸剤として作用するが、Alを多量に含有すると有害な硬質酸化物が生成し、圧延時の表面疵が発生するため、Alの上限は0.06%とする。Alの下限については特に規定しないが、0.003%以上が好ましい。   Al acts as a deoxidizer. However, if a large amount of Al is contained, harmful hard oxides are generated and surface defects occur during rolling. Therefore, the upper limit of Al is 0.06%. The lower limit of Al is not particularly defined, but 0.003% or more is preferable.

Nはオーステナイトの安定化などに寄与する作用を有する元素であるものが、同時に強度向上に効果的な元素であり、0.1%〜0.30%にコントロールする。また、後述するTa、V、及びZrから1種以上を添加した場合は、N含有量の上限を0.35%にまで増加することが可能である。   N is an element having an action contributing to stabilization of austenite and the like, and at the same time is an element effective for improving the strength, and is controlled to 0.1% to 0.30%. Moreover, when adding 1 or more types from Ta, V, and Zr mentioned later, it is possible to increase the upper limit of N content to 0.35%.

Moは耐食性向上に有効な元素であるはかりではなく、固溶強化の効果があり、0.05%以上添加される。しかし、4.0%を超えると熱間加工性が急激に悪化するために、4.0%以下にコントロールする。   Mo is not a scale that is an effective element for improving corrosion resistance, but has an effect of solid solution strengthening and is added in an amount of 0.05% or more. However, if it exceeds 4.0%, the hot workability deteriorates rapidly, so it is controlled to 4.0% or less.

Cuはオーステナイト安定化元素であり、耐食性を改善する作用を有する元素であるため、0.05%以上添加する。好ましくは0.1%以上である。しかし、多量に含有すると熱間加工性を害するので3.5%以下とする。なお、残部はFeおよび不可避不純物からなる。   Cu is an austenite stabilizing element and is an element having an action of improving corrosion resistance, so 0.05% or more is added. Preferably it is 0.1% or more. However, if contained in a large amount, the hot workability is impaired, so the content is made 3.5% or less. The balance consists of Fe and inevitable impurities.

本発明者らは、更に添加元素の影響を調査していたところ、Ta、V、及びZrから1種以上を添加した場合は、特にピンホール生成が抑制でき、製造性が向上することを知見した。そして、それぞれの元素の添加試験条件を種々変更して試験を行い、その効果が下記式のように前記元素添加がδFe量と、液相線温度における溶鋼の窒素溶解度[%Neq]とを増加させることに起因していることを見出した。特に、液相線温度における溶鋼の窒素溶解度[%Neq]が増加することは注目すべき知見であり、より窒素濃度を高めることができることで更に高強度化することが可能となることを意味する。
この効果を得るためには、Ta、V、及びZrから1種以上を、それぞれTa:0.05%、V:0.02%、Zr:0.005%以上添加することが必要である。一方、上限を超えて添加すると高強度化による熱間可加工割れの発生で、かつコスト高となるため、上限をそれぞれTa:0.3%、V:0.5%、Zr:0.1%とする。
δFe量(%)=2.9(Cr+Mo+0.3Si+0.21Ta+2.27V+1.25Zr)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
[%Neq]=10-(518/T)-1.063-h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]−0.07[Ta]−0.18[V]−0.63[Zr]
The present inventors have further investigated the influence of the additive element, and found that when one or more of Ta, V, and Zr are added, pinhole formation can be particularly suppressed and the productivity is improved. did. The test was conducted by changing the test conditions for each element in various ways, and the effect was that the addition of the element increased the amount of δFe and the nitrogen solubility [% Neq] of the molten steel at the liquidus temperature as shown in the following formula. I found out that it was caused by In particular, an increase in nitrogen solubility [% Neq] of molten steel at the liquidus temperature is a notable finding, which means that it is possible to further increase the strength by increasing the nitrogen concentration. .
In order to obtain this effect, it is necessary to add at least one of Ta, V, and Zr at Ta: 0.05%, V: 0.02%, and Zr: 0.005%. On the other hand, if the addition exceeds the upper limit, hot workable cracks are generated due to high strength and the cost is increased, so the upper limits are Ta: 0.3%, V: 0.5%, Zr: 0.1, respectively. %.
δFe amount (%) = 2.9 (Cr + Mo + 0.3Si + 0.21Ta + 2.27V + 1.25Zr) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18
[% Neq] = 10- (518 / T) -1.063-h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu] −0.07 [Ta] −0.18 [V] −0.63 [Zr]

以下、本発明の効果を実施例により説明するが、本発明は実施例で示した条件に限定されるものではない。   Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions shown in the examples.

表1及び表2に示す化学成分で、残部がFeおよび不可避的な不純物からなる高N含有ステンレス鋼を真空誘導溶解炉で調製した後、170×800mm鋳型の試験連鋳機でスラブの製造を行った。   After preparing high N-containing stainless steel with the chemical composition shown in Table 1 and Table 2 with the balance consisting of Fe and inevitable impurities in a vacuum induction melting furnace, manufacture a slab with a 170 × 800 mm mold test continuous caster. went.

鋳造後の厚さ163mmのスラブ表面をグラインダーで約1mm研削した後に目視によってピンホールおよびパウダー巻き込みなどの発生個数を測定した。なお、測定は2m長さ全面で行った。   The surface of the slab having a thickness of 163 mm after casting was ground by about 1 mm with a grinder, and the number of pinholes and powder entrainment was visually measured. Note that the measurement was performed over the entire surface of 2 m.

鋳型内電磁撹拌を行うことにより、行わない場合に比べてピンホールの発生個数は大幅に減少することを確認した。   It was confirmed that the number of pinholes generated was significantly reduced by performing electromagnetic stirring in the mold as compared with the case where the stirring was not performed.

また、スラブを加熱温度は1180℃、仕上温度950℃で10mmまで熱間圧延し、空冷で常温まで冷却した後、鋼板表面の目視検査を実施し、表面疵の発生状況を確認した。ここでは○、△、×に分けて評価した。○は成品として全く問題がないもの、△は表面切削による手入れが必要なもの、×は不合格で使用できないものが発生したものである。   The slab was hot-rolled to 10 mm at a heating temperature of 1180 ° C. and a finishing temperature of 950 ° C., cooled to room temperature by air cooling, and then visually inspected on the surface of the steel sheet to confirm the occurrence of surface defects. Here, the evaluation was divided into ○, Δ, and ×. ○ indicates that there is no problem as a product, Δ indicates that care is required by surface cutting, and × indicates that the product is unacceptable and cannot be used.

また、表層近傍の介在物の調査は、前記熱間圧延後、C断面で表層1mmの範囲における幅20μm以上の介在物個数を測定することで行った。観察面積は200mm2とした。 Further, the inclusions in the vicinity of the surface layer were investigated by measuring the number of inclusions having a width of 20 μm or more in the range of 1 mm surface layer in the C cross section after the hot rolling. The observation area was 200 mm 2 .

スラブおよび鋼板の欠陥発生状況を前記のように評価した。本発明鋼のスラブ表面欠陥はほとんど認められず、鋼板における欠陥の発生はなく、全て○であった。また、参考例16〜18は、電磁攪拌を用いることなくスラブ、鋼板の欠陥が発生せず、また、電磁攪拌を行わなかったため表層の粗大介在物量が増加していることが分かる。   The state of occurrence of defects in the slab and steel plate was evaluated as described above. Almost no slab surface defects were found in the steel of the present invention, no defects were found in the steel sheet, and all were good. In addition, it can be seen that in Reference Examples 16 to 18, defects in the slab and the steel plate did not occur without using electromagnetic stirring, and the amount of coarse inclusions on the surface layer increased because electromagnetic stirring was not performed.

これに比べて比較鋼19はδFe値に対して、[%N]/[%Neq]が高すぎるため、ピンホールが発生した。比較鋼20はδFe値が低すぎるため、熱間加工割れによるヘゲ疵が発生した。比較鋼21は鋳型内の溶鋼流速が低く、ピンホールが発生した。また、表層の粗大介在物も増加している。比較鋼22は鋳型内の溶鋼流速が高すぎるため、パウダー巻き込みが発生した。比較鋼23はCが高すぎるため、δFe量が低く、熱間加工割れによるヘゲ疵が発生した。比較鋼24はSiが高すぎるため、熱間加工割れによるヘゲ疵が発生した。比較鋼25はMnが低すぎるため、[%N]/[%Neq]が大きく、ピンホールが発生した。比較鋼26はPが高すぎるため、熱間加工割れのヘゲ疵が発生した。比較鋼27はSが高すぎるため、熱間加工割れのヘゲ疵が発生した。比較鋼28はNiが高すぎるため、δFe量が低く、熱間加工割れによるヘゲ疵が発生した。比較鋼29はCrが低すぎるため、[%N]/[%Neq]が大きく、ピンホールが発生した。比較鋼30はAlが高すぎるため、介在物起因のヘゲ疵が発生した。比較鋼31はNが高すぎるため、[%N]/[%Neq]も大きく、ピンホールが発生した。比較鋼32はMoが高すぎるため、熱間加工割れによるヘゲ疵が発生した。比較鋼33はCuが高すぎるため、熱間加工割れのヘゲ疵が発生した。   In comparison, the comparative steel 19 had pinholes because [% N] / [% Neq] was too high relative to the δFe value. Since the comparative steel 20 had a δFe value that was too low, galling due to hot working cracks occurred. In comparative steel 21, the molten steel flow velocity in the mold was low, and pinholes were generated. In addition, coarse inclusions on the surface layer are increasing. Since the comparative steel 22 had a molten steel flow velocity in the mold that was too high, powder entrainment occurred. Since C was too high in the comparative steel 23, the amount of δFe was low, and galling due to hot work cracking occurred. Since comparative steel 24 was too high in Si, galling due to hot working cracks occurred. Since the comparative steel 25 had Mn too low, [% N] / [% Neq] was large and pinholes were generated. Since P was too high in the comparative steel 26, hot work cracks were generated. Since the comparative steel 27 had too high S, the hot work cracks were generated. Since comparative steel 28 was too high in Ni, the amount of δFe was low, and galling due to hot working cracks occurred. Since the comparative steel 29 had too low Cr, [% N] / [% Neq] was large and pinholes were generated. Since the comparative steel 30 was too high in Al, galling caused by inclusions occurred. Since N was too high in the comparative steel 31, [% N] / [% Neq] was also large and pinholes were generated. Since the comparative steel 32 has too high Mo, lashes due to hot working cracks occurred. Since the comparative steel 33 was too high in Cu, the hot work cracks were prone to occur.

表2に示す本発明鋼34〜42は、、Ta、V、Zr、の範囲が好ましい範囲を満足するため、鋳造欠陥、厚板欠陥とも良好であるが、比較鋼43〜48は、Ta、V、Zr、の範囲が好ましい範囲から外れるため、鋳造欠陥、厚板欠陥のいずれかが劣っていた。以上の実施例により本発明の効果が確認された。

Figure 0005801647
Figure 0005801647
Inventive steels 34 to 42 shown in Table 2 satisfy the preferable ranges of Ta, V, and Zr, so that both casting defects and thick plate defects are good, but comparative steels 43 to 48 are Ta, Since the ranges of V and Zr deviate from the preferred ranges, either casting defects or thick plate defects were inferior. The effects of the present invention were confirmed by the above examples.
Figure 0005801647
Figure 0005801647

Claims (3)

質量%で、C ;0.005%〜0.03%、
Si;0.8%以下、
Mn;0.1%〜7.0%、
P ;0.04%以下、
S ;0.002%以下、
Ni;1.0%〜13.0%、
Cr;17.0%〜26.0%、
Al;0.06%以下、
N ;0.10%〜0.30%、
Mo;0.05%〜4.0%、
Cu;0.05%〜3.5%、
を含有し、残部がFeおよび不可避不純物からなるステンレス鋼であって、
前記成分組成から算出されるδFe量(%)と、窒素濃度[%N]および液相線温度における溶鋼の窒素溶解度[%Neq]が、下記(a)式または(b)式を満足し、
且つ、該ステンレス鋼の表層1mmに存在する幅20μm以上の介在物個数が0.15個/mm以下であることを特徴とする耐表面疵性に優れた高N含有ステンレス鋼。
10%<δFe量では、
35≦[%N]/[%Neq]≦50 ・・・(a)
1%≦δFe量≦10% では、
−3.75×δFe量+72.5≦[%N]/[%Neq]
≦−3.75×δFe量+87.5 ・・・(b)
ここで、δFe量(%)=2.9(Cr+Mo+0.3Si)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
[%Neq]=10−(518/T)−1.063−h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]
% By mass, C; 0.005% to 0.03%,
Si: 0.8% or less,
Mn: 0.1% to 7.0%,
P: 0.04% or less,
S: 0.002% or less,
Ni: 1.0% to 13.0%,
Cr: 17.0% to 26.0%,
Al; 0.06% or less,
N: 0.10% to 0.30%,
Mo; 0.05% to 4.0%,
Cu: 0.05% to 3.5%,
Stainless steel comprising the balance Fe and inevitable impurities,
The amount of δFe (%) calculated from the component composition, the nitrogen concentration [% N] and the nitrogen solubility [% Neq] of the molten steel at the liquidus temperature satisfy the following formula (a) or (b):
A high N-containing stainless steel excellent in surface resistance, characterized in that the number of inclusions having a width of 20 μm or more present in a surface layer of 1 mm of the stainless steel is 0.15 / mm 2 or less.
For 10% <δFe amount,
35 ≦ [% N] / [% Neq] ≦ 50 (a)
1% ≦ δFe amount ≦ 10%
−3.75 × δFe amount + 72.5 ≦ [% N] / [% Neq]
≦ −3.75 × δFe amount + 87.5 (b)
Here, δFe amount (%) = 2.9 (Cr + Mo + 0.3Si) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18
[% Neq] = 10− (518 / T) −1.063−h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu]
質量%で、C ;0.005%〜0.03%、
Si;0.8%以下、
Mn;0.1%〜7.0%、
P ;0.04%以下、
S ;0.002%以下、
Ni;1.0%〜13.0%、
Cr;17.0%〜26.0%、
Al;0.06%以下、
N ;0.10%〜0.35%、
Mo;0.05%〜4.0%、
Cu;0.05%〜3.5%、
を含有し、
更に、Ta:0.05〜0.3%、V:0.02〜0.5%、及びZr:0.005〜0.1%の1種以上を含有し、
残部がFeおよび不可避不純物からなるステンレス鋼であって、
前記成分組成から算出されるδFe量(%)と、窒素濃度[%N]および液相線温度における溶鋼の窒素溶解度[%Neq]が、下記(a)式または(b)式を満足し、且つ、該ステンレス鋼の表層1mmに存在する幅20μm以上の介在物個数が0.15個/mm以下であることを特徴とする耐表面疵性に優れた高N含有ステンレス鋼。
10%<δFe量では、
35≦[%N]/[%Neq]≦50 ・・・(a)
1%≦δFe量≦10% では、
−3.75×δFe量+72.5≦[%N]/[%Neq]
≦−3.75×δFe量+87.5 ・・・(b)
ここで、δFe量(%)=2.9(Cr+Mo+0.3Si+0.21Ta+2.27V+1.25Zr)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
[%Neq]=10−(518/T)−1.063−h
T(K)=1525−86.8[C]−4.7[Si]−2.1[Mn]−34[P]−40[S]−0.8[Cr]−5.1[Ni]−3.1[Mo]−5[Cu]−36[N]+273.15
h=0.13[%C]+0.048[%Si]−0.02[%Mn]+0.059[%P]+0.007[%S]+0.007[%Ni]−0.046[%Cr]−0.025[%Mo]+0.009[%Cu]−0.07[Ta]−0.18[V]−0.63[Zr]
% By mass, C; 0.005% to 0.03%,
Si: 0.8% or less,
Mn: 0.1% to 7.0%,
P: 0.04% or less,
S: 0.002% or less,
Ni: 1.0% to 13.0%,
Cr: 17.0% to 26.0%,
Al; 0.06% or less,
N: 0.10% to 0.35%,
Mo; 0.05% to 4.0%,
Cu: 0.05% to 3.5%,
Containing
Furthermore, it contains one or more of Ta: 0.05 to 0.3%, V: 0.02 to 0.5%, and Zr: 0.005 to 0.1%,
The balance is stainless steel consisting of Fe and inevitable impurities,
The amount of δFe (%) calculated from the component composition, the nitrogen concentration [% N] and the nitrogen solubility [% Neq] of the molten steel at the liquidus temperature satisfy the following formula (a) or (b): A high N-containing stainless steel excellent in surface resistance, characterized in that the number of inclusions having a width of 20 μm or more present in a surface layer of 1 mm of the stainless steel is 0.15 / mm 2 or less.
For 10% <δFe amount,
35 ≦ [% N] / [% Neq] ≦ 50 (a)
1% ≦ δFe amount ≦ 10%
−3.75 × δFe amount + 72.5 ≦ [% N] / [% Neq]
≦ −3.75 × δFe amount + 87.5 (b)
Here, δFe amount (%) = 2.9 (Cr + Mo + 0.3Si + 0.21Ta + 2.27V + 1.25Zr) −2.6 (Ni + 0.3Mn + 0.25Cu + 35C + 20N) −18
[% Neq] = 10− (518 / T) −1.063−h
T (K) = 1525-86.8 [C] -4.7 [Si] -2.1 [Mn] -34 [P] -40 [S] -0.8 [Cr] -5.1 [Ni ] -3.1 [Mo] -5 [Cu] -36 [N] +273.15
h = 0.13 [% C] +0.048 [% Si] −0.02 [% Mn] +0.059 [% P] +0.007 [% S] +0.007 [% Ni] −0.046 [ % Cr] −0.025 [% Mo] +0.009 [% Cu] −0.07 [Ta] −0.18 [V] −0.63 [Zr]
請求項1又は2に記載の耐表面疵性に優れた高N含有ステンレス鋼の製造方法であって、前記成分組成および(a)式または(b)式を満足する溶鋼を鋳造する工程において、鋳型内ステンレス溶鋼の水平旋回流の流速V(cm/sec)が、10〜30(cm/sec)となるように電磁攪拌することを特徴とする高N含有フェライト系ステンレス鋼の製造方法。 The method for producing a high N-containing stainless steel excellent in surface resistance according to claim 1 or 2 , wherein the molten steel satisfying the component composition and the formula (a) or (b) is cast. A method for producing a high N-containing ferritic stainless steel, characterized by electromagnetic stirring so that a flow velocity V (cm / sec) of a horizontal swirling flow of stainless steel in a mold is 10 to 30 (cm / sec).
JP2011177366A 2011-03-17 2011-08-15 High N content stainless steel having excellent surface resistance and method for producing the same Active JP5801647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177366A JP5801647B2 (en) 2011-03-17 2011-08-15 High N content stainless steel having excellent surface resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011058625 2011-03-17
JP2011058625 2011-03-17
JP2011177366A JP5801647B2 (en) 2011-03-17 2011-08-15 High N content stainless steel having excellent surface resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012207301A JP2012207301A (en) 2012-10-25
JP5801647B2 true JP5801647B2 (en) 2015-10-28

Family

ID=47187288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177366A Active JP5801647B2 (en) 2011-03-17 2011-08-15 High N content stainless steel having excellent surface resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5801647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302793B2 (en) * 2013-09-11 2018-03-28 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
JP6200851B2 (en) * 2013-11-05 2017-09-20 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
CN108441599B (en) * 2018-03-15 2019-12-06 大冶特殊钢股份有限公司 Method for smelting nitrogen-containing stainless steel in vacuum induction furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266247B2 (en) * 1990-08-01 2002-03-18 日新製鋼株式会社 Duplex stainless steel with excellent hot workability
JPH08104920A (en) * 1994-10-07 1996-04-23 Sumitomo Metal Ind Ltd Production of high-strength austenitic stainless steel sheet
JP3152276B2 (en) * 1994-12-21 2001-04-03 住友金属工業株式会社 Continuous casting method of SUS304 stainless steel
JP3948825B2 (en) * 1998-05-12 2007-07-25 新日鐵住金ステンレス株式会社 Method for producing austenitic stainless steel sheet free from wrinkles during hot rolling
JP3445563B2 (en) * 1999-09-28 2003-09-08 日鉱金属株式会社 Fe-Cr-Ni alloy plate for electron gun electrode
JP5206239B2 (en) * 2008-08-29 2013-06-12 新日鐵住金株式会社 Continuous casting method of high N content duplex stainless steel

Also Published As

Publication number Publication date
JP2012207301A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP6169025B2 (en) Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
JP7408347B2 (en) High Ni alloy and method for producing high Ni alloy
JP5801647B2 (en) High N content stainless steel having excellent surface resistance and method for producing the same
JP2005298909A (en) Cast slab having reduced surface crack
JP7260731B2 (en) High purity steel and its refining method
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP6665658B2 (en) High strength steel plate
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP6455287B2 (en) Manufacturing method of continuous cast slab
JP2018015794A (en) Manufacturing method of low carbon steel thin slab, low carbon steel thin slab, and manufacturing method of low carbon steel thin steel sheet
JP5883257B2 (en) Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof
JP5818541B2 (en) Austenitic S-containing free-cutting stainless steel
JP4381954B2 (en) Austenitic stainless steel with excellent hot workability
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP5106153B2 (en) Stainless steel with excellent surface properties
JP2547139B2 (en) Method for controlling composition of non-metallic inclusions in steel
JP2017193757A (en) Thick steel sheet
JP2017193756A (en) Thick steel sheet
JP2006200032A (en) Low-carbon sulfur free-cutting steel
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250