JP5797879B2 - 光電センサ及び光通過時間原理により距離を測定する方法 - Google Patents

光電センサ及び光通過時間原理により距離を測定する方法 Download PDF

Info

Publication number
JP5797879B2
JP5797879B2 JP2009265090A JP2009265090A JP5797879B2 JP 5797879 B2 JP5797879 B2 JP 5797879B2 JP 2009265090 A JP2009265090 A JP 2009265090A JP 2009265090 A JP2009265090 A JP 2009265090A JP 5797879 B2 JP5797879 B2 JP 5797879B2
Authority
JP
Japan
Prior art keywords
time
light
sensor
signal
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009265090A
Other languages
English (en)
Other versions
JP2010122223A (ja
Inventor
ハイツマン ラインハルト
ハイツマン ラインハルト
フグ ゴットフリート
フグ ゴットフリート
マーラ マルティン
マーラ マルティン
トラビ バーラム
トラビ バーラム
Original Assignee
ジック アーゲー
ジック アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジック アーゲー, ジック アーゲー filed Critical ジック アーゲー
Publication of JP2010122223A publication Critical patent/JP2010122223A/ja
Application granted granted Critical
Publication of JP5797879B2 publication Critical patent/JP5797879B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、請求項1及び12のプレアンブルに記載の光通過時間原理により距離を測定する光電センサ及び方法に関するものである。
光電センサを使って対象物の距離は、公知の光通過時間法の原理により特定することができる。そのためにパルス通過時間法では短い光パルスを発光して、光パルスの拡散反射又は直反射を受光するまでの時間を測定する。また、位相法では発光を振幅変調し、発光と受光の間における位相シフトを特定するが、その場合には位相シフトが同じく光通過時間に対する尺度となる。後者の位相変調法は、特に戻り光の少ない目標物の時に長い集光時間を必要とすることから、眼を保護する必要がある場合にはあまり適したものではない。パルス法では高エネルギ密度の短いパルスを発光でき、それにより個別ショットに対して信号−雑音の割合を改善できることにより、利点を得ながら全体性能を利用することができる。
距離測定が例えば自動車の安全性、物流又は工場の自動化、又は安全技術で求められることがある。反射された光線をベースにする距離計は特に、リフレクタの距離変化若しくは光を拡散反射又は直反射する目標物の距離変化に反応することができる。特別な用途として、発光部及びリフレクタ間の間隔を監視する反射光シャッタがある。さらに光通過時間法は、移動光線により線又は面を測定する距離測定用レーザスキャナの基本原理でもある。
距離測定の分解能を数十mm程度の精度まで高める必要がある場合には、光通過時間を百ピコ秒のオーダーで正確に特定しなければならない。1mmの距離分解能を達成するためには、測定技術的に6ピコ秒を検知しなければならない。このような精度は、従来のシステムを使うと、非常にコストのかかるエレクトロニクス装置でのみ実現可能である。
FPGA(フィールド・プログラマブル・ゲート・アレイ)及び他のプログラム可能なデジタル論理素子の作動周波数は、数百MHzの範囲にあるのが代表的である。従って、ナノ秒を分解できてもピコ秒はできない。
従来の対応策は、受光した光パルスを使用可能な検知レートでデジタル化して、予想される受光パルス形態の補間により、検知レートで決まるものと比べて良好な分解能で状態それにより受光時点を規定することである。しかしこれは、その精度によって制限され、補間により比較的計算が多い。
特許文献1では、発光時点をシフトすることにより検知区分で決まるグレイニング(粒状化)を回避することが開示されている。そのために第一ステップで、受光パルスの移行条件が時間的に固定された区分点の範囲にくるまで発光時点の大まかな調整を検知区分で行い、引き続いて受光信号の最初のゼロ通過が区分点にくるまで発光時点を微調整する。光通過時間に対する測定値が必要な発光時間遅延である。好ましい実施形態では区分として、この方法は本来の使用前にのみティーチング段階で実施される。ゼロ通過がティーチングした区分点前後のいずれにあるかを、使用時に監視する。この情報から切り替えの発生を導き出すことができる。
この従来システムは、検知機能又はスイッチング機能がない距離測定にとっては幾つかの欠点がある。まず、ある範囲において、単に雑音現象が受光パルスに似ていたり、全く測定すべきでない前面ガラス等による反射光が存在した等の理由で、大まかな調整において間違った測定範囲を出力することがある。動的な状況となるとなおさらこのシステムでは扱うことができない。なぜなら、目標が動くと移行条件が満たされないにもかかわらず、その後に測定値の補正又は新しい測定が行われないからである。またこのシステムでは、たとえ変化した状況に合わせるようにするために例えばティーチングボタンを押したとしても、かなり面倒な方法で新しい目標を設定するために多くの時間を失うことになる。
DE 10 2007 013 714 A1号公報
本発明の課題は、光通過時間による距離測定方法を提供することであり、それは動的な状況でも使用できるものである。
この課題を、請求項1に記載の光電センサにより、及び請求項12に記載の光通過時間により距離を測定するための方法により解決する。
本発明による解決手段が前提にする原理は、例えば上記の従来技術のように測定値を特定し出力したらセンサがアクティブでなくなるというような一回だけの過程として、測定を考えるのではないということである。その代わりに使用可能な最新の情報を継続して利用し、それにより測定結果を最新の状態で維持する。
本発明が有する利点は、コントロールが測定を常に追跡するので、常に正確で有効な測定値を使用できることである。監視範囲における雑音や動きによるミスが回避される。コントローラが問題なく作動する。後続のコントロールがない一回だけの測定の場合でも、この手法の方が良いだろう。なぜなら、このコントロールアルゴリズムは、特許文献1で開示されているようなインターバルパケッティング又はシーケンシャルシフトと比べてはるかに短い時間で測定値を見つけ出すからである。コントローラがわずかなサイクルでジャンプすると、この時点から必要な発光遅延時間だけ経過した時点で、正確な距離測定値が得られる。ジャンプ中に既に近似値が特定されて、それに基づいてコントロールにより常により正確な測定値が求まる。
以上のコントロールにより、観察時点が発光時点に対して相対的に固定される。その選択は全く任意であって、測定とは無関係で規定される。観察時点は常に同じままであるが、それを変更することを本発明は基本的に禁じていない。この観察時点がコントロールにとって既知でありさえすればよく、許容できるように選択されている限り、それはコントロールにより変更されず、またコントロールに影響を与えない。例えば観察時点は、最大測定距離、次の光信号の発光より少し前の測定インターバルの終端、あるいはその一部分に配置される。こうして常に同じになる観察時間は、コントローラが設定する発光遅延時間(これはコントローラにとっての制御量である)と光通過時間の合計に等しいから、後者は簡単に特定することができる。電気的な信号通過時間のような所定の時間成分は、事前の較正により除去するのが最も良い。
解析ユニットは、各測定周期においてコントローラが発光遅延時間を介して規定する発光時点に光信号の発光を引き起こし、受光した信号を検知し、多数の測定周期にわたってこのよう受光した光信号のヒストグラムを累積するように構成されていると好ましく、それによりヒストグラムから受光時点を、更にそれから光通過時間を特定し、ヒストグラムで受光信号に対する移行条件の確認を行う。ヒストグラムで累積された受光信号が雑音ベースから際だっているので、測定が完全に可能である又は少なくともより正確になる。従って、この明細書では受光信号という用語を多くの場合、単一の発光信号に対する受光信号に使用するだけでなく、ヒストグラムで形成された累積受光信号に対しても使用する。
受光部と解析ユニットの間の受光パスに、単極の受光信号を二極信号に変換するためにフィルタ要素を設けており、そのとき移行条件が、特に二極信号の最初の最大値から最初の最小値へのゼロ通過を含んでいると好ましい。二極信号には(継続)周波も含まれる。移行条件は時間/距離軸上で、コントロール規定値ないし求める距離の値に相当する。フィルタは、解析ユニットのデジタル素子の一部とすることができるが、アナログ素子であると好ましい。なぜなら、そうでなければ、その前にあまりに多くの信号部分が無くなってしまい、精度に影響するからである。フィルタは、例えば微分器又はバンドパスとすることができる。別の複合した特性、即ちもっと後のゼロ通過又は転換点に関する移行条件を定義することも考えられる。更に、ゼロ通過の両側にある極値自体を採用することができるだろうが、その明確さはレベルに依存しているので頑強さに劣る。あるいは精度を更に向上するために、多数の特性ないしゼロ通過を採用することもできるだろう。
コントローラが移行条件を確認し発光遅延を追跡できるコントロール時間インターバルが、センサ測定範囲の一部のみに相当していると利点があり、そこで位置変化監視ユニットを設けており、それにより、どの時点に受光信号を受光するかを周期的に確認し、この時点がコントロール時間インターバル外にある場合にコントローラに新しいコントロール時間インターバルを設定する。従って、コントローラが、求められる測定値の周辺で常に作動する、つまり迅速に対応し、雑音信号の位置又はいつのまにか無くなった目標の位置に間違ってとどまることがない。受光信号を見つけ出すことは、この関連では検知区分においてのみ可能であり、そうせざるを得ないが、コントローラが有効な作動範囲を維持するために正確な測定は必要ない。例えば、第一ゼロ通過にジャンプする危険性なしでコントロールできるようにするために、コントロール時間インターバルを、それが受光信号の最初の降下フランクの単調な部分を含むように選ぶことができる。つまり、コントロール時間インターバルを先に規定することは発光遅延時間の大まかな設定を意味している。そのとき観察時点は変更されないが、初めに十分な間隔を有して選んでおけば、いずれにしてもそれは必要でない。この処置により新しい測定値へ非常に迅速に近づくことができる。
位置変化監視ユニット又は解析ユニットが、基準点としてまず雑音レベルを特定するように構成されていると好ましい。そのためにヒストグラムにおいて、ビンの全て又は一部を選んで調べることができる。
位置変化監視ユニットが、ある目印を手がかりに、特に極大から極小及びその逆向きに交互に振動しながらその都度降下する包絡線(特に対数的な包絡線)を形成するような変化を手がかりに、特に、受光信号を認識するように構成されていると好ましい。目印は関数変化の基本的な特徴を含んでおり、それにより全体の関数変化を使って比較するのとは対照的に速く演算でき、変動があっても認識が可能である。目印は、解析時間及び精度のどちらを重視するかによって、簡単でも複雑でもあり得る。それは雑音に強く、迅速に演算可能であり、誤認の可能性ができるだけ低いものであるべきである。従って、そのためにどれ位の数の交互振動が必要か、そして付属する包絡線の振幅をどれ位の精度で特定すべきかは、用途に応じて最適化することができる。その目印は全監視範囲にわたって、例えば多重反射により何度も見つけ出されることがある。それぞれ最も明確な目印がコントロール時間インターバルを特定することになり、それはしばしば、監視範囲で見つけられる最強の極大値で始まるものである。その目印は、コントローラが移行条件を見つけることができるように、選ばれ明確にされるべきである。
位置変化監視ユニットが、周期的な確認動作のそれぞれでコントローラにどのコントロール時間インターバルを設定したかを示す履歴を記憶して、それにより、この履歴の統計解析に従い受光信号のコントロール時間インターバルをコントローラに与えるように構成されていると好ましい。このようにすると、短時間又は一度限りの現象がさしあたり考慮の対象外となるので、急ぎすぎのジャンプが回避される。より良好なコントロール時間インターバルが幾分持続的に見つかると初めてコントローラの設定が変更される。そのとき実際のコントロール時間インターバルに、履歴の中でより高い統計的なウエイトで反映できる一定の慣性があると好ましい。統計解析により二つ又は多数のコントロール時間インターバルのどれを選ぶかを決定できない、又はほとんどできないときには特に、明白な決定を行うことができるまで直近のコントロール時間インターバルが優先されることになる。
位置変化監視ユニットがエージェント、即ち継続して又は規則的に配分された時間スリットで働きコントローラから独立したプロセスを有していると好ましく、エージェントが、光信号を実際に受光する有効なコントロール時間インターバルを見つけ出してコントローラに設定するという目標を有している。(ソフトウエア)エージェントが、本来のコントロールとコントロール時間インターバルの検出を切り離しているため、頑強で取り扱いが簡単である。エージェントは、最初に正しいコントロール時間を見つけることだけでなく、このコントロール時間インターバルを常に確認して場合により補正する、即ち結果として測定値を継続して追跡するという目標を有している。従って、エージェントは、上位レベルで監視範囲における動き及び雑音に反応し、求める受光信号又は求める目印を実際に探索するのに適したコントロール時間インターバルへコントローラを移動させる。プロセスの独立性は、実際に専用のハードウエアパス又は、ソフトウエア用語で言うところの独立のスレッド又はタスクの概念で実現することができる。ただし、これらは単に概念上でのみ意味を持つに過ぎない。実際のエージェントは、例えばコントローラの一部を周期的に呼び出すという形で実装される。
解析ユニットが、受光信号用の検知周期の倍数に相当する発光時間遅延を、コントローラに提供するように構成されていると好ましい。それにより発光時間遅延を、簡単な方法で大まかに全測定区間にわたって設定することができる。ここで倍数には0倍及び1倍も含んでおり、それにより実際に全ての検知点を達成することができる。検知区分に対する時間サイクルは、解析ユニットないしそれを組み込んでいるデジタル素子が大抵直接提供する。
別の実施形態により検知周期内の精度を更に向上することができる。まず時間ベースユニットを使って、検知周期以下の分解能でも光信号を実際に発光することが可能である。発光時間微調整によりこのグレイニング内でも尚、所謂得ようとする発光時間の、即ちグレイニングにより特定される時点に多数の発光信号により到達する有効発光時点の微調整が可能になる。3ステップで成立するそのシステムでは、最も細かいステップが分布により、第二ステップが、実際の発光信号用に可能性のある時点を規定する時間ベースユニットにより、検知区分により与えられている最も粗いステップが、多数の発光信号を生み出す。隙間なく最も細かい時間分解能で作動できるようにするためには、より細かいステップの時間インクリメントが、次に粗いステップの周期それぞれを満たさねばならない。同じく一つ以上の周期それぞれをカバーすることも考えられる。一方でより高い分解能を止める又は他方で、細かい時間インクリメントによりもっと長い時間インターバルを満たすための面倒な工数をいとわないときには、ステップの個々を廃止することができる。各ステップが次の粗いステップの周期のみを満たすと共に、全てのステップが存在する互いを関連付けた組み合わせが、最小の工程数で最高の分解能を与える。
対応して時間ベースユニットを設けていると好ましく、時間ベースユニットがDDSを有している、又は第一周波数の第一時間サイクル及び第一周波数とは等しくない第二周波数の第二時間サイクルから発光時間遅延を導き出し、それにより第一及び第二の周波数に合った差分周期により与えられる時間分解能をコントローラに提供するようにが構成されている。従って、両方の周波数がその都度どの周期にあるかを記録することにより、差分周期により精度が決まる時間インターバルを作り出すことができる。差分周期は周波数の差をわずかにすることにより非常に小さくできる。特に注意すべきことは、分解能が必ずしも差分周期に等しくないことである。二つの周波数の割合がn/(n+1)の時にこれが当て嵌まり、そのような割合も同じく好ましい。例えば3/8のような除数が異なる別の数字の例を見ると、確かに差分周波数5が精度を決めるがそれと同一ではない。なぜなら、そのようなシステムにおいても最小のオフセットが1であるからである。ここでオフセットが時間と共に単調に増加するのではないが、それを整理すると、一目瞭然のケースn/(n+1)と同様に、必要な全てのオフセットが存在する。以上の考察では単位を省略したが、各数に例えば10MHzの共通した基本周波数を乗じても、検討内容は変わらない。時間ベースユニットが、簡単な回路又はソフトウエアの解決手段を使ったコスト的に有利な方法を用いて、デジタル素子又は検知区分により最初に得られるより細かい時間区分で実際の発光時点を求めることを可能にする。得ようとする発光時点、即ちオフセット分布の重心がこの時間区分を更に細かくする。特にそれは倍数の分解能になる。
時間ベースユニットが、基準時点をも決定するマスターサイクルから第一周波数及び第二周波数を導き出し、第一周波数及び第二周波数を周期的にマスターサイクルに同期させるように構成されていると好ましい。それにより必要となるのは安定したサイクル発生部のみであり、両方の周波数が同期範囲を最大限にカバーして別々に進行する。そのとき、周期が理論的に一致しているはずだとすると、400MHz及び410MHzの例では即ち100ns毎、又は各n番目、即ち100nsの倍数で、毎回同期させることができる。
時間ベースユニットが、マスターサイクルの第一の除数を備えた第一周波数用の第一PLL、及びマスターサイクルの第二の除数を備えた第二周波数用の第二PLLを有しており、特に第一の除数及び第二の除数を、数百、数十、又は数ピコ秒の範囲でできるだけ小さい差分周波数ができるように選んでいると好ましい。数値例は、10MHzのマスターサイクル、及び除数ペア40/41である。PLLの安定性及び使用するデジタル素子の基準によっては、除数を更に大きくすることにより、もっと短い時間を設定することができる。両方の除数は互いで割れない数であり、好ましくはnとn+1の関係を満たすべきである。割り切れない数以外を選択すると、例えば5及び10の場合のように全く改善されないか、あるいは42及び40の場合のように十分に最適な改善に至らない。
解析ユニット及び/又は時間ベースユニットが、デジタル論理素子、特にFPGA(フィールド・プログラマブル・ゲート・アレイ)、PLD(プログラマブル・ロジック・デバイス)、ASIC(特定用途向け集積回路)、又はDSP(デジタル信号プロセッサ)の上に実装されていることが好ましい。このようなデジタル素子により、用途に適合した演算が可能となり、更に、例えばFPGAが設定可能な除数を備えたPLLを予め備えている場合には、必要な両周波数を簡単につくり出すことが可能になる。
時間ベースユニットが、第一ないし第二周波数の完全な周期を計数するために、第一カウンタ及び第二カウンタを有しており、これらのカウンタが特にトリガーされたシフトレジスタを有しており、時間ベースユニットが、第一周波数のn番目の周期と第二周波数のm番目の周期の間の時間インターバルとして時間シフトをつくり出すように構成されていることが好ましい。両周波数の特定周期のペアが、検知により決まる時間区分以下の時間インクリメントを作り出す。その周波数が上述のnとn+1の関係を満たす場合には、整理がより簡単である。ペアを使って一つの検知周期を満たすことができれば十分である。なぜなら、より長い時間は全検知周期の加算によりつくり出すことができるからである。しかし代替として、検知周期を越えるペアも演算することができる。各同期又は各n番目の同期のたびに、カウンタがリセットされる。
時間ベースユニットが、第一周波数、第二周波数、又はマスターサイクルの周期だけ時間シフトを延長するように構成されていると好ましい。それにより、より長い任意の時間シフトをつくり出すことができる。
時間ベースユニットの代替又は追加して使用することができる上述の最も細かいステップに従い、更に発光時間微調整ユニットを設けて、それが測定周期内で発光時点それぞれをオフセット分だけシフトするように構成されていると好ましく、そのときオフセットが分布を形成し、その重心が得ようとする発光時点を形成し、それを検知周期及び差分周波数と比べて良好である時間分解能、特に10ピコ秒以下それどころか1ピコ秒以下の時間分解能で選ぶことができる。
ここでは離散的な時間区分を更に細分化するのではなく、実際の時間区分にかかわらず時間的分解能を実際の分解能以上に向上する。そのとき、時間ベースユニットにより細分化された時間区分が、実際の発光時点にとって特に良好な出力状態である。発光された光信号の時間位置は個別のショットについては時間区分より改善されることはないが、個別ショットのグループに対しては非常に良好である。得ようとする発光時点、つまりは個別ショットグループの位相が、ビンのカウント数、従って実際には統計的な振幅情報を介して設定された重心を介して得られる。更に重心位置に対する自由度は繰り返しの数、即ち多数の測定周期にのみ依存しているので、原理的に無制限である。以上により時間精度が応答時間で補償されるが、大抵の用途では問題ではない。なぜなら、十分な数の繰り返しが非常に短い時間で行われるので、監視範囲又は目標をなおも準統計的なものとして仮定できるからである。それにより、各個別光信号の実際の発光時点を調整するための技術的な限界を克服している。有効な発光時点を実際上任意の精度で選ぶことができ、それにより最高の測定精度が可能になる。得ようとする発光時点が、デジタル化の時間区分又はデジタル素子の作動サイクルに依存しておらず、発光時点に対する最小のシフトにも依存していない。検知自体でピコ秒程度又はそれ以下の精度を達成するのは不可能であるか、非常に多数の工程を経てのみ達成可能である。本実施形態が結果として、デジタル素子の巧みなプログラミングを使って、即ち非常にコスト的に有利な手段で、この種の高価なハードウエアを廃止し、ないしはそのようなハードウエアの限界を克服することを可能にする。
ここで強調すべきことは、発光時点それぞれが絶対的ではなく、受光時点に対して相対的であると解釈することである。従って、別の観点から状況を考察し、それぞれシフトされた受光時点と呼んだり、受光時点微調整と呼んだりすることが十分に可能である。以下の説明及び請求項においてはこれを用語上区別しない。特に、測定結果に影響を与えることなく、発光時点と受光時点の間のインターバルを一体のものとしてそれぞれ時間的にシフトすることができる。従って、このように発光時点と受光時点を共通してシフトすることは、発光時間遅延を意味するものではなく、遅延は常にオプションで追加的に発生させることができる。同様に、オフセット又は発光時間遅延のような概念には、時間軸上の正負両方向のシフトが含まれている。
オフセットの分布が単峰で、特に三角形、放物線、又はガウスの関数により予め決定されていると好ましく、そのとき発光時間微調整ユニット用の表を保存したメモリーを設けており、その表が多数の時間インクリメント毎に、対応するオフセット分布、特に均等に配分された時間インクリメント毎にそれぞれ一つのオフセット分布を保持している。この種の分布は特に明確な重心を持ち、従って高い時間精度を有している。そのとき分布は、実際の発光時点に相当する幾つかのサンプリング点及び、付属するカウント数、即ち丁度このオフセットに対する繰り返し数それにより結果として振幅情報で形成される。そこででき上がる関数はビンをカバーする包絡線である。サンプリング点の数については、できるだけ分布を狭くしつつ、重心と包絡線を十分正確に形成できるような数を選ぶという妥協が必要となり、例えば3〜11個、又は好ましくは5〜7個である。そのとき基本的に重心の明確化が包絡線の真の再現より重要であるので、分布を規定する際には重心ではなく形状が犠牲となるように離散化誤差を考慮すると好ましい。
特にガウス形状の分布が好ましく、それは良好に決められた重心を有するだけでなく、ジッタに対しても強いからである。逆に、周囲光の変動やエレクトロニクス装置の誤差を考慮すると、ジッタは望ましくさえある。ジッタにより分布における離散的なサンプリング点が塗り潰され、発光された多数の光パルスが、非連続でガウス分布に近似するだけでなく、ほとんど連続したガウス分布を形成するからである。ジッタが白色ノイズに相当すると仮定した場合、ガウス分布は場合により幾分歪むが、その本質的な特性を維持している。
使用される表は正確に言えば複数の表から成る表である。つまり、分布により設定できる各時間インクリメント毎に、各サンプリング点におけるカウント数を記録した独自の表がそれぞれ保存されており、この表が分布を規定する。この分布のそれぞれに対して、時間インクリメントに対応して重心を上手く決めることが包絡線の真の形成と比べて重要であるという、上述のことが当て嵌まる。なぜなら、そもそも重心をシフトすれば測定誤差の混入が原理上避けられないからである。表を使うことにより発光時点を任意に、時間インクリメント分だけシフトすることができる。そのとき表には次の大まかな周期まで、即ち設定可能な実際の発光時点までの情報が入力されていれば十分であるが、基本的に更に多くの情報を入力しておいてもよい。
別の有利な構成ではレベル特定ユニットを設けており、前もって各ビンから雑音レベルを差し引いた後に特にビンについての数値合計を求めることにより、ヒストグラムで蓄積され記録された受光信号の面積をレベルの基準として利用するように、そのレベル特定ユニットが構成されている。雑音レベルは、例えば全てのビンにわたる平均値として特定できる。受光信号の数値合計は、必ずしも全体のヒストグラムについて求める必要はなく、受光信号のある時間範囲についてのみである。これはより良好な基準である。というのも、そうでなければ雑音に起因する変動がレベル測定に算入されるからである。逆に、全てのビンにわたって雑音レベルを形成するのではなく、受光信号の範囲を除いたビンにわたって、好ましくは光学的に見えない範囲で形成すると好ましい。
解析ユニットが距離補正用に構成されており、それが拡散反射に関係するずれをレベル測定に基づいて補償すると好ましい。そのために必要な拡散反射に関係する補正又は白黒の補正、即ち各レベルに光通過時間用の補正係数を規定する関係をまず記憶させ、表又は補正関数として保存することができる。光学素子の状態、例えば調整具合、汚れ、又は発光強度を調べるために、レベル測定値を解析することもできる。
更に解析ユニットが時間的なコーディングのために構成されていると好ましく、そこでは発光時点に追加のコーディングオフセットを合わせ、これを解析のために、特にランダムな又は決まった分布を混合したり、もしくは追加の重心シフトを行ったりすることにより、再び取り除く。この種のコーディングは、発光された光信号を妨害光と区別するために使用する。この妨害光は、自分が発光する光パルス又は同構造センサでの遅れた反射の場合がある。意図的に行われる、演算で補償可能な時間軸上でのジャンプ又は“ピンボケ”により、そのような妨害要因が塗り潰され、それが雑音レベルから突出しなくなるか、少なくとも弱くなる。代替又は追加として、受光時に自分の光信号を再認識できるようにするために、信号形態自体、即ち各個別光信号の形態をコーディングすることも可能である。
本発明による方法は、類似の方法で別の特徴により構成することができ、そのとき類似の利点を示す。その種の別の特徴を独立請求項に関連する従属請求項に記載しているが、例示的なものであって確定的ではない。
以下において本発明を、他の利点及び特徴も踏まえながら、添付の図面を参照して実施例を使って説明する。図面の各図は次を示している。
本発明による光電距離測定センサの非常に簡略化した概略ブロック図。 別の要素を加えた図1によるセンサのブロック回路図。 演算方法を説明するための、種々の処理段階にある信号の概略的図示。 デジタル信号演算のための、個々の処理ブロックの全体図示。 高分解能の時間ベースをつくり出すためのブロック回路図。 つくり出す時間ベースについて説明するための概略的な信号推移。 分解能を向上するための発光パターンの概略的図示。 高分解能にする時間インクリメント創出を説明するための図7に従う図示。 光信号の受光コントロールのベースとなる観察時点及び時間インターバルの図示。 図9によるコントロールを更に説明するための、図3に類似した図示。 観察時点が変化する正しいコントロール時間インターバルで上位に配置された監視エージェントを説明するための概略的な図示。 監視エージェントが変わらない妨害信号に対する例を有する図11による図示。 レベル測定を説明するための受光信号の図示。 測定範囲拡大及び/又は発光信号を受光信号に確実に関連付けるための発光パターンのコーディングの概略的な図示。
図1は、非常に簡略化して図示した光電距離計即ちセンサ10を示しており、それが発光部12を介して光パルスを、リフレクタ又は反射する目標物14に向かって送る。そこで直反射又は拡散反射された光線が、発光部12を取り囲む受光部16に戻る。光線はその経路で拡散するので、発光部12がカバーするのは反射される光のごくわずかな部分のみである。勿論、代替として公知の別の解決手段、例えばビームスプリッタ及び共通の光学系を備えたオートコリメータ、又は二つの個別光学系が設けられており発光部及び受光部が互いに隣接して配置されている瞳孔型配置を使用することもできる。
発光部12及び受光部16は、制御部18により制御及び評価される。制御部18が発光部12に、個々の光パルスを既知の時間に発光させる。必要な発光時間遅延をどのように達成するかは、以下で詳細に説明する。また制御部18が受光部16における光パルスの受光時点を特定する方法も、同様に後述する。受光時点と既知の発光時点から光通過時間が求まり、その時間と光の速度から目標14の距離が求まる。
センサ10に関しては少なくとも二つの手法が可能である。一つの手法では光通過時間、従って距離を絶対測定する。別の手法では特定の距離、例えば協同する固定目標までの距離を記憶させ、その間隔が変化するかどうかを監視する。
センサ10は、光電式検知器又は距離計とすることができる。対象物14までの距離に対する絶対値を求める本来の距離測定の他に、例えば事前に記憶させた、協同する固定目標14までの間隔の変化を監視することも考えられる。別の実施形態は反射光シャッタ、即ち発光部と対向して配置されたリフレクタを有する光シャッタであり、その場合にはそこで反射された光線の遮断を検知する。このリフレクタの距離又は距離変化を測定することにより、まだリフレクタが想定する位置に静止しているかを監視することができる。上述のセンサすべてが距離の値を出力又は表示することができ、若しくは特定距離にある物体を検知した時又は、想定する距離を外れた時にスイッチ動作を起こすスイッチとしても作動することができる。多数のセンサ10を組み合わせて、例えば距離を測定又は監視する光格子を形成することもできる。また、可動式のセンサ10を搭載した移動式のシステムや、発光された光パルスを方向転換ユニットにより動かして監視線又は監視面を走査するスキャンシステムも考えられる。この場合、方向転換ユニットは回転ミラー又はポリゴンミラーホイールとすることができる。
センサ10の詳細を図2で示す。ここでも以下と同じように、同じ参照符号が同じ特徴を表している。ここでは発光部の例としてレーザーダイオード12を図示している。レーザ光源14は、例えば端面発光レーザ又はVCEL(垂直共振器面発光レーザ)等、任意のものでよい。また、時間的に十分にシャープな信号を発生できる限り、別の光源、例えばLEDも原理的に適している。対する受光部として示したのはフォトダイオード16であるが、PSD(位置感応ダイオード)や、列状ないしマトリックス状の受光素子(例えばCMOSチップ)の使用も考えられる。即ち、光信号を電気信号に変換できる一般的な受光器ならどれでもよい。
ここに記載している本発明による実施形態では制御部が、FPGA(フィールド・プログラマブル・ゲート・アレイ)18に設けられている。代替のデジタル素子の例は既に挙げたが、それに限るものではない。制御部18は、発光時点調整部20及び本来の解析ユニット22を有している。信号を妨害なしで伝達できるようにするために、FPGA18の接続は区分して実施されている。切断線24で示した通り、目標物14は大抵、図2の尺度ではもっと離れている。
センサ10は、本来の発光部16の他にレーザ励振部26及び遅延装置20が属する発光パス、及びアナログの前処理部28を介して解析ユニット22にデジタル化された受光信号を送るフォトダイオード12が属する受光パスを有している。
アナログの前処理部28は多段ステップの処理パスを形成している。このパスは、増幅部30、例えば、フォトダイオード16の信号を受けて増幅するトランスインピーダンス増幅部で始まる。次に接続されているフィルタ32は、例えばバンドパスフィルタ又は微分器であり、単極の光信号を二極信号に変換する。次の前処理ステップとして設けられた制限増幅部34は、光信号パルスが飽和状態になった矩形パルスになるように、振幅を増幅した後に切り取る。そして前処理の最終段階として、前記信号がA/D変換部36、特に振幅をデジタルの数値ではなく専ら二値に変換する二値化部に送られる。A/D変換部36は、特殊な素子ではなく、FPGA18の入力部を介して前段に接続した簡単なアナログのR又はRCネットワークを使って実現すると好ましい。
以下、図3を参照して、上記の構成部品によるセンサ10の信号・演算パスを説明する。そのとき、多数の個別測定結果を統計的に解析することが好ましい。なぜなら、個々の測定信号には雑音が非常に多く混入しているため、信頼できる受光時点を特定できないからである。
発光部16が、各測定周期100においてそれぞれ、正確な時点の特定を可能にする光パルスを発生する。以下において更に説明するように、制御部18が、測定周期の一部(例えば1メートルの測定区間に相当する部分)のみを含むコントロール時間インターバル101を弁別する。光信号としては矩形パルスが適しているが、例えばガウスパルス、各信号をコード化して組み込むためのマルチモード信号、ステップのようなその他のパルスも考えられる。以下においては、これらの信号形態すべてを光パルスと呼ぶ。
光パルスは、センサ10の監視範囲において目標物14で直反射又は拡散反射されて、受光部12で電気信号に変換される。引き続いて電気信号は増幅部30で増幅される。図では発生する増幅電気信号102を理想化して描いているが、実際の条件では受光された光パルス102は明確な矩形にはならず、波形側面に過渡部分が生じ、更に全体に雑音が現れる。
光の性質上、増幅された電気的受光パルスは常に単極の信号となる。それがフィルタ32で二極信号104に変換される。これをバンドパスフィルタで実現することができるが、そのつくられた信号変化104は少なくとも近似的に、増幅された信号102を広げて導き出したものに相当する。図2では二極信号104の隣にグレーの矩形を図示しているが、それが雑音レベルを表すことになる。実際では雑音レベルが、増幅された信号102の振幅を上回ることがある。更に図では二極信号104の正弦波を1周期分だけ示している。後続の周波、即ち徐々に振幅が減衰するその後の正弦波周期は、図示を簡単にするために省いている。勿論、常に純粋の正弦波になるとは限らないが、最大値及び最小値を有する曲線になることが想定されている。
制限増幅部34では、本来の信号が矩形波面106になりグレーの矩形で図示した雑音レベルの振幅が全体のダイナミックレンジ以上に広がるように、二極信号104が増幅されて切断される。
矩形波面106が二値化部36で、例えば2.5nsの検知レートで検知される。この検知レートが図3では矢印108により表されている。発生するビット列は、記載している数値では2.5nsあたり各1ビットであるが、それがヒストグラム110を形成するために解析ユニット22で使用される。そのために各ビン毎に積算部が設けられており、それが対応するビット値が“1”の時にのみ累積計数される。なお、図の内容とは違うが、検知は必ずしもコントロール時間インターバル101に制限されない。
理想的で雑音のない信号の場合には、このヒストグラム110で矩形波面106が上にあるビンのみが満たされる。しかし、制限増幅部34により高くなった雑音レベルがその他のビンも満たす。厳密に言えば、雑音の偶然性のために、例えば測定区間100の二つ目毎にビンが満たされると期待される。
ここに記載した方法を反復して、測定周期100のk回分のヒストグラム108をつくると、ビンは雑音により約k/2の値で満たされ、それに統計的な変動が加わる。この値k/2は、二進化に基づく信号値ゼロzに相当する。それにより、二極信号104のプラス部分により形成される極大値が上方に、対応する極小値が下方に突出する。図示していない後続周波とともに、受光信号の時間インターバルにおけるヒストグラムは特徴的変化を示しており、解析ユニット22はその変化を目印として用いて受光時点を特定する。多数の個別測定を統計的に処理することで、雑音割合が高すぎて測定周期100での個別測定によっては信頼性ある距離の特定をできない時にも、受光時点の特定が可能になる。
上の例では例として検知レートを2.5nsにしているが、この制限があるため、ヒストグラム110で受光信号を直接求めるだけでは十分ではない。なぜなら、時間分解能が低すぎる可能性があるからである。図4は、時間分解能を例えばFPGA又はA/D変換部により決まる時間区分の精度以上に改良するという、本発明による処置についての全体図を示している。図4を見ると、多数の繋がったステップが示されている。この組み合わせで全体として最高の性能が発揮される。しかしながら、ステップの全部を同じように備えることは必ずしも必要ではない。部分的に選択するだけでも、従来のシステムと比べて測定精度が向上する。引き続いて別の図を使って、図4の全体図による各ステップを詳細に説明する。
発光時点調整部20は、時間ベースユニット38を有しており、それが、二つの周波数をベースにした方法を使って高分解能の時間ベースを提供する。その時間ベースを利用して、2.5nsの倍数より明らかに正確に、例えば60.975psの倍数で光パルスの発光を遅らせることができる。
更に発光時点調整部20は、発光時間微調整ユニット40を有しており、その中で多数の個別測定値を使って例えばガウス形状の発光パターンを形成することにより、実際に生じている発光時間遅延を、物理的に可能な発光時点と比べて、属する受光パターンの重心により理論的に任意に細分化する。即ち、時間ベースユニット38が直接的に分解能を変更し、その分解能が発光時間微調整ユニット40により、統計的な重心シフトを介して間接的に更に細分化される。
このように高分解能にした時間区分で測定領域に送られた光パルスが、受光されてA/D変換部36でデジタル化される。引き続いてヒストグラムユニット42で、図3にて説明したヒストグラム解析が行われる。
本来の距離特定はコントローラ/エージェント44で行われるが、ベースにするのは直接検知ではなく制御工学的なトラッキング原理であり、それにより、つくり出した時間分解能を効果的に利用する。そのとき一方で、求められる安定度基準を満たしていると共にセンサ10が例えば別の反射又はEMVによる妨害要因に対して変化しないように、コントロールパラメータを決めなければならない。一方、このようにすると、旧式のコントローラでは即応性が低すぎて、問題なく本当の目標変化に応答することができない。本発明が意図していることは、背景でエージェントを使ってコントローラを絶えず監視することである。エージェントが規則的にセンサ10の全作動範囲を評価して、目標変化時にコントローラを正しいコントロール時間インターバル101、即ち目標位置の時間範囲に制御する。
レベル特定ユニット46では、高分解能のレベル測定のためにヒストグラム110を解析することができる。それにより、一般的に使用される追加のアナログ素子をなくすことができる。しかもこのレベル特定は、特にコントロール原理との組み合わせで非常に正確である。そのレベルを出力することができるが、距離測定を補正するために利用することもできる。
明確に発光パルスを受光パルスに関連付けすることを可能にするために、発光パルスをコード化ユニット48にある時間軸でコード化して出力することができる。その後、デコードユニット46でデコードされるが、デコードユニットは図4では簡略化するためにレベル特定ユニットと一緒にしている。発光パターンのコード化を使うことにより、例えば受光パルスを背景から隠すことを達成できる、即ち、本来の配分された測定周期100の経過後に測定範囲外で受光されるようなものである。コード化により回避する取り違いの別の可能性は、同構造システムによる光パルスである。そのときガウス形状の発光パターンが、自然の順番ではなくランダム化された順番で発光され、受光される。デコードユニット46にはランダム化のキーが分かっており、それによりデコードすることができる。光信号パス上では同時に多数のコード符号が通過可能であるが、それは異なる区間部分がコード化により一意に特徴付けられているからである。
次に図5及び6を参照して、2.5nsの検知レートと関係なく、例えば60.975psの時間区分で時間ベースユニット30が時間インクリメントを提供する方法を詳細に説明する。
10MHzのマスターサイクル50から第一PLL(フェーズ・ロック・ループ)52及び第二PLL54において、マスターサイクル50の倍数としてf1=400MHzないしf2=410MHzの分割サイクルをつくり出す。時間ベースユニット38はPLL52,54の両周波数を受け取るとともに、同期のためにマスターサイクル50自体も受け取る。これらの周波数を時間ベースユニット38で合わせて、それらの位相の保存記録を利用して、時間インクリメントを再現可能な状態でつくることができる。第一PLL52の周波数400MHzは、同時にA/D変換部36用の検知レートとして使用する。
図6で分かるように、異なった二つの周波数400MHz及び410MHzの周期がずれを増大させながら通過して、100nsのマスターサイクル50の周期後に再度合致する。この時点にそれぞれ、理論的に同じ時点において上昇又は下降する波形側部(フランク)への同期が起き、それによりPLL52,54及びマスターサイクル50で場合により起きるずれが解消される。なお、図6は簡略化されており、本来必要な40ないし41周期の代わりに10ないし11周期のみを示している。
PLL52,54がFPGA18に含まれていると好ましい。しかし、PLLを使用せずに二つの周波数をつくり出すこともできる。勿論、マスター周波数を10MHz以外とし、上記の例の周波数f1=400MHz及びf2=410MHzとは別の周波数を用いる構成も本発明に含まれるが、その場合は、導き出した周波数の安定性とできるだけ短い差分周期間とのバランスを選択して見つけなければならない。この選択により少なくとも原理的にはピコ秒以下の範囲における時間区分を達成できる。
導出周波数f1及びf2の周期が、この周波数によりトリガーされるシフトレジスタで通算されるので、図6で図示しているように、あるフランクがどの周期に属しているかが時間ベースユニット38には分かっている。f1及びf2それぞれのi番目の周期の間の位相差が徐々に大きくなり、マスターサイクル50が1周期分進んだところでf2の41番目の周期がf1の40番目の周期と同時となる。この差を時間インクリメント又は時間バジェットの形態で、差異周期ΔT=1/f1−1/f2=60.975psの倍数として使用する。なお、図6では図示簡略化のために異なる数値10及び11を用いていることを再度確認されたい。
差分周期の任意の倍数をつくり出すために、時間ベースユニット38が、周波数f2のn番目の周期及び周波数f1のm番目の周期から成るペアを選ぶ。各ペアの位置はマスターサイクル50に対して固定されている。例えばn=2及びm=6が、4/f2+6ΔTの時間インターバルに相当する。ここで、1/f2=41ΔTである。その際、1μsの測定周期100を満たすために、マスターサイクルのフル周期を加算する。これは例えば、マスターサイクルとリンクし、上位レベルでタイミングをマスキングする制御ユニットにより行われる。そこでは、100ns経過して同期が起きるたびにカウンタがリセットされ、ペアの番号付けが最初から始まる。100ns経過後に同期時点を越えてf1及びf2の周期を更に計数する場合には、前記ペアもまた100nsより長い時間インターバルを直接規定することができる。ペアをはっきりと分離できるようにするためには、PLLによる場合のように、二つの導出周波数f1及びf2をマスターサイクルと確実にリンクさせる必要がある。
以上により、二つの導出周波数f1及びf2に基づいて、検知区分よりもはるかに細かい時間ベースを使用できる。これにより、基準時間と比べて差分周期の倍数だけ実際の発光時点を遅らせることができるか、又はペアの一つの要素が発光時点を定義し、別の要素がヒストグラム42における受光パターンの統計的な記録を開始する時点を定義することができる。それにより発光時点及び受光時点の間に、2.5nsという低速の検知区分とは関係がない時間的なずれが生じる。時間ベースユニット38は完全にFPGA18内で作動できるので、実装が容易であり、しかもノイズが生じにくい。
時間ベースユニット38によりつくられる時間インクリメントは、非連続であり、周波数を選択することにより決められている。従って、測定周期100内の個別測定の精度は、まず選択した周波数の差分周期により制限される。
図7及び8は、発光時間微調整部40を使って多数の個別測定に対する時間分解能を向上する方法を明らかにしている。そこでは、繰り返し動作のなかで、後続の測定周期100における発光時点が分布に基づいて変更される。包絡線56により、物理的に可能な離散的な発光時点により規定されている離散的なサンプリング点58のそれぞれに対応する頻度が得られる。この分布の重心により、実際に作用する発光時点が決まり、それがk回の測定周期100後のヒストグラム110に対する全体的な統計解析の基準となる。
しかしながらこの重心は、離散的な物理的発光時点又はサンプリング点58自体と関係がない。別の分布60、即ち同じ離散的なサンプリング点における別の頻度62を選択することにより、実際に作用する発光時点を理論的に任意に向上可能な精度で、離散的なサンプリング点58の間でも選択することができる。図7では、一つの分布56の実線で図示したサンプリング点58が、別の分布60の点線で図示したサンプリング点62に対してわずかにずれて示されている。これだけで明らかであるが、そこでは正にサンプリング点それぞれが、同じ離散的な物理的に可能な発光時点に関係付けられている。格子状のサンプリング点を、基準時点に対する可能なオフセットとして解釈し、それにより頻度をオフセット分布として解釈することができる。
図8は、どのようにこの方法で細かい時間インクリメントを定義できるかを具体的に示している。図8の左側では、時間インクリメントΔt=0に対する出力状態を図示しており、その状態ではブロック64として示す個別測定が分布を形成しており、その重心時間tCoMが正に基準時間trefに符合している。厳密に言えば、この場合にわざわざ分布を持ち出すことは不要である。なぜなら、離散的な時間区分を介して直接でも重心時間tCoMを得ることができるからである。
次の時間インクリメントに対しては、図8の中央及び右側の図に示したように、重心が幾分ずれた分布を選ぶ。そのために別のオフセットを有する幾つかの個別測定を実施する。例えばそれぞれ矢印66で明示しているように、三つの個別測定結果を右方にずらす。勿論、三つとは異なる別の数を選ぶことが考えられ、そのときシフトされた個別測定結果の一つだけが、可能な最小の時間インクリメントを規定する。段階的に数を変えると、生じる時間の格子は不規則である。
同様に、基準時間trefに対する重心時点tCoMのずれがΔt、Δt、...と増加する多数の分布を規定することができる。二つのサンプリング点間のインターバルを満たすような分布の表を使って、サンプリング点の離散的な時間区分が分布及びそれに付属する重心時間tCoMにより細分化される。発光時間微調整部40は、この表にアクセスすることにより、所望の時間インクリメントを有する発光パターンを出力し、それにより、得ようとする又は実際に作用する発光時点を、離散的なサンプリング点とは関係なく得ることができる。
包絡線56,60により規定される分布は、重心の近くでより大きな値を有する必要がある。従って、ベースラインが広くなりすぎないように、例えば三角形、放物線、又はガウス曲線のような標準偏差の小さい単峰の分布が好ましい。この場合、サンプリング点の数はわずかでよい。フランクが急激に降下しないことが必要になるので、ガウス形状が好ましい。
この方法ではシステムにおけるある程度の雑音が役立つ。なぜなら、サンプリング点がある程度相互に塗り潰されて、包絡線56,60に近い滑らかな形状を呈するからである。完全に雑音のないシステムでは、離散的なサンプリング点に起因する人為的な特徴が受光パターンに現れる。一般に妨害信号はガウス雑音に近いものとなるので、その意味でも包絡線56,60にはガウス分布が好ましい。
達成可能な分解能向上は最終的に、形成するヒストグラム110に含まれる個別測定数kに依存している。測定回数を増やすほど、図8で図示しているように追加の時間インクリメントを決める可能性が広がる。例えば数百の繰り返し時には、距離測定値を使用できるまでの応答時間はまだ測定周期100数百個分程度であり、即ち図3の数値を使えば数百μsである。それにより既に概ね二桁レベルの分解能向上を達成できる。サンプリング点の離散的時間区分が時間ベースユニット38により、例えば60.975psで規定されていると、サブピコ秒の分解能が可能になる。
離散的な時間区分の細分化は先に紹介した二つの方法により可能であるが、それでもまだヒストグラム110の分解能自体が、A/D変換部36の検知レートにより制限されているという問題がある。そこで分解能向上により十分にメリット得ることができるようにするために、本発明では受光時点を高精度で特定しようとするのではなく、それを最初から観察時点として規定して、受光時点がこの観察時点と一致するまで発光時間の遅延を調整する。
このコントロールを図9及び10で具体的に示す。まず測定周期100内の何処かで検知格子のポイントに観察時点tControlを設定する。このポイントは、測定されうる最大の光通過時間より後ろで選択する(例えば測定周期100の中央の0.5μs又は約75mの点)。時間ベースユニット38及び/又は発光時間微調整ユニット40を使って光パルスを、時点tSendに発光パルスが実際に発光される前に、共通の基準時間tStartに対して発光時間遅延分だけ遅らせる。本来の測定量である光通過時間の後に、再び光パルスが時点tReceiveにおいて受光される。コントロールの目的は、常にtReceiveがtControlと符合するように、フィードバックサイクルで発光時間遅延を調整することであり、それをハッチングしたブロック67a,bの組み替えにより図示している。
簡単な減算により光通過時間は計算できる。時間インターバルtControl−tStartは予め選んだ既知の定数であり、それは作動状態で発光時間遅延だけ光通過時間とは異なっている。別の定数的な部分、例えばエレクトロニクス回路における信号通過時間は、較正により排除又は計算時に考慮することができる。この部分に対しては場合により温度補償も必要である。
フィードバックのためにはコントローラが、受光時点tReceiveが観察時点tControlと一致するかどうか高精度で認識できなければならない。図3と大部分が一致する図10が、これを図示している。太い矢印が観察時点を示している。受光時点を規定する移行条件として、ヒストグラム110として示した受光信号の最初の極大値から最初の極小値までゼロ通過を監視する。勿論、別の特性も評価できるが、最初のゼロ通過が最も特徴がはっきりしており、極値自体とは違って信号レベルへの依存度が非常に低い。
図10でハッチングした矩形70は、図9のハッチングした矩形67a,67bに相当しており、理想的な移行位置からの偏差を示している。これは即ち、コントロール偏差量の尺度であり、不可欠な発光時間遅延適合化を計算するための基礎である。信号移行tReceiveが観察時点tControlの近くにあるならば、少なくとも理想的なシステムでは発光時間遅延の追従制御により、このコントロール偏差をゼロに調整できる。
そのコントロール部はFPGAにデジタルで設けられており、それによりヒストグラム110にアクセスできる。コントロール方法自体は各公知の種類、例えばカルマンベースのコントロールが利用可能であり、又はコントローラがPI又はPIDコントローラである。
コントローラが、全測定周期100ではなくコントロール時間インターバル101内のみで作動すると好ましく、多数の潜在的な目標14を含まないために、これを十分に小さくすることが、コントロールミスを防ぐために有利である。信号移行tReceiveがこのコントロール時間インターバル101にない場合には、コントローラがコントロール偏差70を特定できない。従って、上位レベルにエージェントを設けており、それがヒストグラム110で全測定範囲にわたって潜在的な目標14を探す。エージェントは独自のプロセスであるか、又はそれを周期的に呼び出すコントロール部から少なくとも概念的に分離しており、コントロール部の上位に配置されている。また、コントロール時間インターバル101を測定周期100のように広く選ぶと、コントローラ自体が目標変化を簡単には識別できない。なぜなら、それが部分的な極値で収斂し、そこから自動的に離れなくなる恐れがあるからである。
エージェントが、完全なパターン比較を使って受光信号を認識しないことが好ましい。なぜなら、この方法は雑音に敏感過ぎるからである。代わりに、例えば最大振幅が正から負及びその逆に交互に規則的に移行することにより生じる目印を探す。そのような符号変化を多く監視すればするほど、その目印がより高い要求に対応可能となる。そうすれば、絶対値の対数的な降下を維持するというような別の要求基準を定めることが考えられる。これらの模範的な目印は、単純な発光パルスから発生する正及び負の信号部分を有する簡単な周波に当てはまる。システムを外乱又は同構造のシステムに対して強くするために複雑な発光信号が考えられるが、その場合はそれに応じて適切な目印を選ぶ。
図11は目標変化の例を示している。コントロール時間インターバル101がまず信号72に設定されており、コントローラが観察時点をその最初のゼロ通過に調整している。しかし上位配置されたエージェントがその間に、より特徴のある信号74を見つけ出した。目標変更を実施するためにエージェントが時間差76を計算して、コントロール時間インターバル101をシフトすることにより、即ち発光時間遅延を時間差76に合わせることにより、コントローラを新しい信号74にセットする。図11で示しているように、エージェントが正確な時間差76を計算する必要はなく、コントロール時間インターバル101を大まかに信号74近辺に選定するだけで十分であり、そうすればコントローラが正確な新しい受光時点に調整できる。
そのような位置又は目標の置き換えのためには、多数の条件を満たす必要がある。まず、要求された目印を有する実際の信号がどこにあるかを調べる。そのとき、予め簡単な閾値評価で前もって選別することできる。理想的にはk/2にある雑音レベルを、ヒストグラム110又はその一部にわたる中央値の形成により考慮する。引き続いて、そのようにして見つけ出した潜在的な目標の最大振幅を比較する。より大きな振幅を有する潜在的な目標が実際のコントロール時間インターバルの外側にある場合に、この潜在的な目標がエージェントから見た本来の最新の目標14を示している。しかしながら、特異な現象又はエージェントの誤解釈による無用のジャンプを防ぐため、エージェントは、潜在的な目標の履歴を、消滅時間を規定した上で、例えば待ち行列で記録する。この履歴の中で新しい目標が統計的に顕著に積み上がって初めて、例えば履歴の中で8つのケースのうち5つにおいて特定の目標が選択されるであろう時に、エージェントが実際に目標変更を行う。このようにすることでシステムが問題なく新しい位置に変更でき、それにより非常に低い信号レベルに至るまで測定でき、妨害信号にも強くなる。
図12は潜在的な目標の二つのケースを示しており、それは上述の基準の少なくとも一つを満たしておらず、目標変更も引き起こさない。実際にある目標14の信号72の他に、それぞれ信号78及び80による別の潜在的な目標が記載されている。信号78も前記目印の条件を満たしているが、振幅が小さいので選択されない。その場合には更に振幅を距離補正することができる。信号80は既に前記目印の条件を満たしていないので、直ちに妨害信号と認識される。
受光信号104ないしヒストグラム110は、時間的位置に関する距離情報に加えて、面積に関するレベル情報も信号に含んでいる。直線的に考慮するときには、レベルが周波の下の総面積に比例している。即ち、別の評価を介して簡単な方法でレベル測定値を使用できる。図13は受光信号82の変化を、後続周波を含めて示している。他の図では簡単化のために省いているが、この後続周波と共に受光信号82が対数的に減衰する。他の多くの図におけるように、太い矢印が検知区分108内にある観察時点を示しており、その時点に受光信号82の最初のゼロ通過が調整されている。検知ポイント108における信号振幅84の積算値がレベルの尺度である。
ゼロ通過点が検知ポイント上にあり、更に光パルスがちょうど5nsの長さ、即ち検知レートの倍数を有するように、受光信号82の位置をコントロールしているので、他のゼロ通過点も正に検知ポイント上にある。このようにヒストグラム108を固定することで、検知レートが低いにもかかわらず良好なレベル情報を導き出すことができることになる。なぜなら、ゼロ通過自体は何も貢献せず、極値がそれぞれ中央、それにより検知ポイント上にあるので、特に意味のある振幅情報のみがレベル測定に含まれるからである。
受光パルス102をアナログの前処理部28で弱い共振挙動を示すように形成して、更にフィルタ32の後に制限増幅部34を接続すると、レベル測定のダイナミックレンジが著しく向上する。
レベル測定値は外部へ出力できるだけではなく、レベルに依存する距離の保存記録の補正にもレベル情報を利用することができる。白黒シフトの名で知られているこの効果があるため、特定された受光時間は強度への依存性を示すことになる。その依存関係を最初に記憶させておく又は補正計算で考慮すると、求めた距離を補償し、広い強度範囲にわたってレベルと無関係にすることができる。
レベル情報は更に、システムの光学系部品の調整のためにも使用することができる。例えば汚れ又は調整不良を検知したり、光センサ12の性能を適合化したりすることができる。
センサ10がヒストグラム110で妨害信号を蓄積し、測定ミスに至ることが考えられる。特に測定範囲の向かい側で反射される自己発光パルスに対する受光信号、又は同じ構造のシステムから発せられる光パルスの受光が問題となる。従って、自ら発した特定の発光パターンに受光信号を分類できることが望まれる。そのためにエンコーダー46及びデコーダ48を使用し、補償可能なずれを時間軸上で追加的につくり出して、後で元に戻す。このような時間のずれを作ると、時間的に一定である妨害因子が平均化により塗り潰されるという効果も得られる。その理由は、時間的なコード化により妨害因子と時間との固定的な関係が無くなり、妨害因子がその都度異なるビンに記録されるからである。
時間的なコード化の方法として、特に図14に示した2つを検討する。まず、各測定周期100において重点位置をΔt...Δtだけシフトする。本来の測定受光信号のみが、この任意で迅速な重点位置シフトに従うので、妨害因子をしたり直接求めたりすることができる。
測定範囲を拡張したり、あるいは例えば多重反射又は同じ構造のシステムによるシステム的な妨害がある場合、重点シフトでは必ずしも十分ではない。それゆえ、代替又は追加として、ガウス形状を発光時間微調整ユニット40でつくり出す順番を変更することがある。この順番はヒストグラム110作成のためには重要ではなく、そこで蓄積されるのみである。この自由度を利用して、各コード1...nを使うことにより別の順番を選び、これを図14で例示的に番号を付けた発光パルス86で図示している。このようにすれば、受光された発光パターンがどの部分範囲に属しているかがコード化を介して明らかであるので、測定範囲を測定周期100の倍数に拡張することが特に可能である。
時間的な変化はランダム化してもよく、あるいは決めてしまってもよいある。ランダム化には、同一構造のシステムを区別できるという利点がある。シフトをランダム化した場合にも勿論、デコーダ46が、それを補償できるようにするためにオフセット情報を得なければならない。
以上、全体図4にある個々の要素を説明した。上記説明ではセンサ10を全体的に記述したが、個々の特徴グループを互いに独立させても有効に利用することができる。例えばガウス形状の発光パターンが、二つの周波数により発生した実際の発光時点を更に細分化する。しかし両方の処置は、それだけでも分解能を向上させる。それにより、この特徴グループ及び別の特徴グループを具体的な実施形態での説明とは異なる形で、特に図示した範囲を越えて組み合わせることもできる。

Claims (15)

  1. 光通過時間原理により距離を測定する光電センサ(10)であって、光信号を発光する発光部(12)、直反射又は拡散反射された受光信号を受光する受光部(16)、及び解析ユニット(18)を備えており、
    前記解析ユニットが、測定周期(100)内において離散的な複数の時点のいずれかを基準時点として選択し、該基準時点よりも発光遅延時間だけ遅れた時点に光信号の発光を引き起こし、受光した光信号の受光時点を特定し、該受光時点から光通過時間を計算するように構成されている
    センサにおいて、
    前記測定周期(100)内において離散的な複数の時点のいずれかを観察時点として選択し、前記受光時点が前記観察時点と一致するように前記発光遅延時間をフィードバック処理により調整するように構成されているコントローラ(44)が設けられていること
    を特徴とするセンサ。
  2. 請求項1に記載のセンサ(10)において、
    解析ユニット(18)が、各測定周期(100)においてコントローラ(44)により発光遅延時間を介して規定された発光時点に光信号の発光を引き起こすとともに受光した光信号をサンプリングし、複数の測定周期(100)にわたってこのように受光した光信号のヒストグラム(110)を累積し、該ヒストグラム(110)から受光時点を特定し、更に該受光時点から光通過時間を特定するように構成されていることを特徴とするセンサ。
  3. 請求項1又は2に記載のセンサ(10)において、
    受光部(16)と解析ユニット(18)の間の受光パスに、単極の受光信号を二極信号に変換するためにフィルタ要素(32)が設けられていることを特徴とするセンサ。
  4. 請求項1〜3のいずれかに記載のセンサ(10)において、
    コントローラ(44)が発光遅延時間を調整できるコントロール時間インターバル(101)が、センサの(10)測定範囲の一部のみに相当しており、位置変化監視ユニット(44)が設けられており、それにより、どの時点に受光信号を受けるかを周期的に確認し、この時点がコントロール時間インターバル(101)外にある場合に、コントローラ(44)に新しいコントロール時間インターバル(101)を設定することを特徴とするセンサ。
  5. 請求項4に記載のセンサ(10)において、
    位置変化監視ユニット(44)が、極大から極小及びその逆向きに交互に振動しながらその都度降下する包絡線を形成するような変化を手がかりに、受光信号を認識するように構成されていることを特徴とするセンサ。
  6. 請求項4又は5に記載のセンサ(10)において、
    位置変化監視ユニット(44)が、周期的な確認動作のそれぞれでコントローラ(44)にどのようなコントロール時間インターバル(101)を設定したかを示す履歴を記憶して、この履歴の統計解析に従い受光信号のコントロール時間インターバル(101)をコントローラ(44)に与えるように構成されていることを特徴とするセンサ。
  7. 請求項4〜6のいずれかに記載のセンサ(10)において、
    位置変化監視ユニット(44)がエージェント、即ち継続して又は規則的に配分された時間スリットで働きコントローラ(44)から独立したプロセスを有しており、そのときエージェントが、光信号を実際に受光する有効なコントロール時間インターバル(101)を見つけ出してコントローラ(44)に設定するという目標を有していることを特徴とするセンサ。
  8. 請求項1〜7のいずれかに記載のセンサ(10)において、
    解析ユニット(18)が、受光信号用のサンプリング周期の倍数に相当する発光時間遅延をコントローラ(44)に提供するように構成されていることを特徴とするセンサ。
  9. 請求項1〜8のいずれかに記載のセンサ(10)において、
    時間ベースユニット(38)が設けられており、時間ベースユニットがDDSを有している、又は第一周波数(f1)の第一時間サイクル及び第一周波数(f1)とは等しくない第二周波数(f2)の第二時間サイクルから発光時間遅延を導き出し、第一及び第二の周波数(f1,f2)の差分から導き出される差分周期により与えられる時間分解能で発光時間遅延をコントローラ(44)に提供するように構成されていることを特徴とするセンサ。
  10. 請求項1〜9のいずれかに記載のセンサ(10)において、
    発光時間微調整ユニット(40)が設けられており、それが測定周期(100)内で発光時点それぞれをオフセットだけシフトするように構成されており、そのときオフセットが分布(56,60)を形成し、その重心が得ようとする発光時点を形成し、それをサンプリング周期及び差分周期と比べて良好である時間的な分解能で選ぶことができることを特徴とするセンサ。
  11. 請求項10に記載のセンサ(10)において、
    オフセットの分布(56,60)が単峰であり、発光時間微調整ユニット(40)用の表を保存したメモリーが設けられており、表が多数の時間インクリメント毎に、対応するオフセット分布を保持していることを特徴とするセンサ。
  12. 光信号を発光し直反射又は拡散反射された光信号を受光する光通過時間原理により、距離又は距離変化を測定する方法であって、
    測定周期(100)内において離散的な複数の時点のいずれかを基準時点として選択し、該基準時点よりも発光遅延時間だけ遅れた時点に光信号の発光を引き起こし、受光した光信号の受光時点を特定し、該受光時点から光通過時間を計算する方法において、
    前記測定周期(100)内において離散的な複数の時点のいずれかが観察時点として選択され、前記受光時点が前記観察時点と一致するように、コントロー(44)を使ったフィードバック処理によって前記発光遅延時間が調整されることを特徴とする方法。
  13. 請求項12に記載の方法において、
    コントローラ(44)が発光遅延時間を調整できるコントロール時間インターバル(101)が、センサ(10)の測定範囲の一部のみに相当しており、どの時点に受光信号を受光するかを周期的に確認し、その時点がコントロール時間インターバル(101)外にある場合にコントローラ(44)に新しいコントロール時間インターバル(101)を与えることを特徴とする方法。
  14. 請求項12又は13に記載の方法において、
    周期的な確認動作のそれぞれでコントローラ(44)にどのようなコントロール時間インターバル(101)を設定したかを示す履歴を記憶して、この履歴の統計解析に従い受光信号のコントロール時間インターバル(101)をコントローラ(44)に与えることを特徴とする方法。
  15. 請求項12〜14のいずれかに記載の方法において、
    周期的な確認がエージェント、即ち継続して又は規則的に配分された時間スリットで働きコントローラ(44)から独立したプロセスにより行われ、該エージェントが、光信号を受光する有効なコントロール時間インターバル(101)を見つけ出してコントローラ(44)に設定するという目標を有していることを特徴とする方法。
JP2009265090A 2008-11-21 2009-11-20 光電センサ及び光通過時間原理により距離を測定する方法 Expired - Fee Related JP5797879B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08105846.3 2008-11-21
EP08105846A EP2189814B1 (de) 2008-11-21 2008-11-21 Optoelektronischer Sensor und Verfahren zur Messung von Entfernungen nach dem Lichtlaufzeitprinzip

Publications (2)

Publication Number Publication Date
JP2010122223A JP2010122223A (ja) 2010-06-03
JP5797879B2 true JP5797879B2 (ja) 2015-10-21

Family

ID=40260417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265090A Expired - Fee Related JP5797879B2 (ja) 2008-11-21 2009-11-20 光電センサ及び光通過時間原理により距離を測定する方法

Country Status (7)

Country Link
US (1) US8625080B2 (ja)
EP (1) EP2189814B1 (ja)
JP (1) JP5797879B2 (ja)
AT (1) ATE475110T1 (ja)
DE (1) DE502008001000D1 (ja)
DK (1) DK2189814T3 (ja)
ES (1) ES2348823T3 (ja)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008001493D1 (de) * 2008-11-21 2010-11-18 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung von Entfernungen nach dem Lichtlaufzeitprinzip
EP2315045B1 (de) * 2009-10-22 2012-08-01 Sick Ag Messung von Entfernungen oder Entfernungsänderungen
US20130107243A1 (en) * 2010-05-03 2013-05-02 Irvine Sensors Corporation Fast, High Resolution 3-D Flash LADAR Imager
DE102010064682B3 (de) 2010-12-21 2022-07-07 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
DE102010061382B4 (de) 2010-12-21 2019-02-14 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
AT510296B1 (de) * 2010-12-21 2012-03-15 Riegl Laser Measurement Sys Verfahren zur entfernungsmessung mittels laserimpulsen
EP2479586B1 (de) 2011-01-19 2014-03-19 Sick AG Verfahren zur Abschätzung eines Verunreinigungsgrads einer Frontscheibe einer optischen Erfassungsvorrichtung und optische Erfassungsvorrichtung
DE102011053212B3 (de) * 2011-09-02 2012-10-04 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
KR102017688B1 (ko) * 2012-07-18 2019-09-04 삼성전자주식회사 반사광의 광량 변화를 이용한 근접 센서
US9857166B2 (en) * 2012-09-19 2018-01-02 Canon Kabushiki Kaisha Information processing apparatus and method for measuring a target object
EP2735887B1 (de) 2012-11-22 2015-06-03 Sick Ag Optische Erfassungsvorrichtung
EP2846173B1 (en) 2013-09-09 2019-06-19 Trimble AB Ambiguity compensation in time-of-flight ranging
DE102013114737A1 (de) * 2013-12-20 2015-06-25 Endress + Hauser Gmbh + Co. Kg Laser-basierte Füllstandsmessvorrichtung
DE102014100696B3 (de) 2014-01-22 2014-12-31 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
US9606228B1 (en) 2014-02-20 2017-03-28 Banner Engineering Corporation High-precision digital time-of-flight measurement with coarse delay elements
DE102014106465C5 (de) * 2014-05-08 2018-06-28 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
US9823352B2 (en) 2014-10-31 2017-11-21 Rockwell Automation Safety Ag Absolute distance measurement for time-of-flight sensors
DE102014017490A1 (de) * 2014-11-27 2016-06-02 Jenoptik Optical Systems Gmbh Vorrichtung und Verfahren zum Erfassen eines Inhaltes eines mit einer Flüssigkeit und/oder einem Granulat befüllbaren Behälters und/oder zur Erfassung der Größe eines befüllbaren Behälters, Befülleinrichtung zum Befüllen eines Behälters mit einer Flüssigkeit und/oder einem Granulat und Verwenden von Strahlung einer Reflexionslichtschranke zum Erfassen eines Füllstands einer Flüssigkeit und/oder eines Granulate in einem Behälter ....
EP3059608B1 (de) * 2015-02-20 2016-11-30 Sick Ag Optoelektronischer sensor und verfahren zur erfassung von objekten
EP3081960B1 (en) * 2015-04-13 2023-03-22 Rockwell Automation Switzerland GmbH Time-of-flight safety photoelectric barrier and method of monitoring a protective field
US10557939B2 (en) 2015-10-19 2020-02-11 Luminar Technologies, Inc. Lidar system with improved signal-to-noise ratio in the presence of solar background noise
CN108369274B (zh) 2015-11-05 2022-09-13 路明亮有限责任公司 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统
EP3411660A4 (en) 2015-11-30 2019-11-27 Luminar Technologies, Inc. LIDAR SYSTEM WITH DISTRIBUTED LASER AND MULTIPLE SENSOR HEADS AND PULSED LASER FOR LIDAR SYSTEM
US11585905B2 (en) 2016-05-03 2023-02-21 Datalogic Ip Tech S.R.L. Laser scanner
US10048120B2 (en) 2016-05-03 2018-08-14 Datalogic IP Tech, S.r.l. Laser scanner and optical system
US9964437B2 (en) 2016-05-03 2018-05-08 Datalogic IP Tech, S.r.l. Laser scanner with reduced internal optical reflection comprising a light detector disposed between an interference filter and a collecting mirror
US10061021B2 (en) 2016-07-06 2018-08-28 Datalogic IP Tech, S.r.l. Clutter filter configuration for safety laser scanner
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US9810775B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
US11119198B2 (en) 2017-03-28 2021-09-14 Luminar, Llc Increasing operational safety of a lidar system
US10121813B2 (en) 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US10139478B2 (en) 2017-03-28 2018-11-27 Luminar Technologies, Inc. Time varying gain in an optical detector operating in a lidar system
US10545240B2 (en) 2017-03-28 2020-01-28 Luminar Technologies, Inc. LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity
US10209359B2 (en) 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10114111B2 (en) 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power
US10732281B2 (en) 2017-03-28 2020-08-04 Luminar Technologies, Inc. Lidar detector system having range walk compensation
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10254388B2 (en) 2017-03-28 2019-04-09 Luminar Technologies, Inc. Dynamically varying laser output in a vehicle in view of weather conditions
US10267899B2 (en) 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
US11002853B2 (en) 2017-03-29 2021-05-11 Luminar, Llc Ultrasonic vibrations on a window in a lidar system
US10983213B2 (en) 2017-03-29 2021-04-20 Luminar Holdco, Llc Non-uniform separation of detector array elements in a lidar system
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10969488B2 (en) 2017-03-29 2021-04-06 Luminar Holdco, Llc Dynamically scanning a field of regard using a limited number of output beams
US10976417B2 (en) 2017-03-29 2021-04-13 Luminar Holdco, Llc Using detectors with different gains in a lidar system
US10254762B2 (en) 2017-03-29 2019-04-09 Luminar Technologies, Inc. Compensating for the vibration of the vehicle
WO2018183715A1 (en) 2017-03-29 2018-10-04 Luminar Technologies, Inc. Method for controlling peak and average power through laser receiver
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
US10088559B1 (en) 2017-03-29 2018-10-02 Luminar Technologies, Inc. Controlling pulse timing to compensate for motor dynamics
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US10241198B2 (en) 2017-03-30 2019-03-26 Luminar Technologies, Inc. Lidar receiver calibration
US10295668B2 (en) 2017-03-30 2019-05-21 Luminar Technologies, Inc. Reducing the number of false detections in a lidar system
US11022688B2 (en) 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
US10677897B2 (en) 2017-04-14 2020-06-09 Luminar Technologies, Inc. Combining lidar and camera data
US10003168B1 (en) 2017-10-18 2018-06-19 Luminar Technologies, Inc. Fiber laser with free-space components
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US10324185B2 (en) 2017-11-22 2019-06-18 Luminar Technologies, Inc. Reducing audio noise in a lidar scanner with a polygon mirror
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
US11988773B2 (en) 2018-02-23 2024-05-21 Innovusion, Inc. 2-dimensional steering system for lidar systems
US10324170B1 (en) 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
US10348051B1 (en) 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier
US10591601B2 (en) 2018-07-10 2020-03-17 Luminar Technologies, Inc. Camera-gated lidar system
US10627516B2 (en) 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
US10551501B1 (en) 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10340651B1 (en) 2018-08-21 2019-07-02 Luminar Technologies, Inc. Lidar system with optical trigger
US11774561B2 (en) 2019-02-08 2023-10-03 Luminar Technologies, Inc. Amplifier input protection circuits
CN110596722B (zh) * 2019-09-19 2022-10-04 深圳奥锐达科技有限公司 直方图可调的飞行时间距离测量系统及测量方法
US11177815B2 (en) 2020-03-13 2021-11-16 Analog Devices International Unlimited Company Timing alignment systems with gap detection and compensation
EP3885787B1 (de) * 2020-03-27 2022-05-04 Sick Ag Erfassung von abstandsmessdaten

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992615A (en) * 1975-05-14 1976-11-16 Sun Studs, Inc. Electro-optical ranging system for distance measurements to moving targets
JP3120202B2 (ja) * 1993-11-18 2000-12-25 株式会社トプコン パルス方式の光波距離計
JP3186401B2 (ja) * 1994-02-10 2001-07-11 三菱電機株式会社 車両用距離データ処理装置
US6539336B1 (en) * 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
JP3508113B2 (ja) * 1995-05-17 2004-03-22 株式会社トプコン パルス方式の光波距離計
US6122602A (en) * 1997-05-02 2000-09-19 Endress + Hauser Gmbh + Co. Method and arrangement for electromagnetic wave distance measurement by the pulse transit time method
US6963354B1 (en) * 1997-08-07 2005-11-08 The United States Of America As Represented By The Secretary Of The Navy High resolution imaging lidar for detecting submerged objects
GB9913950D0 (en) * 1999-06-15 1999-08-18 Arima Optoelectronics Corp Unipolar light emitting devices based on iii-nitride semiconductor superlattices
US7375602B2 (en) * 2000-03-07 2008-05-20 Board Of Regents, The University Of Texas System Methods for propagating a non sinusoidal signal without distortion in dispersive lossy media
JP2002181934A (ja) * 2000-12-15 2002-06-26 Nikon Corp 計時装置、計時方法、及び測距装置
EP1450128A1 (de) * 2003-02-19 2004-08-25 Leica Geosystems AG Verfahren und Vorrichtung zur Ableitung geodätischer Entfernungsinformationen
JP2006053076A (ja) * 2004-08-12 2006-02-23 Nikon Vision Co Ltd 測距装置
US7417718B2 (en) * 2005-10-28 2008-08-26 Sharp Kabushiki Kaisha Optical distance measuring apparatus
DE102007013714A1 (de) * 2007-03-22 2008-10-02 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung einer Entfernung oder einer Entfernungsänderung
US7746450B2 (en) * 2007-08-28 2010-06-29 Science Applications International Corporation Full-field light detection and ranging imaging system
KR20090025959A (ko) * 2007-09-07 2009-03-11 삼성전자주식회사 거리 측정 방법 및 장치
DE502008001493D1 (de) * 2008-11-21 2010-11-18 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung von Entfernungen nach dem Lichtlaufzeitprinzip
ES2354113T3 (es) * 2008-11-21 2011-03-10 Sick Ag Sensor optoelectrónico y procedimiento para medir distancias según el principio del tiempo de propagacion de la luz.

Also Published As

Publication number Publication date
ATE475110T1 (de) 2010-08-15
ES2348823T3 (es) 2010-12-15
DK2189814T3 (da) 2010-10-04
DE502008001000D1 (de) 2010-09-02
EP2189814B1 (de) 2010-07-21
US8625080B2 (en) 2014-01-07
JP2010122223A (ja) 2010-06-03
EP2189814A1 (de) 2010-05-26
US20100128248A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5797879B2 (ja) 光電センサ及び光通過時間原理により距離を測定する方法
JP5797878B2 (ja) 光電センサ及び光通過時間原理により距離を測定する方法
JP2010122222A (ja) 光電センサ及び光通過時間原理により距離を測定する方法
JP5901004B2 (ja) 距離又は距離変化を測定するためのセンサ及び方法
CN110244316B (zh) 接收光脉冲的接收器组件、LiDAR模组和接收光脉冲的方法
JP5420402B2 (ja) 移動時間原理による光電式非接触距離測定の方法および装置
JP6665873B2 (ja) 光検出器
ES2344378T3 (es) Sensor optoelectronico para la medicion de distancias.
US7518709B2 (en) Processing apparatus for pulsed signal and processing method for pulsed signal and program therefor
US7212278B2 (en) Method and device for recording a three-dimensional distance-measuring image
RU2111510C1 (ru) Лазерное устройство для измерения расстояния
EP3285087A1 (en) Sensor arrangement and method for determining time-of-flight
US20090021721A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JP4837413B2 (ja) 測距方法および測距装置
CN109725323B (zh) 位移传感器
JP2007507693A (ja) 距離測定
JP2006003126A (ja) 光学式エンコーダ
JP4970649B2 (ja) リニア運動又は回転運動を定量的に検出するためのオプティカルエンコーダ
JP2006329902A (ja) 測距装置及び測距方法
JP6990356B2 (ja) センサ装置及び検出方法
JP2014163884A (ja) 距離測定装置
CN115201781A (zh) 激光雷达传感器和从其中去除噪声的方法
CN114114303A (zh) 使用两种光调变频率的距离量测装置及其运行方法
US5123742A (en) Laser length measuring instrument
JPH07198846A (ja) 距離測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140402

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5797879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees