JP5776322B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5776322B2
JP5776322B2 JP2011110349A JP2011110349A JP5776322B2 JP 5776322 B2 JP5776322 B2 JP 5776322B2 JP 2011110349 A JP2011110349 A JP 2011110349A JP 2011110349 A JP2011110349 A JP 2011110349A JP 5776322 B2 JP5776322 B2 JP 5776322B2
Authority
JP
Japan
Prior art keywords
rolling
surface layer
amount
retained austenite
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011110349A
Other languages
Japanese (ja)
Other versions
JP2012241754A (en
Inventor
泰弘 岩永
泰弘 岩永
植田 徹
徹 植田
三田村 宣晶
宣晶 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011110349A priority Critical patent/JP5776322B2/en
Publication of JP2012241754A publication Critical patent/JP2012241754A/en
Application granted granted Critical
Publication of JP5776322B2 publication Critical patent/JP5776322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

この発明は転がり軸受に関する。   The present invention relates to a rolling bearing.

自動車、農業機械、建設機械、鉄鋼機械等のトランスミッションやエンジンで用いられる転がり軸受は、潤滑油中に金属の切粉、削り屑、バリ、摩耗粉等の異物が混入した条件下(以下、「異物混入潤滑下」と記す。)で使用されることが多いため、軌道輪や転動体に異物による早期剥離が生じて、大幅に寿命が低下する場合がある。
このような異物混入潤滑下における早期剥離は、軌道輪と転動体との間に異物が噛み込むことで、転がり面(軌道輪の軌道面および転動体の転動面)に形成された圧痕のエッジ部(以下、「圧痕縁」と記す。)に、応力集中が生じることが原因であると言われている。
Rolling bearings used in transmissions and engines of automobiles, agricultural machinery, construction machinery, steel machinery, etc. are under conditions where foreign matters such as metal chips, shavings, burrs, and abrasion powder are mixed in the lubricating oil (hereinafter referred to as “ In many cases, it is used as "under lubrication mixed with foreign matter."), And there is a case where the raceway or rolling element is prematurely peeled off by foreign matter, resulting in a significant decrease in service life.
Such early separation under foreign matter lubrication is due to the indentation formed on the rolling surface (the raceway surface of the raceway and the rolling surface of the rolling element) by the foreign matter biting between the raceway and the rolling element. It is said that the cause is stress concentration at the edge portion (hereinafter referred to as “indentation edge”).

そこで、本出願人は、異物混入潤滑下で転がり面に圧痕が形成された場合であっても、圧痕縁への応力集中を緩和するために、特許文献1において、内外輪のうち少なくとも一つの軌道面をなす表層部と、転動体の転動面をなす表層部の残留オーステナイト量を20体積%以上45体積%以下とし、さらに、転動体の転動面をなす表層部の炭窒化物の含有率を体積比で5%以上15%以下とすることを提案している。   Therefore, in order to alleviate the stress concentration on the indentation edge even in the case where the indentation is formed on the rolling surface under the contamination with foreign matters, the applicant of the present application disclosed in Patent Document 1 at least one of the inner and outer rings. The amount of retained austenite of the surface layer portion forming the raceway surface and the surface layer portion forming the rolling surface of the rolling element is set to 20% by volume or more and 45% by volume or less, and the carbonitride of the surface layer portion forming the rolling surface of the rolling element It has been proposed that the content is 5% to 15% by volume.

ところで、近年、異物混入潤滑下で生じる早期剥離は、上述した圧痕縁への応力集中だけでなく、軌道輪と転動体との転がり面に作用する接線力が原因となっていることが分かってきている。接線力に影響を及ぼす要因としては、転がり面のすべり速度や面圧の他に、転がり面の表面形状や表面粗さ等が挙げられる。すなわち、異物混入潤滑下において早期剥離を生じ難くするためには、転がり面に形成された圧痕縁への応力集中を抑制するとともに、転がり面に作用する接線力を小さくする必要がある。
しかし、圧痕縁への応力集中を抑制するために、転がり面をなす表層部の残留オーステナイト量を多くすることは、表層部の硬さが低下して耐疲労特性の低下につながる。
By the way, in recent years, it has been found that the early peeling that occurs under the contamination with foreign matter is caused not only by the stress concentration on the indentation edge described above but also by the tangential force acting on the rolling surface of the race and the rolling element. ing. Factors affecting the tangential force include the surface shape and surface roughness of the rolling surface in addition to the sliding speed and surface pressure of the rolling surface. That is, in order to make it difficult for early peeling to occur under lubrication mixed with foreign matter, it is necessary to suppress stress concentration on the indentation edge formed on the rolling surface and to reduce the tangential force acting on the rolling surface.
However, increasing the amount of retained austenite in the surface layer portion that forms the rolling surface in order to suppress stress concentration on the indentation edge decreases the hardness of the surface layer portion, leading to a decrease in fatigue resistance.

そこで、本出願人は、特許文献2において、転がり表面層(転がり面の表層部)の残留オーステナイト量と表面硬さとの最適な関係を提案している。また、炭化物形成元素を添加した鋼に浸炭または浸炭窒化を施して、微細な炭化物を多量に析出させることで、残留オーステナイト量が多いことにより生じる硬さの低下を補うことを提案している。
具体的には、軌道輪および転動体の少なくとも一つを、転がり表面層の残留オーステナイト量(γR vol %)が20〜45vol %、且つ、平均粒径0.5〜1.5μmの微細炭化物又は炭窒化物の分散強化により、前記転がり表面硬さ(Hv)が前記残留オーステナイト量(γR vol %)に対し、−4.7×(γR vol %)+920≦Hv≦−4.7×(γR vol %)+1020を満たすものとすることが記載されている。これにより、異物混入潤滑下ばかりでなくクリーンな潤滑下でも、従来品よりも寿命の長い転がり軸受が得られるとしている。
Therefore, the present applicant has proposed an optimal relationship between the amount of retained austenite of the rolling surface layer (the surface layer portion of the rolling surface) and the surface hardness in Patent Document 2. It has also been proposed to compensate for the decrease in hardness caused by a large amount of retained austenite by carburizing or carbonitriding the steel to which carbide forming elements are added to precipitate a large amount of fine carbides.
Specifically, at least one of the raceway and the rolling element is a fine carbide having an amount of retained austenite (γ R vol%) of the rolling surface layer of 20 to 45 vol% and an average particle size of 0.5 to 1.5 μm. Alternatively, the rolling surface hardness (Hv) is −4.7 × (γ R vol%) + 920 ≦ Hv ≦ −4.7 with respect to the retained austenite amount (γ R vol%) due to dispersion strengthening of carbonitride. It is described that x (γ R vol%) + 1020 is satisfied. As a result, it is said that a rolling bearing having a longer life than that of the conventional product can be obtained not only under foreign matter lubrication but also under clean lubrication.

特開平1−55423号公報Japanese Patent Laid-Open No. 1-55423 特公平8−26446号公報Japanese Patent Publication No. 8-26446

しかし、特許文献2の提案は、軌道輪および転動体の転がり表面層の残留オーステナイト量が20〜45体積%である場合に適用されるものであって、20体積%未満の場合には適用されない。また、特許文献2の提案には、残留オーステナイト量増大と高硬度化に伴い、コストが高くなるという問題点がある。
この発明の課題は、軌道輪および転動体の転がり表面層の残留オーステナイト量が20体積%未満の場合に適用できる、残留オーステナイト量と表面硬さとの最適な関係を提案し、コストの低い方法で、転がり軸受の剥離寿命(異物混入潤滑下での寿命)を長くすることである。
However, the proposal of Patent Document 2 is applied when the retained austenite amount of the rolling surface layer of the race and the rolling element is 20 to 45% by volume, and is not applied when it is less than 20% by volume. . Further, the proposal of Patent Document 2 has a problem that the cost increases as the amount of retained austenite increases and the hardness increases.
The object of the present invention is to propose an optimum relationship between the amount of retained austenite and the surface hardness, which can be applied when the amount of retained austenite in the rolling surface layer of the races and rolling elements is less than 20% by volume, and is a low-cost method. This is to increase the peeling life (life under lubrication with foreign matter) of the rolling bearing.

上記課題を解決するために、この発明の転がり軸受は、内輪、外輪、および転動体を有する転がり軸受であって、下記の構成(a) 〜(c) (k) を有することを特徴とする。
(a) 転動体は、炭素の含有率が0.80質量%以上1.20質量%以下で、炭素以外の元素の含有率はJIS G4805で規定されている高炭素クロム軸受鋼と同じである軸受鋼からなる。
(b) 転動体の転動面の表層部(表面から深さ50μmまでの範囲)の残留オーステナイト量(γRb)が20体積%未満である。
(c) 転動体の転動面の表層部(表面から深さ50μmまでの範囲)のビッカース硬さ(Hvb )と残留オーステナイト量(γRb:体積%)との関係が下記の(1) 式を満たす。
5.6γRb+770≦Hvb ≦5.6γRb+870‥‥(1)
(k) 転動体の転動面の表層部のビッカース硬さ(Hv b )が832以上943以下である。
この発明の転がり軸受は、内輪および外輪のうちの少なくとも一方が、下記の構成(d) 〜(f) を有することが好ましい。
In order to solve the above problems, a rolling bearing of the present invention is a rolling bearing having an inner ring, an outer ring, and rolling elements, and has the following configurations (a) to (c) (k): .
(a) The rolling element has a carbon content of 0.80% by mass or more and 1.20% by mass or less, and the content of elements other than carbon is the same as the high carbon chromium bearing steel defined in JIS G4805. Made of bearing steel.
(b) The amount of retained austenite (γ Rb ) in the surface layer portion (range from the surface to a depth of 50 μm) of the rolling surface of the rolling element is less than 20% by volume.
(c) The relationship between the Vickers hardness (Hv b ) of the surface layer portion (range from the surface to a depth of 50 μm) of the rolling element and the amount of retained austenite (γ Rb : volume%) is the following (1) Satisfy the formula.
5.6γ Rb + 770 ≦ Hv b ≦ 5.6γ Rb +870 (1)
(k) The Vickers hardness (Hv b ) of the surface layer portion of the rolling surface of the rolling element is 832 or more and 943 or less.
In the rolling bearing of the present invention, it is preferable that at least one of the inner ring and the outer ring has the following configurations (d) to (f).

(d) 炭素の含有率が0.80質量%以上1.20質量%以下で、炭素以外の元素の含有率はJIS G4805で規定されている高炭素クロム軸受鋼と同じである軸受鋼からなる。
(e) 軌道面の表層部(表面から深さ50μmまでの範囲)の残留オーステナイト量(γRr)が20体積%未満である。
(f) 軌道面の表層部(表面から深さ50μmまでの範囲)のビッカース硬さ(Hvr )と残留オーステナイト量(γRr:体積%)との関係が下記の(2) 式を満たす。
5.6γRr+650≦Hvr ≦5.6γRr+750‥‥(2)
(d) A bearing steel having a carbon content of 0.80% by mass or more and 1.20% by mass or less and the content of elements other than carbon being the same as the high carbon chromium bearing steel defined in JIS G4805. .
(e) The amount of retained austenite (γ Rr ) in the surface layer portion (range from the surface to a depth of 50 μm) of the raceway surface is less than 20% by volume.
(f) The relationship between the Vickers hardness (Hv r ) of the surface layer portion (range from the surface to a depth of 50 μm) and the retained austenite amount (γ Rr : volume%) satisfies the following formula (2).
5.6γ Rr + 650 ≦ Hv r ≦ 5.6γ Rr +750 (2)

前記構成(a) および(b) を有する転動体のうち前記構成(c) を有する(前記(1) 式を満たす)転動体は、前記構成(c) を有さない(前記(1) 式を満たさない)転動体と比較して降伏強度が高くなるため、表面性状安定性が高い。これにより、この発明の転がり軸受は、転動体の軌道輪との間に作用する接線力が小さくなるため、前記構成(c) を有さない転動体を備えた転がり軸受と比較して、軌道輪の剥離寿命が長くなる。   Of the rolling elements having the configurations (a) and (b), the rolling element having the configuration (c) (satisfying the formula (1)) does not have the configuration (c) (the formula (1) Since the yield strength is higher than that of the rolling element, the surface property stability is high. As a result, the rolling bearing of the present invention has a smaller tangential force acting between the rolling elements and the raceway, and therefore, compared with a rolling bearing having a rolling element that does not have the configuration (c), Increases the peeling life of the ring.

特に、転動体が玉である玉軸受の場合は、以下の理由で軌道輪の剥離寿命の延長効果が大きい。一般に、剥離現象は周速の速い駆動側に比べて、周速の遅い従動側で生じやすいことが知られている。玉軸受の場合、剥離が生じる荷重負荷圏のHertz 面圧が高い接触域中央部において、軌道輪が従動側であるため、軌道輪に剥離が生じやすいことになる。したがって、転動体(玉)の表面性状安定性を向上させることで得られる、軌道輪の内部起点型剥離防止効果が高くなる。   In particular, in the case of a ball bearing in which the rolling element is a ball, the effect of extending the peeling life of the bearing ring is great for the following reasons. In general, it is known that the peeling phenomenon is more likely to occur on the driven side having a lower peripheral speed than on the drive side having a higher peripheral speed. In the case of a ball bearing, since the raceway is on the driven side in the center of the contact area where the Hertz surface pressure of the load-bearing zone where the separation occurs is high, the raceway tends to peel off. Therefore, the effect of preventing the internal starting type peeling of the raceway, which is obtained by improving the surface property stability of the rolling elements (balls), is enhanced.

前記構成(b) に関し、転動体の転動面の表層部が硬くても、残留オーステナイト量が 多すぎると局部的に柔らかい部分ができて表面性状安定性が低くなるため、この発明の転がり軸受では、転動体の転動面の表層部の残留オーステナイト量を20体積%未満としている。また、前記構成(a) の軸受鋼を用いた場合、浸炭や浸炭窒化等の特殊な熱処理や表面処理を行わずに、ずぶ焼入れと焼戻しによる低コストの熱処理で達成できる表層部の残留オーステナイト量は20体積%未満である。つまり、前記構成(b) を有することで転 動体の熱処理コストが低くなる。   Regarding the configuration (b), even if the surface layer portion of the rolling surface of the rolling element is hard, if the amount of retained austenite is too large, a locally soft portion is formed and the surface property stability is lowered. Then, the amount of retained austenite in the surface layer portion of the rolling surface of the rolling element is less than 20% by volume. In addition, when the bearing steel having the structure (a) is used, the amount of retained austenite in the surface layer portion that can be achieved by low-cost heat treatment by continuous quenching and tempering without performing special heat treatment or surface treatment such as carburizing or carbonitriding. Is less than 20% by volume. That is, the heat treatment cost of the rolling element is reduced by having the configuration (b).

この発明の転がり軸受は、内輪および外輪のうちの少なくとも一方(軌道輪)が前記構成(d) 〜(f) をさらに有する(軌道輪が前記(2) 式を満たす)ことで、前記構成(d) および(e) を有するが前記構成(f) を有さない(軌道輪が前記(2) 式を満たさない)転がり軸受と比較して、軌道面の表面性状安定性が良好になって、圧痕縁への応力集中が低減される。よって、軌道輪の剥離寿命をさらに延長することができる。
前記構成(e) に関し、前記構成(d) の軸受鋼を用いた場合、浸炭や浸炭窒化等の特殊な熱処理や表面処理を行わずに、ずぶ焼入れと焼戻しによる低コストの熱処理で達成できる表層部の残留オーステナイト量は20体積%未満である。つまり、前記構成(e) を有することで軌道輪の熱処理コストが低くなる。
In the rolling bearing of the present invention, at least one of the inner ring and the outer ring (the race ring) further includes the configurations (d) to (f) (the race ring satisfies the formula (2)). Compared with a rolling bearing having d) and (e) but not having the configuration (f) (the bearing ring does not satisfy the above formula (2)), the surface property stability of the raceway surface is improved. , Stress concentration on the indentation edge is reduced. Therefore, the peeling life of the bearing ring can be further extended.
With respect to the structure (e), when the bearing steel of the structure (d) is used, a surface layer that can be achieved by low-cost heat treatment by continuous quenching and tempering without performing special heat treatment or surface treatment such as carburizing or carbonitriding. The amount of retained austenite in the part is less than 20% by volume. In other words, the heat treatment cost of the bearing ring is reduced by having the configuration (e).

[前記(1) 式について]
上述のように、前記構成(a) および(b) を有する転動体のうち前記構成(c) を有する(前記(1) 式を満たす)転動体は、前記構成(c) を有さない(前記(1) 式を満たさない)転動体と比較して降伏強度が高くなるため、表面性状安定性が高い。これについて以下に説明する。
先ず、軸受稼働中の転動体表面性状悪化の抑制に降伏応力が関係している理由について述べる。転動体の表面性状安定性には、転動体表面の降伏強度が大きく関係していると考えられる。線傷、圧痕などが形成されるということは、局部的に降伏点以上の応力が作用し、塑性変形したということである。即ち、降伏強度が上がると、作用する応力が降伏強度以上になる確率が小さくなるため、線傷や圧痕は発生しにくくなり、その大きさや深さも小さくなる。
[About Equation (1) above]
As described above, among the rolling elements having the configurations (a) and (b), the rolling element having the configuration (c) (satisfying the expression (1)) does not have the configuration (c) ( Since the yield strength is higher than that of a rolling element that does not satisfy the formula (1), the surface property stability is high. This will be described below.
First, the reason why the yield stress is related to the suppression of deterioration of the rolling element surface properties during operation of the bearing will be described. It is considered that the yield strength of the rolling element surface is largely related to the surface texture stability of the rolling element. The formation of flaws, indentations, etc. means that the stress above the yield point acts locally and plastically deforms. That is, when the yield strength increases, the probability that the applied stress becomes greater than or equal to the yield strength decreases, so that it becomes difficult for line flaws and indentations to occur, and the size and depth thereof also decrease.

図1に応力−歪み曲線の模式図を示す。a,bは、引張応力が同じ(σBa=σBb)で降伏応力が異なる(σYa>σYb)曲線を示している。線傷形成時にσc の応力が発生すると仮定すると、曲線aの場合はσYa>σc なので弾性変形し、線傷は形成されない。これに対し、曲線bの場合はσYb<σc となるため、歪みεb だけ塑性変形し、線傷が形成される。即ち、引張応力は同じでも、降伏応力が高い曲線aの方が線傷や圧痕が少なく、表面性状の悪化も抑制されると考えられる。 FIG. 1 shows a schematic diagram of a stress-strain curve. “a” and “b” indicate curves with the same tensile stress (σ Ba = σ Bb ) and different yield stresses (σ Ya > σ Yb ). Assuming that a stress of σ c is generated at the time of forming the flaw, in the case of the curve a, σ Ya > σ c and elastically deforms, so that no flaw is formed. On the other hand, in the case of the curve b, since σ Ybc , plastic deformation is caused by the strain ε b , and a line flaw is formed. That is, even if the tensile stress is the same, the curve a having a higher yield stress has less flaws and indentations, and the deterioration of the surface properties is also suppressed.

次に、前記(1) 式を満たす転動体は、前記(1) 式を満たさない転動体と比較して降伏強度が高くなる(表面性状安定性が高くなる)理由について述べる。
硬さと降伏応力の関係は一般的に知られており、硬さが高いほど降伏応力は大きくなる。しかし、硬さを高くするために、焼入れ温度を高くし過ぎたり、焼戻し温度を低くし過ぎたりすると、残留オーステナイト量が著しく増加し、局部的に降伏応力も低下するため、表面性状安定性が悪くなる。
Next, the reason why the rolling element satisfying the equation (1) has higher yield strength (higher surface property stability) than the rolling element not satisfying the equation (1) will be described.
The relationship between hardness and yield stress is generally known, and the higher the hardness, the greater the yield stress. However, if the quenching temperature is set too high or the tempering temperature is set too low in order to increase the hardness, the amount of retained austenite increases remarkably, and the yield stress decreases locally. Deteriorate.

具体的に、表1に示すように、表層部の硬さ(Hvb )と残留オーステナイト量(γRb)を変化させたNo.1〜12の玉(呼び番号6206用の玉)を用意し、試験軸受(呼び番号6206の玉軸受)を組み立てて、転動体の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)が表面性状安定性に及ぼす影響を調査した。
試験条件は、荷重:6223N、回転速度:3000min -1、異物混入潤滑:潤滑油VG68に異物(硬さ:Hv870、サイズ:74〜147μm)を0.05g混入であり、この玉軸受を1時間稼働させた前後の玉の表面粗さ(Ra)を測定し、その差(ΔRa:試験により上昇した量)を算出した。その結果も表1に示す。
Specifically, as shown in Table 1, No. 1-12 balls (balls for nominal number 6206) in which the hardness (Hv b ) of the surface layer and the amount of retained austenite (γ Rb ) were changed were prepared. Then, a test bearing (ball bearing of nominal number 6206) was assembled, and the effects of the hardness (Hv b ) and the retained austenite amount (γ Rb ) on the surface property of the rolling element were investigated.
Test conditions are load: 6223N, rotational speed: 3000 min −1 , foreign matter mixed lubrication: lubricating oil VG68 containing 0.05 g of foreign matter (hardness: Hv870, size: 74 to 147 μm), and this ball bearing is used for 1 hour. The surface roughness (Ra) of the balls before and after being operated was measured, and the difference (ΔRa: amount increased by the test) was calculated. The results are also shown in Table 1.

Figure 0005776322
Figure 0005776322

また、No.1〜12の玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係を図2にグラフで示し、(1) 式を満たす範囲を破線で囲って範囲Aとした。また、範囲Aに入るNo.1〜7のΔRaは0.014〜0.032であるのに対して、範囲Aから外れるNo. 8〜12のΔRaは0.052〜0.058と大きかった。ΔRaが大きいほど表面性状安定性は低くなるため、前記(1) 式を満たす玉(転動体)は、前記(1) 式を満たさない玉(転動体)と比較して表面性状安定性が高くなることが分かる。また、「Hvb >5.6γRb+870」となると、靭性が低下し、玉(転動体)が割れやすくなることが問題となる。 Moreover, the relationship between the hardness (Hv b ) of the surface layer of No. 1 to No. 12 balls and the retained austenite amount (γ Rb ) is shown in a graph in FIG. 2, and the range satisfying the formula (1) is enclosed by a broken line. Range A. In addition, ΔRa of No. 1 to 7 entering the range A was 0.014 to 0.032, whereas ΔRa of No. 8 to 12 outside the range A was as large as 0.052 to 0.058. . Since the surface property stability decreases as ΔRa increases, the ball (rolling element) that satisfies the above equation (1) has a higher surface property stability than the ball (rolling member) that does not satisfy the above equation (1). I understand that Further, when “Hv b > 5.6γ Rb +870”, the toughness is lowered and the ball (rolling element) is easily broken.

[前記(2) 式について]
上述のように、この発明の転がり軸受を構成する内輪および外輪のうちの少なくとも一方(軌道輪)が前記(2) 式を満たすことで、前記(2) 式を満たさない内輪および外輪を有する転がり軸受と比較して、軌道面の表面性状安定性が良好になって、圧痕縁への応力集中が低減される。
前記(2) 式は、Hvr ≧5.6γRr+650且つHvr ≦5.6γRr+750である。軌道面の表層部の硬さ(Hvr )が、残留オーステナイト量(γRr)との関係で5.6γRr+650より小さいと耐疲労特性が低下し、5.6γRr+750より大きいと靭性が低下して剥離や割れが生じ易くなる。
[About Equation (2) above]
As described above, at least one of the inner ring and the outer ring (track ring) constituting the rolling bearing of the present invention satisfies the above expression (2), so that the rolling ring has an inner ring and an outer ring that do not satisfy the above expression (2). Compared with the bearing, the surface property stability of the raceway surface becomes better, and the stress concentration on the indentation edge is reduced.
The equation (2) satisfies Hv r ≧ 5.6γ Rr +650 and Hv r ≦ 5.6γ Rr +750. When the hardness (Hv r ) of the surface layer of the raceway surface is smaller than 5.6γ Rr +650 in relation to the retained austenite amount (γ Rr ), the fatigue resistance is lowered, and when it is larger than 5.6γ Rr +750, the toughness is increased. It will fall and it will become easy to produce peeling and a crack.

[前記(1) 式と(2) 式の関係について]
5.6γRb+770≦Hvb ≦5.6γRb+870‥‥(1)
5.6γRr+650≦Hvr ≦5.6γRr+750‥‥(2)
転動面の表層部に関する(1) 式と軌道面の表層部に関する(2) 式を比較すると、転動面の硬さHvb が軌道面の硬さHvr よりも高く設定されている。これにより、軌道輪より転動体の方が高い表面性状安定性を得られる。このように、剥離が生じやすい従動側となる軌道輪よりも駆動側となる転動体の表面性状の悪化を抑制して接線力を低減することで、軌道輪の剥離寿命を向上できる効果が高くなる。
(1) 式を満たす転動体と(2) 式を満たす軌道輪を組み合わせて転がり軸受を組み立てる場合、ΔHv(=Hvb −Hvr )を50以上150以下とすることが好ましい。
[Relationship between the above equations (1) and (2)]
5.6γ Rb + 770 ≦ Hv b ≦ 5.6γ Rb +870 (1)
5.6γ Rr + 650 ≦ Hv r ≦ 5.6γ Rr +750 (2)
Compared surface layer of the rolling surface about (1) regarding the surface layer portion of the formula and the raceway surface (2), hardness Hv b of the rolling surface is set higher than the hardness Hv r raceway surface. As a result, the surface texture stability of the rolling element is higher than that of the raceway. In this way, the effect of improving the peeling life of the bearing ring is high by reducing the tangential force by suppressing the deterioration of the surface property of the rolling element on the driving side rather than the bearing ring on the driven side where peeling easily occurs. Become.
When a rolling bearing is assembled by combining rolling elements that satisfy the equation (1) and raceway rings that satisfy the equation (2), ΔHv (= Hv b −Hv r ) is preferably set to 50 or more and 150 or less.

[構成(a) および(d) について]
転動体、内輪、外輪を構成する軸受鋼として、炭素の含有率が0.80質量%以上1.20質量%以下で、炭素以外の元素の含有率はJIS G4805で規定されている高炭素クロム軸受鋼と同じであるものを使用する。その理由を以下に述べる。
炭素(C)はマトリックスに固溶してマルテンサイトを強化する元素であり、焼入れ焼戻し後の強度確保と疲労寿命を向上させるために不可欠である。一般に、炭素の含有量が0.80質量%未満では、こうした効果が得られにくい。一方で、炭素の含有量が1.22質量%を超えると、鋳造時に巨大炭化物が生成しやすく、加工性が悪くなることや、巨大炭化物が起点となって早期剥離することが懸念される。
転動体、内輪、外輪を構成する軸受鋼として、JIS G4805で規定されている高炭素クロム軸受鋼(SUJ2やSUJ3)に相当する鋼を使用することが好ましい。
[Configuration (a) and (d)]
As a bearing steel constituting rolling elements, inner rings and outer rings, the carbon content is 0.80% by mass or more and 1.20% by mass or less, and the content of elements other than carbon is specified in JIS G4805. Use the same bearing steel. The reason is described below.
Carbon (C) is an element that solid-dissolves in the matrix and strengthens martensite, and is indispensable for ensuring the strength and improving the fatigue life after quenching and tempering. Generally, when the carbon content is less than 0.80% by mass, such an effect is hardly obtained. On the other hand, if the carbon content exceeds 1.22% by mass, there is a concern that giant carbides are likely to be generated during casting, resulting in poor processability and early peeling due to the giant carbides.
It is preferable to use steel corresponding to high carbon chromium bearing steel (SUJ2 or SUJ3) defined in JIS G4805 as the bearing steel constituting the rolling elements, the inner ring, and the outer ring.

[製造方法について]
一般に、高炭素鋼の硬さを高める方法には、熱処理の焼入れ温度を高くして固溶炭素量を増加させる方法と、焼戻し温度を低くして歪み(転位)の開放の緩和を抑制する方法がある。これらの方法を夫々単独で行うよりも、焼入れ温度の上昇と焼戻し温度の低下を組合せることで、転動体の硬さを大幅に高くすることができる。
転動体表層部の硬さを高くする方法としては、ボールピーニング処理(以下、BPとも記す)後に表面から50μm以上70μm以下の深さ部分を研磨で除去する方法が挙げられる。
[Production method]
In general, there are two methods for increasing the hardness of high carbon steel: a method in which the quenching temperature of heat treatment is increased to increase the amount of dissolved carbon, and a method in which the tempering temperature is decreased to suppress the release of strain (dislocation). There is. The hardness of the rolling elements can be significantly increased by combining the increase in the quenching temperature and the decrease in the tempering temperature, rather than performing these methods individually.
As a method of increasing the hardness of the rolling element surface layer portion, a method of removing a depth portion of 50 μm or more and 70 μm or less from the surface by ball polishing after ball peening treatment (hereinafter also referred to as BP) can be mentioned.

鋼球に作用する圧縮残留応力が大きいほど硬さが高くなることが知られている。鋼球に圧縮残留応力を付与させる方法として、特公平1−12812号公報に記載の空気噴射法ピーニングなどが存在するが、一般的には熱処理後、BPを施す手法が用いられる。付与させる圧縮残留応力を大きくするには、BPの処理時間を長くすることや、重量を少なくすることが効果的である。しかし、鋼球はBPが施されることによって、内部に最大圧縮残留応力が発生する場合が多い。   It is known that the hardness increases as the compressive residual stress acting on the steel ball increases. As a method for imparting compressive residual stress to a steel ball, there is an air injection peening described in JP-B-1-12812. Generally, a method of applying BP after heat treatment is used. In order to increase the compressive residual stress to be applied, it is effective to increase the BP processing time and to reduce the weight. However, in many cases, the maximum compressive residual stress is generated inside the steel ball by applying BP.

従って、転動体の表層部は圧縮残留応力が低いため、表面性状安定性を向上させるには効果的でない。つまり、転動体の表面性状安定性を向上させ、軌道輪の内部起点型剥離寿命を延長させるには、転動体の表層部に最大の残留圧縮応力を作用させればよい。そこで、BPの後に、表面から50μm以上70μm以下の深さ部分を研磨によって除去する。即ち、BPで生じた表面付近の圧縮残留応力の低い部分を研磨で除去することにより、転動体表面に高い圧縮残留応力を作用させ、硬さを高くすることができる。   Therefore, since the surface layer portion of the rolling element has a low compressive residual stress, it is not effective in improving the surface property stability. That is, in order to improve the surface property stability of the rolling element and extend the internal origin type peeling life of the raceway, the maximum residual compressive stress may be applied to the surface layer portion of the rolling element. Therefore, after BP, a depth portion of 50 μm or more and 70 μm or less from the surface is removed by polishing. That is, by removing a portion having a low compressive residual stress near the surface generated by BP by polishing, a high compressive residual stress can be applied to the surface of the rolling element to increase the hardness.

この発明の転がり軸受によれば、転動面の表層部の残留オーステナイト量が20体積%未満である転動体を用い、前記表層部の残留オーステナイト量とビッカース硬さとの関係を最適にすることで、コストの低い方法で、転がり軸受の剥離寿命(異物混入潤滑下での寿命)を長くすることができる。   According to the rolling bearing of the present invention, by using a rolling element in which the amount of retained austenite in the surface layer portion of the rolling surface is less than 20% by volume, the relationship between the amount of retained austenite in the surface layer portion and Vickers hardness is optimized. By using a low cost method, it is possible to extend the peeling life (life under lubrication with foreign matter) of the rolling bearing.

応力−歪み曲線の模式図である。It is a schematic diagram of a stress-strain curve. 玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係示すグラフである。Is a graph showing relationship between hardness of the surface portion of the ball (Hv b) the amount of residual austenite (gamma Rb). 実施形態の転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing of embodiment. 実施形態の転がり軸受を構成する玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係「○」「●」、内輪および外輪の軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係「△」「▲」を示すグラフである。Relationship between the hardness (Hv b ) of the surface layer portion of the ball constituting the rolling bearing of the embodiment and the retained austenite amount (γ Rb ) “○” “●”, hardness of the surface layer portion of the raceway surface of the inner ring and outer ring ( hv r) and the amount of retained austenite (gamma Rr) relationship with "△", "▲" is a graph showing a. 実施形態の転がり軸受の試験結果を、寿命比と転がり軸受を構成する玉の表層部の硬さ(Hvb )との関係で示すグラフである。The test results of the rolling bearing of the embodiment, is a graph showing the relationship between the hardness of the surface portion of the ball constituting the rolling bearing and the life ratio (Hv b).

以下、この発明の実施形態について説明する。
この実施形態の転がり軸受は、図3に示すように、内輪1、外輪2、玉(転動体)3、および鉄鋼製で波形の保持器4で構成されている。内輪1と外輪2は、SUJ2(高炭素クロム軸受鋼)からなる素材を内輪1および外輪2の形状に加工した後、ずぶ焼入れと焼戻しからなる熱処理がなされたものである。玉3は、SUJ2(高炭素クロム軸受鋼)からなる素材を玉3の形状に加工した後、ずぶ焼入れと焼戻しからなる熱処理を行い、さらにBPと研磨処理が施されたものである。
Embodiments of the present invention will be described below.
As shown in FIG. 3, the rolling bearing of this embodiment includes an inner ring 1, an outer ring 2, balls (rolling elements) 3, and a corrugated cage 4 made of steel. The inner ring 1 and the outer ring 2 are obtained by processing a material made of SUJ2 (high carbon chrome bearing steel) into the shape of the inner ring 1 and the outer ring 2 and then performing a heat treatment including quenching and tempering. The ball 3 is obtained by processing a material made of SUJ2 (high carbon chrome bearing steel) into the shape of the ball 3, performing a heat treatment consisting of continuous quenching and tempering, and further performing BP and polishing treatment.

熱処理は、内輪1、外輪2、および玉3ともに、820〜890℃(通常のずぶ焼入れの加熱温度800〜850℃より20〜40℃高い温度)に保持した後、油冷却する「ずぶ焼入れ」を行った後、130〜210℃(通常の焼戻し温度150〜170℃より20〜40℃低い温度)で焼戻しを行った。
玉3のBPは、処理対象となる玉をバレル形の容器に入れて容器を回転させることで玉同士を衝突させる方法により、容器の回転速度:30〜60min-1、処理時間:30分〜90分の条件で行った。
In the heat treatment, the inner ring 1, the outer ring 2 and the ball 3 are all kept at 820 to 890 ° C. (20 to 40 ° C. higher than the normal temperature for quenching and quenching), and then cooled with oil. After tempering, tempering was performed at 130 to 210 ° C. (temperature 20 to 40 ° C. lower than normal tempering temperature 150 to 170 ° C.).
The BP of the ball 3 is a method in which the balls to be processed are put into a barrel-shaped container and the balls are collided by rotating the container, whereby the rotation speed of the container: 30 to 60 min −1 , the processing time: 30 minutes to The test was performed for 90 minutes.

研磨処理は、加圧機構を備えた2枚の溝付き特殊鋳物盤の間にBP後の玉3を順次流し入れ、圧力を加えながら特殊鋳物盤を回転させる方法により、BP後の玉3の表層部(表面から50〜70μmの深さまでの部分)を除去した。
具体的には、呼び番号6206の玉軸受用の玉として、表2に示すように、表層部の硬さ(Hvb )と残留オーステナイト量(γRb)を変化させたもの(16種類)を用意した。また、呼び番号6206の玉軸受用の内輪および外輪として、表2に示すように、表層部の硬さ(Hvr )と残留オーステナイト量(γRr)を変化させたもの(3種類)を用意した。
The surface of the ball 3 after BP is polished by a method in which the ball 3 after BP is sequentially poured between two special casting machines with grooves provided with a pressure mechanism and the special casting machine is rotated while applying pressure. Part (part from the surface to a depth of 50 to 70 μm) was removed.
Specifically, as shown in Table 2, as balls for the ball bearing of the reference number 6206, the surface layer hardness (Hv b ) and the amount of retained austenite (γ Rb ) were changed (16 types). Prepared. Also, as the inner ring and outer ring for the ball bearing of nominal number 6206, as shown in Table 2, those with varying surface layer hardness (Hv r ) and retained austenite amount (γ Rr ) are prepared (three types) did.

770≦Hvb −5.6γRb≦870であれば前記(1) 式を満たし、650≦Hvr −5.6γRr≦750であれば前記(2) 式を満たすため、各サンプルで「Hvb −5.6γRb」と「Hvr −5.6γRr」を算出した。この算出値も表2に示す。
これらの内輪1、外輪2、および玉3を組み合わせて呼び番号6206の玉軸受を組み立て、異物混入潤滑下での転がり寿命を調べる試験を行った。試験条件は、荷重:6223N、回転速度:3000min -1、異物混入潤滑:潤滑油VG68に異物(硬さ:Hv870、サイズ:74〜147μm)を0.05g混入とした。
If 770 ≦ Hv b −5.6γ Rb ≦ 870, the above equation (1) is satisfied, and if 650 ≦ Hv r −5.6γ Rr ≦ 750, the above equation (2) is satisfied. b -5.6γ Rb "and was calculated" Hv r -5.6γ Rr ". This calculated value is also shown in Table 2.
These inner ring 1, outer ring 2, and ball 3 were combined to assemble a ball bearing having a nominal number 6206, and a test for examining the rolling life under the contamination with foreign matters was conducted. The test conditions were: load: 6223N, rotation speed: 3000 min −1 , foreign matter mixed lubrication: lubricating oil VG68 mixed with 0.05 g of foreign matter (hardness: Hv870, size: 74-147 μm).

また、同じサンプルを10体用意して試験を行い、L10寿命を調べた。得られた各寿命値から、最も寿命が短かったサンプルNo. 17を「1」とした寿命比を算出した。その結果も表2に示す。また、図4のグラフに、各サンプルの玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係「○」「●」、内輪および外輪の軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係「△」「▲」をプロットした。さらに、図5のグラフに、寿命比と玉の表層部の硬さ(Hvb )との関係をプロットした。 In addition, 10 samples were prepared and tested, and the L10 life was examined. From each of the obtained life values, a life ratio was calculated with Sample No. 17 having the shortest life as “1”. The results are also shown in Table 2. In addition, in the graph of FIG. 4, the relationship between the hardness (Hv b ) of the surface of the ball of each sample and the retained austenite amount (γ Rb ), “○”, “●”, the surface layer of the raceway surface of the inner ring and the outer ring The relationship between the hardness (Hv r ) and the amount of retained austenite (γ Rr ) “Δ” and “▲” was plotted. Furthermore, the relationship between the life ratio and the hardness (Hv b ) of the surface layer of the ball was plotted on the graph of FIG.

Figure 0005776322
Figure 0005776322

図5のグラフにおいて、曲線Aは、表2のNo. 1〜8の結果を示すプロット(▲)をつないだ線であり、曲線Bは、表2のNo. 9〜16の結果を示すプロット(●)をつないだ線である。「△」は表2のNo. 16〜24の結果を示すプロットであり、「○」は表2のNo. 25〜32の結果を示すプロットである。
表2のNo. 1〜8は、玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係が(1) 式を満たすが、軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係が(2) 式を満たさない。表2のNo. 9〜16は、玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係が(1) 式を満たし、軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係も(2) 式を満たす。
In the graph of FIG. 5, the curve A is a line connecting plots (▲) indicating the results of Nos. 1 to 8 in Table 2, and the curve B is a plot indicating the results of Nos. 9 to 16 in Table 2. It is a line connecting (●). “Δ” is a plot showing the results of Nos. 16 to 24 in Table 2, and “◯” is a plot showing the results of Nos. 25 to 32 in Table 2.
Nos. 1 to 8 in Table 2 show that the relationship between the hardness (Hv b ) of the ball surface layer and the amount of retained austenite (γ Rb ) satisfies the formula (1), but the hardness of the surface layer of the raceway surface ( Hv r ) and the amount of retained austenite (γ Rr ) do not satisfy equation (2). Nos. 9 to 16 in Table 2 show that the relationship between the hardness (Hv b ) of the surface layer of the ball and the amount of retained austenite (γ Rb ) satisfies the equation (1), and the hardness of the surface layer of the raceway surface (Hv The relationship between r ) and the amount of retained austenite (γ Rr ) also satisfies equation (2).

表2のNo. 16〜24は、玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係が(1) 式を満たさず、軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係も(2) 式を満たさない。表2のNo. 25〜32は、玉の表層部の硬さ(Hvb )と残留オーステナイト量(γRb)との関係が(1) 式を満たさず、軌道面の表層部の硬さ(Hvr )と残留オーステナイト量(γRr)との関係が(2) 式を満たす。
この結果から、(1) 式を満たす玉(図4のプロット●と▲)を有する玉軸受(図5のプロット●と▲)は、(1) 式を満たさない玉(図4のプロット○と△)を有する玉軸受(図5のプロット○と△)と比較して、異物混入潤滑下での剥離寿命が長くできることが分かる。具体的に、No. 1〜16の玉軸受は、No. 17の3.4〜7.0倍の寿命が得られた。
Nos. 16 to 24 in Table 2 show that the relationship between the hardness (Hv b ) of the ball surface layer and the retained austenite amount (γ Rb ) does not satisfy the formula (1), and the hardness of the surface layer of the raceway surface ( The relationship between Hv r ) and the amount of retained austenite (γ Rr ) does not satisfy equation (2). Nos. 25 to 32 in Table 2 indicate that the relationship between the hardness (Hv b ) of the surface layer of the ball and the amount of retained austenite (γ Rb ) does not satisfy the formula (1), and the hardness of the surface layer of the raceway surface ( Hv r ) and the amount of retained austenite (γ Rr ) satisfy equation (2).
From this result, ball bearings (plots ● and ▲ in FIG. 5) having balls satisfying equation (1) (plots ● and ▲ in FIG. 4) It can be seen that, compared with ball bearings having (Δ) (plots ◯ and Δ in FIG. 5), the peeling life can be increased under lubrication mixed with foreign matter. Specifically, the ball bearings No. 1 to 16 had a life of 3.4 to 7.0 times that of No. 17.

また、(1) 式を満たす玉と(2) 式を満たす内輪および外輪を有する玉軸受No. 9〜16(図5の曲線B)は、(1) 式を満たす玉と(2) 式を満たさない内輪および外輪を有する玉軸受No. 1〜8(図5の曲線A)と比較して、異物混入潤滑下での剥離寿命が長くできることが分かる。
すなわち、転動面の表層部の硬さと残留オーステナイト量との関係を最適化する((1) 式を満たす転動体を用いる)ことで、転動体の表面性状安定性が高くなり、転動体と軌道輪との間に作用する接線力が低減され、軌道輪の表面起点型剥離寿命が延長できることが分かる。さらに、軌道面の表層部の硬さと残留オーステナイト量との関係を最適化し((2) 式を満たす軌道輪を用い)、この軌道輪と(1) 式を満たす転動体とで転がり軸受を組み立てることで、転がり軸受の剥離寿命がさらに延長できることが分かる。
In addition, ball bearings Nos. 9 to 16 (curve B in FIG. 5) having a ball satisfying the expression (1) and an inner ring and an outer ring satisfying the expression (2) are expressed as follows. It can be seen that, compared with ball bearings Nos. 1 to 8 (curve A in FIG. 5) having an inner ring and an outer ring that are not satisfied, the peel life under lubrication with foreign matter can be increased.
In other words, by optimizing the relationship between the hardness of the surface layer of the rolling surface and the amount of retained austenite (using a rolling element that satisfies equation (1)), the surface property stability of the rolling element is increased, It can be seen that the tangential force acting between the bearing rings is reduced and the surface-origin peeling life of the bearing rings can be extended. Furthermore, the relationship between the hardness of the surface layer of the raceway and the amount of retained austenite is optimized (using a raceway that satisfies equation (2)), and a rolling bearing is assembled with this raceway and rolling elements that satisfy equation (1). This shows that the peeling life of the rolling bearing can be further extended.

[追加説明]
この発明の転がり軸受は、さらに以下の構成(g) 〜(j) を有することが好ましい。
(g) 前記転動体の表層部(表面から深さ50μmまでの範囲)の炭化物面積率が1%以上5%以下であること。
(h) 前記転動体の表層部の残留圧縮応力(σR )が500MPa以上1400MPa以下であること。
(i) 内輪および外輪のうちの少なくとも一方が、極値統計により推定した面積S=30000mm2 中の酸化物系最大介在物寸法√areamax と表面硬さ(HRC)とがHRC≧0.2×√areamax +54を満たすこと。
(j) 転動体は、熱処理後の転動体に対してボールピーニング処理を施した後、表面から深さ50μm以上70μm以下までの部分を研磨で除去する方法により得られたものであること。
[Additional explanation]
The rolling bearing of the present invention preferably further has the following configurations (g) to (j).
(g) The carbide area ratio of the surface layer portion (range from the surface to a depth of 50 μm) of the rolling element is 1% or more and 5% or less.
(h) Residual compressive stress (σ R ) of the surface layer portion of the rolling element is 500 MPa or more and 1400 MPa or less.
(i) When at least one of the inner ring and the outer ring has an oxide-based maximum inclusion size √area max and surface hardness (HRC) in the area S = 30000 mm 2 estimated by extreme value statistics, HRC ≧ 0.2 X√area max +54 must be satisfied.
(j) The rolling element is obtained by a method in which a part from the surface to a depth of 50 μm to 70 μm is removed by polishing after performing a ball peening treatment on the rolling element after the heat treatment.

転動体の表層部の炭化物面積率を1%以上5%以下とすることが好ましい理由について、以下に述べる。
高炭素軸受鋼の場合、焼入れ処理によってマトリックスに固溶する炭素量が多いほど、炭素の固溶強化によって降伏応力が高くなる。一般に、マトリックスの固溶炭素量を正確に測定することは困難である。しかし、精錬時の炭素含有量(ベースカーボン量)が既知ならば、炭化物の面積率から固溶炭素量を推定することができると考えられる。即ち、焼入れ後の炭化物面積率が低いほど、マトリックスに固溶している炭素量が多いことを意味し、降伏応力が高く、表面性状安定性が高いことを示している。従って、炭素の固溶量ではなく、炭化物の面積率を規定した。
The reason why the carbide area ratio of the surface layer portion of the rolling element is preferably 1% or more and 5% or less will be described below.
In the case of high carbon bearing steel, the more the amount of carbon dissolved in the matrix by the quenching process, the higher the yield stress due to solid solution strengthening of carbon. In general, it is difficult to accurately measure the amount of dissolved carbon in the matrix. However, if the carbon content (base carbon amount) at the time of refining is known, it is considered that the amount of solute carbon can be estimated from the area ratio of carbides. That is, it means that the lower the carbide area ratio after quenching, the more carbon is dissolved in the matrix, and the higher the yield stress and the higher the surface property stability. Therefore, not the amount of carbon solid solution but the area ratio of carbide was specified.

転動体の表層部の残留圧縮応力(σR )を500MPa以上1400MPa以下とすることが好ましい理由を、以下に述べる。
転動体の表層部の残留圧縮応力が低いと、変形抵抗が小さくなるため、降伏応力は小さくなり、軸受稼働中に表面性状が悪化しやすくなる。転動体の表層部の残留圧縮応力が500MPaより小さくなると塑性変形抵抗が小さくなり、表面性状が悪化していることが分かる。一方、加工によって付与する圧縮残留応力が高すぎる(例えば1400MPaを超える)と、既に繰返し疲労を受けている状態になり、転がり疲労が進行しやすくなる。
The reason why the residual compressive stress (σ R ) of the surface layer portion of the rolling element is preferably 500 MPa or more and 1400 MPa or less will be described below.
When the residual compressive stress in the surface layer portion of the rolling element is low, the deformation resistance is small, so the yield stress is small, and the surface properties are likely to deteriorate during the operation of the bearing. It can be seen that when the residual compressive stress in the surface layer portion of the rolling element is smaller than 500 MPa, the plastic deformation resistance is decreased and the surface properties are deteriorated. On the other hand, when the compressive residual stress applied by processing is too high (for example, exceeding 1400 MPa), it will be in the state which has already received repeated fatigue | exhaustion and rolling fatigue will advance easily.

内輪および外輪のうちの少なくとも一方が、極値統計により推定した面積S=30000mm2 中の酸化物系最大介在物寸法√areamax と表面硬さ(HRC)とがHRC≧0.2×√areamax +54を満たすこと(構成(i) )が好ましい理由を、以下に述べる。
軌道輪の硬さを高めて強度を向上させ、内部き裂の発生・進展を抑制させることで内部起点型剥離寿命を延長できる。しかし、材料中に含まれる酸化物系介在物が大きい場合には、顕著な寿命延長効果は得られない。構成(i) の範囲内では、酸化物系介在物の微細化による応力集中の低減及び内部強度の向上によるき裂の発生・進展の抑制効果によって、内部起点型剥離寿命が延長できる。
At least one of the inner ring and the outer ring has an oxide-based maximum inclusion size √area max and surface hardness (HRC) in an area S = 30000 mm 2 estimated by extreme value statistics, and HRC ≧ 0.2 × √area The reason why it is preferable to satisfy max + 54 (configuration (i)) will be described below.
By increasing the hardness of the bearing ring to improve the strength and suppressing the generation and propagation of internal cracks, it is possible to extend the internal origin-type peel life. However, when the oxide inclusions contained in the material are large, a significant life extension effect cannot be obtained. Within the range of the configuration (i), the internal origin-type peel life can be extended due to the effect of reducing the stress concentration due to the refinement of oxide inclusions and the suppression of crack initiation / propagation by improving the internal strength.

1 内輪
2 外輪
3 玉(転動体)
4 保持器
1 Inner ring 2 Outer ring 3 Ball (rolling element)
4 Cage

Claims (2)

内輪、外輪、および転動体を有する転がり軸受であって、
転動体は、炭素の含有率が0.80質量%以上1.20質量%以下で、炭素以外の元素の含有率はJIS G4805で規定されている高炭素クロム軸受鋼と同じである軸受鋼からなり、
転動体の転動面の表層部の残留オーステナイト量(γRb)が20体積%未満であり、
転動体の転動面の表層部のビッカース硬さ(Hv b )が832以上943以下であり、
転動体の転動面の表層部のビッカース硬さ(Hvb )と残留オーステナイト量(γRb:体積%)との関係が下記の(1) 式を満たすことを特徴とする転がり軸受。
5.6γRb+770≦Hvb ≦5.6γRb+870‥‥(1)
A rolling bearing having an inner ring, an outer ring, and rolling elements,
The rolling element has a carbon content of 0.80% by mass or more and 1.20% by mass or less, and the content of elements other than carbon is the same as the high carbon chromium bearing steel defined in JIS G4805. Become
The amount of retained austenite (γ Rb ) in the surface layer portion of the rolling surface of the rolling element is less than 20% by volume,
Vickers hardness (Hv b ) of the surface layer portion of the rolling surface of the rolling element is 832 or more and 943 or less,
A rolling bearing characterized in that the relationship between the Vickers hardness (Hv b ) of the surface layer portion of the rolling surface of the rolling element and the amount of retained austenite (γ Rb : volume%) satisfies the following formula (1).
5.6γ Rb + 770 ≦ Hv b ≦ 5.6γ Rb +870 (1)
前記内輪および外輪のうちの少なくとも一方は、
炭素の含有率が0.80質量%以上1.20質量%以下で、炭素以外の元素の含有率はJIS G4805で規定されている高炭素クロム軸受鋼と同じである軸受鋼からなり、
軌道面の表層部の残留オーステナイト量(γRr)が20体積%未満であり、
軌道面の表層部のビッカース硬さ(Hvr )と残留オーステナイト量(γRr:体積%)との関係が下記の(2) 式を満たすことを特徴とする請求項1記載の転がり軸受。
5.6γRr+650≦Hvr ≦5.6γRr+750‥‥(2)
At least one of the inner ring and the outer ring is
The carbon content is 0.80% by mass or more and 1.20% by mass or less, and the content of elements other than carbon is the same as the high carbon chromium bearing steel defined in JIS G4805,
The amount of retained austenite (γ Rr ) in the surface layer of the raceway surface is less than 20% by volume,
The rolling bearing according to claim 1, wherein the relationship between the Vickers hardness (Hv r ) of the surface layer portion of the raceway surface and the retained austenite amount (γ Rr : volume%) satisfies the following expression (2).
5.6γ Rr + 650 ≦ Hv r ≦ 5.6γ Rr +750 (2)
JP2011110349A 2011-05-17 2011-05-17 Rolling bearing Active JP5776322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110349A JP5776322B2 (en) 2011-05-17 2011-05-17 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110349A JP5776322B2 (en) 2011-05-17 2011-05-17 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2012241754A JP2012241754A (en) 2012-12-10
JP5776322B2 true JP5776322B2 (en) 2015-09-09

Family

ID=47463701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110349A Active JP5776322B2 (en) 2011-05-17 2011-05-17 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5776322B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129436A (en) * 1992-10-13 1994-05-10 Nippon Seiko Kk Roller bearing
JP3232664B2 (en) * 1992-07-08 2001-11-26 日本精工株式会社 Rolling bearing
JP2005069274A (en) * 2003-08-28 2005-03-17 Nsk Ltd Roller bearing
JP2009041744A (en) * 2007-08-10 2009-02-26 Nsk Ltd Rolling bearing for belt type continuously variable transmission

Also Published As

Publication number Publication date
JP2012241754A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
EP1505306A1 (en) Method of producing bearing raceway member
WO2012056785A9 (en) Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
JP5453839B2 (en) Rolling bearing
JP2010248568A (en) Rolling bearing for use in hydrogen atmosphere
JP2002115030A (en) Rolling bearing for spindle of machine tool
JP5728844B2 (en) Rolling bearing
US20120321503A1 (en) Method for manufacturing ingot steel for bearings and bearing steel
JP4114218B2 (en) Rolling bearing
JP5465933B2 (en) Manufacturing method of rolling bearing
JP2014122378A (en) Rolling bearing
JP2013249500A (en) Rolling bearing
JP4857746B2 (en) Rolling support device
JP5998631B2 (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP2012031456A (en) Rolling bearing
JP5776322B2 (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
JP2008308743A (en) Rolling member for machine tool, and rolling bearing for machine tool
JP6015251B2 (en) Rolling bearing
JP5853409B2 (en) Manufacturing method of rolling bearing
JP2006328514A (en) Rolling supporting device
JP5857433B2 (en) Method for manufacturing rolling guide device
JP2006045591A (en) Tapered roller bearing
JP5211453B2 (en) Rolling bearing
JP2013164132A (en) Self-aligning roller bearing and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350