JP5774352B2 - A non-contact method for continuous measurement of sample growth during culture - Google Patents

A non-contact method for continuous measurement of sample growth during culture Download PDF

Info

Publication number
JP5774352B2
JP5774352B2 JP2011088760A JP2011088760A JP5774352B2 JP 5774352 B2 JP5774352 B2 JP 5774352B2 JP 2011088760 A JP2011088760 A JP 2011088760A JP 2011088760 A JP2011088760 A JP 2011088760A JP 5774352 B2 JP5774352 B2 JP 5774352B2
Authority
JP
Japan
Prior art keywords
culture
light
measurement
amount
shaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011088760A
Other languages
Japanese (ja)
Other versions
JP2012217426A (en
Inventor
岡本 和久
和久 岡本
悟志 富田
悟志 富田
優 祝迫
優 祝迫
Original Assignee
タイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイテック株式会社 filed Critical タイテック株式会社
Priority to JP2011088760A priority Critical patent/JP5774352B2/en
Publication of JP2012217426A publication Critical patent/JP2012217426A/en
Application granted granted Critical
Publication of JP5774352B2 publication Critical patent/JP5774352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は培養中の試料の増殖を非接触で連続測定する方法に関するものである。   The present invention relates to a method for continuously measuring the growth of a sample in culture without contact.

従来より微生物等の培養分野においては振とう培養する試料(微生物,細胞)の増殖を測定する方法として、培養液の光学密度(OD)が細胞数の増加の指標として採用されている。その方法は図7に示すように一定大きさ(10mm角)の測定用セルに培養した試料液を採取して入れて暗所にて外方から光(600nm光)を照射して透過光量を測定する分光光度計による測定方法が行われている。   Conventionally, in the field of culturing microorganisms and the like, as a method for measuring the growth of samples (microorganisms and cells) to be cultured with shaking, the optical density (OD) of the culture solution has been adopted as an index for increasing the number of cells. The method is as shown in FIG. 7, in which a sample solution cultured in a measuring cell of a certain size (10 mm square) is collected and placed, and light (600 nm light) is irradiated from the outside in a dark place to control the amount of transmitted light. A measuring method using a spectrophotometer to measure is performed.

なしNone

しかしながら、上記の分光光度計による測定方法は、振とう培養を一旦停止して、培養試料の一部を取り出して専用の測定用セルに移し換えなければならないために煩雑であるばかりでなく、培養試料の増殖状況をリアルタイムで測定することができないという課題がある。   However, the measurement method using the spectrophotometer described above is not only complicated, because shaking culture must be stopped, a part of the culture sample must be taken out and transferred to a dedicated measurement cell. There is a problem that the growth state of the sample cannot be measured in real time.

測定するごとに培養中の試料が減少するほか、作業による雑菌混入のコンタミネーションの発生のおそれがあるという課題がある。   In addition to a decrease in the number of samples in culture each time it is measured, there is a problem that contamination due to miscellaneous bacteria may occur due to work.

本発明は培養容器内にて振とう培養中の試料液を旋回振とうの遠心圧又は往復振とう動作によって培養容器の内面に薄く一定の揺らぎをもった厚みに広げ延ばして光の透過する光路長を光の透過が可能となるように短く調節し、該容器の外方から室内の可視光線下にて透過光量又は反射光量を測定可能とする赤外光を照射して、該試料液の増殖に伴う光学密度の上昇による透過光量又は反射光量あるいは双方の光量の変化を測定して光学密度のモデルデータに照合し、培養容器の大きさと形状の相違及び培養試料液の液量と粘度度合及び振とう方式及び振幅の大きさ及び振とう速度の遅速及び振とう角の大小及び温度の高低に基づいて培養容器表面の反射光と培養試料液面及び気泡による散乱光が主となる初期反射光量を事前に測定して初期値に反映させて求めた換算式で演算し、且つ透過光量と反射光量の変化の双方の測定値より光学密度の変化を測定するに際して、気泡による散乱光の多い初期の測定に透過光量の測定値を用い、この透過光量に基づいた測定値を用いて反射光量に基づいた測定値を補正することで培養中の試料の増殖を連続測定可能とするようにして、かかる課題を解決したのである。 The present invention is stretched and spread to a thickness having a thin constant fluctuation on the inner surface of the culture vessel by shaking the centrifugal pressure or the sample liquid swirl shaking in culture reciprocal shaking operation in culture vessel path which transmits light Adjust the length to be short so that light can be transmitted, and irradiate the sample liquid with infrared light that can measure the amount of transmitted light or reflected light from the outside of the container under visible light in the room . The amount of transmitted light and / or reflected light due to the increase in optical density due to growth is measured and collated with the optical density model data, the difference in the size and shape of the culture vessel, and the amount and viscosity of the culture sample solution. The initial reflection mainly consists of the reflected light from the surface of the culture vessel and the scattered light from the culture sample liquid surface and bubbles based on the shaking method, the amplitude, the slowness of the shaking speed, the magnitude of the shaking angle, and the temperature. Initially measure the light intensity in advance To reflect calculated by conversion formula determined in, and when measuring the transmitted light quantity changes in optical density than the measured value of both the variation in the amount of reflected light, the measurement value of the transmission light amount to more initial measurement of the scattered light due to the air bubbles Thus, the measurement value based on the transmitted light amount is used to correct the measurement value based on the reflected light amount so that the growth of the sample in culture can be continuously measured, thereby solving such a problem.

本発明は培養試料の増殖に対応する光学密度(OD)を培養振とう中にリアルタイムで測定することで、従来行われていた試料の採取〜分光光度計へのセット〜測定のプロセスに伴う作業の負担を軽減し,培養試料の減少をなくし、培養の一時停止による悪影響(培養に必要な溶存酸素の枯渇など)、さらにコンタミネーションのリスクを低減することができるという効果を生ずる。   The present invention measures the optical density (OD) corresponding to the growth of a culture sample in real time during culture shaking, so that the work involved in the process of sampling a sample, setting to a spectrophotometer, and measuring is conventionally performed. This reduces the burden of the culture, eliminates the decrease in the culture sample, adversely affects the suspension of the culture (depletion of dissolved oxygen necessary for the culture, etc.), and further reduces the risk of contamination.

反射光量と透過光量の双方の測定方式を併用することで、測定初期かから高濃度域の光学密度(OD)までを正確に測定することができるという効果を生ずる。
そして多検体からの高増殖株の選抜や、抗生物質の耐性菌の選抜への貢献が期待される。
The combined use of both the reflected light amount and the transmitted light amount measuring method brings about an effect that it is possible to accurately measure from the initial measurement to the optical density (OD) in the high density region.
It is expected to contribute to the selection of highly proliferating strains from many specimens and the selection of antibiotic resistant bacteria.

測定用の照射光に赤外光を用いることで、室内の可視光下における通常の振とう培養中に光学密度を測定することができるという効果を生ずる。   By using infrared light as the irradiation light for measurement, the optical density can be measured during normal shaking culture under visible light indoors.

光の照射位置と反射光量の測定センサーの位置を上げて培養試料液の厚みの薄い位置で測定することによって、より高濃度の光学密度まで測定することができるという効果を生ずる。   By raising the position of the light irradiation position and the reflected light amount measuring sensor and measuring at a position where the thickness of the culture sample solution is thin, it is possible to measure even higher optical density.

測定値のフィートバック制御を利用して培養液を一定濃度に自動化することで長時間に亘る連続測定を可能とすることができるという効果を生ずる。   By automating the culture solution to a constant concentration by using the foot-back control of the measured value, there is an effect that continuous measurement over a long time can be made possible.

第1実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 1st Example 第2実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 2nd Example 第3実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 3rd Example 第4実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 4th Example 第5実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 5th Example 第6実施例の方法の実施装置の例を示す説明図Explanatory drawing which shows the example of the implementation apparatus of the method of 6th Example 従来の分光光度計による測定の説明図Illustration of measurement with a conventional spectrophotometer

本発明は、振とう培養中の試料液に外方から光を照射して、該試料液の増殖に伴う光学密度の上昇による透過光量または反射光量あるいは双方の光量の変化を、培養容器の大きさと形状の相違・培養試料液の液量の多少と粘度度合・振とう方式・振幅の大小・振とう速度の遅速・振とう角の大小・温度の高低に基づいて求められる光学密度のモデルデータに照合し演算することで培養試料の増殖を振とう中に非接触にて連続測定するようにしたのである。   The present invention irradiates a sample liquid during shaking culture with light from the outside, and changes in the amount of transmitted light and / or reflected light due to an increase in the optical density accompanying the growth of the sample liquid are measured in the size of the culture vessel. Model data of optical density required based on difference in shape and shape, degree of viscosity of culture sample solution, degree of viscosity, shaking method, amplitude amplitude, slow shaking speed, shaking angle magnitude, temperature level Thus, the growth of the culture sample was continuously measured in a non-contact manner while shaking.

以下図面に基づいて実施例を説明する。
図1は本発明の第1実施例を実施するための装置例を示すものであって、装置は操作部と内部に演算部を有して制御と入出力を行う本体1と、本体1に接続し、培養試料液を収容した小型の三角フラスコAを載上して旋回振とうを行う振とう台2を備えるとともに載上した三角フラスコAを挟んで赤外光(900nm)を照射するLED光源の光照射部3aと受光センサー部3bを設けた振とう測定部3から構成される。本体1の演算部には培養試料の増殖による光学密度(OD)の変化を照射光量と透過光量の差の数値を照合し演算するための光学密度のモデルデータ(濃度〜透過光量曲線)を記憶させている。
Embodiments will be described below with reference to the drawings.
FIG. 1 shows an example of an apparatus for carrying out the first embodiment of the present invention. The apparatus has a main body 1 having an operation unit and a calculation unit inside for performing control and input / output; LED which is connected and is equipped with a shaking table 2 on which a small Erlenmeyer flask A containing a culture sample solution is placed and swirled and irradiates infrared light (900 nm) with the Erlenmeyer flask A placed therebetween The light measurement unit 3 includes a light irradiation unit 3a and a light receiving sensor unit 3b. The calculation unit of the main body 1 stores optical density model data (concentration-transmitted light amount curve) for calculating the optical density (OD) change due to the growth of the culture sample by checking the numerical value of the difference between the irradiated light amount and the transmitted light amount. I am letting.

培養による試料の増殖を測定するには、三角フラスコA内に例えば試料として大腸菌培養の試料液aを入れて振とう台2上に載上し旋回振とうしながら大腸菌の増殖に伴う濃度の変化から照射光と透過光の差の数値、つまり光学密度(OD)を光学密度のモデルデータと照合し演算して増殖の進行を測定するのである。振とう培養中に停止することもなく培養試料の増殖を外部から非接触にてリアルタイムに連続測定することができる。   In order to measure the growth of the sample due to the culture, for example, the sample solution a of the E. coli culture is put in the Erlenmeyer flask A as a sample and placed on the shaking table 2 and the concentration change accompanying the growth of E. coli while swirling. Therefore, the numerical value of the difference between the irradiated light and the transmitted light, that is, the optical density (OD) is collated with the optical density model data and calculated to measure the progress of proliferation. The growth of the culture sample can be continuously measured in real time without contact from the outside without stopping during the shaking culture.

なお、三角フラスコAは表1に示すように、その幅の大きさから培養液の濃度が上昇した時点で光が通らないような光路長であるところ、旋回振とうの遠心力にて大腸菌培養の試料液aをフラスコAの内壁面に薄く一定の揺らぎをもった厚みに拡げ延ばしすることで、実質的な光路長を短くして光の透過を可能にしている。よって従来の分光光度計の測定用セルよりもはるかに大きなサイズである三角フラスコAを用いて振とう培養しながら測定することを可能としたのである。   As shown in Table 1, the Erlenmeyer flask A has an optical path length that prevents light from passing through when the concentration of the culture solution increases from the size of its width. The sample liquid a is thinly spread on the inner wall surface of the flask A to a thickness having a certain fluctuation, so that the substantial optical path length is shortened and light can be transmitted. Therefore, it was possible to perform measurement while shaking culture using the Erlenmeyer flask A having a size much larger than the measurement cell of the conventional spectrophotometer.

旋回振とうによって三角フラスコA内に収容した大腸菌培養の試料液aが三角フラスコAの内壁面に薄く一定の揺らぎをもった厚みに拡げ延ばしされることで、内部中央付近では照射光が空間を通過することとなるため、回転速度の遅速,液量の多少,粘度の度合によって光路長が変わることと、照射光の出入り時の反射,振とうで生ずる気泡によって光散乱が起きることで、普通に透過光量を測定しても濃度を反映した値とはならないところであるが、三角フラスコAの大きさ(=液量)、振幅の大きさ、振とう速度が一定である安定した状態であれば光路長や光散乱の状態は一定の範囲に収まることに着目し、この状態で透過光量の逆数の対数は物質の濃度に比例するというランベルト・ベール(Lambert-Beer)の法則   The sample solution a of E. coli culture contained in the Erlenmeyer flask A is swirled and spread on the inner wall surface of the Erlenmeyer flask A to a thickness with a certain fluctuation, so that the irradiation light is distributed near the inner center. Because the light passes through, the optical path length changes depending on the slow rotation speed, the amount of liquid, the degree of viscosity, and light scattering occurs due to the reflection and shaking of the irradiated light when it enters and exits. Even if the amount of transmitted light is measured, the value does not reflect the concentration. However, if the size of the Erlenmeyer flask A (= liquid amount), the magnitude of the amplitude, and the shaking speed are constant, it is stable. Focusing on the fact that the optical path length and the light scattering state fall within a certain range, and in this state the Lambert-Beer law that the logarithm of the reciprocal of the amount of transmitted light is proportional to the concentration of the substance

が成り立つと仮定し、様々な濃度(光学密度)の大腸菌培養液について振とうしながら透過光量(光センサー電圧)を測定したところ、その揺らぎは一定の範囲に収まることが確認された。同状態での透過光量の代表値を数万回の実測値から割り出し、試料の増殖に伴う濃度に従って透過光量が減少する光学密度のモデルデータ(濃度〜透過光量曲線)を得、さらに培養容器の大きさと形状・液量と粘度・回転速度・温度の各相違する様々な条件下における光学密度のモデルデータを求めて、これを演算部に記憶させて測定値と照合し演算するようにした。 As a result, the amount of transmitted light (photosensor voltage) was measured while shaking the E. coli culture solutions of various concentrations (optical density), and it was confirmed that the fluctuation was within a certain range. Calculate the representative value of the transmitted light amount in the same state from the measured value of tens of thousands of times, obtain optical density model data (concentration-transmitted light curve) that decreases the transmitted light amount according to the concentration accompanying the growth of the sample, Optical density model data under various conditions of size, shape, liquid amount, viscosity, rotation speed, and temperature were obtained, stored in the calculation unit, and compared with the measured value for calculation.

表2は本願の方法による細胞濃度とセンサー電圧の相関を示すもので、大腸菌JM109株を用いて培養液の希釈系列を作成し様々な振とう条件での測定電圧を調べたものである。その結果、光学密度(OD)0.1〜2.0までの範囲では連続的な関連性があることが確認できたので、この測定結果より、センサー電圧の減少率から光学密度(OD)に変換するモデルデータ(換算式)を求めた。   Table 2 shows the correlation between the cell concentration and the sensor voltage according to the method of the present application. A dilution series of the culture broth was prepared using Escherichia coli JM109 strain, and the measurement voltage under various shaking conditions was examined. As a result, it was confirmed that there is a continuous relationship in the range of optical density (OD) of 0.1 to 2.0. From this measurement result, the decrease rate of the sensor voltage is changed to the optical density (OD). Model data (conversion formula) to be converted was obtained.

表3は大腸菌JM109株を用いて増殖をモニタリングしたもので、これより分光光度計による測定値に一致した光学密度(OD)のタイムコースを得ることができた。   Table 3 shows growth monitored using Escherichia coli JM109 strain. From this, a time course of optical density (OD) corresponding to the value measured by the spectrophotometer could be obtained.

表4は本願の方法により、大腸菌,酵母,枯草菌,アグロバクテリウム属,ビフィズス菌において光学密度(OD)を計測したものである。サイズが異なる細胞では補正を必要とするものもあるが、嫌気性細胞を含む幅広い生物種で光学密度(OD)を測定することができた。   Table 4 shows the optical density (OD) measured in Escherichia coli, yeast, Bacillus subtilis, Agrobacterium, bifidobacteria by the method of the present application. Although some cells with different sizes require correction, the optical density (OD) could be measured in a wide range of species including anaerobic cells.

このようにして適宜の振とう条件における光学密度のモデルデータを選択して、培養開始時の初期透過光量からの透過光量の減少率を元に光学密度(OD)を算出することによって培養試料の増殖を振とう中に容器の外部から非接触にて連続測定することができるのである。
本体1の演算部は、振とう条件ごとに求められた様々な光学密度のモデルデータ(濃度〜透過光量曲線)の近似式を記憶していることにより、未知試料の濃度(=光学密度、OD)もその透過光量を近似式に入力することで算出することができる。
Thus, by selecting the optical density model data under appropriate shaking conditions and calculating the optical density (OD) based on the decrease rate of the transmitted light amount from the initial transmitted light amount at the start of culture, While shaking the growth, it can be continuously measured without contact from the outside of the container.
The arithmetic unit of the main body 1 stores approximate expressions of model data (concentration-transmitted light amount curve) of various optical densities obtained for each shaking condition, so that the concentration (= optical density, OD) of an unknown sample is stored. ) Can also be calculated by inputting the transmitted light quantity into an approximate expression.

また大腸菌と光学的特性が大きく異なる試料の場合には分光光度計との測定値比較において誤差が生ずるおそれがあるが、その誤差は補正機能により±15%程度にすることができる。なお、照射光の光源にLEDを用いるときはLEDの特性上光量にばらつきが生ずることがあるが測定開始時の透過光量を基礎として測定中の光量の変化率を参照するようにすることで自動的に補正することができる。   In the case of a sample having optical characteristics that are significantly different from those of Escherichia coli, an error may occur in the measurement value comparison with the spectrophotometer, but the error can be reduced to about ± 15% by a correction function. In addition, when using an LED as the light source of irradiation light, the light quantity may vary due to the characteristics of the LED, but it is automatic by referring to the rate of change of the light quantity during measurement based on the transmitted light quantity at the start of measurement. Can be corrected automatically.

測定用の照射光に赤外光(900nm)を用いることによって、従来の暗所における測定は要せずして室内の可視光下における通常の振とう培養中に測定することができることとなる。   By using infrared light (900 nm) as the irradiation light for measurement, it is possible to perform measurement during normal shaking culture under visible light indoors without requiring measurement in a conventional dark place.

表5は大腸菌HB101株をOD600=1.0に希釈して、その散乱スペクトルを測定したものである。OD900はOD600に較べて約0.6倍の値であったが、モル吸光係数は細胞濃度によらない定数であるので、比の係数を乗ずることで波長の差を補正することができる。 Table 5 shows E. coli HB101 strain diluted to OD 600 = 1.0 and its scattering spectrum measured. OD 900 was about 0.6 times that of OD 600 , but the molar extinction coefficient is a constant independent of the cell concentration, so the wavelength difference can be corrected by multiplying by the ratio coefficient. .

図2は培養容器として試験管Bを用いる装置例を示すものであって、前例と同じく本体1と培養する試料を収容した試験管Bを挟んで光を照射する光照射部3aと受光センサー部3bからなる測定部2を備え、試験管Bを傾倒状態にて支持して往復振とうを行う振とう台4を設けたものである。   FIG. 2 shows an example of an apparatus that uses a test tube B as a culture container. As in the previous example, a light irradiation unit 3a and a light receiving sensor unit for irradiating light with the test tube B containing a main body 1 and a sample to be cultured in between. The measuring part 2 which consists of 3b is provided, and the shaking stand 4 which supports the test tube B in the inclined state and performs reciprocating shaking is provided.

往復振とう状態における試験管B内の液体の光路長は、試験管の傾きが水平に近くて振とう速度が速いほど短く、垂直に近くて振とう速度が遅いほど長くなる(図2を参照)。また、光路長以外にも液面での光の散乱,培養液中に発生する気泡の量など様々な要素が生ずることとなるが、振とうが安定した状態では、試験管のサイズの相違、液量の多少、液体の粘度、液体の光学密度や屈光計数、試験管の傾きの大小、振幅の大小、振とう速度の遅速などから光路長,光の散乱の様子が一定の範囲で揺らぎながら決定されることとなる。   The optical path length of the liquid in the test tube B in the reciprocating shaking state is shorter as the inclination of the test tube is closer to the horizontal and the shaking speed is faster, and becomes longer as the shaking speed is closer to the vertical and the shaking speed is slower (see FIG. 2). ). In addition to the optical path length, various factors such as light scattering on the liquid surface and the amount of bubbles generated in the culture solution will occur, but with stable shaking, the difference in test tube size, The optical path length and light scattering fluctuate within a certain range due to the amount of liquid, the viscosity of the liquid, the optical density and refractive index of the liquid, the magnitude of the inclination of the test tube, the magnitude of the amplitude, and the slowness of the shaking speed. Will be decided.

前例と同様にして、試験管のサイズや液量、振とう角度、振幅、振とう速度が一定の状態では光路長や光散乱の状態は一定の範囲に収まることを前提にして様々な濃度の大腸菌培養液について振とうしながら透過光量(受光センサー電圧)を測定したところ、実際にその揺らぎは一定の範囲に収まることが確認され、この場合でもランベルト・ベールの法則が成り立つことが実証された。さらに様々な条件下において透過光の代表値を数万回の実測値から得て、濃度に従って透過光量が減少する光学密度のモデルデータ群を求め、これを本体1の演算部に記憶させたのである。   In the same way as the previous example, under the condition that the test tube size, liquid volume, shaking angle, amplitude, and shaking speed are constant, the optical path length and light scattering state are within a certain range. When the amount of transmitted light (light-receiving sensor voltage) was measured while shaking the E. coli culture, it was confirmed that the fluctuation was actually within a certain range, and even in this case, it was proved that the Lambert-Beer law was established. . Furthermore, a representative value of transmitted light was obtained from tens of thousands of actual measurement values under various conditions, an optical density model data group in which the amount of transmitted light decreased according to the concentration was obtained, and stored in the arithmetic unit of the main body 1 is there.

表6は大腸菌を本実施例の方法にて培養しつつ測定し、途中で何度もサンプリングして分光光度計にて測定した光学密度(OD)値と比較したものである。両測定値が経時的にもほぼ一致していることを確認することができた。   Table 6 shows the results obtained by measuring Escherichia coli while culturing it by the method of this example, and comparing it with the optical density (OD) value measured with a spectrophotometer after being sampled many times in the middle. It was confirmed that both measured values almost coincided with time.

また表7は大腸菌培養液の希釈シリーズを作成し、実施例の方法と分光光度計にてそれぞれ測定した値を比較したものである。実施例の方法による測定値が分光光度計の希釈したときの測定値と一致していることが確認された。   Table 7 shows a series of dilutions of the E. coli culture solution, and compares the values measured by the method of Example and the spectrophotometer. It was confirmed that the measured value obtained by the method of the example coincided with the measured value when diluted with the spectrophotometer.

表8は第2実施例の方法により、大腸菌,酵母,枯草菌において光学密度(OD)を計測した結果を示すものであり、幅広い生物種で光学密度(OD)を測定することができることを確認した。   Table 8 shows the results of measuring the optical density (OD) in Escherichia coli, yeast, and Bacillus subtilis by the method of the second embodiment, and confirms that the optical density (OD) can be measured in a wide range of biological species. did.

本体1の演算部がこの様々な光学密度のモデルデータ(濃度〜透過光量曲線)の近似式を記憶していることにより、未知試料の濃度(=光学密度、OD)もその透過光量を近似式に入力することで算出することができることとなることは前例に同じである。但し、試験管Bでの振とう培養では攪拌効果の大きな振とう条件において初期透過光量の安定までに30〜60 分の時間がかかることが確認されたため、初期透過光量の安定を待ってから光学密度(OD) の測定を開始するようにするのである。   Since the arithmetic unit of the main body 1 stores approximate expressions of model data (concentration to transmitted light amount curve) of various optical densities, the density (= optical density, OD) of an unknown sample also approximates the transmitted light amount. It is the same as in the previous example that it can be calculated by inputting to. However, in shaking culture in test tube B, it was confirmed that it took 30 to 60 minutes to stabilize the initial transmitted light amount under shaking conditions with a large stirring effect. The measurement of density (OD) is started.

図3は培養容器として大型の三角フラスコCを用いる装置例を示すもので、測定部3の光照射部3a側に反射光量を測定するための光センサー部3cを設けるほかは第1実施例の構成と同じである。この実施例では長い光路長と高濃度の光学密度(OD)を測定することができるように反射光量の変化を中心に透過光量の補正を付加して光学密度(OD)を測定するようしたのである。表9に示すように培養時間の経過による光学密度(OD)の上昇に伴って、透過光量が減少し、反射光量が上昇していることがわかる。   FIG. 3 shows an example of an apparatus that uses a large Erlenmeyer flask C as a culture container. The optical sensor 3c for measuring the amount of reflected light is provided on the light irradiating part 3a side of the measuring part 3 according to the first embodiment. Same as the configuration. In this embodiment, the optical density (OD) is measured by adding the correction of the transmitted light amount around the change in the reflected light amount so that a long optical path length and a high density optical density (OD) can be measured. is there. As shown in Table 9, it can be seen that the amount of transmitted light decreases and the amount of reflected light increases as the optical density (OD) increases as the culture time elapses.

第1実施例と同様に、様々な濃度の大腸菌培養液について振とうしながら反射光量の代表値を数万回の実測値から得て、試料の増殖に伴う濃度に従って反射光量が増加する光学密度のモデルデータ(濃度〜光量曲線の換算式)を求め、大腸菌培養の試料液aの液量と粘度・回転速度・温度の各相違する様々な条件下における光学密度の換算式群を演算部に記憶させた。そして、この該当する換算式を介して、反射光量変化から光学密度(OD)を計算可能とした。   Similar to the first embodiment, the representative values of the reflected light amount are obtained from tens of thousands of actually measured values while shaking for various concentrations of Escherichia coli culture solution, and the optical density at which the reflected light amount increases according to the concentration accompanying the growth of the sample. Model data (conversion formula of concentration-light curve), and the calculation unit of optical density conversion formula group under various conditions with different amounts of liquid, viscosity, rotation speed, and temperature of Escherichia coli culture I remembered it. Then, the optical density (OD) can be calculated from the change in the amount of reflected light through the corresponding conversion formula.

表10は大腸菌を本実施例の方法にて培養しつつ測定し、途中で何度もサンプリングして分光光度計にて測定した光学密度(OD)値と比較したものである。両測定値が経時的にもほぼ一致していることを確認することができた。   Table 10 shows the results obtained by measuring Escherichia coli while culturing it by the method of this example, and comparing it with the optical density (OD) value measured with a spectrophotometer after sampling many times in the middle. It was confirmed that both measured values almost coincided with time.

また、表11は大腸菌培養液の希釈シリーズを作成し、実施例の方法と分光光度計にてそれぞれ測定した値を比較したものである。一般に分光光度計は高濃度の光学密度(OD)測定のときには培養液の希釈が必要となるが、この実施例による測定値は高濃度域に至るまで分光光度計の希釈したときの測定値と一致した。   Table 11 shows a series of dilutions of the E. coli culture solution, and compares the values measured by the method of Example and the spectrophotometer. In general, a spectrophotometer requires dilution of a culture solution when measuring a high concentration optical density (OD), but the measurement value according to this example is the same as the measurement value when the spectrophotometer is diluted to reach a high concentration range. Matched.

相当する振とう条件における光学密度のモデルデータを選択して、培養開始時の初期反射光量からの反射光量の上昇率を元に光学密度(OD)を算出することによって培養試料の増殖を振とう中に非接触にて連続測定することができるものとなる。   Shake the growth of the culture sample by selecting the optical density model data under the corresponding shaking conditions and calculating the optical density (OD) based on the rate of increase in the reflected light amount from the initial reflected light amount at the start of culture. It can be continuously measured without contact.

なお、光学密度(OD)を反射光量にて測定する場合、培養開始初期の段階では培養容器表面の反射光と試料液面および気泡による散乱光が主となるため、開始初期すなわち低濃度(低光学密度)での感度・精度が透過光量の測定方式に較べてやや劣ることとなるが、試料の増殖により細胞の散乱光の比率が高くなって培養濃度(光学密度)が大きく上昇して光が透過しにくい条件になるとかえって有利になるので大量の浸透培養を行う大型の培養容器における測定に適するものでなる。   Note that when the optical density (OD) is measured by the amount of reflected light, the reflected light from the surface of the culture vessel and the scattered light from the sample liquid surface and bubbles are mainly used at the initial stage of the culture. Although the sensitivity and accuracy of the optical density are slightly inferior to those of the transmitted light measurement method, the ratio of scattered light from the cells increases due to sample growth, and the culture concentration (optical density) increases significantly. However, it is advantageous for measurement in a large culture vessel for carrying out a large amount of permeation culture.

反射光量の測定方式が開始初期状態においては透過光量の測定方式に較べて劣るという点を改善するため、反射方式を主とする測定方法において、初期の測定時にのみ透過方式を組み合わせるようにすることもできる。かくすることにより反射方式の短所である低濃度での感度・精度の低さを補い、初期反射光と細胞増殖時の反射光量の比率からの計算式を補正することができることとなる。   In order to improve that the reflected light measurement method is inferior to the transmitted light measurement method in the initial state, the transmission method should be combined only in the initial measurement in the measurement method mainly using the reflection method. You can also. In this way, the low sensitivity and accuracy at low density, which is a disadvantage of the reflection method, can be compensated, and the calculation formula from the ratio of the initial reflected light and the amount of reflected light during cell proliferation can be corrected.

図4は測定用の照射光の光照射部3aと光センサー部3cを高い位置、すなわち旋回振とう中における培養液の厚みが薄くなる部分に調整した実施例を示すもので、培養液の厚みが薄い位置を測定することにより厚い位置での測定に較べて濃度が減少して通常よりも高い光学密度(OD)までの測定が可能となるのである。検証によれば、低い位置で測定できるOD=6〜7であったところ、高い位置での測定では最大OD=20までの光学密度を測定することが可能になった。   FIG. 4 shows an embodiment in which the light irradiation unit 3a and the optical sensor unit 3c for measurement irradiation light are adjusted to a high position, that is, a portion where the thickness of the culture solution becomes thin during swirling shaking. By measuring the position where the thickness is thin, the density decreases compared to the measurement at the thick position, and measurement up to an optical density (OD) higher than usual becomes possible. According to the verification, when OD = 6 to 7 which can be measured at a low position, the optical density up to a maximum OD = 20 can be measured at a high position.

なお、光量測定時に測定値の平均化と最小値の取得を組み合わせることで、振とう性能を向上するバッフル・フラスコや振とうフラスコなど(図示してない)を使用した培養中に気泡が多く発生する振とう条件においても光学密度(OD)の測定ができることとなる。   In addition, many bubbles are generated during culture using baffle flasks or shake flasks (not shown) that improve shaking performance by combining measurement value averaging and minimum value acquisition during light intensity measurement. The optical density (OD) can be measured even under the shaking conditions.

図5は本体1に表示装置5,印刷装置6,記録装置7を接続して測定の経過/結果をリアルタイムにて表示し、印刷し、さらに記録するようにした方法の実施装置の例を示すものである。なお、これらの装置は個々に接続することもできるがパソコンを介するなどして他の装置と共用のものを使用することもできる。   FIG. 5 shows an example of an implementation apparatus of a method in which a display device 5, a printing device 6, and a recording device 7 are connected to the main body 1, and the progress / results of measurement are displayed in real time, printed, and further recorded. Is. Note that these devices can be connected individually, but can also be used with other devices through a personal computer.

図6は測定値のフィードバックに基づいて動作する培地供給用のポンプ8と培地液排出用のポンプ9を本体に接続して一定の培養濃度の維持を自動化する方法の実施例装置を示すものである。かくすることで測定中の作業の負担を軽減することがでるほか、長時間に及ぶ測定を行うことができることとなる。   FIG. 6 shows an embodiment of a method for automating the maintenance of a constant culture concentration by connecting a medium supply pump 8 and a medium solution discharge pump 9 operating on the basis of measured value feedback to the main body. is there. In this way, the burden of work during measurement can be reduced, and measurement over a long period of time can be performed.

本発明は作業負担を軽減し,培養試料の減少もなく、培養の一時停止による悪影響およびコンタミネーションのリスクを可及的に低減しながら培養試料の増殖に対応する光学密度(OD)を外部から非接触にて培養振とう中リアルタイムにて測定することができることで、実験データの取得はもとより生産条件の管理に応用することで生産の能率向上にも広く利用されるものである。   The present invention reduces the work burden, does not reduce the culture sample, and externally increases the optical density (OD) corresponding to the growth of the culture sample while reducing the adverse effects of the suspension of culture and the risk of contamination as much as possible. Since it can be measured in real time during culture shaking without contact, it can be widely used to improve production efficiency by applying to the management of production conditions as well as the acquisition of experimental data.

1は本体
2は振とう台
3は測定部
3aは光照射部
3bは受光センサー部
3cは光センサー部
4は往復振とう台
5は表示装置
6は印刷装置
7は記録装置
8は培地供給用のポンプ
9は培地液排出用のポンプ
Aは小型の三角フラスコ
Bは試験管
Cは大型の三角フラスコ
aは試料液
1 is a main body 2 is a shaking table 3 is a measuring unit 3a is a light irradiation unit 3b is a light receiving sensor unit 3c is a light sensor unit 4 is a reciprocating shaking table 5 is a display device 6 is a printing device 7 is a recording device 8 is for supplying a medium 9 is a pump for discharging the medium solution A is a small Erlenmeyer flask B is a test tube C is a large Erlenmeyer flask a is a sample solution

Claims (5)

培養容器内にて振とう培養中の試料液を旋回振とうの遠心圧又は往復振とう動作によって培養容器の内面に薄く一定の揺らぎをもった厚みに広げ延ばして光の透過する光路長を光の透過が可能となるように短く調節し、該容器の外方から室内の可視光線下にて透過光量又は反射光量を測定可能とする赤外光を照射して、該試料液の増殖に伴う光学密度の上昇による透過光量又は反射光量あるいは双方の光量の変化を測定して光学密度のモデルデータに照合し、培養容器の大きさと形状の相違及び培養試料液の液量と粘度度合及び振とう方式及び振幅の大きさ及び振とう速度の遅速及び振とう角の大小及び温度の高低に基づいて培養容器表面の反射光と培養試料液面及び気泡による散乱光が主となる初期反射光量を事前に測定して初期値に反映させて求めた換算式で演算し、且つ透過光量と反射光量の変化の双方の測定値より光学密度の変化を測定するに際して、気泡による散乱光の多い初期の測定に透過光量の測定値を用い、この透過光量に基づいた測定値を用いて反射光量に基づいた測定値を補正することで培養中の試料の増殖を連続測定可能にしたことを特徴とする培養中の試料の増殖を非接触で連続測定する方法。 Optical light path length which transmits the light to extend spread thinly thickness having a certain fluctuation in the inner surface of the culture vessel by shaking the centrifugal pressure or the sample liquid swirl shaking in culture reciprocal shaking operation in culture vessel The sample solution is propagated by irradiating it with infrared light that enables measurement of the transmitted light amount or reflected light amount from the outside of the container under visible light in the room from the outside of the container. Changes in the amount of transmitted light and / or reflected light due to an increase in optical density are measured and collated with optical density model data. Differences in the size and shape of the culture vessel, the volume and viscosity of the culture sample solution, and shaking. Based on the method, the amplitude, the slowness of the shaking speed, the magnitude of the shaking angle, and the temperature, the initial reflected light amount mainly composed of the reflected light from the culture vessel surface and the scattered light from the culture sample liquid surface and bubbles is preliminarily determined. Measured to reflect the initial value It was then calculated by conversion formula determined, and used when measuring the amount of transmitted light changes in optical density than the measured value of both the variation in the amount of reflected light, the measurement of the transmitted light amount to more initial measurement of the scattered light due to the air bubbles The measurement value based on the amount of transmitted light is used to correct the measurement value based on the amount of reflected light so that the growth of the sample in culture can be continuously measured. Method of continuous measurement with. 試料液の振とう培養の初期に発生する気泡による透過光量又は反射光量の変化を初期光量値に反映して初期光量値の変動を補正する請求項1に記載の培養中の試料の増殖を非接触で連続測定する方法。   2. The growth of the sample during culture according to claim 1, wherein the change in the initial light amount value is corrected by reflecting the change in the transmitted light amount or the reflected light amount due to bubbles generated in the initial stage of shaking culture of the sample liquid in the initial light amount value. A method of continuous measurement by contact. 反射光量の変化を測定するに際して、光の照射位置と反射光量の測定センサの位置を培養試料液の厚みが可及的に薄い部分に調整する請求項に記載の培養中の試料の増殖を非接触で連続測定する方法。 In measuring the change in reflected light quantity, the growth of the sample in the culture of claim 1, the position of the measuring sensor and the irradiation position of the light amount of reflected light the thickness of the culture sample solution is adjusted to as much as possible thin portion A non-contact continuous measurement method. バッフルフラスコ及び振とうフラスコの気泡を多く含む振とう条件における光量測定時に測定値の平均化と最小値の取得を組み合わせる請求項1乃至のいずれかに記載の培養中の試料の増殖を非接触で連続測定する方法。 The non-contact growth of the sample during culture according to any one of claims 1 to 3 , wherein averaging of the measurement value and acquisition of the minimum value are combined at the time of light quantity measurement under shaking conditions containing a lot of bubbles in the baffle flask and the shake flask. Method of continuous measurement with. 測定経過又は結果の測定値のフィードバックにより培地液の供給又は培地液の排出を自動化して培養液を一定の濃度に維持する請求項1乃至のいずれかに記載の培養中の試料の増殖を非接触で連続測定する方法。 The growth of the sample during culture according to any one of claims 1 to 4 , wherein the supply of the medium solution or the discharge of the medium solution is automated by feedback of the measurement process or the measured value of the result to maintain the culture solution at a constant concentration. A non-contact continuous measurement method.
JP2011088760A 2011-04-13 2011-04-13 A non-contact method for continuous measurement of sample growth during culture Active JP5774352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088760A JP5774352B2 (en) 2011-04-13 2011-04-13 A non-contact method for continuous measurement of sample growth during culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088760A JP5774352B2 (en) 2011-04-13 2011-04-13 A non-contact method for continuous measurement of sample growth during culture

Publications (2)

Publication Number Publication Date
JP2012217426A JP2012217426A (en) 2012-11-12
JP5774352B2 true JP5774352B2 (en) 2015-09-09

Family

ID=47269646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088760A Active JP5774352B2 (en) 2011-04-13 2011-04-13 A non-contact method for continuous measurement of sample growth during culture

Country Status (1)

Country Link
JP (1) JP5774352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001284B3 (en) 2014-02-01 2015-01-22 aquila biolabs GmbH Method, apparatus and system for the automated determination of optical densities or the variation of optical densities of reaction mixtures in shaken reactors
JP2015216873A (en) * 2014-05-16 2015-12-07 株式会社未来技術研究所 Microalgae culture system
JP2023130916A (en) * 2022-03-08 2023-09-21 キヤノン株式会社 Culture device, cell density measurement device, and cell density measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343588B2 (en) * 1972-09-27 1978-11-21
JPS55102399A (en) * 1979-01-31 1980-08-05 Ootake Seisakusho:Kk Method and apparatus for measuring growth of microbial in rotary shaking culture
JPH0724598B2 (en) * 1991-05-14 1995-03-22 有限会社大岳製作所 Rotary magnetic shaking culture measurement method and device
JPH09154565A (en) * 1995-12-08 1997-06-17 Sanyo Electric Co Ltd Shaking culture machine
WO2007001248A1 (en) * 2005-06-13 2007-01-04 Hong Peng Apparatus and method for monitoring biological cell culture

Also Published As

Publication number Publication date
JP2012217426A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
US20210054331A1 (en) Method and system for use in monitoring biological material
FR2635587A1 (en) APPARATUS AND METHOD FOR OPTICAL DENSITY MEASUREMENTS OF BIOMASSES
CN105548138B (en) The detection method of brewing fermentation liquid yeast activity on-line measuring device based on Raman spectrum
JP4800318B2 (en) Apparatus and method for treating biological fluids
Feather et al. A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments
EP2861984B1 (en) Method and system for use in monitoring biological material
CN103649721B (en) For determining the method and system of material concentration in body fluid
US10456767B2 (en) Cytometric mechanism, cell culture device comprising same, and cytometric method
JP5774352B2 (en) A non-contact method for continuous measurement of sample growth during culture
CN105842178B (en) A kind of cell culture fluid acid-base value non-intrusion type on-line measuring device and detection method
JP2015057591A (en) Analytic method and analyzer for concentration of suspended matter in suspension liquid
JP2006523826A (en) Method and apparatus for testing fibers
Jiménez-Márquez et al. High-resolution low-cost optoelectronic instrument for supervising grape must fermentation
CN205333518U (en) Making wine zymotic fluid yeast vigor on -line measuring device based on raman spectroscopy
CN108474738B (en) Automatic analyzer and standard liquid for evaluating scattered light measuring optical system thereof
CN105531579A (en) Method for determining the concentration of a substance in a deformable container
CN110567899B (en) Low-temperature compensation method for COD detection
Mestre A precision photometer for the study of suspensions of bacteria and other microorganisms
CN202886267U (en) Device for automatically measuring brix and purity of sugar liquid
RU2426990C1 (en) Method of optical analysis of thrombocyte aggregation
CN108801991A (en) Cells survival rate decision maker
US20240069008A1 (en) Living cell counting method and living cell counting device
CN103323433B (en) The shaking table device of contactless multichannel on-line checking fermentation liquid and method of testing
Nothelfer et al. Direct determination of the spectrally resolved scattering phase function of suspensions and emulsions
JPS6379039A (en) Suspension concentration measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5774352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250