JPS6379039A - Suspension concentration measurement - Google Patents

Suspension concentration measurement

Info

Publication number
JPS6379039A
JPS6379039A JP61223723A JP22372386A JPS6379039A JP S6379039 A JPS6379039 A JP S6379039A JP 61223723 A JP61223723 A JP 61223723A JP 22372386 A JP22372386 A JP 22372386A JP S6379039 A JPS6379039 A JP S6379039A
Authority
JP
Japan
Prior art keywords
light
concentration
cell
suspension
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61223723A
Other languages
Japanese (ja)
Other versions
JPH0640819B2 (en
Inventor
Mikio Inoue
幹夫 井上
Naoki Tawara
直樹 田原
Kenichi Osakabe
謙一 刑部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61223723A priority Critical patent/JPH0640819B2/en
Publication of JPS6379039A publication Critical patent/JPS6379039A/en
Publication of JPH0640819B2 publication Critical patent/JPH0640819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the measuring of the concentration of a suspension at a high accuracy, by irradiating a liquid containing a suspension with light through a signal glass to measure the intensity of the reflected light thereof for collation with a know value. CONSTITUTION:A fermentation liquid 11 is irradiated with light from a light irradiating section in probe 3 through a signal glass provided on a side wall of a fermentation tank 12 and the intensity of the reflected light thereof is received with a light receiving section in the probe 3 to be collated with a known value by a light irradiation analysis unit 4 whereby the concentration of cell in the fermentation liquid is measured. The concentration of cell in the fermentation liquid 11 is kept at a reference value by such an operation as increasing or decreasing the revolutions of a motor 61 via a converter 51 according to the degree of deviation of a measured value from a reference operation value or increasing or decreasing feed of air to an air dispersion tube 7 with the control of valve 71 via a converter 53. The concentration of cell in the fermentation liquid 11 is displayed on a cell densitometer 8 via a converter 52.

Description

【発明の詳細な説明】 イ0発明の目的 産業上の利用分野 この発明は液中の懸濁物濃度を測定する方法に関するも
ので、懸濁物含有液を処理する槽、例えば発酵槽、動物
細胞培養槽、植物細胞培養槽、下水処理槽などにおける
適正操業条件の維持管理に有効である。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention Industrial Application Field This invention relates to a method for measuring the concentration of suspended matter in a liquid, and relates to a method for measuring the concentration of suspended matter in a liquid, such as a fermentation tank, an animal It is effective for maintaining and managing proper operating conditions in cell culture tanks, plant cell culture tanks, sewage treatment tanks, etc.

従来の技術 懸濁物の濃度、例えば細胞濃度の従来の測定法は、オン
ライン測定が可能なものとしては、■濁度式、■間接的
測定法があるが、■1萄度式は透過光を測定するため高
濃度域での誤差が大きく、■間接的測定法は細胞中の成
分II)NA、RNA、ATP、NAD (P)H、タ
ンパクTコを測定して懸濁物濃度を推定する方法で、N
AD (P)Hを蛍光で測定する方法が現存するが、直
接的でない為すべての懸濁物に対して汀遍的な相関がと
れないという弱点がある。また■比重式、[株]粘度式
などがあるが、■比重式は誤差が大きく、■粘度式は温
度補正が必要であり、低濃度域での誤差が大きく、また
消泡剤の影響が大きい。
Conventional techniques Conventional methods for measuring the concentration of a suspension, such as cell concentration, include ■turbidity method and ■indirect measurement method, but ■1 turbidity method uses transmitted light. Indirect measurement method estimates suspension concentration by measuring components in cells (II) NA, RNA, ATP, NAD (P)H, and protein T. N
Although there is currently a method for measuring AD (P)H using fluorescence, it has the disadvantage that it is not direct and a uniform correlation cannot be established for all suspended substances. In addition, there are the ■specific gravity method and the [Co.] viscosity method, but the ■specific gravity method has a large error, and the ■viscosity method requires temperature correction, has a large error in the low concentration range, and is affected by antifoaming agents. big.

その他−駁論として、■全般的に信頼性のある測定の範
囲が狭く、希釈などの操作が必要となる場合もある、■
オンライン回部なものでも、センサーに含有液が接触し
ている為センサー表面の汚れによる感度低下が起こり信
頼性に限界がある、■オンラインのものはセンサーに構
造上デッドスペースが多くなり、洗?’/l、殺菌に手
間がかかり、また洗浄、殺菌不十分による槽内の雑菌汚
染を生じる可使性が大きい、■オンライン不可能なもの
の場合、含有液の一部をサンプリングして分析すること
になり、測定に人手と時間がかかる。■オンラインのも
のでは含有液の気泡の影響を受は易い、といった欠点が
ある。
Others - As a counterargument, the range of generally reliable measurements is narrow, and operations such as dilution may be necessary.
Even with the online version, there is a limit to reliability because the sensor is in contact with the liquid contained in it, so sensitivity decreases due to dirt on the sensor surface, and there is a limit to reliability. '/l, sterilization is time-consuming, and the tank is susceptible to bacterial contamination due to insufficient cleaning and sterilization.If it is impossible to use online, sample and analyze a portion of the liquid. Therefore, measurement takes time and manpower. ■On-line methods have the disadvantage that they are easily affected by bubbles in the liquid they contain.

発明が解決しようとする問題点 本発明は上記のような従来の方法の欠点を解決した、液
中の懸濁物濃度測定法を提供することを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to provide a method for measuring the concentration of suspended matter in a liquid, which solves the drawbacks of the conventional methods as described above.

口1発明の構成 問題点を解決するための手段 本発明による懸濁物濃度測定法は、懸濁物含有液にサイ
トグラスを通して光を照射し、その反射光の強さを測定
して既知の値と照合することを特徴とする。
1. Means for Solving Problems in the Structure of the Invention The method for measuring the concentration of suspended solids according to the present invention involves irradiating a suspension-containing liquid with light through a sight glass and measuring the intensity of the reflected light. It is characterized by matching with a value.

これを細胞培養液を例にとり第1図により説明すると、
細胞培養液を保持している容器、又は細胞培養液が流れ
ている管1中の蔽工1に、サイトグラス2を通して光を
照射し、受光部32によりその反射光を受光する。
This can be explained using Figure 1 using cell culture fluid as an example.
Light is irradiated through a sight glass 2 to a container holding a cell culture solution or a cover 1 in a tube 1 through which the cell culture solution is flowing, and the light receiving section 32 receives the reflected light.

光照射は受光部32とは別個に設けた光源によって行っ
てもよいが、光照射部31と受光部32が一体化された
構造を有するプローブ3を使用するのが便利である。
Although light irradiation may be performed by a light source provided separately from the light receiving section 32, it is convenient to use a probe 3 having a structure in which the light irradiating section 31 and the light receiving section 32 are integrated.

このようなプローブ3では、ランプ33からの光は光フ
ァイバー34を通して光照射部31に送られサイトグラ
ス2を通して容器又は管1内に照射され、その反射光が
受光部32にとらえられ、光ファイバー35を通して光
照射解析ユニットに送られる。光照射解析ユニット(第
2図に記号4で示す)により反射光の強さを測定し、既
知の値と照合する。
In such a probe 3, the light from the lamp 33 is sent to the light irradiation section 31 through the optical fiber 34, and is irradiated into the container or tube 1 through the sight glass 2. The reflected light is captured by the light receiving section 32, and is transmitted through the optical fiber 35. Sent to the light irradiation analysis unit. A light irradiation analysis unit (indicated by symbol 4 in FIG. 2) measures the intensity of the reflected light and compares it with known values.

細胞培養液からの反射光の強さは、後述のように細胞培
養液中の細胞濃度と直線的な比例関係を有するので、そ
の値を既知の測定値と照合することにより、その液中の
細胞濃度を容易に知ることができる。
The intensity of reflected light from the cell culture medium has a linear proportional relationship with the cell concentration in the cell culture medium, as described below. Cell concentration can be easily determined.

例えば培養の経時変化に伴って適宜に試料を採取し、数
段階の稀釈細胞懸濁液を調製して、予め細胞の絶対量を
測定し1反射率と細胞の絶対量との相関関係、即ち検量
線を求めておく0次いで測定すべき液の反射率を測定し
、前記の検量線に照合することにより液中の細胞e度を
求める。
For example, as the culture changes over time, samples are appropriately collected, diluted cell suspensions are prepared in several stages, and the absolute amount of cells is measured in advance.1The correlation between the reflectance and the absolute amount of cells is Determine a calibration curve Next, measure the reflectance of the liquid to be measured and compare it with the calibration curve to determine the degree of cell e in the liquid.

反射率を測定する際のリファレンスとしては、一般的に
は白紙の場合の反射率を100%として行ってもよいが
、細胞が着色していたり、培地に色がついている場合に
は、その細胞の最大濃度の懸濁液を3J製し、その反射
率をリファレンスにしてもよい。
Generally, the reflectance of a blank sheet of paper can be used as a reference when measuring reflectance, but if the cells are colored or the medium is colored, A suspension with the maximum concentration of 3J may be prepared and its reflectance may be used as a reference.

空気が吹き込まれ分散している状Igの培養液でも気泡
の影響をそれほど受けることなく測定しうるが、適当な
リファレンスを取ることにより、精度よく測定値を得る
ことができる。
Even if the Ig culture solution is dispersed by blowing air into it, the measurement can be performed without being significantly affected by air bubbles, but by taking an appropriate reference, the measured values can be obtained with high accuracy.

例えば気泡の含まれる培養液を適宜サンプリングして前
記の如く数段階の希釈細胞懸濁液を調製して細胞の絶対
量を測定し、作成した検量線をもとに測定すべき液中の
細胞濃度を求めることができる。
For example, a culture solution containing air bubbles is appropriately sampled, diluted cell suspensions are prepared in several stages as described above, the absolute amount of cells is measured, and the cells in the solution to be measured are determined based on the prepared calibration curve. Concentration can be determined.

槽又は管内に光を照射する角度は、サイトグラス面に対
して20度乃至80度、好ましくは45度前後とするの
が適当である。
The angle at which light is irradiated into the tank or tube is suitably 20 degrees to 80 degrees, preferably around 45 degrees with respect to the sight glass surface.

直角(90度)の場合はサイトグラスからの反射光が強
すぎて反射率の差が不明瞭となり、20度以下の場合は
槽内からの反射光か弱すぎて測定困難となる。
If it is at a right angle (90 degrees), the reflected light from the sight glass will be too strong, making the difference in reflectance unclear; if it is less than 20 degrees, the reflected light from inside the tank will be too weak, making measurement difficult.

本発明の細胞濃度測定法は、細胞含有槽自体に適用して
もよいし、含有槽から流出する培養液に適用してもよい
が、−例として、発酵槽自体に適用し適正操業条件を維
持管理する手段として応用する場合について第2図によ
り説明する。
The cell concentration measurement method of the present invention may be applied to the cell-containing tank itself or to the culture fluid flowing out from the cell-containing tank, but - as an example, it may be applied to the fermenter itself to ensure proper operating conditions. The case where it is applied as a means for maintenance and management will be explained with reference to FIG.

発酵槽12の側壁に設けたサイトグラス2を通して、発
酵液11−にプローブ3中の光照射部(31)から光を
照射し、その反射光の強さをプローブ3中の受光部(3
2)で受光し、光照射解析ユニット4で既知の値と照合
することにより発酵液中の細胞濃度を測定する。
Light is irradiated from the light irradiation part (31) in the probe 3 to the fermentation liquid 11- through the sight glass 2 provided on the side wall of the fermentation tank 12, and the intensity of the reflected light is measured by the light reception part (31) in the probe 3.
2), and the light irradiation analysis unit 4 measures the cell concentration in the fermentation liquid by comparing it with a known value.

その測定値の運転ノ、(準値からの偏差の度合に応じて
、変換器51を経て攪拌器6のモーター61の回転数を
増減したり、変換器53を経て弁71をコントロールし
て空気分散管7への送気部を増減することにより1発酵
液中の細胞濃度を基準値に保つように操作することがで
きる。なお発酵液中の細胞濃度は変換器52を経て細胞
濃度計8に表示される。
Depending on the degree of deviation from the standard value, the number of revolutions of the motor 61 of the agitator 6 is increased or decreased through the converter 51, or the valve 71 is controlled through the converter 53 to air By increasing or decreasing the number of air supply parts to the dispersion tube 7, the cell concentration in one fermentation liquid can be maintained at a reference value. will be displayed.

本発明における光源としては、光を照射した際の@濁物
かもの反射光が信号として検出されるだけの強さを有す
ることができる充分な光を照射し得るものを使用する。
The light source used in the present invention is one that can irradiate enough light so that the reflected light from the turbid object when irradiated with light is strong enough to be detected as a signal.

測定の対象となる懸濁物の濃度範囲などに応じて適した
光源を用いてもよい。
An appropriate light source may be used depending on the concentration range of the suspended matter to be measured.

光源として高出力の′もの1例えばハロゲンタングステ
ンランプなどを用い、高照度となるように光照射すれば
懸濁物濃度が高い場合であっても希釈することなく直接
測定することができるので望ましい。
It is desirable to use a high output light source, such as a halogen tungsten lamp, and irradiate the light with high illuminance so that even if the concentration of suspended matter is high, it can be directly measured without dilution.

照度としては1万ルクス以上の高照度とすることが好ま
しい、これ以下では懸濁物濃度が高い場合、液からの反
射光が弱くなり、さらにノイズが増大するため、測定が
難しい、照度をあまり高めると消費電力の増大を伴なう
ので、通常は1〜30万ルクスの範囲が好ましく、さら
に1〜25万ルクスの範囲が好ましい。
It is preferable to use a high illuminance of 10,000 lux or more. If the concentration of suspended matter is lower than this, the reflected light from the liquid will become weaker and noise will increase, making measurement difficult. Since increasing the power consumption is accompanied by an increase in power consumption, a range of 10,000 to 300,000 lux is usually preferable, and a range of 1 to 250,000 lux is more preferable.

また測定に使用する光の波長は、測定の対象となる懸濁
物及び液の性状により適宜選定すればよい。
Moreover, the wavelength of the light used for measurement may be appropriately selected depending on the properties of the suspension and liquid to be measured.

[実施例1] 最高77ドライセルg/1.最低1.3ドライセルg/
見の間の高・中濃度領域の各段階のii:taのイース
ト液を調製し、分光光度計用のセルに入れ、セルのガラ
ス面に対して45度の角度から光を照射し、その反射率
を測定した結果を第1表に示す。
[Example 1] Maximum 77 dry cell g/1. Minimum 1.3 dry cell g/
Prepare the ii:ta yeast solution for each stage in the high and medium concentration regions of the room, place it in a spectrophotometer cell, and irradiate the glass surface of the cell with light from a 45 degree angle. Table 1 shows the results of measuring the reflectance.

なお光源としてハロゲンタングステンランプを用い、セ
ルのガラス面での強さが18万ルクスとなるように光照
射した。
A halogen tungsten lamp was used as a light source, and light was irradiated so that the intensity on the glass surface of the cell was 180,000 lux.

リファレンスには最高濃度である77ドライセルg/又
を用いた。
The highest concentration, 77 g/dry cell, was used as a reference.

また第1表中、660nmの波長の光の反射率とイース
ト濃度の関係を第3図に示した。ここで横軸はイースト
濃度(ドライセルg/文)、縦軸は反射率(%)を示す
Further, in Table 1, the relationship between the reflectance of light at a wavelength of 660 nm and the yeast concentration is shown in FIG. Here, the horizontal axis shows the yeast concentration (dry cell g/mon), and the vertical axis shows the reflectance (%).

第   1   表 第3図から明らかなように、イースト濃度と光の反射率
との間には直線的な比例関係が認められる。また77ド
ライセルg/!;L程度の高濃度でも希釈することなく
測定できることがわかる。
As is clear from Table 1 and Figure 3, there is a linear proportional relationship between yeast concentration and light reflectance. Another 77 dry cell g/! It can be seen that even a high concentration as high as L can be measured without dilution.

[実施例2] 33ドライセルg/lのイースト培養液を原液とし培地
で稀釈して、最低3.35ドライセルg/文までの中濃
度領域の各段階のイースト液を調製し、試験管に入れ、
ガラス面に対して45度の角度から光を照射し、その反
射率を測定した。
[Example 2] A yeast culture solution containing 33 g/l of dry cells was used as a stock solution and diluted with a medium to prepare yeast solutions at each stage in the medium concentration range up to a minimum of 3.35 g/l of dry cells, and put into test tubes. ,
Light was irradiated onto the glass surface from an angle of 45 degrees, and the reflectance was measured.

その結果を第2表に示す。なおリファレンスとして白紙
を用いた。
The results are shown in Table 2. A blank sheet of paper was used as a reference.

また第2表中、660nmの波長の光の反射率とイース
ト濃度の関係を第4図に示した。ここで横軸はイースト
濃度(ドライセルg/立)、縦軸は反射率(%)を示す
Furthermore, in Table 2, the relationship between the reflectance of light at a wavelength of 660 nm and the yeast concentration is shown in FIG. Here, the horizontal axis shows the yeast concentration (dry cell g/vertical), and the vertical axis shows the reflectance (%).

第4図から明らかなように、中c度領域でも、イースト
濃度と光の反射率との間には直線的な比例関係が認めら
れる。
As is clear from FIG. 4, there is a linear proportional relationship between the yeast concentration and the light reflectance even in the medium C degree region.

第2表 [実施例31 実施例工と同様にして、最高3.1ドライセルg/l、
最低0.031ドライセルg/lの間の低濃度領域の各
段階のイースト液を調製し、分光光度計用のセルに入れ
、セルのガラス面に対して45度の角度から光を照射し
、その反射率を測定した結果を第3表に示す。
Table 2 [Example 31 Same as the example process, maximum 3.1 dry cell g/l,
Prepare a yeast solution at each stage in the low concentration range of at least 0.031 g/l dry cell, place it in a spectrophotometer cell, and irradiate the glass surface of the cell with light at a 45 degree angle. Table 3 shows the results of measuring the reflectance.

リファレンスには最高濃度である3、1ドライセルg/
文を用いた。
The reference is the highest concentration of 3.1 g/dry cell.
Sentences were used.

また第3表中、660nmの波長の光の反射率とイース
ト濃度の関係を第5図に示した。ここで横軸はイースト
濃度(ドライセルg/L)、縦軸は反射率(%)を示す
Furthermore, in Table 3, the relationship between the reflectance of light at a wavelength of 660 nm and the yeast concentration is shown in FIG. Here, the horizontal axis shows the yeast concentration (dry cell g/L), and the vertical axis shows the reflectance (%).

第5図から明らかなように、低濃度領域でも。As is clear from Fig. 5, even in the low concentration region.

イースト濃度と光の反射率とのHnには直線的な比例関
係が認められる。
A linear proportional relationship is observed between yeast concentration and light reflectance Hn.

第3表 ハ0発明の効果 広い範囲の懸濁物濃度に対して信頼性の高い測定値を得
ることができ、また必要に応じて高濃度領域、中濃度領
域、低濃度領域と測定範囲を切り換えて精度の高い濃度
測定を行うことができる。
Table 3 C0 Effects of the Invention Highly reliable measurement values can be obtained for a wide range of suspended matter concentrations, and the measurement range can be adjusted to high, medium, and low concentration areas as necessary. Highly accurate concentration measurement can be performed by switching.

そして迅速■つ簡単で、温度、比重、粘度の変化による
影響が少なく、センサーの洗節、殺菌を必要とせず、培
養液の雑菌汚染を生じるおそれがなく、気泡の影響の補
正が容易であり、発酵槽、動物細胞含有槽、植物細胞含
有槽などにおける適正操業条件の維持管理に有効である
It is quick and easy, has little influence from changes in temperature, specific gravity, and viscosity, does not require washing or sterilizing the sensor, does not have the risk of bacterial contamination of the culture solution, and can easily compensate for the effects of air bubbles. It is effective for maintaining and managing proper operating conditions in fermenters, tanks containing animal cells, tanks containing plant cells, etc.

またサイトグラスを有する既設の槽に対しては特別な改
造を加えることなく本発明を実施することができる。
Further, the present invention can be implemented without making any special modifications to an existing tank having a sight glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施方法を説明する為の図、第2図は
本発明を発酵槽における適正操業条件を維持管理する手
段として応用する場合の説明図、第3図、第4図及び第
5図は本発明による試験結果を示す図である。 1・・・容器又は管の壁、11・・・細胞培養液。 12・・・発酵槽、2・・・サイトグラス、3・・・プ
ローブ、31・・・光照射部、32・・・受光部、33
・・・ランプ、34.35・・・光ファイバー、 4・・・光照射解析ユニット、 51.52.53・・・変換器、
Figure 1 is a diagram for explaining the method of implementing the present invention, Figure 2 is an explanatory diagram when the present invention is applied as a means for maintaining and managing appropriate operating conditions in a fermenter, Figures 3, 4, and FIG. 5 is a diagram showing test results according to the present invention. 1... Wall of container or tube, 11... Cell culture medium. 12... Fermentation tank, 2... Sight glass, 3... Probe, 31... Light irradiation section, 32... Light receiving section, 33
...Lamp, 34.35...Optical fiber, 4...Light irradiation analysis unit, 51.52.53...Converter,

Claims (1)

【特許請求の範囲】 1 懸濁物含有液にサイトグラスを通して光を照射し、
その反射光の強さを測定して既知の値と照合することを
特徴とする懸濁物濃度測定法。 2 1万ルクス以上の照度となるように懸濁物含有液に
光を照射する特許請求の範囲第1項記載の懸濁物濃度測
定法。 3 液に光を照射する角度をサイトグラス面に対して2
0度乃至80度とする特許請求の範囲第1項又は第2項
記載の懸濁物濃度測定法。
[Claims] 1. Irradiating a suspension-containing liquid with light through a sight glass,
A suspension concentration measurement method characterized by measuring the intensity of the reflected light and comparing it with a known value. 2. The suspension concentration measuring method according to claim 1, wherein the suspension-containing liquid is irradiated with light at an illuminance of 10,000 lux or more. 3 Adjust the angle at which the light is irradiated onto the liquid by 2 with respect to the sight glass surface.
The suspension concentration measuring method according to claim 1 or 2, wherein the temperature is 0 degrees to 80 degrees.
JP61223723A 1986-09-24 1986-09-24 Cell culture method Expired - Lifetime JPH0640819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223723A JPH0640819B2 (en) 1986-09-24 1986-09-24 Cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223723A JPH0640819B2 (en) 1986-09-24 1986-09-24 Cell culture method

Publications (2)

Publication Number Publication Date
JPS6379039A true JPS6379039A (en) 1988-04-09
JPH0640819B2 JPH0640819B2 (en) 1994-06-01

Family

ID=16802670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223723A Expired - Lifetime JPH0640819B2 (en) 1986-09-24 1986-09-24 Cell culture method

Country Status (1)

Country Link
JP (1) JPH0640819B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064749A (en) * 2005-08-30 2007-03-15 Jasco Corp Cell for sample, and cell holder
CN101890252A (en) * 2010-07-07 2010-11-24 苏州浩波科技股份有限公司 Chemical product concentration and crystallization device with detector
JP2014530621A (en) * 2011-10-21 2014-11-20 セラピューティック プロテインズ インターナショナル, エルエルシー Non-invasive bioreactor monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431797A (en) * 1977-08-13 1979-03-08 Union Giken Kk Measurement of particulate
JPS5489788A (en) * 1977-12-27 1979-07-17 Kyoto Daiichi Kagaku Kk Device for measuring lighttscattering substance in solution
JPS54133179A (en) * 1978-04-05 1979-10-16 Kyoto Daiichi Kagaku Kk Standard scattering member for calibrating scattering photometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431797A (en) * 1977-08-13 1979-03-08 Union Giken Kk Measurement of particulate
JPS5489788A (en) * 1977-12-27 1979-07-17 Kyoto Daiichi Kagaku Kk Device for measuring lighttscattering substance in solution
JPS54133179A (en) * 1978-04-05 1979-10-16 Kyoto Daiichi Kagaku Kk Standard scattering member for calibrating scattering photometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064749A (en) * 2005-08-30 2007-03-15 Jasco Corp Cell for sample, and cell holder
CN101890252A (en) * 2010-07-07 2010-11-24 苏州浩波科技股份有限公司 Chemical product concentration and crystallization device with detector
JP2014530621A (en) * 2011-10-21 2014-11-20 セラピューティック プロテインズ インターナショナル, エルエルシー Non-invasive bioreactor monitoring

Also Published As

Publication number Publication date
JPH0640819B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US20060024710A1 (en) Method and device for identifying germs
US5420432A (en) Organic pollutant monitor
US5770394A (en) Method and apparatus for detecting bacteria using a blood culture froth
US20130217041A1 (en) Detection of biological molecules by differential partitioning of enzyme substrates and products
CA2753161C (en) A device for measuring light scattering and turbity in biological samples and methods of use thereof
JPH0115811B2 (en)
US20080003610A1 (en) Method for identifying germs
JPH0549180B2 (en)
EP0871865B1 (en) Device for measuring the partial pressure of gases dissolved in liquids
Sipior et al. Phase fluorometric optical carbon dioxide gas sensor for fermentation off‐gas monitoring
GB2162938A (en) Measuring the turbidity of liquid media
JPS6379039A (en) Suspension concentration measurement
JPH07243964A (en) Water quality measuring device, water quality measuring method, and waste water treating method
JP5774352B2 (en) A non-contact method for continuous measurement of sample growth during culture
JPS62138185A (en) Counter for microorganism
Mestre A precision photometer for the study of suspensions of bacteria and other microorganisms
CN1243232C (en) Photochemical and biochemical microorganic membrane dynamic responding sensor for COD with optical fiber
US8541194B2 (en) Detecting micro-organisms in an electrocoating process
CN110283877A (en) ATP bioluminescence lgCB-lgIBThe method for marking bent method detection plated film antibiotic glass bacteria resistance energy
CA1137786A (en) Automatic scanning apparatus for performing optical density tests on liquid samples, method for testing for antibiotic susceptibility, and method for identifying microorganisms
Niculescu et al. Accuracy Improvement for the Biochemistry Assays by Using Total Dissolved Solids and Turbidimetry Measurements
NL8600209A (en) METHOD AND APPARATUS FOR DETERMINING THE QUANTITY OF DISPERSED SOLID MATERIAL IN A LIQUID.
JPH0413655B2 (en)
JPH02296135A (en) Automatic measuring apparatus of callus quantity of floating plant
JP2021092470A (en) Spectrum measuring device and spectrum measuring method