JP5742701B2 - Electroless plating method - Google Patents

Electroless plating method Download PDF

Info

Publication number
JP5742701B2
JP5742701B2 JP2011273643A JP2011273643A JP5742701B2 JP 5742701 B2 JP5742701 B2 JP 5742701B2 JP 2011273643 A JP2011273643 A JP 2011273643A JP 2011273643 A JP2011273643 A JP 2011273643A JP 5742701 B2 JP5742701 B2 JP 5742701B2
Authority
JP
Japan
Prior art keywords
treatment
resin
electroless plating
treated surface
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011273643A
Other languages
Japanese (ja)
Other versions
JP2013124390A (en
Inventor
文隆 吉永
文隆 吉永
博 柳本
博 柳本
拓哉 光岡
拓哉 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011273643A priority Critical patent/JP5742701B2/en
Publication of JP2013124390A publication Critical patent/JP2013124390A/en
Application granted granted Critical
Publication of JP5742701B2 publication Critical patent/JP5742701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、高分子樹脂からなる樹脂基材の処理表面に無電解めっきを行う処理方法および無電解めっき処理材に係り、特に、無電解めっき被膜の密着強度を向上させることができる無電解めっき処理方法および無電解めっき処理材に関する。   The present invention relates to a treatment method and an electroless plating treatment material for performing electroless plating on a treated surface of a resin substrate made of a polymer resin, and in particular, electroless plating capable of improving the adhesion strength of an electroless plating film. The present invention relates to a treatment method and an electroless plating treatment material.

従来から、高分子樹脂の表面に、導電性や光沢性を付与すべく金属めっき被膜を形成する場合、無電解めっき処理を行うことが多い。この無電解めっき処理とは、導電性を有しない樹脂表面に、溶液中の金属イオンを化学的に還元析出させて、高分子樹脂の表面に、金属被膜を形成する処理である。   Conventionally, when a metal plating film is formed on a surface of a polymer resin so as to impart conductivity and gloss, an electroless plating treatment is often performed. The electroless plating treatment is a treatment for forming a metal film on the surface of the polymer resin by chemically reducing and depositing metal ions in the solution on the surface of the resin having no conductivity.

このように、無電解めっき処理は、化学的な還元反応を利用しているので、電力によって電解析出させる電気めっきとは異なり、一般的に絶縁体からなる高分子樹脂の表面であってもめっき被膜を形成することができる。さらに、金属被膜の形成後に、電気めっきを行うことも可能であり、金属被膜の強度だけでなく、意匠性も格段に向上することになる。   Thus, since the electroless plating process uses a chemical reduction reaction, unlike electroplating that is electrolytically deposited by electric power, even on the surface of a polymer resin generally made of an insulator. A plating film can be formed. Furthermore, it is also possible to perform electroplating after the formation of the metal coating, and not only the strength of the metal coating but also the design properties are significantly improved.

ところで、無電解めっきにより形成された金属被膜は、樹脂との密着性が充分でないことから、例えば以下の方法が前処理として採られている。具体的には、無電解めっき処理を行う前に、ABS樹脂などからなる樹脂基材の処理表面にオゾン水処理を行い、該オゾン水処理を行った処理表面に界面活性剤を少なくとも含むアルカリ溶液を接触させてアルカリ処理を行い、さらに、アルカリ処理後の処理表面にパラジウムなどの金属触媒を吸着させて触媒吸着処理を行う(例えば、特許文献1または2等参照)。   By the way, since the metal film formed by electroless plating does not have sufficient adhesiveness with the resin, for example, the following method is adopted as a pretreatment. Specifically, before performing the electroless plating treatment, the treated surface of the resin base material made of ABS resin or the like is treated with ozone water, and the treated surface subjected to the ozone water treatment contains an alkaline solution containing at least a surfactant. Is subjected to alkali treatment, and further, a catalyst adsorption treatment is performed by adsorbing a metal catalyst such as palladium on the treated surface after the alkali treatment (see, for example, Patent Document 1 or 2).

この方法によれば、オゾン水処理により、処理表面の改質を行って、処理表面をカルボキシル基を含む表面に改質し、その後、アルカリ処理により、カルボキシル基をカルボニル基にすると共に界面活性剤により樹脂表面の濡れ性を向上させる。これにより、これらの処理を行なった処理表面に対して、金属触媒を含む溶液の濡れ性が向上するため、触媒表面に金属触媒が付着しやすくなり、ムラ無く無電解めっきをすることができる。   According to this method, the treatment surface is modified by treatment with ozone water, the treatment surface is modified to a surface containing a carboxyl group, and then the carboxyl group is converted to a carbonyl group by an alkali treatment and a surfactant. This improves the wettability of the resin surface. Thereby, since the wettability of the solution containing the metal catalyst is improved on the treated surface subjected to these treatments, the metal catalyst is likely to adhere to the catalyst surface, and electroless plating can be performed without unevenness.

特開2005−36292号公報JP 2005-36292 A 特開2003−183841号公報JP 2003-183841 A

しかしながら、上述したオゾン水処理およびアルカリ処理を行ったとしても、金属触媒は、樹脂基材の処理表面に付着(吸着)するが、金属触媒はその処理表面にしか吸着しないため、この金属触媒により析出した無電解めっき被膜は、十分な密着力が無いことがあった。   However, even if the ozone water treatment and alkali treatment described above are performed, the metal catalyst adheres (adsorbs) to the treated surface of the resin base material, but the metal catalyst is adsorbed only on the treated surface. The deposited electroless plating film may not have sufficient adhesion.

さらに、ABS樹脂など、窒素(アミン)を含む樹脂は、金属触媒は吸着しやすいが、PP等の炭化水素系樹脂は、窒素(アミン)を含まない樹脂であるため、金属触媒が吸着し難く、樹脂基材の処理表面に、無電解めっき被膜が被覆され難いことがあった。   Furthermore, a resin containing nitrogen (amine) such as an ABS resin is easy to adsorb a metal catalyst, but a hydrocarbon resin such as PP is a resin not containing nitrogen (amine), so the metal catalyst is difficult to adsorb. The treated surface of the resin base material may be difficult to be coated with the electroless plating film.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、無電解めっきにより成膜されためっき被膜の密着力を高めることができる無電解めっきを行う処理方法、および、無電解めっき処理材を提供することにある。   This invention is made in view of such a point, The place made into the objective is the processing method which performs the electroless plating which can improve the adhesive force of the plating film formed by electroless plating, And it is providing the electroless-plating processing material.

発明者らは、鋭意検討を重ねた結果、無電解めっき処理において、金属触媒を樹脂基材に吸着させる前に、予め樹脂基材の処理面およびその内部(表層)にアミン系化合物を入り込ませることにより、樹脂基材の処理表面および表層の内部まで、窒素元素を含有させることができ、これにより、樹脂基材の処理表面ばかりでなくその表層内部にまで、金属触媒を吸着させることができると考えた。特に、所定の分子量を有するアリルアミン重合体は、樹脂基材の表面から内部に入り込みやすく、この結果、樹脂基材の処理面およびその表層の内部に金属触媒が入り込んだ状態で、無電解めっきを行った場合、処理表面に被覆され無電解めっきは、密着強度が向上するとの新たな知見を得た。   As a result of intensive studies, the inventors have previously introduced an amine compound into the treated surface of the resin substrate and the inside (surface layer) before the metal catalyst is adsorbed to the resin substrate in the electroless plating process. Thus, the nitrogen element can be contained up to the treated surface of the resin substrate and the inside of the surface layer, and thereby the metal catalyst can be adsorbed not only to the treated surface of the resin substrate but also to the inside of the surface layer. I thought. In particular, an allylamine polymer having a predetermined molecular weight easily enters the inside from the surface of the resin base material. As a result, the electroless plating is performed with the metal catalyst entering the treated surface of the resin base material and the inside of the surface layer. When it did, the electrolysis plating coat | covered on the process surface acquired the new knowledge that adhesive strength improved.

本発明は、発明者らの前記新たな知見によるものであり、本発明に係る無電解めっきの処理方法は、樹脂基材の処理表面を酸化処理する工程と、該酸化処理された処理表面にアルカリ処理を行なう工程と、該アルカリ処理を行なった処理表面に、分子量が1600以下のアリルアミン重合体を含む溶液を接触させ、アリルアミン重合体を処理表面から表層の内部に浸透させる工程と、該アリルアミン重合体を浸透させた処理表面を含む表層の内部に、該金属触媒を吸着させる工程と、該金属触媒を吸着させた処理表面に無電解めっきを行う工程と、を少なくとも含むことを特徴とする。   The present invention is based on the above-mentioned new findings of the inventors, and the electroless plating treatment method according to the present invention includes a step of oxidizing a treated surface of a resin substrate, and a treatment surface subjected to the oxidation treatment. A step of performing an alkali treatment, a step of bringing the treated surface subjected to the alkali treatment into contact with a solution containing an allylamine polymer having a molecular weight of 1600 or less, and allowing the allylamine polymer to penetrate into the surface layer from the treated surface; It includes at least a step of adsorbing the metal catalyst inside a surface layer including a treatment surface impregnated with a polymer, and a step of performing electroless plating on the treatment surface adsorbed with the metal catalyst. .

本発明によれば、まず、樹脂基材の処理表面を酸化処理することにより、処理表面に、カルボニル基などの極性基が生成する。次に、この酸化処理を行なった処理表面に対して、アルカリ処理を行なうことにより、上述したカルボニル基をカルボキシレート基となり、これにより、樹脂基材の処理表面の濡れ性を向上させることができる。   According to the present invention, first, a treatment surface of a resin substrate is oxidized to generate polar groups such as carbonyl groups on the treatment surface. Next, by subjecting the treated surface subjected to the oxidation treatment to an alkali treatment, the carbonyl group described above becomes a carboxylate group, thereby improving the wettability of the treated surface of the resin substrate. .

次に、アルカリ処理により濡れ性が向上した処理表面に対して、分子量が1600以下のアリルアミン重合体を含む溶液を接触させることにより、アルカリ処理を行なった処理表面から、その表層の内部にアリルアミン重合体を入り込ませる(浸透させる)ことができる。なお、アリルアミン重合体とは、アリルアミンの構造を有する重合体のことをいい、アリルアミン重合体は、たとえば、その塩酸塩、アミド硫酸塩、部分的にカルボニルまたは尿素反応化した重合体、または、ジアリルアミンまたはジメチルアリルアミンとの共重合体をも含むものである。   Next, by bringing a solution containing an allylamine polymer having a molecular weight of 1600 or less into contact with the treated surface whose wettability has been improved by the alkali treatment, allylamine weight is introduced into the surface layer from the treated surface subjected to the alkali treatment. The coalescence can enter (permeate). The allylamine polymer means a polymer having an allylamine structure. The allylamine polymer is, for example, a hydrochloride, an amidosulfate, a partially carbonyl- or urea-reacted polymer, or a diallylamine. Or a copolymer with dimethylallylamine is also included.

これにより、処理表面および該処理表面の表層の内部において、金属触媒が分散すると共に、アリルアミン重合体の窒素元素に、金属触媒が配位結合し、これを吸着させることができる。このような状態の金属触媒に対して、無電解めっきを行うことにより、表層の内部に入り込んだ金属触媒が起点となり、無電解めっき被膜の密着性を画期的に向上させることができる。   As a result, the metal catalyst is dispersed inside the treatment surface and the surface layer of the treatment surface, and the metal catalyst can be coordinated and adsorbed to the nitrogen element of the allylamine polymer. By performing electroless plating on the metal catalyst in such a state, the metal catalyst that has entered the inside of the surface layer becomes a starting point, and the adhesion of the electroless plating film can be dramatically improved.

樹脂基材の素材として用いる高分子樹脂としては、エポキシ樹脂、ABS樹脂,AS樹脂,AAS樹脂,PS樹脂,EVA樹脂,PMMA樹脂,PBT樹脂,PET樹脂,PPS樹脂,PA樹脂,POM樹脂,PC樹脂,PP樹脂,PE樹脂,エラストマーとPPを含むポリマーアロイ樹脂,変成PPO樹脂,PTFE樹脂,ETFE樹脂などの熱可塑性樹脂、あるいはフェノール樹脂などの熱硬化性樹脂や、例えばエポキシ樹脂にシアネート樹脂を加えた樹脂などであってもよく、無電解めっきを行なうことができるのであれば、その種類及び形状は制限されない。   The polymer resin used as the material for the resin base is epoxy resin, ABS resin, AS resin, AAS resin, PS resin, EVA resin, PMMA resin, PBT resin, PET resin, PPS resin, PA resin, POM resin, PC Resin, PP resin, PE resin, Polymer alloy resin containing elastomer and PP, Modified PPO resin, PTFE resin, Thermosetting resin such as ETFE resin, Thermosetting resin such as phenol resin, Cyanate resin for epoxy resin, for example The added resin may be used, and the type and shape are not limited as long as electroless plating can be performed.

しかしながら、より好ましくは、ポリエチレン(PE),ポリプロピレン(PP),エチレン−エチルアクリレート共重合体、エチレン−ビニルアセテート共重合体、シクロオレフィンポリマー(COP)などの、窒素元素を含まない炭化水素系樹脂を用いる。   However, more preferably, hydrocarbon resins containing no nitrogen element, such as polyethylene (PE), polypropylene (PP), ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, cycloolefin polymer (COP). Is used.

これまでは、窒素元素を含むたとえばABS樹脂などの高分子樹脂は、金属触媒を吸着させる工程において、樹脂基材の処理表面の窒素元素が金属触媒に配位結合するため、無電解めっきを行った場合、樹脂基材の処理表面に対する無電解めっき被膜の密着性をある程度確保することができた。ところが、上述した窒素元素を含まない炭化水素系樹脂を、従来の方法で金属触媒を吸着させようとしても、樹脂基材の処理表面に窒素元素が存在しないため、金属触媒を十分に吸着させることができなかった。   Until now, polymer resin such as ABS resin containing nitrogen element has been subjected to electroless plating in the process of adsorbing the metal catalyst because the nitrogen element on the treated surface of the resin substrate is coordinated to the metal catalyst. In this case, the adhesion of the electroless plating film to the treated surface of the resin substrate could be secured to some extent. However, even if the hydrocarbon resin containing no nitrogen element is adsorbed with the metal catalyst by the conventional method, the metal catalyst is sufficiently adsorbed because the nitrogen element does not exist on the treated surface of the resin base material. I could not.

そこで、本発明では、上述したように、処理表面からその表層の内部にアリルアミン重合体を浸透させることができるので、たとえこのような樹脂基材を用いたとしても、処理表面および該処理表面の表層の内部において、金属触媒が分散し、分散した金属触媒がアリルアミン重合体の窒素元素に配位結合し、金属触媒を理表面の表層内部にまで吸着させることができる。なお、窒素元素を含むたとえばABS樹脂などの高分子樹脂を樹脂基材として用いた場合には、さらに無電解めっき被膜の密着強度が向上するのは勿論のことである。   Therefore, in the present invention, as described above, the allylamine polymer can be infiltrated into the surface layer from the treated surface, so even if such a resin substrate is used, the treated surface and the treated surface Inside the surface layer, the metal catalyst is dispersed, the dispersed metal catalyst is coordinated to the nitrogen element of the allylamine polymer, and the metal catalyst can be adsorbed to the surface layer inside the surface. Needless to say, the adhesion strength of the electroless plating film is further improved when a polymer resin such as ABS resin containing nitrogen element is used as the resin substrate.

さらに、本発明では、無電解めっき処理材をも開示する。本発明に係る無電解めっき処理材は、樹脂基材の処理表面に無電解めっき被膜が被覆された無電解めっき処理材であって、該無電解めっき処理材は、前記樹脂基材として、窒素元素を含有しない炭化水素系樹脂からなる樹脂基材の処理表面に、前記無電解めっき被膜が被覆されたものであり、前記無電解めっき被膜が被覆された前記樹脂基材の表層の内部には、少なくとも窒素および前記無電めっき処理の前工程で用いる金属触媒が含有していることを特徴とする。   Furthermore, the present invention also discloses an electroless plating material. An electroless plating treatment material according to the present invention is an electroless plating treatment material in which a treatment surface of a resin substrate is coated with an electroless plating film, and the electroless plating treatment material is nitrogen as the resin substrate. The surface of the resin base material coated with the electroless plating film is coated on the treated surface of a resin base material made of a hydrocarbon-based resin not containing an element. In addition, at least nitrogen and a metal catalyst used in the previous step of the electroless plating treatment are contained.

本発明によれば、樹脂基材として、窒素元素を含有しない炭化水素系樹脂からなる樹脂基材の処理表面に、前記無電解めっき被膜が被覆された無電解めっき処理材であり、無電めっきにより、無電解めっき被膜が被覆された樹脂基材の表層の内部には、少なくとも窒素および前記無電めっき処理の前工程で用いる金属触媒が含有しているので(具体的には窒素原子に配意結合された金属触媒が含有しているので)、この金属触媒を起点として形成された無電解めっき被膜は、樹脂基材の処理表面に対して密着性が良いものである。   According to the present invention, the resin base material is an electroless plating treatment material in which the treatment surface of a resin base material made of a hydrocarbon-based resin containing no nitrogen element is coated with the electroless plating film. Since the surface layer of the resin base material coated with the electroless plating film contains at least nitrogen and a metal catalyst used in the previous step of the electroless plating treatment (specifically, positivity bonding to nitrogen atoms) Therefore, the electroless plating film formed using this metal catalyst as a starting point has good adhesion to the treated surface of the resin substrate.

本発明によれば、無電解めっきにより成膜されためっき被膜の密着力を高めると共に、たとえ窒素を含まない炭化水素系樹脂であっても、密着力の高いめっき被膜を成膜することができる。   ADVANTAGE OF THE INVENTION According to this invention, while improving the adhesive force of the plating film formed by electroless plating, even if it is a hydrocarbon resin which does not contain nitrogen, a plating film with high adhesive force can be formed. .

本実施形態に係る無電解めっき処理方法を説明するための模式的概念図であり、(a)は、酸化処理工程を説明するための模式的断面図、(b)は、アルカリ処理工程を説明するための模式的断面図、(c)は、アリルアミン重合体浸透処理工程を説明するための模式的断面図、(d)は、触媒吸着処理工程を説明するための模式的断面図、(d)は、無電解めっきを行う工程を説明するための模式的断面図。It is a schematic conceptual diagram for demonstrating the electroless-plating processing method which concerns on this embodiment, (a) is typical sectional drawing for demonstrating an oxidation treatment process, (b) demonstrates an alkali treatment process. (C) is a schematic cross-sectional view for explaining the allylamine polymer infiltration treatment step, (d) is a schematic cross-sectional view for explaining the catalyst adsorption treatment step, (d) ) Is a schematic cross-sectional view for explaining a process of performing electroless plating. 実施例の銅めっき処理材の樹脂基材の処理表面およびその表層内部の元素を分析した結果を示した図。The figure which showed the result of having analyzed the process surface of the resin base material of the copper plating processing material of an Example, and the element inside the surface layer.

以下の本発明の実施形態を説明する。本実施形態は、本実施形態に係る無電解めっき処理方法は、樹脂基材の処理表面に、無電解めっき被膜を被覆するためのめっき処理方法であり、以下に示す工程を含む。   The following embodiments of the present invention will be described. In the present embodiment, the electroless plating treatment method according to the present embodiment is a plating treatment method for coating an electroless plating film on a treatment surface of a resin substrate, and includes the following steps.

<成形工程>
高分子樹脂から基材(樹脂基材)を成形する成形工程を行う。樹脂としては、高分子樹脂として、エポキシ樹脂、ABS樹脂,AS樹脂,AAS樹脂,PS樹脂,EVA樹脂,PMMA樹脂,PBT樹脂,PET樹脂,PPS樹脂,PA樹脂,POM樹脂,PC樹脂,PP樹脂,PE樹脂,エラストマーとPPを含むポリマーアロイ樹脂,変成PPO樹脂,PTFE樹脂,ETFE樹脂などの熱可塑性樹脂、あるいはフェノール樹脂などの熱硬化性樹脂や、例えばエポキシ樹脂にシアネート樹脂を加えた樹脂などを挙げることができ、無電解めっきを行なうことができるのであれば、その種類及び形状は制限されない。樹脂基材の成形方法は特に制限されず、圧縮成形、押出成形、ブロー成形、射出成形など各種成形方法を採用できる。
<Molding process>
A molding step of molding a base material (resin base material) from the polymer resin is performed. As resin, polymer resin, epoxy resin, ABS resin, AS resin, AAS resin, PS resin, EVA resin, PMMA resin, PBT resin, PET resin, PPS resin, PA resin, POM resin, PC resin, PP resin , PE resin, polymer alloy resin containing elastomer and PP, thermoplastic resin such as modified PPO resin, PTFE resin, ETFE resin, thermosetting resin such as phenol resin, and resin obtained by adding cyanate resin to epoxy resin, etc. As long as electroless plating can be performed, the type and shape are not limited. The molding method of the resin substrate is not particularly limited, and various molding methods such as compression molding, extrusion molding, blow molding, and injection molding can be adopted.

しかしながら、本実施形態では、ポリエチレン(PE),ポリプロピレン(PP),エチレン−エチルアクリレート共重合体、エチレン−ビニルアセテート共重合体、シクロオレフィンポリマー(COP)などの、窒素元素を含まない炭化水素系樹脂を用いる。ここで、「窒素元素を含まない炭化水素系樹脂」とは、炭素元素および水素元素からなる高分子樹脂であり、これらの元素に加えて、さらに酸素元素が含有してもよい。   However, in the present embodiment, a hydrocarbon system that does not contain a nitrogen element, such as polyethylene (PE), polypropylene (PP), ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, cycloolefin polymer (COP), etc. Resin is used. Here, the “hydrocarbon resin containing no nitrogen element” is a polymer resin composed of a carbon element and a hydrogen element, and in addition to these elements, an oxygen element may further be contained.

このような樹脂を基材として用いたとき、一般に、基材の処理表面に無電解めっきを行っても無電解めっき被膜が形成され難い、または、無電解めっき被膜の密着強度が十分に確保されないとされているが、以下に示す一連の工程を行うことにより、樹脂基材の処理表面に対して密着性の高い無電解めっき被膜を得ることができる。   When such a resin is used as a base material, it is generally difficult to form an electroless plating film even when electroless plating is performed on the treated surface of the base material, or the adhesion strength of the electroless plating film is not sufficiently ensured. However, an electroless plating film having high adhesion to the treated surface of the resin substrate can be obtained by performing the following series of steps.

<酸化処理工程>
図1(a)に示すように、成形後の樹脂基材3に対して、酸化処理工程を行う。ここでは、少なくとも樹脂基材3の処理表面(樹脂表面)31を酸化する処理として、オゾン水(オゾンが溶存した水)、またはオゾンガスを接触させて、処理表面となる基材表面を含む表層32の改質を行う。具体的には、酸化処理により処理表面31に、カルボニル基などの極性基が生成される。
<Oxidation process>
As shown to Fig.1 (a), an oxidation process process is performed with respect to the resin base material 3 after a shaping | molding. Here, as a treatment for oxidizing at least the treatment surface (resin surface) 31 of the resin base material 3, ozone water (water in which ozone is dissolved) or ozone gas is brought into contact with the surface layer 32 including the base material surface to be the treatment surface. Reforming. Specifically, a polar group such as a carbonyl group is generated on the treatment surface 31 by the oxidation treatment.

カルボニル基などは金属原子と化学結合を形成し得る官能基であるため、後述する無電解めっきによる無電解めっき被膜と強く結合するので、無電解めっき被膜と樹脂基材との付着強度を向上させることができる。   Since the carbonyl group is a functional group capable of forming a chemical bond with a metal atom, it strongly binds to an electroless plating film formed by electroless plating, which will be described later, thereby improving the adhesion strength between the electroless plating film and the resin substrate. be able to.

オゾン水を樹脂基材3の処理表面31に接触させる場合、樹脂基材3の処理表面31にオゾン水をスプレーにより塗布してもよく、基材をオゾン水中に浸漬してもよい。なお、本実施形態では、オゾン水を用いたがオゾンが溶存できる溶液であり、さらに、樹脂基材3にダメージを与えるものでなければ、オゾンが溶存する溶媒は水に限定されるものではない。   When the ozone water is brought into contact with the treatment surface 31 of the resin substrate 3, the ozone water may be applied to the treatment surface 31 of the resin substrate 3 by spraying, or the substrate may be immersed in the ozone water. In this embodiment, ozone water is used, but it is a solution in which ozone can be dissolved. Furthermore, unless the resin base material 3 is damaged, the solvent in which ozone is dissolved is not limited to water. .

ここでは、成形後の樹脂基材3に対して、オゾン処理を行ったが、樹脂基材3の処理表面31を酸化させることができるのであれば、この処理に限定されるものではなく、例えばその他酸性水溶液中に、樹脂基材3の処理表面31を浸漬させてもよい。   Here, the ozone treatment was performed on the resin base material 3 after molding, but the treatment is not limited to this treatment as long as the treatment surface 31 of the resin base material 3 can be oxidized. In addition, you may immerse the process surface 31 of the resin base material 3 in acidic aqueous solution.

<アルカリ処理工程>
図1(b)に示すように、酸化処理後の樹脂基材3の処理表面31に対して、アルカリ処理を行う。アルカリ溶液のアルカリ成分は、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを挙げることができ、樹脂基材の処理表面31を分子レベルで溶解して脆化層を除去するとともに、ナトリウムなどのアルカリ金属を処理表面31に付与することができる。
<Alkali treatment process>
As shown in FIG.1 (b), the alkali treatment is performed with respect to the process surface 31 of the resin base material 3 after an oxidation process. Examples of the alkaline component of the alkaline solution include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like. The treated surface 31 of the resin base material is dissolved at a molecular level to remove the embrittled layer, and sodium and the like. Alkali metal can be applied to the treated surface 31.

このように酸化処理をした処理表面31に対して、アルカリ処理を行なうことにより、上述したカルボニル基をカルボキシレート基となり、これにより、樹脂基材3の処理表面31の濡れ性を向上させることができる。これにより、後述する触媒吸着処理工程において、処理表面への金属触媒の吸着性を高めることができる。   By subjecting the treated surface 31 thus oxidized to an alkali treatment, the carbonyl group described above becomes a carboxylate group, thereby improving the wettability of the treated surface 31 of the resin substrate 3. it can. Thereby, the adsorption property of the metal catalyst to the treatment surface can be enhanced in the catalyst adsorption treatment step described later.

また、アルカリ溶液には、さらに界面活性剤を少なくとも含んでいてもよい。界面活性剤は、後述する金属触媒の吸着性を高めるためのものである。界面活性剤とアルカリ成分とを含む溶液の溶媒としては、極性溶媒を用いることが望ましく、水を代表的に用いることができるが、場合によってはアルコール系溶媒あるいは水−アルコール混合溶媒を用いてもよい。   The alkaline solution may further contain at least a surfactant. The surfactant is for enhancing the adsorptivity of the metal catalyst described later. As a solvent of the solution containing the surfactant and the alkali component, it is desirable to use a polar solvent, and water can be typically used. However, depending on the case, an alcohol solvent or a water-alcohol mixed solvent may be used. Good.

なお、このアルカリ処理工程後、塩酸等の酸により、中和処理(プレディップ処理)を行うことがより好ましい。プレディップ工程を行い、アルカリ処理により樹脂基材3の処理表面31に残留したアルカリ成分を塩酸等の酸性溶液により中和させる。アルカリ処理工程により、後述する触媒吸着処理工程において、処理表面31への金属触媒の吸着性を高めることができるが、所望の量の金属触媒を吸着することができるであれば、このアルカリ処理工程を省略してもよい。   In addition, it is more preferable to perform a neutralization process (pre-dip process) with acids, such as hydrochloric acid, after this alkali treatment process. A pre-dip process is performed, and the alkali component remaining on the treated surface 31 of the resin base material 3 is neutralized with an acidic solution such as hydrochloric acid. In the catalyst adsorption treatment step, which will be described later, the alkali treatment step can enhance the adsorptivity of the metal catalyst to the treatment surface 31, but if the desired amount of the metal catalyst can be adsorbed, the alkali treatment step May be omitted.

<アリルアミン重合体浸透処理工程>
図1(c)に示すように、アルカリ処理後の処理表面31に、分子量が1600以下のアリルアミン重合体を含む溶液を接触させて、アリルアミン重合体4を、樹脂基材3の処理表面31からその表層32の内部に浸透させる。発明者らの実験によれば、アリルアミン重合体の分子量が1600を超えた場合には、アルカリ処理後の処理表面31にアリルアミン重合体を浸透させることができない場合があり、後述する無電解めっき被膜の密着強度を確保できない場合がある。
<Allylamine polymer infiltration process>
As shown in FIG. 1 (c), the treated surface 31 after the alkali treatment is brought into contact with a solution containing an allylamine polymer having a molecular weight of 1600 or less so that the allylamine polymer 4 is removed from the treated surface 31 of the resin substrate 3. It penetrates into the surface layer 32. According to experiments by the inventors, when the molecular weight of the allylamine polymer exceeds 1600, the allylamine polymer may not be allowed to permeate the treated surface 31 after the alkali treatment. In some cases, it is not possible to ensure the adhesion strength.

ここでは、アリルアミンとして、N,N−ジメチルアリルアミン、N−メチル−N−エチルアリルアミン、N,N−ジエチルアリルアミン、N,N−ジプロピルアリルアミン、N,N−ジブチルアリルアミン、N−メチルアリルアミン、N−エチルアリルアミン、N−プロピルアリルアミン、N−ブチルアリルアミン、無置換ジアリルアミン(以下、単にジアリルアミンと記載することがある。)、N−メチルジアリルアミン、N−エチルジアリルアミン、N−プロピルジアリルアミン、N−(2−ヒドロキシエチル)ジアリルアミン、N−(2−ヒドロキシプロピル)ジアリルアミン、などを挙げることができ、これらを一般的な重合反応により重合させて分子量(平均分子量)が1600以下となるアリルアミン重合体を挙げることができる。さらには、これらの塩酸塩、アミド硫酸塩、または部分的にカルボニルまたは尿素反応化した重合体などを得ることができる。なお、アリルアミン重合体の分子量(平均分子量)は、1000以上であることが好ましい。この分子量未満である場合には、アリルアミン重合体(添加剤)の基材への吸着性が低くなり、基材にアリルアミン重合体が吸着し難い。   Here, as allylamine, N, N-dimethylallylamine, N-methyl-N-ethylallylamine, N, N-diethylallylamine, N, N-dipropylallylamine, N, N-dibutylallylamine, N-methylallylamine, N -Ethylallylamine, N-propylallylamine, N-butylallylamine, unsubstituted diallylamine (hereinafter sometimes simply referred to as diallylamine), N-methyldiallylamine, N-ethyldiallylamine, N-propyldiallylamine, N- (2 -Hydroxyethyl) diallylamine, N- (2-hydroxypropyl) diallylamine, etc., and polymerizing them by a general polymerization reaction to give an allylamine polymer having a molecular weight (average molecular weight) of 1600 or less. In That. Furthermore, these hydrochlorides, amide sulfates, or partially carbonyl- or urea-reacted polymers can be obtained. In addition, it is preferable that the molecular weight (average molecular weight) of an allylamine polymer is 1000 or more. When the molecular weight is less than this, the adsorptivity of the allylamine polymer (additive) to the substrate becomes low, and the allylamine polymer is hardly adsorbed on the substrate.

<触媒吸着処理工程>
図1(d)に示すように、アルカリ処理された処理表面31に対して、触媒吸着処理工程を行う。例えば、吸着させる金属触媒にパラジウム触媒を用いる場合には、アルカリ処理された処理表面を、塩酸水溶液に塩化パラジウム及び塩化錫が溶解した触媒溶液中(キャタライザー)に浸漬する。これにより、処理表面31および該処理表面31の表層33の内部に、金属触媒を吸着させる。さらに、処理表面を酸性溶液に接触させて、パラジウム触媒の活性化を図る。
<Catalyst adsorption process>
As shown in FIG. 1D, a catalyst adsorption treatment step is performed on the treated surface 31 that has been subjected to alkali treatment. For example, when using a palladium catalyst as the metal catalyst to be adsorbed, the treated surface treated with alkali is immersed in a catalyst solution (catalyzer) in which palladium chloride and tin chloride are dissolved in an aqueous hydrochloric acid solution. As a result, the metal catalyst is adsorbed inside the treatment surface 31 and the surface layer 33 of the treatment surface 31. Furthermore, the treatment surface is brought into contact with an acidic solution to activate the palladium catalyst.

金属触媒として、汎用性、析出性の観点からパラジウム触媒を用いたが、金、銀、コバルト、ニッケル、ルテニウム、セリウム、鉄、マンガン、ロジウムなどの金属触媒であってもよい。   As the metal catalyst, a palladium catalyst is used from the viewpoint of versatility and precipitation, but metal catalysts such as gold, silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium may be used.

<無電解めっき処理>
図1(e)に示すように、金属触媒が吸着された処理表面31に対して無電解めっき処理を行なう。具体的には、樹脂基材3の処理表面31を、無電解めっき液に浸漬させて、無電解めっきにより、処理表面31に無電解めっき液に含まれる金属を析出させて、無電解めっき被膜35を被覆する。なお、無電解めっきは、たとえば、無電解ニッケルめっき、無電解銅めっきなどを一般的に知られた方法で行い、無電解めっき液には、ソースとなる金属が溶解した水溶液に、さらに、安定剤、錯化剤、および、還元剤などが含まれていてもよい。
<Electroless plating treatment>
As shown in FIG.1 (e), the electroless-plating process is performed with respect to the process surface 31 in which the metal catalyst was adsorbed. Specifically, the treatment surface 31 of the resin base material 3 is immersed in an electroless plating solution, and a metal contained in the electroless plating solution is deposited on the treatment surface 31 by electroless plating, so that an electroless plating film is formed. 35 is coated. The electroless plating is performed by, for example, electroless nickel plating or electroless copper plating by a generally known method, and the electroless plating solution is more stable in an aqueous solution in which a source metal is dissolved. An agent, a complexing agent, a reducing agent, and the like may be included.

次に、アルカリ処理により濡れ性が向上した処理表面に対して、分子量が1600以下のアリルアミン重合体を含む溶液を接触させることにより、アルカリ処理を行なった処理表面から、その表層(具体的には、表面から少なくとも厚さ70nmまでの厚さ)の内部にアリルアミン重合体を入り込ませることができる。   Next, the surface layer (specifically, from the treated surface subjected to the alkali treatment by contacting a solution containing an allylamine polymer having a molecular weight of 1600 or less with the treated surface whose wettability has been improved by the alkali treatment. The allylamine polymer can be introduced into the inside of the surface at least 70 nm thick from the surface).

これにより、処理表面31からその表層33の内部にアリルアミン重合体を入り込ませることができるので、たとえ窒素を含まない炭化水素系の樹脂基材3を用いた場合であっても、処理表面31および処理表面31の表層の内部において、金属触媒が分散し、分散した金属触媒がアリルアミン重合体の窒素元素に配位結合し、金属触媒を処理表面31の表層33の内部にまで吸着させることができる。   Thereby, since the allylamine polymer can be made to enter the inside of the surface layer 33 from the treated surface 31, even if the hydrocarbon-based resin base material 3 containing no nitrogen is used, the treated surface 31 and The metal catalyst is dispersed inside the surface layer of the treatment surface 31, the dispersed metal catalyst is coordinated to the nitrogen element of the allylamine polymer, and the metal catalyst can be adsorbed to the inside of the surface layer 33 of the treatment surface 31. .

これにより、処理表面31および該処理表面31の表層33の内部において、金属触媒が分散すると共に、アリルアミン重合体の窒素元素に、金属触媒が配位結合し、これを吸着させることができる。このような状態の金属触媒に対して、無電解めっきを行うことにより、無電解めっき被膜35が被覆された樹脂基材3の表層33(具体的には、表面から少なくとも厚さ70nmまでの厚さ)の内部に、少なくとも窒素および前記無電めっき処理の前工程で用いる金属触媒が含有した無電解めっき処理材1を得ることができる。このような無電解めっき処理材1は、樹脂基材3の表層33の内部に入り込んだ金属触媒が起点となり、無電解めっき被膜35の密着性を画期的に向上させることができる。   As a result, the metal catalyst is dispersed inside the treatment surface 31 and the surface layer 33 of the treatment surface 31, and the metal catalyst can be coordinated and adsorbed to the nitrogen element of the allylamine polymer. By performing electroless plating on the metal catalyst in such a state, the surface layer 33 of the resin base material 3 coated with the electroless plating film 35 (specifically, a thickness of at least 70 nm from the surface). The electroless plating treatment material 1 containing at least nitrogen and the metal catalyst used in the previous step of the electroless plating treatment can be obtained. In such an electroless plating treatment material 1, the metal catalyst that has entered the surface layer 33 of the resin base material 3 is the starting point, and the adhesion of the electroless plating film 35 can be dramatically improved.

本発明を以下の実施例に基づいて説明する。
樹脂基材として、シクロオレフィンポリマー(COP)樹脂(炭化水素系樹脂)の樹脂基材を準備した。そして無電解ニッケルめっき処理を行った。具体的には、まず、オゾン水を(オゾン濃度40ppm)処理温度20℃(常温)、浸漬時間16分の条件で、樹脂基材の処理表面に接触させて、樹脂基材の処理表面のオゾン水処理(酸化処理)を行った。
The present invention will be described based on the following examples.
As the resin substrate, a cycloolefin polymer (COP) resin (hydrocarbon resin) resin substrate was prepared. And the electroless nickel plating process was performed. Specifically, first, ozone water is brought into contact with the treated surface of the resin base material at a treatment temperature of 20 ° C. (normal temperature) at a treatment temperature of 20 ° C. (room temperature) and an immersion time of 16 minutes. Water treatment (oxidation treatment) was performed.

水酸化ナトリウム(水溶液50g/L)を、50℃、5分の条件で、酸化処理を行なった処理表面に接触させて、その処理表面にアルカリ処理を行ない、その後処理表面を水洗した。次に、平均分子量1600のポリアリルアミン重合体を含む水溶液(5ml/L)を、50℃、5分の条件で、アルカリ処理を行なった処理表面に接触させて、処理表面からその表層まで、ポリアリルアミン重合体を浸透させた。さらに、プレディップ工程を行い、アルカリ処理により樹脂基材3の処理表面31に残留したアルカリ成分を酸性溶液(PC−64H 荏原ユージライト製)により中和させた。なお、ポリアリルアミン重合体の平均分子量は、(ニットーボーメディカル(株)PAAシリーズ)のメーカー表記のものである。なお、一般に、平均分子量は、ゲル浸透クロマトグラフで測定される。   Sodium hydroxide (aqueous solution 50 g / L) was brought into contact with the treated surface subjected to the oxidation treatment at 50 ° C. for 5 minutes, the treated surface was subjected to alkali treatment, and then the treated surface was washed with water. Next, an aqueous solution (5 ml / L) containing a polyallylamine polymer having an average molecular weight of 1600 is brought into contact with a treated surface that has been subjected to an alkali treatment at 50 ° C. for 5 minutes. Allylamine polymer was infiltrated. Furthermore, the pre-dip process was performed and the alkali component which remained on the process surface 31 of the resin base material 3 by the alkali treatment was neutralized with the acidic solution (PC-64H made by Ebara Eugelite). In addition, the average molecular weight of a polyallylamine polymer is a thing of the manufacturer description of (Nittobo Medical Co., Ltd. PAA series). In general, the average molecular weight is measured by gel permeation chromatography.

次に、触媒吸着工程おいて、塩酸水溶液に塩化パラジウム(PdCl)と、塩化スズ(SnCl)を溶解した溶液(キャタライザー(PC−65H:荏原ユージライト製))に、処理温度50℃、浸漬時間5分の条件で、触媒吸着処理を行った。次いで、硫酸水溶液(アクセレータ(PC−66H:荏原ユージライト製))に、処理温度30℃、浸漬時間5分間の条件で、活性化処理を行い、Pd−Snを酸化還元しSnを溶解除去し、Pd金属を析出した。 Next, in a catalyst adsorption step, a solution (catalyzer (PC-65H: manufactured by Sugawara Eugleite)) in which palladium chloride (PdCl 2 ) and tin chloride (SnCl 2 ) are dissolved in an aqueous hydrochloric acid solution is treated at 50 ° C., The catalyst adsorption treatment was performed under conditions of an immersion time of 5 minutes. Next, activation treatment is performed on an aqueous sulfuric acid solution (accelerator (PC-66H: manufactured by Sugawara Eugilite)) under the conditions of a treatment temperature of 30 ° C. and an immersion time of 5 minutes, and Pd—Sn is oxidized and reduced to remove Sn. , Pd metal was deposited.

次に、無電解めっき処理として、硫酸銅(CuSO)水溶液、0.03M、ホルムアルデヒド(HCHO)、0.35Mの無電解銅めっき液を用いて、処理温度30℃、浸漬時間15分の条件で、無電解銅めっきを析出した。これにより、樹脂基材の処理表面に、無電解銅めっき被膜が被覆された無電解銅めっき処理材を得た。 Next, as an electroless plating treatment, a copper sulfate (CuSO 4 ) aqueous solution, 0.03 M, formaldehyde (HCHO), and 0.35 M electroless copper plating solution are used, and the treatment temperature is 30 ° C. and the immersion time is 15 minutes. Then, electroless copper plating was deposited. Thereby, the electroless copper plating processing material by which the processing surface of the resin base material was coat | covered with the electroless copper plating film was obtained.

さらに、無電解銅めっき処理材を100℃、60分で熱処理をし、硫酸銅水溶液中において、2.7A/dm、45分、25μmの厚みとなるように電気銅めっきを行い、その後、100℃、60分で熱処理を行って銅めっき処理材を得た。 Furthermore, the electroless copper plating treatment material was heat treated at 100 ° C. for 60 minutes, and subjected to electrolytic copper plating in a copper sulfate aqueous solution to a thickness of 2.7 A / dm 3 , 45 minutes, 25 μm, A heat treatment was performed at 100 ° C. for 60 minutes to obtain a copper plating material.

(比較例1)
実施例と同じようにして、銅めっき処理材を作製した。実施例と相違する点は、平均分子量5000、8000、15000のポリアリルアミン重合体を用いて、それぞれ銅めっき処理材を作製した点である。なお、これらの平均分子量は、メーカー表記の分子量である。
(Comparative Example 1)
A copper plating material was produced in the same manner as in the example. The difference from the examples is that copper-plated materials were prepared using polyallylamine polymers having an average molecular weight of 5000, 8000 and 15000, respectively. In addition, these average molecular weights are molecular weights described by manufacturers.

(比較例2)
実施例と同じようにして、銅めっき処理材を作製した。実施例と相違する点は、ポリアリルアミン重合体を樹脂基材の処理表面に接触させて、これを浸透させる工程を行わなかった点である。しかしながら、比較例2の場合には、無電解めっきを行っても、処理表面に無電解銅めっき被膜が被覆されなかった。
(Comparative Example 2)
A copper plating material was produced in the same manner as in the example. The difference from the examples is that the step of bringing the polyallylamine polymer into contact with the treated surface of the resin substrate and permeating it was not performed. However, in the case of Comparative Example 2, the electroless copper plating film was not coated on the treated surface even when electroless plating was performed.

<めっき被膜の密着力評価試験>
実施例および比較例に係る銅めっき処理材のめっき被膜の密着力を測定した。具体的には、樹脂基材上の銅めっき被膜に、幅10mmの短冊上の切れ込みを入れ、その試験片を用いて、JIS H8630(密着性試験方法)に準じ、銅めっき被膜(具体的には電気めっき被膜)の密着強度(ピール強度)を測定した。この結果を表1に示す。
<Adhesion evaluation test of plating film>
The adhesion of the plating film of the copper plating material according to the example and the comparative example was measured. Specifically, a notch on a strip having a width of 10 mm is put into a copper plating film on a resin base material, and a copper plating film (specifically, according to JIS H8630 (adhesion test method)) using the test piece. Measured the adhesion strength (peel strength) of the electroplated film. The results are shown in Table 1.

<二次イオン質量分析装置>
実施例および比較例の銅めっき処理材の銅めっき被膜との界面(処理表面)から樹脂基材の厚さ方向に沿った表層内部の元素を、二次イオン質量分析装置を用いてD−SIMS分析した。図2は、実施例の銅めっき処理材の樹脂基材の処理表面およびその表層内部の元素を分析した結果である。図2の縦軸は、樹脂表層に含まれる元素量に相当し、横軸は、樹脂基材の処理表面からの深さを示している。
<Secondary ion mass spectrometer>
The elements in the surface layer along the thickness direction of the resin base material from the interface (treated surface) with the copper plating film of the copper plating treatment material of the example and the comparative example were subjected to D-SIMS using a secondary ion mass spectrometer. analyzed. FIG. 2 is a result of analyzing the treatment surface of the resin base material of the copper plating treatment material of the example and the elements inside the surface layer thereof. The vertical axis in FIG. 2 corresponds to the amount of elements contained in the resin surface layer, and the horizontal axis represents the depth from the treated surface of the resin base material.

Figure 0005742701
Figure 0005742701

〔結果および考察〕
表1に示すように、実施例の銅めっき処理材に係る銅めっき被膜の密着力は、比較例1のものに比べて高く、さらに図2に示すように、実施例の銅めっき処理材に係る樹脂基材の処理表面およびその表層内部には、窒素原子およびパラジウム元素が分散して存在することがわかった。一方、D−SIMS分析の結果より、比較例1の銅めっき処理材に係る樹脂基材の処理表面には、窒素原子およびパラジウム元素が分散して存在していたが、その内部には、存在していないことがわかった。
〔Results and Discussion〕
As shown in Table 1, the adhesion strength of the copper plating film according to the copper plating treatment material of the example is higher than that of the comparative example 1, and further, as shown in FIG. It was found that nitrogen atoms and palladium elements exist in a dispersed manner on the treated surface of the resin substrate and the surface layer. On the other hand, from the result of the D-SIMS analysis, nitrogen atoms and palladium elements were present in a dispersed manner on the treated surface of the resin base material according to the copper-plated treated material of Comparative Example 1; I found out that I did not.

このことから、実施例のごとく、分子量が1600以下のアリルアミン重合体を含む溶液を接触させることにより、樹脂基材の処理表面から、その表層の内部にアリルアミン重合体を入り込ませることができると考えられる。これにより、処理表面および処理表面の表層の内部において、パラジウム触媒が分散すると共に、アリルアミン重合体の窒素元素に、パラジウム触媒が配位結合し、これを吸着させることができる。このような状態の金属触媒に対して、無電解めっきを行うことにより、表層の内部に入り込んだ金属触媒が起点となり、無電解めっき被膜の密着性を画期的に向上させることができたと考えられる。   From this, it is considered that the allylamine polymer can enter the inside of the surface layer from the treated surface of the resin base material by contacting with a solution containing an allylamine polymer having a molecular weight of 1600 or less as in Examples. It is done. As a result, the palladium catalyst is dispersed inside the treated surface and the surface layer of the treated surface, and the palladium catalyst is coordinated and adsorbed to the nitrogen element of the allylamine polymer. By performing electroless plating on the metal catalyst in such a state, the metal catalyst that entered the surface layer was the starting point, and it was thought that the adhesion of the electroless plating film could be dramatically improved. It is done.

さらに、比較例2の場合には、アリルアミン重合体を処理表面に接触させなかったため、処理表面およびその表層内部には、窒素(アミン)がなく、処理表面および内部でパラジウム触媒が配位結合しなかったため、無電解銅めっき被膜が処理表面に被覆されなかったと考えら得る。   Further, in the case of Comparative Example 2, since the allylamine polymer was not brought into contact with the treatment surface, there was no nitrogen (amine) on the treatment surface and its surface layer, and the palladium catalyst was coordinated on the treatment surface and inside. Therefore, it can be considered that the electroless copper plating film was not coated on the treated surface.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

3:樹脂基材、31:処理表面、32:表層、33:表層、35:無電解めっき被膜   3: resin base material, 31: treated surface, 32: surface layer, 33: surface layer, 35: electroless plating film

Claims (2)

樹脂基材の処理表面酸化処理を行う酸化処理工程と、
該酸化処理された処理表面にアルカリ処理を行なうアルカリ処理工程と、
該アルカリ処理を行なった処理表面に、リルアミン重合体を含む溶液を接触させ、前記アリルアミン重合体を処理表面から表層の内部に浸透させるアリルアミン重合体浸透処理工程と、
該アリルアミン重合体を浸透させた処理表面を含む表層の内部に、金属触媒を吸着させる触媒吸着処理工程と、
該金属触媒を吸着させた処理表面に無電解めっきを行う無電解めっき処理工程と、を少なくとも含む無電解めっき処理方法であって、
前記酸化処理工程において、前記樹脂基材の処理表面をオゾンを用いて酸化処理し、
前記アリルアミン重合体浸透処理工程において、前記アリルアミン重合体に、分子量が1600以下のアリルアミン重合体を用いて、該アリルアミン重合体を処理表面から表層の内部に浸透させることを特徴とする無電解めっき処理方法。
And oxidation treatment step of performing oxidation treatment on the treated surface of the resin substrate,
An alkali treatment step of performing an alkali treatment on the oxidized treatment surface;
The treated surface was subjected to the alkali treatment, by contacting a solution containing an A Riruamin polymer, and allylamine polymer infiltration process step of penetrating into the surface layer of the allylamine polymer from the treated surface,
A catalyst adsorption treatment step for adsorbing a metal catalyst inside the surface layer including the treated surface infiltrated with the allylamine polymer;
An electroless plating treatment step of performing electroless plating on the treated surface on which the metal catalyst is adsorbed, and comprising at least an electroless plating treatment method,
In the oxidation treatment step, the treatment surface of the resin base material is oxidized using ozone,
In the allylamine polymer permeation treatment step, the allylamine polymer is permeated into the surface layer from the treatment surface using an allylamine polymer having a molecular weight of 1600 or less. Method.
前記樹脂基材として、窒素元素を含有しない炭化水素系樹脂を用いることを特徴とする請求項1に記載の無電解めっき処理方法。   The electroless plating method according to claim 1, wherein a hydrocarbon-based resin not containing a nitrogen element is used as the resin base material.
JP2011273643A 2011-12-14 2011-12-14 Electroless plating method Expired - Fee Related JP5742701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273643A JP5742701B2 (en) 2011-12-14 2011-12-14 Electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273643A JP5742701B2 (en) 2011-12-14 2011-12-14 Electroless plating method

Publications (2)

Publication Number Publication Date
JP2013124390A JP2013124390A (en) 2013-06-24
JP5742701B2 true JP5742701B2 (en) 2015-07-01

Family

ID=48775844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273643A Expired - Fee Related JP5742701B2 (en) 2011-12-14 2011-12-14 Electroless plating method

Country Status (1)

Country Link
JP (1) JP5742701B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228678A (en) * 1984-04-26 1985-11-13 Agency Of Ind Science & Technol Formation of metallic film on surface of high molecular material
JP4275157B2 (en) * 2006-07-27 2009-06-10 荏原ユージライト株式会社 Metallization method for plastic surfaces
JP4769209B2 (en) * 2007-02-06 2011-09-07 荏原ユージライト株式会社 Insulating resin conditioning method and use thereof
WO2008132926A1 (en) * 2007-04-18 2008-11-06 Ebara-Udylite Co., Ltd. Etching solution, and method for metallization of plastic surface employing the method
CN102037063B (en) * 2008-05-22 2013-05-08 荏原优莱特科技股份有限公司 Method for conditioning insulating resin and its use

Also Published As

Publication number Publication date
JP2013124390A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP4275157B2 (en) Metallization method for plastic surfaces
JP5902853B2 (en) Manufacturing method of plated parts
US20060042954A1 (en) Method for plating resin material
CN102933745B (en) The method utilizing the surface of the substrate that metal level coated non-metallic material makes
JP2013513726A (en) Method for preparing a metallized polymer substrate
KR20190137146A (en) Composition for pretreatment of electroless plating, pretreatment method for electroless plating, electroless plating method
JP5558549B2 (en) Manufacturing method of plating film
JP5742701B2 (en) Electroless plating method
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
JP2010031306A (en) Method of plating on resin base material
JP2010037623A (en) Plating method for carbon material and method for producing carbon material
JP5552269B2 (en) Electroless plating method
JP5464749B2 (en) Resin plating method for syndiotactic polystyrene resin using ozone water treatment
JP2007321189A (en) Catalytic agent for electroless plating
JP2013159784A (en) Method for producing plated material, and plated material
DK175025B1 (en) Process for pretreating a surface of a non-conductive material to be plated
JP4372491B2 (en) Method for producing plating-coated member
JP5083005B2 (en) Resin substrate having a precious metal fixed on the surface layer, its manufacturing method, circuit board, and its manufacturing method
JP2006077289A (en) Pretreatment method for electroless plating, and pretreatment liquid used therefor
JP2011127155A (en) Resin plating method using ozone water treatment
JP4740711B2 (en) Pd / Sn colloidal catalyst adsorption promoter
JP6552987B2 (en) Plated parts
JP2007239084A (en) Electroless plating method
WO2011033819A1 (en) Method for forming polymer layer
JP6666529B1 (en) Manufacturing method of plated parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees