US20060042954A1 - Method for plating resin material - Google Patents

Method for plating resin material Download PDF

Info

Publication number
US20060042954A1
US20060042954A1 US11/214,971 US21497105A US2006042954A1 US 20060042954 A1 US20060042954 A1 US 20060042954A1 US 21497105 A US21497105 A US 21497105A US 2006042954 A1 US2006042954 A1 US 2006042954A1
Authority
US
United States
Prior art keywords
resin material
plating
ozone water
metal catalyst
adsorb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/214,971
Inventor
Fumitaka Yoshinaga
Takeshi Bessho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BESSHO, TAKESHI, YOSHINAGA, FUMITAKA
Publication of US20060042954A1 publication Critical patent/US20060042954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0796Oxidant in aqueous solution, e.g. permanganate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Definitions

  • the present invention relates to a method for plating the surface of a resin material that improves plate adhesion.
  • Electroless plating has been known as a method for imparting electric conductivity or metallic luster to resin materials.
  • This electroless plating refers to a method of forming a metal coating on the surface of a material via chemical reduction and deposition of a metal ion in a solution.
  • a metal coating can be formed on an insulator such as a resin.
  • electroplating can be applied to a resin material having a metal coating formed thereon, and applications of such material can be expanded. Accordingly, electroless plating has been extensively adopted as a method for imparting metallic luster or electric conductivity to a resin material that is used in the fields of automobile decorative parts, household electrical goods, and the like.
  • Electroless plating is employed in a variety of fields, particularly for electrifying through holes or via holes in the field of printed-circuit boards.
  • a resin material is first subjected to chemical etching to roughen the surface and is then subjected to electroless plating.
  • a method is also known wherein a resin material is subjected to pretreatment with ozone gas and then subjected to electroless plating.
  • An unsaturated bond of a resin material is cleaved by ozone gas, the molecular size thereof is lowered, and molecules with different chemical compositions become present on the surface thereof.
  • surface smoothness is lost and the surface is roughened. Accordingly, a plated layer formed via electroless plating is firmly attached to the rough surface and thus is not easily separated from the material.
  • JP Patent Publication (Kokai) No. 2002-309377 A discloses a method of pretreatment for enhancing plate adhesion when forming a plated layer on the surface of a resin material via electroless plating.
  • This method comprises bringing a resin material having an unsaturated bond into contact with a first solution containing ozone and then bringing the resin material into contact with a second solution containing at least either an anionic or nonionic surfactant and an alkaline compound in order to form a plated layer with excellent adhesion without the need of etching, ozone gas treatment, or roughening of the surface of the resin material.
  • palladium is used as a catalyst for plating.
  • a conventional plating technique that involves a combination of chromic acid treatment and palladium plating is problematic in the following respects: the adhesion strength of a plated layer is as low as approximately 1 kgf/cm; the burden on the environment is considerable due to the use of chromic acid; and palladium, which is expensive and experiences significant price fluctuations, is used.
  • a combination of ozone water treatment and palladium plating disclosed in JP Patent Publication (Kokai) No. 2002-309377 A involves the use of expensive palladium.
  • the present invention is directed to improving adhesion strength between a resin material and a plated metal layer when plating a resin material. Also, the present invention is directed to considerably reducing the cost required for plating.
  • the present inventors have conducted concentrated studies and have consequently found that the aforementioned objects could be attained by employment of ozone water treatment in combination with the use of a specific metal catalyst. This has led to the completion of the present invention.
  • the first aspect of the present invention concerns a method for plating a resin material comprising a step of treating such resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • the step of treating resin materials with ozone water is carried out by immersing various types of resin materials in ozone water or spraying ozone water on the surface of such resin materials.
  • ozone water comprises water as a solvent; however, it preferably comprises an organic or inorganic polar solvent. This can further shorten the time necessary for treatment.
  • the step of permitting the resin material to adsorb a metal catalyst is carried out by immersing a resin material in a catalyst bath containing a salt of a metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • a butadiene rubber portion on the surface of ABS resins is dissolved with chromic acid to form pores with sizes on the micron order, and catalyst particles unevenly adhere to the roughened surface.
  • the surface of the resin material is evenly activated without roughening, and catalyst particles evenly adhere to the ozone-water-treated surface in the case of ozone water treatment.
  • the method for plating a resin material according to the present invention further comprises a step of alkaline degreasing of the surface of the resin material between the step of treating the resin material with ozone water and the step of permitting the resin material to adsorb a metal catalyst.
  • a step of alkaline degreasing By carrying out the step of alkaline degreasing, stains on the surface of the resin material can be removed, wettability can be improved, and metal catalyst adhesion can be enhanced.
  • An alkaline compound that is used in the step of alkaline degreasing of the present invention is capable of dissolving the surface of the resin material at a molecular level and removing an embrittled layer on the surface of the resin material so as to allow more functional groups to appear. Thus, plate adhesion can be enhanced.
  • An alkaline compound that can dissolve the surface of the resin material at a molecular level and remove the embrittled layer can be employed. Examples thereof include sodium hydroxide, potassium hydroxide, and lithium hydroxide.
  • a treatment solution that is employed in the step of alkaline degreasing preferably comprises at least either an anionic or nonionic surfactant.
  • the step of chemical plating is preferably carried out following the step of permitting the resin material to adsorb a metal catalyst.
  • Conditions for chemical plating and metal species to be deposited are not limited, and chemical plating can be carried out in a manner similar to conventional electroless plating.
  • An example of preferable chemical plating is Ni—P chemical plating.
  • the step of electroplating can be carried out following the step of chemical plating. Via an additional step of electroplating, the thickness of the plated layer can be increased. Thus, metallic luster can be imparted, which can result in a remarkably sophisticated plated layer.
  • Conditions for electroplating and metal species to be deposited are not limited, and electroplating can be carried out in a manner similar to conventional electroless plating. Examples of metal species to be deposited include copper, silver, nickel, gold, tin, and cobalt. An example of preferable electroplating is copper sulfate electroplating.
  • the step of electroplating can be carried out following the step of permitting the resin material to adsorb a metal catalyst without the step of chemical plating.
  • the ozone content of ozone water significantly affects activation of the surface of the resin material, and activation effects can be observed at a level of approximately 10 ppm.
  • An ozone content of 50 ppm or higher can result in remarkably enhanced activation effects, and at 100 ppm or higher, the treatment can be carried out within a shorter period of time. Since a low ozone content results in weak effects of activating the surface of the resin material, a higher ozone content is preferable.
  • the duration of ozone water treatment is between 2 minutes and 10 minutes. If such duration is less than 2 minutes, activation of the surface of the resin material may be insufficient. In contrast, a duration exceeding 10 minutes may cause deterioration in the resin material.
  • the surface of the resin material is permitted to adsorb a metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • a metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • a silver catalyst is preferable in terms of cost and the peel strength of the resulting plated layer.
  • the method for plating a resin material according to the present invention can be applied to a wide variety of fields.
  • the second aspect of the present invention concerns automobile parts, electrical parts, and printed circuit boards plated by the aforementioned method according to the present invention.
  • the method for plating a resin material according to the present invention is effective for producing printed circuit boards.
  • Adoption of the method of the present invention for plating the through holes or via holes of the printed circuit boards eliminates the need for the step of surface roughening. Thus, printed circuit boards of higher density can be obtained. Since this method does not involve the use of palladium, which is expensive and experiences significant price fluctuations, the cost can be reduced.
  • the foundation layer of a silver printed circuit board is prepared via chemical plating with the adoption of ozone water treatment in combination with the use of a silver catalyst according to the present invention.
  • a strong silver printed circuit board comprising a foundation layer integrated with a wiring layer with the aid of a silver component can be obtained.
  • Adoption of ozone water treatment in combination with the use of a specific metal catalyst for plating a resin material improves the adhesion strength between a resin material and a plated metal layer and significantly reduces the cost incurred by plating.
  • FIG. 1 is a flow chart showing the procedures carried out in the examples.
  • FIGS. 2A and 2B show charts showing the results of comparing the adhesion strengths of plated resins prepared in Examples 1 and 2 and Comparative Examples 1 to 4.
  • thermoplastic resins such as acrylonitrile-butadiene-styrene (ABS) copolymer, acrylonitrile-styrene (AS) copolymer, polystyrene (PS), ethylene-vinyl acetate (EVA) copolymer, polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyacrylonitrile (PA), polyoxymethylene (POM), polycarbonate (PC), polypropylene (PP), polyethylene (PE), a polymer alloy composed of an elastomer and PP, denatured PPO, polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE); and thermosetting resins, such as phenolic resins and epoxy resins.
  • ABS acrylonitrile-butadiene-styrene
  • AS acryl
  • Ozone water particularly highly concentrated ozone water, which is employed in the present invention, can be generated in accordance with a conventional technique.
  • highly concentrated ozone water can be generated with the use of an apparatus for generating ozone water that comprises an absorption column.
  • Such apparatus comprises a water inlet and an exhaust gas outlet located at the upper site of a gas absorber and an inlet for ozone-containing gas and an outlet for ozone water located at the lower site of the gas absorber. Aggregates of a continuous gas stream of the gas absorber are generated via fractionation or bending of the gas path, and water is brought into countercurrent contact with ozone-containing gas.
  • highly concentrated ozone water can be generated.
  • ozone water comprises water as a solvent; however, it preferably comprises an organic or inorganic polar solvent.
  • organic polar solvents include: alcohols, such as methanol, ethanol, and isopropyl alcohol; organic acids, such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, formic acid, and acetic acid; and mixtures thereof with water or an alcohol solvent.
  • inorganic polar solvents include inorganic acids, such as nitric acid, hydrochloric acid, and hydrofluoric acid.
  • a treatment solution that is employed in the step of alkaline degreasing preferably comprises at least either an anionic or nonionic surfactant.
  • a surfactant having a hydrophobic group that easily adsorbs to the C ⁇ O or C—OH functional group is used. The intended effect may not be sufficiently produced with the use of a cationic surfactant and a neutral surfactant; for example, a plated layer may not be formed.
  • anionic surfactants include sodium lauryl sulfate, potassium lauryl sulfate, sodium stearyl sulfate, and potassium stearyl sulfate.
  • nonionic surfactants include polyoxyethylene dodecyl ether and polyethylene glycol dodecyl ether.
  • a solvent of an alkaline degreasing solution containing a surfactant and an alkaline compound is preferably a polar solvent.
  • a representative example of such solvent is water.
  • An alcohol solvent or a water-alcohol mixed solvent may be used according to need.
  • An alkaline degreasing solution can be brought into contact with a resin material after ozone water treatment by, for example, a method wherein a resin material is immersed in such alkaline degreasing solution, a method wherein such alkaline degreasing solution is applied to the surface of the resin material, or a method wherein such alkaline degreasing solution is sprayed on the surface of the resin material.
  • the surfactant concentration in an alkaline degreasing solution is preferably between 0.01 g/l and 10 g/l. If the surfactant concentration is lower than 0.01 g/l, plate adhesion is deteriorated. If the concentration is higher than 10 g/l, excess surfactant is assembled and it remains as an impurity on the surface of the resin material. This also deteriorates plate adhesion. In such a case, the resin material may be rinsed after the pretreatment to remove excess surfactant.
  • the concentration of an alkaline compound in an alkaline degreasing solution is preferably a pH of 12 or higher.
  • the effects can be attained even when the pH is lower than 12. In such a case, however, achieving plating to a desired thickness would be very time consuming due to the insufficient number of functional groups that appear on the surface of the resin material.
  • the contact time between an alkaline degreasing solution and a resin material is not particularly limited, and it is preferably for 1 minute or longer at room temperature. If the contact time is too short, the amount of surfactant that adsorbs a functional group may be insufficient, and plate adhesion may be deteriorated. If the contact time is too long, electroless plating may be sometimes difficult since the layer on which at least either of the C ⁇ O or C—OH functional groups has appeared is also dissolved. A contact time of approximately 1 to 5 minutes is sufficient. A higher temperature is preferable. The higher the temperature, the shorter the contact time. A preferable temperature range is approximately between room temperature and 60° C.
  • the step of alkali treatment may be carried out with the use of an aqueous solution consisting of an alkaline compound, followed by adsorption of a surfactant. Since an embrittled layer may be formed again by the time a surfactant is adsorbed, this step is preferably carried out with the use of an alkaline degreasing solution containing at least either an anionic or nonionic surfactant and an alkaline compound.
  • step of alkali treatment following the step of ozone water treatment.
  • these two steps can be carried out simultaneously.
  • a mixed solution of ozone water and an alkaline degreasing solution is prepared, and a resin material is immersed in the resulting mixed solution.
  • a step for removing an alkaline compound via rinsing may be carried out after the step of alkali treatment.
  • a surfactant is firmly adsorbed to a functional group, and thus, it is known that a surfactant is not removed via rinsing and it remains adsorbed. Accordingly, the effects of a resin material that has been pretreated by the method according to the present invention will not be lost even when a long period of time has passed before the step of chemical plating.
  • FIG. 1 is a flow chart showing the procedures carried out in the examples. Hereafter, the procedures of the examples are described in accordance with the flow chart.
  • An ABS resin substrate was treated with ozone water of 50 to 100 ppm for 2 to 10 minutes (step 01 ).
  • the substrate was then subjected to alkaline degreasing in a 50 g/l aqueous solution of NaOH at 60° C. for 13 minutes (step 02 ). If the resin substrate is sufficiently clean, this step of alkaline degreasing can be omitted.
  • the substrate was subjected to a catalytic bath of Ag in a 0.5 g/l aqueous solution of an Ag catalyst at 30° C. for 30 minutes (step 03 ).
  • the substrate was then subjected to chemical plating with copper in a plating solution containing 3 g/l of copper sulfate, 2 g/l of formalin, and 2 g/l of NaOH at 30° C. for 10 minutes (step 04 ). Further, the substrate was subjected to electroplating of 2.0 A/dm 2 in a plating solution containing 200 g/l of copper sulfate, 50 g/l of sulfuric acid, 0.125 g/l of hydrochloric acid, and additives at 30° C. for 30 minutes (step 05 ). A copper-plated layer with a thickness of 100 ⁇ m was deposited on the ABS resin substrate via these procedures.
  • Copper plating was carried out in the same manner as in Example 1. However, chromic acid treatment was carried out instead of ozone water treatment, and a palladium catalyst was used instead of a silver catalyst.
  • Copper plating was carried out in the same manner as in Example 1, except that chromic acid treatment was carried out instead of ozone water treatment.
  • Copper plating was carried out in the same manner as in Example 1, except that an epoxy resin substrate was used instead of an ABS resin substrate.
  • Copper plating was carried out in the same manner as in Example 2. However, permanganic acid treatment was carried out instead of ozone water treatment, and a palladium catalyst was used instead of a silver catalyst.
  • Copper plating was carried out in the same manner as in Example 2, except that permanganic acid treatment was carried out instead of ozone water treatment.
  • Plated layers on the plated resins prepared in Examples 1 and 2 and Comparative Examples 1 to 4 were incised at intervals of 1 cm to inspect the adhesion strength using a tensile strength tester.
  • the results are shown in FIGS. 2A and 2B .
  • plated layers with higher density can be formed via the process of plating a resin material according to the present invention in comparison with conventional techniques that involve chromic acid treatment or permanganic acid treatment. This can be realized since the process according to the present invention imposes a low burden on the environment, and employs highly concentrated ozone water and a silver catalyst.
  • An adhesion strength of 1 kgf/cm or higher is sufficient, and it is improved to approximately 1.5 kgf/cm in the examples of the present invention.
  • the present invention provides a method for plating a resin material that improves the adhesion strength between a resin material and a plated metal layer. Such method can significantly reduce the cost incurred by plating. Such plating is applied particularly to automobile parts, electrical parts, and printed circuit boards, and it imparts strong metallic luster and excellent conductivity thereto. Accordingly, the method for plating a resin material according to the present invention contributes to the production of the aforementioned articles with higher density, allowing widespread use thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

This invention provides a method for plating a resin material that improves adhesion strength between a resin material and a plated metal layer and reduces the cost incurred by plating. This method comprises a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.

Description

    TECHNICAL FIELD
  • The present invention relates to a method for plating the surface of a resin material that improves plate adhesion.
  • BACKGROUND ART
  • Electroless plating has been known as a method for imparting electric conductivity or metallic luster to resin materials. This electroless plating refers to a method of forming a metal coating on the surface of a material via chemical reduction and deposition of a metal ion in a solution. Unlike electroplating that allows electrolytic deposition with the aid of electric power, a metal coating can be formed on an insulator such as a resin. Also, electroplating can be applied to a resin material having a metal coating formed thereon, and applications of such material can be expanded. Accordingly, electroless plating has been extensively adopted as a method for imparting metallic luster or electric conductivity to a resin material that is used in the fields of automobile decorative parts, household electrical goods, and the like.
  • Electroless plating is employed in a variety of fields, particularly for electrifying through holes or via holes in the field of printed-circuit boards.
  • Disadvantageously, it is time-consuming to form a plated layer via electroless plating, and adhesion between the plated layer and a resin material is insufficient. In general, accordingly, a resin material is first subjected to chemical etching to roughen the surface and is then subjected to electroless plating.
  • A method is also known wherein a resin material is subjected to pretreatment with ozone gas and then subjected to electroless plating. An unsaturated bond of a resin material is cleaved by ozone gas, the molecular size thereof is lowered, and molecules with different chemical compositions become present on the surface thereof. Thus, surface smoothness is lost and the surface is roughened. Accordingly, a plated layer formed via electroless plating is firmly attached to the rough surface and thus is not easily separated from the material.
  • In the aforementioned conventional technique, the surface of the resin material is roughened and plate adhesion is enhanced via a so-called “anchor effect.” In such technique, however, the surface smoothness of the resin material is lowered. This necessitates the thickening of the plated layer in order to obtain a sophisticated metallic luster and disadvantageously increases the number of procedures.
  • In the method wherein the surface is roughened via etching, use of toxic substances such as chromic acid or sulfuric acid is necessary. This method is also problematic in terms of burdens on the environment resulting from the necessity for waste liquid management or the like.
  • JP Patent Publication (Kokai) No. 2002-309377 A discloses a method of pretreatment for enhancing plate adhesion when forming a plated layer on the surface of a resin material via electroless plating. This method comprises bringing a resin material having an unsaturated bond into contact with a first solution containing ozone and then bringing the resin material into contact with a second solution containing at least either an anionic or nonionic surfactant and an alkaline compound in order to form a plated layer with excellent adhesion without the need of etching, ozone gas treatment, or roughening of the surface of the resin material. In this method, palladium is used as a catalyst for plating.
  • SUMMARY OF THE INVENTION
  • A conventional plating technique that involves a combination of chromic acid treatment and palladium plating is problematic in the following respects: the adhesion strength of a plated layer is as low as approximately 1 kgf/cm; the burden on the environment is considerable due to the use of chromic acid; and palladium, which is expensive and experiences significant price fluctuations, is used. Similarly, a combination of ozone water treatment and palladium plating disclosed in JP Patent Publication (Kokai) No. 2002-309377 A involves the use of expensive palladium.
  • The present invention is directed to improving adhesion strength between a resin material and a plated metal layer when plating a resin material. Also, the present invention is directed to considerably reducing the cost required for plating.
  • The present inventors have conducted concentrated studies and have consequently found that the aforementioned objects could be attained by employment of ozone water treatment in combination with the use of a specific metal catalyst. This has led to the completion of the present invention.
  • More specifically, the first aspect of the present invention concerns a method for plating a resin material comprising a step of treating such resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • The step of treating resin materials with ozone water is carried out by immersing various types of resin materials in ozone water or spraying ozone water on the surface of such resin materials. In general, ozone water comprises water as a solvent; however, it preferably comprises an organic or inorganic polar solvent. This can further shorten the time necessary for treatment. The step of permitting the resin material to adsorb a metal catalyst is carried out by immersing a resin material in a catalyst bath containing a salt of a metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
  • In a conventional technique involving surface roughening with the use of chromic acid or the like, for example, a butadiene rubber portion on the surface of ABS resins is dissolved with chromic acid to form pores with sizes on the micron order, and catalyst particles unevenly adhere to the roughened surface. In contrast, the surface of the resin material is evenly activated without roughening, and catalyst particles evenly adhere to the ozone-water-treated surface in the case of ozone water treatment.
  • Preferably, the method for plating a resin material according to the present invention further comprises a step of alkaline degreasing of the surface of the resin material between the step of treating the resin material with ozone water and the step of permitting the resin material to adsorb a metal catalyst. By carrying out the step of alkaline degreasing, stains on the surface of the resin material can be removed, wettability can be improved, and metal catalyst adhesion can be enhanced.
  • An alkaline compound that is used in the step of alkaline degreasing of the present invention is capable of dissolving the surface of the resin material at a molecular level and removing an embrittled layer on the surface of the resin material so as to allow more functional groups to appear. Thus, plate adhesion can be enhanced. An alkaline compound that can dissolve the surface of the resin material at a molecular level and remove the embrittled layer can be employed. Examples thereof include sodium hydroxide, potassium hydroxide, and lithium hydroxide. A treatment solution that is employed in the step of alkaline degreasing preferably comprises at least either an anionic or nonionic surfactant.
  • In the present invention, the step of chemical plating (electroless plating) is preferably carried out following the step of permitting the resin material to adsorb a metal catalyst. Conditions for chemical plating and metal species to be deposited are not limited, and chemical plating can be carried out in a manner similar to conventional electroless plating. An example of preferable chemical plating is Ni—P chemical plating.
  • In the present invention, the step of electroplating can be carried out following the step of chemical plating. Via an additional step of electroplating, the thickness of the plated layer can be increased. Thus, metallic luster can be imparted, which can result in a remarkably sophisticated plated layer. Conditions for electroplating and metal species to be deposited are not limited, and electroplating can be carried out in a manner similar to conventional electroless plating. Examples of metal species to be deposited include copper, silver, nickel, gold, tin, and cobalt. An example of preferable electroplating is copper sulfate electroplating.
  • In the present invention, the step of electroplating can be carried out following the step of permitting the resin material to adsorb a metal catalyst without the step of chemical plating.
  • The ozone content of ozone water significantly affects activation of the surface of the resin material, and activation effects can be observed at a level of approximately 10 ppm. An ozone content of 50 ppm or higher can result in remarkably enhanced activation effects, and at 100 ppm or higher, the treatment can be carried out within a shorter period of time. Since a low ozone content results in weak effects of activating the surface of the resin material, a higher ozone content is preferable. Preferably, the duration of ozone water treatment is between 2 minutes and 10 minutes. If such duration is less than 2 minutes, activation of the surface of the resin material may be insufficient. In contrast, a duration exceeding 10 minutes may cause deterioration in the resin material.
  • The surface of the resin material is permitted to adsorb a metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts. Among these catalysts, a silver catalyst is preferable in terms of cost and the peel strength of the resulting plated layer.
  • The method for plating a resin material according to the present invention can be applied to a wide variety of fields. Specifically, the second aspect of the present invention concerns automobile parts, electrical parts, and printed circuit boards plated by the aforementioned method according to the present invention. More particularly, the method for plating a resin material according to the present invention is effective for producing printed circuit boards. Adoption of the method of the present invention for plating the through holes or via holes of the printed circuit boards eliminates the need for the step of surface roughening. Thus, printed circuit boards of higher density can be obtained. Since this method does not involve the use of palladium, which is expensive and experiences significant price fluctuations, the cost can be reduced. Further, the foundation layer of a silver printed circuit board is prepared via chemical plating with the adoption of ozone water treatment in combination with the use of a silver catalyst according to the present invention. Thus, a strong silver printed circuit board comprising a foundation layer integrated with a wiring layer with the aid of a silver component can be obtained.
  • Adoption of ozone water treatment in combination with the use of a specific metal catalyst for plating a resin material improves the adhesion strength between a resin material and a plated metal layer and significantly reduces the cost incurred by plating.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart showing the procedures carried out in the examples.
  • FIGS. 2A and 2B show charts showing the results of comparing the adhesion strengths of plated resins prepared in Examples 1 and 2 and Comparative Examples 1 to 4.
  • PREFERRED EMBODIMENTS OF THE INVENTION
  • Examples of resin materials that can be used in the present invention include: thermoplastic resins, such as acrylonitrile-butadiene-styrene (ABS) copolymer, acrylonitrile-styrene (AS) copolymer, polystyrene (PS), ethylene-vinyl acetate (EVA) copolymer, polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyacrylonitrile (PA), polyoxymethylene (POM), polycarbonate (PC), polypropylene (PP), polyethylene (PE), a polymer alloy composed of an elastomer and PP, denatured PPO, polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE); and thermosetting resins, such as phenolic resins and epoxy resins. The forms of such resins are not particularly limited.
  • Ozone water, particularly highly concentrated ozone water, which is employed in the present invention, can be generated in accordance with a conventional technique. For example, highly concentrated ozone water can be generated with the use of an apparatus for generating ozone water that comprises an absorption column. Such apparatus comprises a water inlet and an exhaust gas outlet located at the upper site of a gas absorber and an inlet for ozone-containing gas and an outlet for ozone water located at the lower site of the gas absorber. Aggregates of a continuous gas stream of the gas absorber are generated via fractionation or bending of the gas path, and water is brought into countercurrent contact with ozone-containing gas. Thus, highly concentrated ozone water can be generated.
  • In general, ozone water comprises water as a solvent; however, it preferably comprises an organic or inorganic polar solvent. Examples of organic polar solvents include: alcohols, such as methanol, ethanol, and isopropyl alcohol; organic acids, such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, formic acid, and acetic acid; and mixtures thereof with water or an alcohol solvent. Examples of inorganic polar solvents include inorganic acids, such as nitric acid, hydrochloric acid, and hydrofluoric acid.
  • A treatment solution that is employed in the step of alkaline degreasing preferably comprises at least either an anionic or nonionic surfactant. A surfactant having a hydrophobic group that easily adsorbs to the C═O or C—OH functional group is used. The intended effect may not be sufficiently produced with the use of a cationic surfactant and a neutral surfactant; for example, a plated layer may not be formed. Examples of anionic surfactants include sodium lauryl sulfate, potassium lauryl sulfate, sodium stearyl sulfate, and potassium stearyl sulfate. Examples of nonionic surfactants include polyoxyethylene dodecyl ether and polyethylene glycol dodecyl ether.
  • A solvent of an alkaline degreasing solution containing a surfactant and an alkaline compound is preferably a polar solvent. A representative example of such solvent is water. An alcohol solvent or a water-alcohol mixed solvent may be used according to need. An alkaline degreasing solution can be brought into contact with a resin material after ozone water treatment by, for example, a method wherein a resin material is immersed in such alkaline degreasing solution, a method wherein such alkaline degreasing solution is applied to the surface of the resin material, or a method wherein such alkaline degreasing solution is sprayed on the surface of the resin material.
  • The surfactant concentration in an alkaline degreasing solution is preferably between 0.01 g/l and 10 g/l. If the surfactant concentration is lower than 0.01 g/l, plate adhesion is deteriorated. If the concentration is higher than 10 g/l, excess surfactant is assembled and it remains as an impurity on the surface of the resin material. This also deteriorates plate adhesion. In such a case, the resin material may be rinsed after the pretreatment to remove excess surfactant.
  • The concentration of an alkaline compound in an alkaline degreasing solution is preferably a pH of 12 or higher. The effects can be attained even when the pH is lower than 12. In such a case, however, achieving plating to a desired thickness would be very time consuming due to the insufficient number of functional groups that appear on the surface of the resin material.
  • The contact time between an alkaline degreasing solution and a resin material is not particularly limited, and it is preferably for 1 minute or longer at room temperature. If the contact time is too short, the amount of surfactant that adsorbs a functional group may be insufficient, and plate adhesion may be deteriorated. If the contact time is too long, electroless plating may be sometimes difficult since the layer on which at least either of the C═O or C—OH functional groups has appeared is also dissolved. A contact time of approximately 1 to 5 minutes is sufficient. A higher temperature is preferable. The higher the temperature, the shorter the contact time. A preferable temperature range is approximately between room temperature and 60° C.
  • The step of alkali treatment may be carried out with the use of an aqueous solution consisting of an alkaline compound, followed by adsorption of a surfactant. Since an embrittled layer may be formed again by the time a surfactant is adsorbed, this step is preferably carried out with the use of an alkaline degreasing solution containing at least either an anionic or nonionic surfactant and an alkaline compound.
  • It is preferable to carry out the step of alkali treatment following the step of ozone water treatment. According to need, these two steps can be carried out simultaneously. In such a case, a mixed solution of ozone water and an alkaline degreasing solution is prepared, and a resin material is immersed in the resulting mixed solution.
  • Alternatively, a step for removing an alkaline compound via rinsing may be carried out after the step of alkali treatment. A surfactant is firmly adsorbed to a functional group, and thus, it is known that a surfactant is not removed via rinsing and it remains adsorbed. Accordingly, the effects of a resin material that has been pretreated by the method according to the present invention will not be lost even when a long period of time has passed before the step of chemical plating.
  • EXAMPLES
  • FIG. 1 is a flow chart showing the procedures carried out in the examples. Hereafter, the procedures of the examples are described in accordance with the flow chart.
  • Example 1
  • An ABS resin substrate was treated with ozone water of 50 to 100 ppm for 2 to 10 minutes (step 01). The substrate was then subjected to alkaline degreasing in a 50 g/l aqueous solution of NaOH at 60° C. for 13 minutes (step 02). If the resin substrate is sufficiently clean, this step of alkaline degreasing can be omitted. Subsequently, the substrate was subjected to a catalytic bath of Ag in a 0.5 g/l aqueous solution of an Ag catalyst at 30° C. for 30 minutes (step 03). The substrate was then subjected to chemical plating with copper in a plating solution containing 3 g/l of copper sulfate, 2 g/l of formalin, and 2 g/l of NaOH at 30° C. for 10 minutes (step 04). Further, the substrate was subjected to electroplating of 2.0 A/dm2 in a plating solution containing 200 g/l of copper sulfate, 50 g/l of sulfuric acid, 0.125 g/l of hydrochloric acid, and additives at 30° C. for 30 minutes (step 05). A copper-plated layer with a thickness of 100 μm was deposited on the ABS resin substrate via these procedures.
  • Comparative Example 1
  • Copper plating was carried out in the same manner as in Example 1. However, chromic acid treatment was carried out instead of ozone water treatment, and a palladium catalyst was used instead of a silver catalyst.
  • Comparative Example 2
  • Copper plating was carried out in the same manner as in Example 1, except that chromic acid treatment was carried out instead of ozone water treatment.
  • Example 2
  • Copper plating was carried out in the same manner as in Example 1, except that an epoxy resin substrate was used instead of an ABS resin substrate.
  • Comparative Example 3
  • Copper plating was carried out in the same manner as in Example 2. However, permanganic acid treatment was carried out instead of ozone water treatment, and a palladium catalyst was used instead of a silver catalyst.
  • Comparative Example 4
  • Copper plating was carried out in the same manner as in Example 2, except that permanganic acid treatment was carried out instead of ozone water treatment.
  • Plated layers on the plated resins prepared in Examples 1 and 2 and Comparative Examples 1 to 4 were incised at intervals of 1 cm to inspect the adhesion strength using a tensile strength tester. The results are shown in FIGS. 2A and 2B. As is apparent from the results shown in FIGS. 2A and 2B, plated layers with higher density can be formed via the process of plating a resin material according to the present invention in comparison with conventional techniques that involve chromic acid treatment or permanganic acid treatment. This can be realized since the process according to the present invention imposes a low burden on the environment, and employs highly concentrated ozone water and a silver catalyst. An adhesion strength of 1 kgf/cm or higher is sufficient, and it is improved to approximately 1.5 kgf/cm in the examples of the present invention.
  • INDUSTRIAL APPLICABILITY
  • The present invention provides a method for plating a resin material that improves the adhesion strength between a resin material and a plated metal layer. Such method can significantly reduce the cost incurred by plating. Such plating is applied particularly to automobile parts, electrical parts, and printed circuit boards, and it imparts strong metallic luster and excellent conductivity thereto. Accordingly, the method for plating a resin material according to the present invention contributes to the production of the aforementioned articles with higher density, allowing widespread use thereof.

Claims (12)

1. A method for plating a resin material comprising a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
2. The method according to claim 1, which further comprises a step of alkaline degreasing of the surface of the resin material between the step of treating a resin material with ozone water and the step of permitting the resin material to adsorb a metal catalyst.
3. The method according to claim 1, which further comprises a step of chemical plating following the step of permitting the resin material to adsorb a metal catalyst.
4. The method according to claim 3, which comprises a step of electroplating following the step of chemical plating.
5. The method according to claim 1, which comprises a step of electroplating following the step of permitting the resin material to adsorb a metal catalyst without the step of chemical plating.
6. The method according to claim 1, wherein the ozone content in the ozone water is 50 ppm or higher.
7. The method according to claim 1, wherein the duration of ozone water treatment is between 2 minutes and 10 minutes.
8. The method according to claim 1, wherein the metal catalyst is a silver catalyst.
9. Automobile parts plated by the method for plating a resin material comprising a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
10. Electric parts plated by the method for plating a resin material comprising a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
11. A method for plating printed circuit boards comprising plating the through holes and/or via holes of the printed circuit boards by the method for plating a resin material comprising a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
12. Printed circuit boards plated by the method for plating a resin material comprising a step of treating a resin material with ozone water and a step of permitting the resin material to adsorb at least one metal catalyst selected from the group consisting of silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium catalysts.
US11/214,971 2004-09-01 2005-08-31 Method for plating resin material Abandoned US20060042954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004254747A JP2006070319A (en) 2004-09-01 2004-09-01 Resin plating method
JP2004-254747 2004-09-01

Publications (1)

Publication Number Publication Date
US20060042954A1 true US20060042954A1 (en) 2006-03-02

Family

ID=35941497

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/214,971 Abandoned US20060042954A1 (en) 2004-09-01 2005-08-31 Method for plating resin material

Country Status (3)

Country Link
US (1) US20060042954A1 (en)
JP (1) JP2006070319A (en)
CN (1) CN100519838C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128366A1 (en) * 2005-12-05 2007-06-07 Rohm And Haas Electronic Materials Llc Metallization of dielectrics
US20080053834A1 (en) * 2006-06-09 2008-03-06 Rohm And Haas Electronic Materials Llc Electroless plating method for resin surfaces
WO2008142541A2 (en) * 2007-05-22 2008-11-27 Toyota Jidosha Kabushiki Kaisha Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
WO2008145229A2 (en) * 2007-05-25 2008-12-04 Gebr. Schmid Gmbh Method for the treatment of flat substrates, and use of said method
US20110305839A1 (en) * 2010-06-09 2011-12-15 Kurita Water Industries Ltd Ozone gas treatment process and treatment apparatus
US20120073978A1 (en) * 2009-06-08 2012-03-29 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
CN105839159A (en) * 2016-05-23 2016-08-10 无锡市嘉邦电力管道厂 Polyvinyl plastic electroplating process
CN108884569A (en) * 2016-04-28 2018-11-23 栗田工业株式会社 The processing method of frosting
US20190032220A1 (en) * 2017-07-25 2019-01-31 Rohm And Haas Electronic Materials Llc Chrome-free etch solutions for chemically resistant polymer materials
CN115282789A (en) * 2022-01-24 2022-11-04 浙江师范大学 ABS-Ni composite separation membrane and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294077A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Method of manufacturing wiring substrate and wiring substrate
JP4918123B2 (en) * 2009-09-17 2012-04-18 トヨタ自動車株式会社 Method for producing electroless plating material
JP5875195B2 (en) * 2013-08-22 2016-03-02 柿原工業株式会社 Resin plating method using ozone water treatment
JP7160306B2 (en) * 2018-05-23 2022-10-25 奥野製薬工業株式会社 Electroless plating pretreatment composition, electroless plating pretreatment method, electroless plating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082557A (en) * 1975-07-25 1978-04-04 Alfachimici S.P.A. Silver base activating solutions for electroless copper deposition
US5071517A (en) * 1989-11-21 1991-12-10 Solution Technology Systems Method for directly electroplating a dielectric substrate and plated substrate so produced
US5376248A (en) * 1991-10-15 1994-12-27 Enthone-Omi, Inc. Direct metallization process
US6286207B1 (en) * 1998-05-08 2001-09-11 Nec Corporation Resin structure in which manufacturing cost is cheap and sufficient adhesive strength can be obtained and method of manufacturing it
US20040115353A1 (en) * 2001-04-12 2004-06-17 Masatsugu Nakanishi Method of pretreatment of material to be electrolessly plated
US20050153059A1 (en) * 2002-02-28 2005-07-14 Yasuhiro Wakizaka Partial plating method, partially-plated resin base, method for manufacturing multilayered circuit board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187781A (en) * 1990-11-21 1992-07-06 Sumitomo Metal Mining Co Ltd Electroless plating method
JPH06152126A (en) * 1992-11-09 1994-05-31 Hitachi Chem Co Ltd Manufacture of wiring board
JPH10317153A (en) * 1997-05-14 1998-12-02 Taiyo Ink Mfg Ltd Photosetting primer composition for electroless plating and electroless plating method using the same
JP2000124583A (en) * 1998-10-19 2000-04-28 Nec Kansai Ltd Manufacture of wiring board and wiring board structure
JP2001316834A (en) * 2000-04-28 2001-11-16 Sony Corp Apparatus for electroless plating and method for forming conductive film
JP4940512B2 (en) * 2001-07-18 2012-05-30 トヨタ自動車株式会社 Method for forming electroless plating film of resin
JP2004068119A (en) * 2002-08-08 2004-03-04 Sumitomo Osaka Cement Co Ltd Method for manufacturing metallic pattern film
JP3999623B2 (en) * 2002-10-10 2007-10-31 トヨタ自動車株式会社 Method for pretreatment of electroless plating material and method for manufacturing plating coated member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082557A (en) * 1975-07-25 1978-04-04 Alfachimici S.P.A. Silver base activating solutions for electroless copper deposition
US5071517A (en) * 1989-11-21 1991-12-10 Solution Technology Systems Method for directly electroplating a dielectric substrate and plated substrate so produced
US5376248A (en) * 1991-10-15 1994-12-27 Enthone-Omi, Inc. Direct metallization process
US6286207B1 (en) * 1998-05-08 2001-09-11 Nec Corporation Resin structure in which manufacturing cost is cheap and sufficient adhesive strength can be obtained and method of manufacturing it
US20040115353A1 (en) * 2001-04-12 2004-06-17 Masatsugu Nakanishi Method of pretreatment of material to be electrolessly plated
US20050153059A1 (en) * 2002-02-28 2005-07-14 Yasuhiro Wakizaka Partial plating method, partially-plated resin base, method for manufacturing multilayered circuit board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128366A1 (en) * 2005-12-05 2007-06-07 Rohm And Haas Electronic Materials Llc Metallization of dielectrics
US20100323115A1 (en) * 2005-12-05 2010-12-23 Rohm And Haas Electronic Materials Llc Metallization of dielectrics
US7780771B2 (en) 2005-12-05 2010-08-24 Rohm And Haas Electronic Materials Llc Metallization of dielectrics
US20080053834A1 (en) * 2006-06-09 2008-03-06 Rohm And Haas Electronic Materials Llc Electroless plating method for resin surfaces
WO2008142541A3 (en) * 2007-05-22 2009-01-29 Toyota Motor Co Ltd Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
US8784638B2 (en) 2007-05-22 2014-07-22 Toyota Jidosha Kabushiki Kaisha Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
US20100059259A1 (en) * 2007-05-22 2010-03-11 Takeshi Bessho Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
WO2008142541A2 (en) * 2007-05-22 2008-11-27 Toyota Jidosha Kabushiki Kaisha Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
WO2008145229A2 (en) * 2007-05-25 2008-12-04 Gebr. Schmid Gmbh Method for the treatment of flat substrates, and use of said method
WO2008145229A3 (en) * 2007-05-25 2009-04-09 Schmid Gmbh Gebr Method for the treatment of flat substrates, and use of said method
US20120073978A1 (en) * 2009-06-08 2012-03-29 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
US9090966B2 (en) * 2009-06-08 2015-07-28 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
US20110305839A1 (en) * 2010-06-09 2011-12-15 Kurita Water Industries Ltd Ozone gas treatment process and treatment apparatus
CN108884569A (en) * 2016-04-28 2018-11-23 栗田工业株式会社 The processing method of frosting
US20190136380A1 (en) * 2016-04-28 2019-05-09 Kurita Water Industries Ltd. Method for treating surface of plastic
CN105839159A (en) * 2016-05-23 2016-08-10 无锡市嘉邦电力管道厂 Polyvinyl plastic electroplating process
US20190032220A1 (en) * 2017-07-25 2019-01-31 Rohm And Haas Electronic Materials Llc Chrome-free etch solutions for chemically resistant polymer materials
CN115282789A (en) * 2022-01-24 2022-11-04 浙江师范大学 ABS-Ni composite separation membrane and preparation method and application thereof

Also Published As

Publication number Publication date
CN1743502A (en) 2006-03-08
CN100519838C (en) 2009-07-29
JP2006070319A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US20060042954A1 (en) Method for plating resin material
US9249512B2 (en) Process for coating a surface of a substrate made of nonmetallic material with a metal layer
JP4135459B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
KR102366687B1 (en) Composition for pretreatment for electroless plating, pretreatment method for electroless plating, and electroless plating method
JP2013513726A (en) Method for preparing a metallized polymer substrate
CN1328412C (en) Method for activating substrate for plating on plastic
CN1238442C (en) Resin material for decoration and sweller for deterging and eliminating the resin material
JP4930804B2 (en) Method for producing electroless plating material
JP4449246B2 (en) Pretreatment method of electroless plating material
CN1404983A (en) Metallization treatment method for plastic surface
JP2011063854A (en) Method for manufacturing base material to be electroless-plated
JP2008291288A (en) Ozone solution treatment method of resin substrate, and wiring board manufacturing method
JP2005113236A (en) Plating article and plating coated member and method for manufacturing the same
JP5083005B2 (en) Resin substrate having a precious metal fixed on the surface layer, its manufacturing method, circuit board, and its manufacturing method
EP1546435B1 (en) Method for pretreating a surface of a non-conducting material to be plated
JP4372491B2 (en) Method for producing plating-coated member
JP2005036292A (en) Electroless plating method and plated component
JP2005281762A (en) Electroless plating method
JP2011127152A (en) Electroless plating method to polystyrene-based resin
JP2008031536A (en) Direct plating method
JP5742701B2 (en) Electroless plating method
JP2019203168A (en) Pretreatment composition for electroless plating, pretreatment method for electroless plating, and electroless plating method
KR20200014969A (en) Plating method of double injection moldings for preventing plating defects

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHINAGA, FUMITAKA;BESSHO, TAKESHI;REEL/FRAME:016931/0836

Effective date: 20050824

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION