WO2011033819A1 - Method for forming polymer layer - Google Patents

Method for forming polymer layer Download PDF

Info

Publication number
WO2011033819A1
WO2011033819A1 PCT/JP2010/057821 JP2010057821W WO2011033819A1 WO 2011033819 A1 WO2011033819 A1 WO 2011033819A1 JP 2010057821 W JP2010057821 W JP 2010057821W WO 2011033819 A1 WO2011033819 A1 WO 2011033819A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
solvent
polymer layer
group
liquid
Prior art date
Application number
PCT/JP2010/057821
Other languages
French (fr)
Japanese (ja)
Inventor
貴胤 河野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011033819A1 publication Critical patent/WO2011033819A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment

Definitions

  • the present invention relates to a method for forming a polymer layer, and more particularly to a method for forming a layer to be plated or a polymer layer suitable as a lower layer thereof.
  • a method for forming a polymer layer for example, a method is known in which a polymer solution is applied on a support and the obtained coating film is heated and dried using a radiation heater or a heat transfer heater (for example, JP (See 2004-243172).
  • the polymer solution used when forming the polymer layer uses a high-boiling solvent from the viewpoint that it is easier to handle than a low-boiling solvent and that equipment costs are lower than when a low-boiling solvent is used.
  • a high-boiling solvent it is necessary to increase the drying temperature of the coating film or to dry it for a long time.
  • a coating film obtained by applying a solution in which a polyimide precursor is dissolved in an aprotic polar solvent is contacted with a solvent that is insoluble in the polyimide precursor and miscible with the aprotic polar solvent.
  • a method of drying after replacing the protonic polar solvent is known (see, for example, JP-A-2001-212833).
  • the drying temperature of the coating film is increased, if the heat resistance of the polymer itself is low, the polymer may be deformed by this drying temperature. Therefore, it is necessary to lower the drying temperature. However, if it takes a long time to remove the coating solvent (drying), the inner solvent is removed (dried) after the vicinity of the surface of the coating has been dried first. Voids are formed in the polymer layer, and as a result, local strength reduction may occur in the plane of the polymer layer.
  • an object of the present invention is to provide a method for forming a polymer layer, which can form a polymer layer without voids in a short drying time regardless of the boiling point of the solvent used in the coating solution.
  • the present inventor has found that the above object can be achieved by the following means. That is, in the method for forming a polymer layer of the present invention, (a) a coating solution containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A that dissolves the polymer P is applied on a support. A step of forming a film, (b) a step of bringing the coating film into contact with a liquid B containing at least one of water and alcohol that does not dissolve the polymer P, and removing the solvent A from the coating layer; ) Drying the coating film in this order, wherein the solvent A and the liquid B satisfy the following relationship. Boiling point of solvent A> Boiling point of liquid B
  • the porosity in the polymer layer obtained by the method for forming a polymer layer of the present invention is preferably 50% or less.
  • the boiling point of the solvent A and the glass transition temperature of the polymer P satisfy the following relationship. Boiling point of solvent A> Glass transition temperature of polymer P-50 ° C
  • the alcohol used as the liquid B is more preferably an alcohol having 4 or less carbon atoms.
  • the solvent A is water-soluble.
  • the polymer P is a polymer containing a cyano group.
  • the polymer containing a cyano group is a polymer containing a cyanoalkyl group in the side chain.
  • FIG. 4 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 1 to 3.
  • 6 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Example 2 and Comparative Examples 1 to 4.
  • 6 is a graph showing the residual amount of N-ethylmorpholine in the polymer layers obtained in Examples 4 to 6 and Comparative Example 5.
  • 6 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 7 to 9 and Comparative Example 6.
  • 3 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 10, 11, 1, and 2.
  • FIG. 7 is a graph showing the film strength of the polymer layers obtained in Examples 12 and 13 and Comparative Example 7.
  • the method for forming a polymer layer according to the present invention comprises: (a) applying a coating solution containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A that dissolves the polymer P on a support; A step of forming (hereinafter referred to as (a) step), and (b) contacting the coating film with a liquid B containing at least one of water and alcohol that does not dissolve the polymer P. A step of removing the solvent A (hereinafter referred to as (b) step), and (c) a step of drying the coating film (hereinafter referred to as (c) step) in this order.
  • the liquid B satisfies the following relationship. Boiling point of solvent A> Boiling point of liquid B
  • steps (a) to (c) will be described in order.
  • a coating solution is formed by applying a coating liquid containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A for dissolving the polymer P on a support. To do.
  • the glass transition temperature means a value obtained by measurement by the following method. That is, by differential scanning calorimetry (DSC) measurement, the sample endotherm is measured while slowly increasing the sample temperature from ⁇ 180 ° C. to 250 ° C. (1 ° C./min) to determine the glass transition temperature.
  • the specific polymer P used in this step may be any polymer as long as it has a glass transition temperature as described above (hereinafter, referred to as “Tg” as appropriate).
  • the Tg of the specific polymer P is preferably in the range of ⁇ 160 ° C. to 180 ° C., more preferably ⁇ 30 ° C. to 150 ° C., from the viewpoint of physical properties such as heat resistance, shear stress, tensile stress, and viscosity. In the vicinity of this Tg or higher temperature range, the specific polymer P is easily deformed even in a short time. For this reason, depending on the boiling point of the solvent to be used, a void is generated, and the uniformity of the film is easily impaired. However, according to the present invention, the generation of a void can be effectively suppressed regardless of the type of the solvent.
  • the coating solution containing this polymer can be dried at a high temperature around 180 ° C. or higher if the temperature is lower than the Tg of the polymer P. From the viewpoint of being able to be dried in a low temperature range without causing deformation of the specific polymer P, which is one of the effects of the present invention, since it is possible to cope with the application of a normal drying process.
  • the effect is remarkable.
  • the content of the polymer P having a glass transition temperature of 180 ° C. or higher in the coating solution used in this step may be determined by the coating method and the required film thickness after coating. On the other hand, it is preferably 1% by mass to 40% by mass, more preferably 2% by mass to 20% by mass, and further preferably 3% by mass to 10% by mass.
  • the solvent A is a solvent that can dissolve the specific polymer P described above, and has a higher boiling point than the liquid B described later.
  • dissolving the specific polymer means that after preparing a 1% solution, it can be visually confirmed that no precipitate is formed after standing at room temperature (25 ° C. in this specification) for 10 minutes. To do.
  • the solvent A is not particularly limited as long as it has a higher boiling point than that of the solvent B, but preferably has a boiling point of 100 ° C. or higher, more preferably 120 ° C. or higher. From the viewpoint of ease of use of a general-purpose solvent, the upper limit of the boiling point of the solvent A is preferably 350 ° C. Further, the boiling point of the solvent A is preferably higher than [Tg-50] ° C. with respect to the glass transition temperature (Tg) of the specific polymer P from the viewpoint of easy handling and safety of the solvent. More preferably, it is in the range of ⁇ 50 ° C. to + 350 ° C. with respect to the temperature.
  • the solvent A include 2-methyl-1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, ethylene glycol, glycerin, isopentyl alcohol, isobutyl alcohol, 1-methoxy-2 Alcohol solvents such as -propanol, 3-methyl-1-butanol, 2-butoxyethanol; isobutyl acetate, butyl acetate, isopentyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropio , 2-methoxy-methylethyl acetate, 2-ethoxymethyl acetate, 2-ethoxyethyl acetate, methyl 3-methoxypropionate, diethyl carbonate, methyl isovalerate, methyl lactate, ethyl lactate, 3-methyl Ester solvents such as xylbutylbut
  • 1-methoxy-2-propanol, 1-butanol, cyclohexanol, cyclohexanone, cyclopentanone, morpholine, N-ethylmorpholine, anisole, and isobutyl acetate are preferable from the viewpoint of ease of handling.
  • the solvent A has water solubility from the viewpoint that the environmental load can be reduced by using water as the liquid B.
  • the water solubility of the solvent A means that 1 g of the solvent A is added to 99 g of water, and the solvent A dissolves in water when stirred at room temperature for 100 minutes, that is, by visual separation or dispersion. It means a uniform liquid phase without turbidity.
  • the solvent A may be composed of one of the above-mentioned solvents, or may be a combination of two selected from these solvents.
  • the content of the solvent A in the coating solution used in this step is not limited as long as the necessary film thickness is secured after coating, and the viscosity that is easy to apply according to the coating method and the dissolution of the solvent It may be determined by sex or the like.
  • the content of the solvent A is preferably 60% by mass to 97% by mass, more preferably 80% by mass to 97% by mass, and still more preferably 90% by mass to 95% by mass with respect to the coating solution.
  • the coating liquid used at this process may contain various additives as needed.
  • materials such as rubber and SBR latex, binders for improving film properties, plasticizers, surfactants, viscosity modifiers and the like that can relieve the stress of the obtained polymer layer can be mentioned.
  • the surfactant an anionic surfactant such as sodium n-dodecylbenzenesulfonate, a cationic surfactant such as n-dodecyltrimethylammonium chloride, polyoxyethylene nonylphenol ether, polyoxyethylene sorbitan monolaurate
  • Nonionic surfactants such as polyoxyethylene lauryl ether are used.
  • Plasticizers include phthalates (dimethyl ester, diethyl ester, dibutyl ester, di-2-ethylhexyl ester, dinormal octyl ester, diisononyl ester, dinonyl ester, diisodecyl ester, dibutyl benzyl ester), adipic acid esters (Dioctyl ester, diisononyl ester), azelain san dioctyl, sebacin sun ester (dibutyl ester, dioctyl ester), tricresyl phosphate, tributyl acetylcitrate, epoxidized soybean oil, trioctyl trimellitic acid, chlorinated paraffin, dimethylacetamide, High boiling solvents such as N-methylpyrrolidone can also be used. Furthermore, you may add additives, such as a coloring agent, a flame retardant, an adhesive imparting
  • the coating solution containing each component as described above is applied onto a support by a known coating method such as spin coating, spray coating, dip coating, or bar coating.
  • the coating amount (film thickness) may be appropriately determined according to the use of the polymer layer to be formed. In general, the film thickness is preferably 0.1 ⁇ m to 20 ⁇ m, and preferably 0.5 ⁇ m to 7 ⁇ m. It is more preferable.
  • the support used in this step is not particularly limited as long as it has shape retention, and may be appropriately determined according to the application. Therefore, the shape of the support is not particularly limited.
  • the support may be made of a material having adhesiveness with the polymer layer.
  • the adhesiveness with the polymer layer may be used. A material with no material may be used.
  • the support include paper, paper laminated with plastic (eg, polyethylene, polypropylene, polystyrene, etc.), metal plate (eg, aluminum, zinc, copper, etc.), plastic film (eg, cellulose diacetate, Cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polyvinyl acetal, polyimide, epoxy, polycarbonate, ABS resin (acrylonitrile-butadiene-styrene copolymer), bismalein Imide resin, polyphenylene oxide, liquid crystal polymer, polytetrafluoroethylene, etc.), paper or plastic film on which a metal as described above is laminated or vapor-deposited, etc. Used.
  • plastic eg, polyethylene, polypropylene, polystyrene, etc.
  • metal plate eg, aluminum, zinc, copper, etc.
  • plastic film
  • an uncured coating film is formed on the support.
  • step (b) Process the coating film formed in the step (a) is brought into contact with the liquid B containing at least one of water and alcohol that does not dissolve the specific polymer, and the solvent A is removed from the coating film. remove.
  • the step (a) and the step (b) are preferably performed continuously, and in particular, (a) It is preferable not to include a drying step between the step and the step (b).
  • the liquid B is a liquid having a boiling point lower than that of the solvent A, and includes at least one of water and alcohol and does not dissolve the specific polymer.
  • the boiling point in the case where the liquid B is a mixed liquid of two or more solvents means that the liquid B, which is the mixed liquid, is heated under normal pressure, and the temperature of the liquid becomes constant. The temperature at which the temperature of the liquid does not rise any further even when the heating is continued and the liquid B evaporates is indicated.
  • the fact that the specific polymer is not dissolved means that a solution in which 1% of the specific polymer is added to the liquid B is stirred at 300 ° C. for 300 minutes to form a uniform liquid phase after standing. This means that a precipitate is confirmed.
  • the liquid B at least one of water and alcohol satisfying the above-described solubility is used as the liquid B.
  • the mixing ratio is preferably 60% or less of alcohol, more preferably 40% or less of alcohol, and 5% is preferable as the lower limit of alcohol.
  • the alcohol all alcohols can be used, and among them, alcohols having 4 or less carbon atoms are preferable from the viewpoint of boiling point and drying temperature.
  • methanol, ethanol, 1- Propanol, 2-propanol, butanol, 2-methyl-1-propanol, 2-methyl-2-propanol and 2-butanol are preferably used.
  • alcohol derivatives such as 3-amino-1-propanol, trifluoroethyl methacrylate, pentadecafluorooctanol and the like may be used.
  • alcohol includes alcohol and its derivatives.
  • the boiling point of the liquid B used at this process is lower than the boiling point of the solvent A used at the (a) process.
  • the difference between the boiling point of the liquid B and the boiling point of the solvent A is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher.
  • the upper limit of the difference between the boiling points of the two is preferably 350 ° C., more preferably 180 ° C. or less, and further preferably 100 ° C. or less. preferable.
  • the content of one or more selected from water and alcohol in the liquid B is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, from the viewpoint of addition to equipment and environmental load. Preferably, 100 mass% is still more preferable. That is, the liquid B is preferably made of water or alcohol or a mixture of water and alcohol. When the liquid B contains alcohol, the alcohol may include a plurality of types selected from alcohol and alcohol derivatives.
  • the solvent A is removed from the coating film by bringing the liquid B described above into contact with the coating film formed in the step (a).
  • a method of bringing the liquid B into contact with the coating film there are a method of immersing a support having a coating film in the liquid B, and a method of washing the coating film using the liquid B.
  • the residual amount of the solvent A in the coating film after this step is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the residual amount of the solvent A can be measured as follows. That is, both are dissolved using a certain amount of liquid that dissolves both the coating film and solvent A, and the amount of solvent A in the solution is measured using liquid chromatography.
  • the liquid B enters the area instead of the solvent A.
  • the liquid B is composed of water and / or alcohol, and since the liquid B has a lower boiling point than the solvent A, the removability from the coating film is superior to the solvent A. Therefore, the coating film can be dried in a short time by performing the step (c) described later after this step.
  • the workability is excellent, which is advantageous in terms of equipment cost, and the solvent A can be recovered in the liquid B without evaporating. The load can be reduced.
  • step (c) Step the coating film after the step (b) is dried.
  • the conditions for drying performed in this step may be appropriately determined depending on the heat resistance of the support for forming the coating film and the boiling point of the liquid B.
  • the boiling point of the liquid B used in step (b) is 80 ° C. or less, drying at room temperature is possible.
  • a small amount of ethanol is dried immediately at room temperature, it can be dried at room temperature as long as the boiling point of ethanol is around 78 ° C.
  • heat drying may be performed.
  • the conditions at that time may be appropriately determined depending on the heat resistance of the support for forming the coating film and the boiling point of the liquid B.
  • the heating temperature is preferably 180 ° C. or less, more preferably 10 ° C. to 120 ° C., and further preferably 60 ° C. to 100 ° C.
  • the heating time is preferably 120 minutes or less, more preferably 60 minutes or less, and even more preferably 1 second to 10 minutes.
  • Various heaters, warm air, infrared rays, and the like can be used for the above-described heat drying.
  • the present invention after replacing the solvent A in the coating film with the liquid B, drying is performed, so that the drying temperature is lowered and the drying time is shortened, but the film remains in the coating film.
  • the amount of solvent can be reduced. Therefore, a polymer layer free from voids can be formed. Since the polymer layer having no voids is uniform in the inside of the layer, it is possible to suppress a local decrease in film strength even under high temperature and high humidity.
  • the liquid B has better removability from the coating film than the solvent A, drying can be performed at room temperature, or the temperature during heat drying can be lowered. Therefore, in the present invention, it is possible to use a polymer and / or a support having low heat resistance.
  • the porosity in the polymer layer formed as described above is preferably 50% or less, more preferably 20% or less, and most preferably 1% or less. That is, in the method for forming a polymer layer of the present invention, a void-free polymer layer is formed through the above-described steps, so that the void ratio as described above can be achieved in the polymer layer.
  • the porosity of the polymer layer can be measured by cross-sectional SEM observation of the polymer layer. Specifically, the method described in the examples is used.
  • the polymer layer obtained in the present invention can itself be applied as a layer to be plated, as described in JP-A-2007-107022.
  • a polymer layer newly formed on the polymer layer can be applied as a layer to be plated.
  • the following polymers are appropriately used as the specific polymer P described above.
  • a polymer layer hereinafter, appropriately referred to as “lower layer” obtained by the present invention or a polymer layer newly formed on the polymer layer (hereinafter, appropriately referred to as “upper layer”).
  • the aspect which is a to-be-plated layer is demonstrated.
  • the layer to be plated is preferably made of a polymer having a functional group that interacts with a plating catalyst or a precursor thereof, and an embodiment using such a polymer will be described in detail below.
  • a to-be-plated layer is a polymer layer (upper layer) newly formed on the polymer layer obtained by this invention, this polymer layer (upper layer) is a polymer layer containing a cyano group in a layer. Is preferred.
  • a functional group that interacts with the plating catalyst or its precursor hereinafter simply referred to as “interactive group”
  • a polar group hydrophilic group
  • a group that can form a multidentate coordination a group that can form a multidentate coordination.
  • Non-dissociable functional groups functional groups that do not generate protons by dissociation
  • nitrogen-containing functional groups sulfur-containing functional groups
  • oxygen-containing functional groups oxygen-containing functional groups.
  • the polar group may be a functional group having a positive charge, such as ammonium or phosphonium, or a negative charge such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, or a phosphonic acid group, or can be dissociated into a negative charge.
  • An acidic group is mentioned.
  • nonionic polar groups such as a hydroxyl group, an amide group, a sulfonamide group, an alkoxy group, and a cyano group can also be used.
  • an imino group, primary or secondary amino group, amide group, urethane group, hydroxyl group (including phenol), thiol group, and the like can also be used.
  • non-dissociable functional group specifically, a group capable of forming a coordination with a metal ion, a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group, and the like are preferable.
  • an imidazole group, a urea group, or a thiourea group may be used as long as it is non-dissociative due to a relationship with an adjacent atom or atomic group.
  • it may be a functional group derived from a compound having an inclusion ability such as cyclodextrin and crown ether.
  • it is represented by an ether group (more specifically, —O— (CH 2 ) n —O— (n is an integer of 1 to 5) because of its high polarity and high adsorption ability to a plating catalyst or the like.
  • a cyano group is particularly preferable, and a cyano group is most preferable.
  • the higher the polarity the higher the water absorption rate.
  • the cyano groups interact in the polymer layer so as to cancel each other's polarity, the film becomes dense and the entire polymer layer Therefore, the water absorption is lowered.
  • the cyano group is solvated, the interaction between the cyano groups is eliminated, and it becomes possible to interact with the plating catalyst.
  • a polymer layer having a cyano group is preferable in that it exhibits low performance while interacting well with the plating catalyst while exhibiting low moisture absorption.
  • the interactive group in the present invention is more preferably a cyanoalkyl group.
  • the layer to be plated is a polymer layer (upper layer) newly formed on the polymer layer obtained in the present invention, this polymer layer (upper layer) has adhesion to the lower polymer layer.
  • it is preferably formed using a polymer having an interactive group and a polymerizable group.
  • a polymer having a cyano group is formed into a film, thereby forming a polymer layer as a lower layer having excellent adhesion to the support because it has excellent wettability and affinity for the resin substrate as the support. be able to.
  • a coating solution containing a polymer having an interactive group and a polymerizable group is applied to the surface of the lower polymer layer and drying it to form the upper polymer layer, the compatibility between the polymers is achieved. Due to the affinity, it is possible to form a plated layer having an interactive group that has excellent adhesion to the support.
  • the polymer having an interactive group and a polymerizable group has a polymerizable group (preferably a radical polymerizable group) in the molecule, it has a crosslinked structure by being cured by applying energy.
  • a simple polymer layer can be formed.
  • the upper polymer layer formed in this manner is excellent in adhesion to the support and can form an interaction with the plating catalyst or its precursor. Even if the interface is in a hybrid state between the metal and the polymer (resin) and the interface between the support and the plating film is smooth, it is considered that the adhesion between them is high.
  • the polymer having a cyano group suitable for the lower layer is not particularly limited as long as it is a polymer having a unit having a cyano group in the side chain as a polymerization component, but as the unit having a cyano group in the side chain, acrylonitrile is preferable.
  • the polymer having a cyano group is preferably a polymer containing such a unit. Specifically, acrylonitrile-butadiene-styrene copolymer (ABS) resin, nitrile-butadiene rubber (NBR), acrylonitrile-styrene copolymer (AS) resin, polyacrylonitrile, and the like are particularly preferable.
  • the polymer having a cyano group preferably includes a unit derived from a monomer having a cyano group as shown below as a polymerization component.
  • R represents a hydrogen atom or a methyl group.
  • the polymer having a cyano group may contain only one type of unit derived from the above monomer or two or more types, and may contain a unit not containing a cyano group as a copolymerization component.
  • the amount of the cyano group contained in the polymer having a cyano group is preferably 1.0 mmol to 9.0 mmol per 1 g of the polymer from the viewpoint of adhesion between the support and the upper polymer layer.
  • the other unit contained in the polymer having a cyano group is not particularly limited as long as it is a unit not containing a polar group.
  • a polymerizable monovinyl aromatic unit having no group, a unit derived from a (meth) acrylate monomer having no polar group, a unit derived from a (meth) acrylamide monomer having no polar group, and the like are preferable.
  • units derived from monomers as shown below can be mentioned.
  • R represents a hydrogen atom or a methyl group
  • X represents O or NH
  • the content when the unit having a cyano group in the side chain is contained as a polymerization component is preferably in the range of 10 mol% to 100 mol%, more preferably 30 mol%. Mol% to 100 mol%.
  • the weight average molecular weight of the polymer having a cyano group is preferably 1000 or more and 700,000 or less, more preferably 2000 or more and 200,000 or less.
  • the polymer having a cyano group preferably has a weight average molecular weight of 10,000 or more.
  • a polymerization degree of the polymer which has a cyano group it is preferable to use a 10-mer or more thing, More preferably, it is a 20-mer or more thing. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
  • the polymer having a cyano group described above is preferably used in the polymer layer obtained in the present invention.
  • the polymer having a cyano group described above further has a structure having a polymerizable group (a structure including a unit having a polymerizable group)
  • the polymer newly formed on the polymer layer obtained in the present invention It becomes a polymer suitable for the layer (upper layer).
  • the polymer layer obtained by the method for forming a polymer layer of the present invention can be applied to, for example, personal computer parts, automobile parts, home appliance parts, decorative parts, and the like.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • polycarbonate acrylonitrile-butadiene-styrene copolymer
  • liquid crystal polymer polyimide
  • epoxy acrylic, TAC, nitrile butadiene rubber, etc.
  • a polymer layer (lower layer) is formed using a polymer having an interactive group as a specific polymer, or a polymer having an interactive group is used on the polymer layer obtained in the present invention.
  • the polymer layer (upper layer) is formed, the formed lower layer and upper layer can be plated layers.
  • a plating film can be formed on this to-be-plated layer by using for the following processes.
  • a plating catalyst or a precursor thereof is applied to the layer to be plated.
  • the interactive group possessed by the polymer constituting the layer to be plated adheres (adsorbs) the applied plating catalyst or its precursor depending on its function.
  • the plating catalyst or its precursor include those that function as a plating catalyst or an electrode in a plating step described later. Therefore, a plating catalyst or its precursor is determined by the kind of plating in a plating process.
  • the plating catalyst or its precursor used in this step is preferably an electroless plating catalyst or its precursor.
  • Electroless plating catalyst As the electroless plating catalyst used in the present invention, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Specifically, a metal (Ni And the like, which are known as metals capable of electroless plating with a lower ionization tendency), and specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, and the like. Among them, those capable of multidentate coordination are preferable, and Ag and Pd are particularly preferable in view of the number of types of functional groups capable of coordination and high catalytic ability.
  • This electroless plating catalyst may be used as a metal colloid.
  • a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent. The charge of the metal colloid can be adjusted by the surfactant or protective agent used here.
  • the electroless plating catalyst precursor used in this step can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction.
  • the metal ions of the metals mentioned as the electroless plating catalyst are mainly used.
  • the metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction.
  • the metal ion, which is an electroless plating catalyst precursor may be used as an electroless plating catalyst after being applied to the layer to be plated and before being immersed in the electroless plating bath, by separately changing to a zero-valent metal by a reduction reaction.
  • the electroless plating catalyst precursor may be immersed in an electroless plating bath and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating bath.
  • the metal ion which is the electroless plating precursor is applied onto the layer to be plated using a metal salt.
  • the metal salt used is not particularly limited as long as it is dissolved in an appropriate solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCn, M 2 / n (SO 4 ), M 3 / n (PO 4 ) (M represents an n-valent metal atom), and the like.
  • a metal ion the thing which said metal salt dissociated can be used suitably. Specific examples include, for example, Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferable, and in particular, functionalities capable of coordination. In view of the number of types of groups and catalytic ability, Ag ions and Pd ions are preferable.
  • a palladium compound may be mentioned.
  • This palladium compound acts as a plating catalyst (palladium) or a precursor thereof (palladium ions), which acts as an active nucleus during the plating treatment and plays a role of depositing metal.
  • the palladium compound is not particularly limited as long as it contains palladium and acts as a nucleus in the plating process, and examples thereof include a palladium (II) salt, a palladium (0) complex, and a palladium colloid.
  • the palladium salt examples include palladium acetate, palladium chloride, palladium nitrate, palladium bromide, palladium carbonate, palladium sulfate, bis (benzonitrile) dichloropalladium (II), bis (acetonitrile) dichloropalladium (II), and bis (ethylenediamine).
  • Palladium (II) chloride and the like are preferable in terms of ease of handling and solubility.
  • the palladium complex examples include tetrakistriphenylphosphine palladium complex and dipalladium trisbenzylideneacetone complex.
  • the palladium colloid is a particle composed of palladium (0), and its size is not particularly limited, but is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm, from the viewpoint of stability in the liquid.
  • the palladium colloid may contain other metals as necessary, and examples of the other metals include tin.
  • Examples of the palladium colloid include tin-palladium colloid.
  • a palladium colloid may be synthesize
  • a palladium colloid can be prepared by reducing palladium ions in a solution containing a charged surfactant or a charged protective agent.
  • silver and a silver ion are mentioned as another preferable example from a viewpoint that it can selectively adsorb
  • silver ions are used as the plating catalyst precursor, those obtained by dissociating silver compounds as shown below can be suitably used.
  • the silver compound examples include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate.
  • silver nitrate is preferable from the viewpoint of water solubility.
  • a method of applying a metal that is an electroless plating catalyst or a metal salt that is an electroless plating precursor to a layer to be plated a dispersion in which the metal is dispersed in an appropriate dispersion medium, or a metal salt that is an appropriate solvent.
  • a solution containing dissolved and dissociated metal ions prepare a solution containing dissolved and dissociated metal ions and apply the dispersion or solution on the layer to be plated, or immerse the support on which the layer to be plated is formed in the dispersion or solution. do it.
  • a method of adding an electroless plating catalyst or a precursor thereof to a coating solution for forming a plated layer may be used. That is, a composition containing a polymer for forming a layer to be plated and an electroless plating catalyst or a precursor thereof is applied onto a support and dried, and then a coating containing a plating catalyst or a precursor thereof is coated. A plating layer may be formed. If this method is used, the process can be omitted.
  • the electroless plating catalyst or its precursor is simultaneously contacted with the plated layers on both sides. Therefore, it is preferable to use the above immersion method.
  • the interaction group in the layer to be plated can interact with an intermolecular force such as van der Waals force, or be distributed by a lone electron pair.
  • An electroless plating catalyst or a precursor thereof can be adsorbed by utilizing the interaction due to the coordinate bond.
  • the metal concentration in the dispersion, solution, or composition, or the metal ion concentration in the solution may be in the range of 0.001% by mass to 50% by mass. The range of 0.005% by mass to 30% by mass is more preferable.
  • the contact time is preferably about 30 seconds to 24 hours, more preferably about 1 minute to 1 hour.
  • the palladium compound When a palladium compound is used in the solution, dispersion, or composition containing the electroless plating catalyst or its precursor, the palladium compound is 0.001 mass relative to the total amount of the solution, dispersion, or composition. % To 10% by mass, more preferably 0.05% to 5% by mass, and further preferably 0.10% to 1% by mass.
  • the silver compound When a silver compound is used in the solution containing the electroless plating catalyst precursor, the silver compound is preferably used in a range of 0.1% by mass to 20% by mass with respect to the total amount of the solution. More preferably, it is used in the range of 20% by mass to 20% by mass, and more preferably in the range of 0.5% by mass to 10% by mass.
  • the content is too small, it will be difficult to deposit the plating described later. If the content is too large, the plating may be deposited to an undesired region, or the etching residue removal property will be reduced. It may be damaged.
  • the adsorption amount of the plating catalyst of the layer to be plated or its precursor depending on the type of electroless plating catalyst or its precursor to be used, for example, in the case of silver ions, from the viewpoint of the depositability of electroless plating 300 mg / m 2 or more is preferable, 500 mg / m 2 or more is more preferable, and 600 mg / m 2 or more is more preferable. Further, from the viewpoint of producing a plating film having high adhesion to the support, the adsorption amount of silver ions of the layer to be plated is preferably 1000 mg / m 2 or less.
  • the adsorption amount of the layer to be plated is preferably 5 mg / m 2 or more, more preferably 10 mg / m 2 or more, from the viewpoint of the depositability of electroless plating. Further, from the viewpoint of producing a plating film having high adhesion to the support, the amount of palladium ion adsorbed on the layer to be plated is preferably 1000 mg / m 2 or less.
  • a zero-valent metal can be used as a catalyst used for direct electroplating on the layer to be plated without performing electroless plating in the plating step described later.
  • the zero-valent metal include Pd, Ag, Cu, Ni, Al, Fe, and Co.
  • those capable of multidentate coordination are preferable, and in particular, adsorption to an interactive group (cyano group) ( Pd, Ag, and Cu are preferable from the viewpoint of adhesion and high catalytic ability.
  • the plating catalyst or precursor as described above is applied to the layer to be plated as a dispersion or solution (catalyst solution).
  • An organic solvent or water is used for the catalyst solution in the present invention.
  • Water may be used for the catalyst solution in the present invention, and it is preferable that this water does not contain impurities. From such a viewpoint, RO water (reverse osmosis membrane filtered water), deionized water, distillation Water, purified water or the like is preferably used, and deionized water or distilled water is particularly preferably used.
  • RO water reverse osmosis membrane filtered water
  • deionized water distillation Water, purified water or the like
  • deionized water or distilled water is particularly preferably used.
  • the organic solvent used for the preparation of the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the layer to be plated.
  • acetone, methyl acetoacetate, ethyl acetoacetate, ethylene glycol diacetate, Cyclohexanone, acetylacetone, acetophenone, 2- (1-cyclohexenyl), propylene glycol diacetate, triacetin, diethylene glycol diacetate, dioxane, N-methylpyrrolidone, dimethyl carbonate, dimethyl cellosolve, and the like can be used.
  • organic solvents include diacetone alcohol, ⁇ -butyrolactone, methanol, ethanol, isopropyl alcohol, normal propyl alcohol, propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, ethylene glycol tertiary butyl ether, tetrahydrofuran, 1,4 dioxane. N-methyl-2-pyrrolidone and the like.
  • a water-soluble organic solvent is preferable from the viewpoint of compatibility with a plating catalyst or a precursor thereof and permeability to a layer to be plated.
  • Acetone, dimethyl carbonate, dimethyl cellosolve, triethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether is preferred.
  • the catalyst solution in the present invention may contain other additives depending on the purpose.
  • Other additives include, for example, swelling agents (organic compounds such as ketones, aldehydes, ethers, esters, etc.) and surfactants (anionic, cationic, zwitterionic, nonionic and low molecular or high molecular weight). Etc.).
  • interaction can be formed between the interactive group in a to-be-plated layer, and a plating catalyst or its precursor.
  • a plating film is formed by performing plating on the layer to be plated to which the plating catalyst or its precursor has been applied.
  • the formed plating film has excellent conductivity and adhesion.
  • the type of plating performed in this step includes electroless plating, electroplating, etc., and in the plating catalyst application step, depending on the function of the plating catalyst or its precursor that forms an interaction with the layer to be plated, You can choose. That is, in this step, electroplating may be performed on the layer to be plated to which the plating catalyst or its precursor has been applied, or electroless plating may be performed.
  • the present invention it is preferable to perform electroless plating from the viewpoint of improving the formability and adhesion of the hybrid structure that appears in the layer to be plated. Further, in order to obtain a plating film having a desired film thickness, it is a more preferable aspect that electroplating is further performed after electroless plating. Hereinafter, the plating suitably performed in this step will be described.
  • Electroless plating refers to an operation of depositing a metal by a chemical reaction using a solution in which metal ions to be deposited as a plating are dissolved.
  • a support having a layer to be plated to which an electroless plating catalyst is applied is washed with water to remove excess electroless plating catalyst (metal), and then immersed in an electroless plating bath. And do it.
  • the electroless plating bath to be used a generally known electroless plating bath can be used.
  • a substrate is used. Is washed with water to remove excess precursor (metal salt, etc.) and then immersed in an electroless plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless plating are performed in the electroless plating bath.
  • the electroless plating bath used here a generally known electroless plating bath can be used as described above.
  • the reduction of the electroless plating catalyst precursor may be performed as a separate step before electroless plating by preparing a catalyst activation liquid (reducing liquid) separately from the embodiment using the electroless plating liquid as described above.
  • the catalyst activation liquid is a liquid in which a reducing agent capable of reducing electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 mass% to 50 mass. %, Preferably 1% by mass to 30% by mass.
  • the reducing agent it is possible to use a boron-based reducing agent such as sodium borohydride or dimethylamine borane, or a reducing agent such as formaldehyde or hypophosphorous acid. When dipping, maintain the concentration of the electroless plating catalyst or its precursor in the vicinity of the surface of the layer to be plated with which the electroless plating catalyst or its precursor comes into contact, and soak with stirring or shaking. Is preferred.
  • composition of electroless plating bath is as follows: 1. metal ions for plating; 2. reducing agent; Additives (stabilizers) that improve the stability of metal ions are mainly included.
  • the plating bath may contain known additives such as a plating bath stabilizer.
  • the organic solvent used in the plating bath needs to be a water-soluble solvent, and from this point, ketones such as acetone and alcohols such as methanol, ethanol, and isopropanol are preferably used.
  • copper, tin, lead, nickel, gold, palladium, and rhodium are known, and copper and gold are particularly preferable from the viewpoint of conductivity.
  • a copper electroless plating bath contains CuSO 4 as a copper salt, HCOH as a reducing agent, a chelating agent such as EDTA or Rochelle salt, which is a stabilizer of copper ions, and a trialkanolamine.
  • the plating bath used for electroless plating of CoNiP includes cobalt sulfate and nickel sulfate as metal salts, sodium hypophosphite as a reducing agent, sodium malonate, sodium malate, and sodium succinate as complexing agents. It is included.
  • the electroless plating bath of palladium contains (Pd (NH 3 ) 4 ) Cl 2 as metal ions, NH 3 and H 2 NNH 2 as reducing agents, and EDTA as a stabilizer.
  • These plating baths may contain components other than the above components.
  • the thickness of the plating film formed by electroless plating can be controlled by the metal ion concentration of the plating bath, the immersion time in the plating bath, or the temperature of the plating bath. From the viewpoint, it is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m to 2 ⁇ m. However, when electroplating described later is performed using a plating film formed by electroless plating as a conductive layer, it is sufficient that a film of at least 0.1 ⁇ m or more is provided uniformly.
  • the immersion time in the plating bath is preferably about 1 minute to 6 hours, and more preferably about 1 minute to 3 hours.
  • the plating film obtained by electroless plating obtained as described above has fine particles of a plating catalyst and a plating metal dispersed at a high density in the layer to be plated by cross-sectional observation with a scanning electron microscope (SEM). Further, it is confirmed that the plating metal is deposited on the layer to be plated. Since the interface between the layer to be plated and the plating film is a hybrid state of the resin composite and fine particles, the interface between the layer to be plated (organic component) and the inorganic substance (plating catalyst metal or plating metal) is smooth (for example, 1 mm Adhesiveness is good even if Ra is 1.5 ⁇ m or less in the region 2 .
  • electroplating is performed on the layer to be plated to which the catalyst or its precursor is applied. be able to.
  • the formed plating film may be used as an electrode, and electroplating may be further performed.
  • electroplating is performed after electroless plating, the plating film can be formed to a thickness according to the purpose, and thus the obtained plating film is suitable for application to various applications.
  • a conventionally known method can be used as the electroplating method in the present invention.
  • a metal used for the electroplating of this process copper, chromium, lead, nickel, gold, silver, tin, zinc, etc. are mentioned. From the viewpoint of conductivity, copper, gold, and silver are preferable, and copper is preferable. More preferred.
  • the film thickness of the plating film obtained by electroplating can be controlled by adjusting the metal concentration contained in the plating bath, the current density, or the like.
  • the thickness of the metal film when the obtained plated film is applied to general electric wirings is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m to 30 ⁇ m from the viewpoint of conductivity.
  • the thickness of the electrical wiring is reduced in order to maintain the aspect ratio as the line width of the electrical wiring is reduced, that is, as the size is reduced. Therefore, the thickness of the plating film formed by electroplating is not limited to the above, and can be set arbitrarily.
  • Japanese Patent Application No. 2009-217794 filed on Sep. 18, 2009, the entire disclosure of which is incorporated herein by reference.
  • Examples 1 to 3 A solution (9% by mass solution) of acrylonitrile-styrene copolymer (AS) resin (Aldrich Co., Ltd., glass transition temperature: 100 ° C.) dissolved in cyclohexanone (boiling point: 156 ° C.) was prepared. It applied to the glass epoxy resin board
  • AS acrylonitrile-styrene copolymer
  • the boiling point of the mixture measured by heating the water / methanol (1/1) mixture as described above was 71 ° C.
  • the residual amount of cyclohexanone in the coating film after immersion was measured, it was 7.5% by mass (Example 1), 6.0% by mass (Example 2), and 8.8% by mass (Example 3). It was.
  • FIG. 1 shows the residual amount of cyclohexanone in the polymer layer obtained after drying. Further, the obtained polymer layer was subjected to cross section processing by FIB using a FEI Nova-200 type FIB-SEM, and then a cross section SEM observation showed no voids.
  • the residual amount of cyclohexanone in the polymer layer obtained after drying is shown in FIG.
  • the residual amount of cyclohexanone in the polymer layer obtained after drying of Example 2 is shown in FIG.
  • FIG. 2 by contacting the coating film with methanol as in Example 2, the remaining amount of cyclohexanone in the coating film is greatly reduced as compared with the case of vacuum drying for a long period of time as in the comparative example.
  • FIG. 2 by contacting the coating film with methanol as in Example 2, the remaining amount of cyclohexanone in the coating film is greatly reduced as compared with the case of vacuum drying for a long period of time as in the comparative example.
  • Example 4 A liquid (3% by mass solution) obtained by dissolving the AS resin used in Example 1 in N-ethylmorpholine (boiling point: 138 ° C.) was prepared, and this was applied to a glass epoxy resin substrate using a spin coater ( (Apply so that the film thickness is 1 ⁇ m after drying). Thereafter, the substrate having the obtained coating film was subjected to water (boiling point: 100 ° C., Example 4), ethanol (boiling point: 78.4 ° C., Example 5), isopropanol (boiling point: 82.4 ° C., Example 6). ) For 10 seconds. When the residual amount of N-ethylmorpholine in the coating film after immersion was measured, it was 0.95% by mass (Example 4), 0.56% by mass (Example 5), 0.93% by mass (Example 6). )Met.
  • FIG. 3 shows the residual amount of N-ethylmorpholine in the polymer layer obtained after drying. Further, after drying, the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
  • Example 7 instead of the AS resin used in Example 1, a liquid (3 mass% solution) prepared by dissolving polymethyl methacrylate resin (Aldrich Co., Ltd., glass transition temperature: 99 ° C.) (PMMA resin) in cyclohexanone was prepared. This was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 3 ⁇ m). Thereafter, the substrate having the obtained coating film was subjected to water (boiling point: 100 ° C., Example 7), ethanol (boiling point: 78.4 ° C., Example 8), isopropanol (boiling point: 82.4 ° C., Example 9). ) For 10 seconds. When the residual amount of cyclohexanone in the coating film after immersion was measured, it was 3.83% by mass (Example 7), 3.32% by mass (Example 8), and 2.04% by mass (Example 9). It was.
  • PMMA resin polymethyl methacrylate resin
  • FIG. 4 shows the residual amount of cyclohexanone in the polymer layer obtained after drying. Further, after drying, the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
  • Example 10 A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 ⁇ m). Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 4 hours (Reference Example 1). After the drying, water (boiling point: 100 ° C., Example 10) or methanol (boiling point: 64.7). C. for 10 seconds in Example 11).
  • the residual amount of cyclohexanone in the coating film after drying at 60 ° C. for 4 hours was measured, it was 13.2% by mass (Reference Example 1).
  • FIG. FIG. 5 shows the remaining amount of cyclohexanone in the polymer layer obtained after drying.
  • the residual amount of cyclohexanone in the coating film after heating and drying at 60 ° C. for 4 hours (Reference Example 1)
  • the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
  • Examples 12 and 13, Comparative Example 7 A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 ⁇ m). Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 1 h (Comparative Example 7) to form a polymer layer. In addition, the substrate having the obtained coating film was immersed in water (boiling point: 100 ° C., Example 12) for 5 minutes, or immersed in methanol (boiling point: 64.7 ° C., Example 13) for 3 minutes. The polymer layer was formed by drying at 60 ° C. for 5 minutes.
  • the obtained polymer layer was held at 60 ° C. and 95% for 100 hours, and then fixed to a jig using an adhesive, and a tensile strength tester (manufactured by Shimadzu Corporation, Autograph) was used to obtain a tensile strength of 10 mm / min.
  • the 90 ° peel strength was measured at 0.24 kN / m (Comparative Example 7), 0.52 kN / m (Example 12), and 0.45 kN / m (Example 13), respectively. It was.
  • the peeling part was observed, it was all internal destruction of AS resin.
  • the results are shown in FIG. From this result, it can be seen that a void-free polymer layer can be formed by the method for forming a polymer layer of the present invention, and as a result, the film strength of the polymer layer is increased.
  • Examples 14 and 15, Comparative Example 8 A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 ⁇ m). Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 1 h (Comparative Example 8) to form a polymer layer. In addition, the substrate having the obtained coating film was immersed in water (boiling point: 100 ° C., Example 14) for 5 minutes, or immersed in methanol (boiling point: 64.7 ° C., Example 15) for 3 minutes. The polymer layer was formed by drying at 60 ° C. for 5 minutes.
  • the porosity of the obtained polymer layer was measured by the following method and found to be 58% (Comparative Example 8), 0% (Example 14), and 0% (Example 15), respectively.
  • the obtained polymer layers of Examples 14 and 15 and Comparative Example 8 were subjected to FIB Nova-200 type FIB-SEM and subjected to FIB cross section processing at one random location (acceleration voltage 30 kV). ), Cross-sectional SEM observation was performed (acceleration voltage 2 kV).
  • the porosity is calculated by calculating the area of voids (voids) in the cross-sectional SEM photograph and the total area of the polymer layer containing the voids using a cross-sectional SEM photograph having a size of about 10 ⁇ m ⁇ 10 ⁇ m.
  • the void area was divided by the total area of the polymer layer and multiplied by 100. Since the cross section of each void is very close to a circle, treat it as a circle or an ellipse, find the area from its diameter (longer and shorter diameter in the case of an ellipse), and add them together.
  • the area of voids in the cross-sectional SEM photograph was determined.
  • Formula (1) Porosity (%) void area / total area of polymer layer ⁇ 100 From this result, it can be seen that the polymer layer forming method of the present invention can form a polymer layer having no voids and a low porosity.
  • the solvent in the polymer layer can be removed in a shorter time by selecting the polymer coating solvent and the liquid in which the polymer is immersed, and the polymer without voids. It can be seen that the layer can be formed in a short drying time. And it turned out that film
  • the formation method of a polymer layer which can form a polymer layer without a void in short drying time irrespective of the boiling point of the solvent used for a coating liquid can be provided.
  • a polymer layer having excellent in-plane uniformity of film strength can be obtained.
  • the present invention can recover the solvent A corresponding to this solvent in the liquid B, thereby reducing the environmental burden. it can.

Abstract

Disclosed is a method for forming a polymer layer, which comprises, sequentially in the following order, (a) a step wherein a coating liquid containing a polymer (P) that has a glass transition temperature of not more than 180˚C and a solvent (A) that dissolves the polymer (P) is applied over a supporting body, thereby forming a coating film thereon, (b) a step wherein the solvent (A) is removed from the coating film by bringing a liquid (B), which contains either water and/or an alcohol and does not dissolve the polymer (P), into contact with the coating film, and (c) a step wherein the coating film is dried. In this connection, the solvent (A) and the liquid (B) satisfy the following relation: [boiling point of solvent (A)] > [boiling point of liquid (B)]. The method for forming a polymer layer is capable of forming a polymer layer, which is free from voids, with a short drying time regardless of the boiling point of a solvent that is used for the coating liquid.

Description

ポリマー層の形成方法Method for forming polymer layer
 本発明は、ポリマー層の形成方法に関し、特に、めっきが施される被めっき層、又はその下層として好適なポリマー層の形成方法に関する。 The present invention relates to a method for forming a polymer layer, and more particularly to a method for forming a layer to be plated or a polymer layer suitable as a lower layer thereof.
 ポリマー層を形成する方法として、例えば、支持体上にポリマー溶液を塗布し、得られた塗膜を、輻射ヒータや伝熱ヒータを用いて加熱乾燥させる方法が知られている(例えば、特開2004-243172号公報参照。)。
 ポリマー層を形成する際に用いられるポリマー溶液には、低沸点溶剤よりも取り扱いが容易である点や、低沸点溶剤を用いた場合よりも設備コストが低減するといった観点から、高沸点溶剤を用いることがあるが、このように高沸点溶剤を用いると、塗膜の乾燥温度を高温にすることや、長時間の乾燥が必要となる。
As a method for forming a polymer layer, for example, a method is known in which a polymer solution is applied on a support and the obtained coating film is heated and dried using a radiation heater or a heat transfer heater (for example, JP (See 2004-243172).
The polymer solution used when forming the polymer layer uses a high-boiling solvent from the viewpoint that it is easier to handle than a low-boiling solvent and that equipment costs are lower than when a low-boiling solvent is used. However, when such a high-boiling solvent is used, it is necessary to increase the drying temperature of the coating film or to dry it for a long time.
 また、塗膜の乾燥速度を高める技術の1つに、下記のような技術がある。
 例えば、ポリイミド前駆体を非プロトン系極性溶剤に溶解した溶液を塗布して得られた塗膜に、ポリイミド前駆体に不溶で非プロトン系極性溶剤に混和する溶剤を接触させて、この溶剤と非プロトン系極性溶剤とを置換した後、乾燥する方法が知られている(例えば、特開2001-212833号公報参照。)。
Moreover, there exists the following techniques as one of the techniques which raise the drying speed of a coating film.
For example, a coating film obtained by applying a solution in which a polyimide precursor is dissolved in an aprotic polar solvent is contacted with a solvent that is insoluble in the polyimide precursor and miscible with the aprotic polar solvent. A method of drying after replacing the protonic polar solvent is known (see, for example, JP-A-2001-212833).
 ところで、塗膜の乾燥温度を高めた場合、ポリマー自体の耐熱性が低いと、この乾燥温度によりポリマーが変形してしまうことがある。従って、乾燥温度を低くする必要が生じるが、塗布溶剤の除去(乾燥)に時間をかけると、塗膜の表面付近が先に乾燥した後に、内部の溶剤が除去(乾燥)されることになり、ポリマー層中にボイドが形成され、その結果、ポリマー層の面内において局所的な強度低下を招くことがある。 By the way, when the drying temperature of the coating film is increased, if the heat resistance of the polymer itself is low, the polymer may be deformed by this drying temperature. Therefore, it is necessary to lower the drying temperature. However, if it takes a long time to remove the coating solvent (drying), the inner solvent is removed (dried) after the vicinity of the surface of the coating has been dried first. Voids are formed in the polymer layer, and as a result, local strength reduction may occur in the plane of the polymer layer.
 そこで、本発明は、上記従来の技術の欠点を考慮してなされたものであり、以下の目的を達成することを課題とする。
 即ち、本発明の目的は、ボイドのないポリマー層を、塗布液に用いる溶媒の沸点に関わらず、短い乾燥時間で形成することが可能な、ポリマー層の形成方法を提供することにある。
Therefore, the present invention has been made in consideration of the drawbacks of the above-described conventional techniques, and an object thereof is to achieve the following object.
That is, an object of the present invention is to provide a method for forming a polymer layer, which can form a polymer layer without voids in a short drying time regardless of the boiling point of the solvent used in the coating solution.
 本発明者は、上記課題に鑑みて鋭意検討した結果、以下に示す手段により上記目的を達成しうることを見出した。
 即ち、本発明のポリマー層の形成方法は、(a)ガラス転移温度が180℃以下のポリマーP、及び、該ポリマーPを溶解する溶媒Aを含む塗布液を、支持体上に塗布して塗膜を形成する工程と、(b)該塗膜に、前記ポリマーPを溶解しない、水及びアルコールの少なくとも一方を含む液体Bを接触させて、当該塗膜から溶媒Aを取り除く工程と、(c)該塗膜を乾燥する工程と、をこの順に含み、前記溶媒Aと前記液体Bとが以下の関係を満たすことを特徴とする。
 溶媒Aの沸点 > 液体Bの沸点
As a result of intensive studies in view of the above problems, the present inventor has found that the above object can be achieved by the following means.
That is, in the method for forming a polymer layer of the present invention, (a) a coating solution containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A that dissolves the polymer P is applied on a support. A step of forming a film, (b) a step of bringing the coating film into contact with a liquid B containing at least one of water and alcohol that does not dissolve the polymer P, and removing the solvent A from the coating layer; ) Drying the coating film in this order, wherein the solvent A and the liquid B satisfy the following relationship.
Boiling point of solvent A> Boiling point of liquid B
 本発明のポリマー層の形成方法で得られたポリマー層中の空隙率は、50%以下であることが好ましい。
 また、本発明において、前記溶媒Aの沸点と前記ポリマーPのガラス転移温度とが以下の関係を満たすことが好ましい。
 溶媒Aの沸点 > ポリマーPのガラス転移温度-50℃
The porosity in the polymer layer obtained by the method for forming a polymer layer of the present invention is preferably 50% or less.
In the present invention, it is preferable that the boiling point of the solvent A and the glass transition temperature of the polymer P satisfy the following relationship.
Boiling point of solvent A> Glass transition temperature of polymer P-50 ° C
 更に、液体Bとして用いられるアルコールが炭素数4以下のアルコールであることがより好ましい。
 加えて、溶媒Aが水溶性であることも好ましい態様の1つである。
Furthermore, the alcohol used as the liquid B is more preferably an alcohol having 4 or less carbon atoms.
In addition, it is also a preferred embodiment that the solvent A is water-soluble.
 更に加えて、ポリマーPがシアノ基を含むポリマーであることも好ましい態様の1つである。
 更に加えて、前記シアノ基を含むポリマーが側鎖にシアノアルキル基を含むポリマーであることも好ましい態様の1つである。
In addition, it is also a preferred embodiment that the polymer P is a polymer containing a cyano group.
In addition, it is one of preferred embodiments that the polymer containing a cyano group is a polymer containing a cyanoalkyl group in the side chain.
実施例1~3で得られたポリマー層中のシクロヘキサノンの残存量を示したグラフである。4 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 1 to 3. 実施例2及び比較例1~4で得られたポリマー層中のシクロヘキサノンの残存量を示したグラフである。6 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Example 2 and Comparative Examples 1 to 4. 実施例4~6及び比較例5で得られたポリマー層中のN-エチルモルホリンの残存量を示したグラフである。6 is a graph showing the residual amount of N-ethylmorpholine in the polymer layers obtained in Examples 4 to 6 and Comparative Example 5. 実施例7~9及び比較例6で得られたポリマー層中のシクロヘキサノンの残存量を示したグラフである。6 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 7 to 9 and Comparative Example 6. 実施例10、11、1、及び2で得られたポリマー層中のシクロヘキサノンの残存量を示したグラフである。3 is a graph showing the residual amount of cyclohexanone in the polymer layers obtained in Examples 10, 11, 1, and 2. FIG. 実施例12、13及び比較例7で得られたポリマー層の膜強度を示したグラフである。7 is a graph showing the film strength of the polymer layers obtained in Examples 12 and 13 and Comparative Example 7.
 以下、本発明を詳細に説明する。
 本発明のポリマー層の形成方法は、(a)ガラス転移温度が180℃以下のポリマーP、及び、該ポリマーPを溶解する溶媒Aを含む塗布液を、支持体上に塗布して塗膜を形成する工程(以下、(a)工程と称する。)と、(b)該塗膜に、前記ポリマーPを溶解しない、水及びアルコールの少なくとも一方を含む液体Bを接触させて、当該塗膜から溶媒Aを取り除く工程(以下、(b)工程と称する)と、(c)該塗膜を乾燥する工程(以下、(c)工程と称する。)と、をこの順に含み、前記溶媒Aと前記液体Bとが以下の関係を満たすことを特徴とする。
 溶媒Aの沸点 > 液体Bの沸点
 以下、(a)工程~(c)工程について順に説明する。
Hereinafter, the present invention will be described in detail.
The method for forming a polymer layer according to the present invention comprises: (a) applying a coating solution containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A that dissolves the polymer P on a support; A step of forming (hereinafter referred to as (a) step), and (b) contacting the coating film with a liquid B containing at least one of water and alcohol that does not dissolve the polymer P. A step of removing the solvent A (hereinafter referred to as (b) step), and (c) a step of drying the coating film (hereinafter referred to as (c) step) in this order. The liquid B satisfies the following relationship.
Boiling point of solvent A> Boiling point of liquid B Hereinafter, steps (a) to (c) will be described in order.
〔(a)工程〕
 本発明における(a)工程では、(a)ガラス転移温度が180℃以下のポリマーP、及び、該ポリマーPを溶解する溶媒Aを含む塗布液を、支持体上に塗布して塗膜を形成する。
[(A) Process]
In the step (a) in the present invention, (a) a coating solution is formed by applying a coating liquid containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A for dissolving the polymer P on a support. To do.
[ガラス転移温度が180℃以下のポリマーP(特定ポリマーP)]
 まず、本工程で用いるガラス転移温度が180℃以下のポリマーP(以下、適宜、特定ポリマーPと称する。)について説明する。
 ここで、ガラス転移温度とは、以下の方法で測定して得られた値を意味する。
 即ち、示差走査熱量(DSC)測定により、試料の温度を-180℃から250℃までゆっくりと上昇させながら(1℃/min)、吸熱量を測定し、ガラス転移温度を決定する。
 本工程に用いられる特定ポリマーPとしては、上述したようなガラス転移温度(以下、適宜、「Tg」と称する。)を有していれば、如何なるものであってもよく、ポリマー層の用途に応じて、適宜、選択されればよい。また、特定ポリマーPのTgは、耐熱性、せん断応力、引張応力、粘度などの物性から、-160℃~180℃の範囲であることが好ましく、-30℃~150℃がより好ましい。このTg付近やそれ以上の温度域では、特定ポリマーPは短時間であっても変形しやすくなる。このため、用いる溶剤の沸点によってはボイドを生じたりして、膜の均一性が損なわれ易くなるところ、本発明によれば、溶剤の種類に係わらずボイドの発生を効果的に抑制しうる。
 なお、180℃よりも高いTgを持つポリマーでは、このポリマーを含む塗布液を、前記ポリマーPのTgよりも低い温度域であれば、180℃付近或いはそれ以上の高温にて乾燥させることが可能であり、通常の乾燥工程を適用することのよる対応も可能であるため、本発明の効果1つでもある特定ポリマーPに変形などを生じさせることなく低い温度域で乾燥させ得るという観点からは、Tgが-160℃~180℃の範囲のポリマーに適用した際に、その効果が著しいといえる。
[Polymer P (specific polymer P) having a glass transition temperature of 180 ° C. or lower]
First, a polymer P having a glass transition temperature of 180 ° C. or lower used in this step (hereinafter referred to as a specific polymer P as appropriate) will be described.
Here, the glass transition temperature means a value obtained by measurement by the following method.
That is, by differential scanning calorimetry (DSC) measurement, the sample endotherm is measured while slowly increasing the sample temperature from −180 ° C. to 250 ° C. (1 ° C./min) to determine the glass transition temperature.
The specific polymer P used in this step may be any polymer as long as it has a glass transition temperature as described above (hereinafter, referred to as “Tg” as appropriate). Accordingly, it may be appropriately selected. The Tg of the specific polymer P is preferably in the range of −160 ° C. to 180 ° C., more preferably −30 ° C. to 150 ° C., from the viewpoint of physical properties such as heat resistance, shear stress, tensile stress, and viscosity. In the vicinity of this Tg or higher temperature range, the specific polymer P is easily deformed even in a short time. For this reason, depending on the boiling point of the solvent to be used, a void is generated, and the uniformity of the film is easily impaired. However, according to the present invention, the generation of a void can be effectively suppressed regardless of the type of the solvent.
In the case of a polymer having a Tg higher than 180 ° C., the coating solution containing this polymer can be dried at a high temperature around 180 ° C. or higher if the temperature is lower than the Tg of the polymer P. From the viewpoint of being able to be dried in a low temperature range without causing deformation of the specific polymer P, which is one of the effects of the present invention, since it is possible to cope with the application of a normal drying process. When applied to a polymer having a Tg in the range of −160 ° C. to 180 ° C., the effect is remarkable.
 ここで、本工程で用いる塗布液中のガラス転移温度が180℃以上のポリマーPの含有量は、塗布方法と塗布後の必要膜厚により決定されればよく、具体的には、塗布液に対して、1質量%~40質量%が好ましく、2質量%~20質量%がより好ましく、3質量%~10質量%が更に好ましい。 Here, the content of the polymer P having a glass transition temperature of 180 ° C. or higher in the coating solution used in this step may be determined by the coating method and the required film thickness after coating. On the other hand, it is preferably 1% by mass to 40% by mass, more preferably 2% by mass to 20% by mass, and further preferably 3% by mass to 10% by mass.
[溶媒A]
 次に、本工程で用いられる溶媒Aについて説明する。
 溶媒Aは、前述した特定ポリマーPを溶解することができる溶媒であり、後述する液体Bよりも高い沸点を有する。
 ここで、特定ポリマーを溶解するとは、1%溶液を調液後、常温(本明細書においては25℃とする)で10分間静置後に目視で沈殿物を生じていないことが確認できることを意味する。
[Solvent A]
Next, the solvent A used in this step will be described.
The solvent A is a solvent that can dissolve the specific polymer P described above, and has a higher boiling point than the liquid B described later.
Here, dissolving the specific polymer means that after preparing a 1% solution, it can be visually confirmed that no precipitate is formed after standing at room temperature (25 ° C. in this specification) for 10 minutes. To do.
 また、溶媒Aは、溶媒Bよりも高い沸点を有するものであれば、特に制限されないが、100℃以上の沸点を有するものが好ましく、120℃以上の沸点を有するものがより好ましい。また、汎用的な溶剤の使いやすさの点から、溶媒Aの沸点の上限値としては、350℃であることが好ましい。
 また、溶媒Aの沸点は、溶媒の扱いやすさや安全性の点から、特定ポリマーPのガラス転移温度(Tg)に対して〔Tg-50〕℃より高いことが好ましく、特定ポリマーPのガラス転移温度に対して-50℃~+350℃の範囲にあることがより好ましい。
The solvent A is not particularly limited as long as it has a higher boiling point than that of the solvent B, but preferably has a boiling point of 100 ° C. or higher, more preferably 120 ° C. or higher. From the viewpoint of ease of use of a general-purpose solvent, the upper limit of the boiling point of the solvent A is preferably 350 ° C.
Further, the boiling point of the solvent A is preferably higher than [Tg-50] ° C. with respect to the glass transition temperature (Tg) of the specific polymer P from the viewpoint of easy handling and safety of the solvent. More preferably, it is in the range of −50 ° C. to + 350 ° C. with respect to the temperature.
 溶媒Aとして、具体的には、2-メチル-1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、エチレングリコール、グリセリン、イソペンチルアルコール、イソブチルアルコール、1-メトキシ-2-プロパノール、3-メチル-1-ブタノール、2-ブトキシエタノールの如きアルコール系溶剤;酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、酢酸2-メトキシ-メチルエチル、酢酸2-エトキシメチル、酢酸2-エトキシエチル、3-メトキシプロピオン酸メチル、炭酸ジエチル、イソ吉草酸メチル、乳酸メチル、乳酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテートの如きエステル系溶剤;2-メチル-4-ペンタノン、アセチルアセトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシン-4-メチル-2-ペンタノン、3,5,5-トリメチル-2-シクロヘキセン-1-オン、2,6-ジメチル-4-へプタノン、メチルブチルケトン、メチルイソブチルケトンの如きケトン系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、エチレングリコールモノエチルエーテル、エチレングリコールモノtert-ブチルエーテル、エチレングリコールモノブチルエーテル、3-メチル-3-メトキシブタノール、ジエチレングリコールモノブチルエーテルの如きエーテル系溶剤;ぎ酸、酢酸の如き有機酸系溶剤;ホルムアミド、N,N-ジメチルホルムアミド、ジメチルアセトアミドの如きアミド系溶剤;モルホリン、N-エチルモルホリンの如きアミン系溶剤;トルエン、キシレン、スチレン、ミネラルスピリット、テレビン油の如き芳香族炭化水素系溶剤;1,1,2,2-テトラクロルエチレン、1,2-ジクロルベンゼン、トリクロルエチレンの如き塩化炭化水素系溶剤が挙げられる。
 これらの中でも、扱いやすさの観点から、1-メトキシ-2-プロパノール、1-ブタノール、シクロヘキサノール、シクロヘキサノン、シクロペンタノン、モルホリン、N-エチルモルホリン、アニソール、酢酸イソブチルが好ましく挙げられる。
Specific examples of the solvent A include 2-methyl-1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, ethylene glycol, glycerin, isopentyl alcohol, isobutyl alcohol, 1-methoxy-2 Alcohol solvents such as -propanol, 3-methyl-1-butanol, 2-butoxyethanol; isobutyl acetate, butyl acetate, isopentyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropio , 2-methoxy-methylethyl acetate, 2-ethoxymethyl acetate, 2-ethoxyethyl acetate, methyl 3-methoxypropionate, diethyl carbonate, methyl isovalerate, methyl lactate, ethyl lactate, 3-methyl Ester solvents such as xylbutyl acetate and 3-methyl-3-methoxybutyl acetate; 2-methyl-4-pentanone, acetylacetone, cyclohexanone, cyclopentanone, 4-hydroxyn-4-methyl-2-pentanone, 3, Ketone solvents such as 5,5-trimethyl-2-cyclohexen-1-one, 2,6-dimethyl-4-heptanone, methyl butyl ketone, methyl isobutyl ketone; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, anisole, Ethers such as ethylene glycol monoethyl ether, ethylene glycol mono tert-butyl ether, ethylene glycol monobutyl ether, 3-methyl-3-methoxybutanol, diethylene glycol monobutyl ether Solvents; organic acid solvents such as formic acid and acetic acid; amide solvents such as formamide, N, N-dimethylformamide and dimethylacetamide; amine solvents such as morpholine and N-ethylmorpholine; toluene, xylene, styrene and mineral spirits And aromatic hydrocarbon solvents such as turpentine oil; and chlorinated hydrocarbon solvents such as 1,1,2,2-tetrachloroethylene, 1,2-dichlorobenzene and trichloroethylene.
Among these, 1-methoxy-2-propanol, 1-butanol, cyclohexanol, cyclohexanone, cyclopentanone, morpholine, N-ethylmorpholine, anisole, and isobutyl acetate are preferable from the viewpoint of ease of handling.
 これらの中でも、水を液体Bとして用いることにより、環境負荷を軽減できる点から、溶媒Aは水溶性を有することが好ましい。
 なお、ここで、溶媒Aの水溶性とは、水99gに対し1gの溶媒Aを添加し、常温で100分間攪拌した際に溶媒Aが水に溶解する、即ち、目視にて分離や分散による濁りのない均一な液相となる、ことを意味する。
Among these, it is preferable that the solvent A has water solubility from the viewpoint that the environmental load can be reduced by using water as the liquid B.
Here, the water solubility of the solvent A means that 1 g of the solvent A is added to 99 g of water, and the solvent A dissolves in water when stirred at room temperature for 100 minutes, that is, by visual separation or dispersion. It means a uniform liquid phase without turbidity.
 ここで、溶媒Aは、上述したような溶媒の1種で構成されていてもよいし、これらの溶媒から選択される2種を併用したものであってもよい。
 ここで、本工程で用いる塗布液中の溶媒Aの含有量は、塗布後に必要膜厚が確保されれば、含有量に制限はなく、塗布方法に応じた塗布しやすい粘度や該溶媒の溶解性などにより決定されればよい。具体的には、溶媒Aの含有量は、塗布液に対して、60質量%~97質量%が好ましく、80質量%~97質量%がより好ましく、90質量%~95質量%が更に好ましい。
Here, the solvent A may be composed of one of the above-mentioned solvents, or may be a combination of two selected from these solvents.
Here, the content of the solvent A in the coating solution used in this step is not limited as long as the necessary film thickness is secured after coating, and the viscosity that is easy to apply according to the coating method and the dissolution of the solvent It may be determined by sex or the like. Specifically, the content of the solvent A is preferably 60% by mass to 97% by mass, more preferably 80% by mass to 97% by mass, and still more preferably 90% by mass to 95% by mass with respect to the coating solution.
 また、本工程で用いられる塗布液は、必要に応じて、種々の添加物を含んでいてもよい。具体的には、得られたポリマー層の応力を緩和させることができる、ゴム、SBRラテックスのような物質、膜性改良のためのバインダー、可塑剤、界面活性剤、粘度調整剤などが挙げられる。
 即ち、界面活性剤としては、n-ドデシルベンゼンスルホン酸ナトリウムの如きアニオン性界面活性剤、n-ドデシルトリメチルアンモニウムクロライドの如きカチオン性界面活性剤、ポリオキシエチレンノニルフェノールエーテル、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンラウリルエーテルの如き非イオン性界面活性剤等が用いられる。
 可塑剤としては、フタル酸エステル類(ジメチルエステル、ジエチルエステル、ジブチルエステル、ジ-2-エチルヘキシルエステル、ジノルマルオクチルエステル、ジイソノニルエステル、ジノニルエステル、ジイソデシルエステル、ジブチルベンジルエステル)、アジピン酸エステル類(ジオクチルエステル、ジイソノニルエステル)、アゼラインサンジオクチル、セバシンサンエステル類(ジブチルエステル、ジオクチルエステル)、リン酸トリクレシル、アセチルクエン酸トリブチル、エポキシ化大豆油、トリメリット酸トリオクチル、塩素化パラフィン、ジメチルアセトアミド、N-メチルピロリドンのような高沸点溶媒も使用することができる。
 更に必要に応じて、着色剤、難燃剤、接着性付与剤、シランカップリング剤、酸化防止剤、紫外線吸収剤などの添加剤を加えてもよい。
Moreover, the coating liquid used at this process may contain various additives as needed. Specifically, materials such as rubber and SBR latex, binders for improving film properties, plasticizers, surfactants, viscosity modifiers and the like that can relieve the stress of the obtained polymer layer can be mentioned. .
That is, as the surfactant, an anionic surfactant such as sodium n-dodecylbenzenesulfonate, a cationic surfactant such as n-dodecyltrimethylammonium chloride, polyoxyethylene nonylphenol ether, polyoxyethylene sorbitan monolaurate Nonionic surfactants such as polyoxyethylene lauryl ether are used.
Plasticizers include phthalates (dimethyl ester, diethyl ester, dibutyl ester, di-2-ethylhexyl ester, dinormal octyl ester, diisononyl ester, dinonyl ester, diisodecyl ester, dibutyl benzyl ester), adipic acid esters (Dioctyl ester, diisononyl ester), azelain san dioctyl, sebacin sun ester (dibutyl ester, dioctyl ester), tricresyl phosphate, tributyl acetylcitrate, epoxidized soybean oil, trioctyl trimellitic acid, chlorinated paraffin, dimethylacetamide, High boiling solvents such as N-methylpyrrolidone can also be used.
Furthermore, you may add additives, such as a coloring agent, a flame retardant, an adhesive imparting agent, a silane coupling agent, antioxidant, a ultraviolet absorber, as needed.
 上述のような各成分を含む塗布液は、支持体上に、スピンコート法、スプレー塗布法、ディップ塗布法、バー塗布法等の公知の塗布方法により塗布される。
 塗布量(膜厚)としては、形成されるポリマー層の用途に応じて適宜決定されればよく、一般には、膜厚が0.1μm~20μmであることが好ましく、0.5μm~7μmであることがより好ましい。
The coating solution containing each component as described above is applied onto a support by a known coating method such as spin coating, spray coating, dip coating, or bar coating.
The coating amount (film thickness) may be appropriately determined according to the use of the polymer layer to be formed. In general, the film thickness is preferably 0.1 μm to 20 μm, and preferably 0.5 μm to 7 μm. It is more preferable.
[支持体]
 本工程で用いられる支持体としては、形状保持性を有するものであれば、特に限定されず、用途に応じて適宜決定されればよい。そのため、支持体の形状も特に限定されない。
 また、支持体としては、ポリマー層と密着性を有する材質のものを用いてもよいし、また、乾燥後のポリマー層を支持体から剥離して使用する場合は、ポリマー層との密着性のない材質のものを用いればよい。
 支持体として、具体的には、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリビニルアセタール、ポリイミド、エポキシ、ポリカーボネート、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、ビスマレインイミド樹脂、ポリフェニレンオキサイド、液晶ポリマー、ポリテトラフルオロエチレン等)、上記の如き金属がラミネート若しくは蒸着された紙又はプラスチックフィルム等が用いられる。
[Support]
The support used in this step is not particularly limited as long as it has shape retention, and may be appropriately determined according to the application. Therefore, the shape of the support is not particularly limited.
In addition, the support may be made of a material having adhesiveness with the polymer layer. In addition, when the polymer layer after drying is peeled off from the support, the adhesiveness with the polymer layer may be used. A material with no material may be used.
Specific examples of the support include paper, paper laminated with plastic (eg, polyethylene, polypropylene, polystyrene, etc.), metal plate (eg, aluminum, zinc, copper, etc.), plastic film (eg, cellulose diacetate, Cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polyvinyl acetal, polyimide, epoxy, polycarbonate, ABS resin (acrylonitrile-butadiene-styrene copolymer), bismalein Imide resin, polyphenylene oxide, liquid crystal polymer, polytetrafluoroethylene, etc.), paper or plastic film on which a metal as described above is laminated or vapor-deposited, etc. Used.
 以上のようにして、本工程では、支持体上に未硬化の塗膜が形成される。 As described above, in this step, an uncured coating film is formed on the support.
〔(b)工程〕
 本発明における(b)工程では、前記(a)工程で形成された塗膜に、特定ポリマーを溶解しない、水及びアルコールの少なくとも一方を含む液体Bを接触させて、当該塗膜から溶媒Aを取り除く。
 なお、最終的に形成されるポリマー層中の溶媒Aの除去量が大きくなるといった点から、前記(a)工程と(b)工程とは連続して行われることが好ましく、特に、(a)工程と(b)工程との間に乾燥工程を含まないことが好ましい。
[(B) Process]
In the step (b) in the present invention, the coating film formed in the step (a) is brought into contact with the liquid B containing at least one of water and alcohol that does not dissolve the specific polymer, and the solvent A is removed from the coating film. remove.
In addition, from the viewpoint that the removal amount of the solvent A in the finally formed polymer layer is increased, the step (a) and the step (b) are preferably performed continuously, and in particular, (a) It is preferable not to include a drying step between the step and the step (b).
[液体B]
 まず、本工程で用いられる液体Bについて説明する。
 液体Bは、溶媒Aよりも沸点が低い液体であり、水及びアルコールの少なくとも一方を含み、特定ポリマーを溶解しない液体である。なお、本発明において、液体Bが2種以上の溶媒の混合液である場合における沸点とは、常圧下において、混合液である液体Bを加熱していき、液体の温度が一定となる、即ち、加熱を継続してもそれ以上液体の温度が昇温しなくなり、液体Bが蒸発する温度を指す。
 ここで、特定ポリマーを溶解しないとは、常温にて、液体B中に特定ポリマーを1%添加した溶液を300分間攪拌して調液し、静置後に均一な液相とならず、目視で沈殿物が確認されることをいう。
[Liquid B]
First, the liquid B used in this step will be described.
The liquid B is a liquid having a boiling point lower than that of the solvent A, and includes at least one of water and alcohol and does not dissolve the specific polymer. In the present invention, the boiling point in the case where the liquid B is a mixed liquid of two or more solvents means that the liquid B, which is the mixed liquid, is heated under normal pressure, and the temperature of the liquid becomes constant. The temperature at which the temperature of the liquid does not rise any further even when the heating is continued and the liquid B evaporates is indicated.
Here, the fact that the specific polymer is not dissolved means that a solution in which 1% of the specific polymer is added to the liquid B is stirred at 300 ° C. for 300 minutes to form a uniform liquid phase after standing. This means that a precipitate is confirmed.
 本工程においては、上記のような溶解度を満たす水及びアルコールの少なくとも一方を液体Bとして用いる。なお、アルコールと水とを混合して用いる場合、その混合比は、質量比にて、アルコール60%以下が好ましく、アルコール40%以下がより好ましく、アルコールの下限値としては5%が好ましい。
 ここで、アルコールとしては、アルコール類全般を使用することができ、中でも、沸点と乾燥温度の点から、炭素数4以下のアルコールであることが好ましく、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、2-ブタノールが好ましく用いられる。上記の他にも、例えば、3-アミノ-1-プロパノール、メタクリル酸トリフルオロエチル、ペンタデカフルオロオクタノールなどのアルコール誘導体を用いてもよい。なお、本明細書においては、アルコール及びその誘導体を含めて「アルコール」と称する。
In this step, at least one of water and alcohol satisfying the above-described solubility is used as the liquid B. In addition, when mixing and using alcohol and water, the mixing ratio is preferably 60% or less of alcohol, more preferably 40% or less of alcohol, and 5% is preferable as the lower limit of alcohol.
Here, as the alcohol, all alcohols can be used, and among them, alcohols having 4 or less carbon atoms are preferable from the viewpoint of boiling point and drying temperature. Specifically, methanol, ethanol, 1- Propanol, 2-propanol, butanol, 2-methyl-1-propanol, 2-methyl-2-propanol and 2-butanol are preferably used. In addition to the above, alcohol derivatives such as 3-amino-1-propanol, trifluoroethyl methacrylate, pentadecafluorooctanol and the like may be used. In the present specification, the term “alcohol” includes alcohol and its derivatives.
 また、本工程で用いられる液体Bの沸点は、(a)工程で用いる溶媒Aの沸点よりも低い。このような関係を満たすことで、溶媒Aを液体Bで置換した後の乾燥温度を低くし、且つ、短時間で乾燥することができるようになる。
 特に、液体Bの沸点と溶媒Aの沸点との差は、10℃以上であることが好ましく、20℃以上であることがより好ましい。液体B及び溶媒Aの扱いやすさの点から、両者の沸点の差の上限は、350℃であることが好ましく、差は180℃以下であることがより好ましく、100℃以下であることが更に好ましい。
Moreover, the boiling point of the liquid B used at this process is lower than the boiling point of the solvent A used at the (a) process. By satisfying such a relationship, the drying temperature after replacing the solvent A with the liquid B can be lowered and the drying can be performed in a short time.
In particular, the difference between the boiling point of the liquid B and the boiling point of the solvent A is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. From the viewpoint of easy handling of the liquid B and the solvent A, the upper limit of the difference between the boiling points of the two is preferably 350 ° C., more preferably 180 ° C. or less, and further preferably 100 ° C. or less. preferable.
 液体B中の水、及び、アルコールから選ばれる1種以上の含有量は、設備に対する付加や環境に対する負荷の点から、50質量%~100質量%が好ましく、70質量%~100質量%がより好ましく、100質量%が更に好ましい。つまり、液体Bは、水、又はアルコールからなるものか、水とアルコールとの混合物からなることが好ましい。液体Bがアルコールを含有する場合、当該アルコールは、アルコール及びアルコール誘導体から選択される複数種を含むものであってもよい。 The content of one or more selected from water and alcohol in the liquid B is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, from the viewpoint of addition to equipment and environmental load. Preferably, 100 mass% is still more preferable. That is, the liquid B is preferably made of water or alcohol or a mixture of water and alcohol. When the liquid B contains alcohol, the alcohol may include a plurality of types selected from alcohol and alcohol derivatives.
 本工程では、上述した液体Bを(a)工程で形成された塗膜に接触させることで、塗膜から溶媒Aを取り除く。
 ここで、塗膜に液体Bを接触させる方法としては、液体B中に塗膜を有する支持体を浸漬する方法や、液体Bを用いて塗布膜をかけ洗いする方法がある。
In this step, the solvent A is removed from the coating film by bringing the liquid B described above into contact with the coating film formed in the step (a).
Here, as a method of bringing the liquid B into contact with the coating film, there are a method of immersing a support having a coating film in the liquid B, and a method of washing the coating film using the liquid B.
 本工程後の塗膜中の溶媒Aの残存量としては、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 この溶媒Aの残存量は、以下のようにして測定することができる。
 即ち、塗膜と溶媒Aを共に溶解する一定量の液体を用いて両者を溶解し、その溶液中の溶媒Aの量を、液体クロマトグラフィを用いて測定する。
The residual amount of the solvent A in the coating film after this step is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
The residual amount of the solvent A can be measured as follows.
That is, both are dissolved using a certain amount of liquid that dissolves both the coating film and solvent A, and the amount of solvent A in the solution is measured using liquid chromatography.
 上記のように塗膜から溶媒Aが取り除かれると、その領域には、溶媒Aの代わりに液体Bが侵入することになる。
 ここで、液体Bは水及び/又はアルコールからなり、この液体Bが溶媒Aよりも低沸点であることから、溶媒Aよりも塗膜からの除去性に優れる。そのため、本工程後に、後述する(c)工程を行うことで、塗膜の乾燥が短時間に行うことができる。
 また、本工程では、水やアルコールを使用するため、作業容易性に優れることから、設備面のコストにおいて有利となり、また、溶媒Aを蒸発させずに液体B中に回収することができることから環境負荷を軽減することができる。
When the solvent A is removed from the coating film as described above, the liquid B enters the area instead of the solvent A.
Here, the liquid B is composed of water and / or alcohol, and since the liquid B has a lower boiling point than the solvent A, the removability from the coating film is superior to the solvent A. Therefore, the coating film can be dried in a short time by performing the step (c) described later after this step.
In addition, since water and alcohol are used in this step, the workability is excellent, which is advantageous in terms of equipment cost, and the solvent A can be recovered in the liquid B without evaporating. The load can be reduced.
〔(c)工程〕
 本発明における(c)工程では、(b)工程後の塗膜を乾燥する。
 本工程で行われる乾燥の条件は、塗布膜を形成する支持体の耐熱性と液体Bの沸点により適宜決定されればよい。
 特に、(b)工程にて用いられる液体Bの沸点が80℃以下であれば、常温での乾燥が可能となる。例えば、少量のエタノールは常温ですぐに乾燥するため、エタノールの沸点78℃付近であれば、常温乾燥が可能となる。
[(C) Step]
In the step (c) in the present invention, the coating film after the step (b) is dried.
The conditions for drying performed in this step may be appropriately determined depending on the heat resistance of the support for forming the coating film and the boiling point of the liquid B.
In particular, if the boiling point of the liquid B used in step (b) is 80 ° C. or less, drying at room temperature is possible. For example, since a small amount of ethanol is dried immediately at room temperature, it can be dried at room temperature as long as the boiling point of ethanol is around 78 ° C.
 また、本工程では、加熱乾燥を行ってもよい。その際の条件は、塗布膜を形成する支持体の耐熱性と液体Bの沸点により適宜決定されればよい。
 具体的には、加熱温度としては、180℃以下が好ましく、10℃~120℃がより好ましく、60℃~100℃が更に好ましい。
 また、加熱時間としては、120分以下が好ましく、60分以下がより好ましく、1秒~10分が更に好ましい。
 上記のような加熱乾燥には、各種のヒータ、温風、赤外線などを用いることができる。
In this step, heat drying may be performed. The conditions at that time may be appropriately determined depending on the heat resistance of the support for forming the coating film and the boiling point of the liquid B.
Specifically, the heating temperature is preferably 180 ° C. or less, more preferably 10 ° C. to 120 ° C., and further preferably 60 ° C. to 100 ° C.
The heating time is preferably 120 minutes or less, more preferably 60 minutes or less, and even more preferably 1 second to 10 minutes.
Various heaters, warm air, infrared rays, and the like can be used for the above-described heat drying.
 本発明においては、上述のように、塗膜中の溶媒Aを液体Bに置換した後、乾燥を行うことで、乾燥温度を低くし、乾燥時間を短くしつつも、塗膜中に残存する溶剤量を減らすことができる。そのため、ボイドの発生のないポリマー層を形成することができる。ボイドのないポリマー層は、層の内部が均一であるため、高温、高湿下においても、膜強度が局所的に低下することを抑えることができる。
 特に、前述のように、液体Bは溶媒Aよりも塗膜からの除去性に優れることから、乾燥を常温で行うことができたり、また、加熱乾燥際の温度を低くすることができたりするため、本発明では、耐熱性の低いポリマー及び/又は支持体を用いることが可能となる。
In the present invention, as described above, after replacing the solvent A in the coating film with the liquid B, drying is performed, so that the drying temperature is lowered and the drying time is shortened, but the film remains in the coating film. The amount of solvent can be reduced. Therefore, a polymer layer free from voids can be formed. Since the polymer layer having no voids is uniform in the inside of the layer, it is possible to suppress a local decrease in film strength even under high temperature and high humidity.
In particular, as described above, since the liquid B has better removability from the coating film than the solvent A, drying can be performed at room temperature, or the temperature during heat drying can be lowered. Therefore, in the present invention, it is possible to use a polymer and / or a support having low heat resistance.
 以上のようにして形成されたポリマー層中の空隙率は、50%以下が好ましく、20%以下が更に好ましく、1%以下が最も好ましい。
 つまり、本発明のポリマー層の形成方法では、上述の各工程を経ることでボイドのないポリマー層が形成されることから、ポリマー層では、上記のような空隙率が達成しうる。
 ここで、ポリマー層の空隙率は、ポリマー層の断面SEM観察により測定することができる。具体的には、実施例に記載の方法が用いられる。
The porosity in the polymer layer formed as described above is preferably 50% or less, more preferably 20% or less, and most preferably 1% or less.
That is, in the method for forming a polymer layer of the present invention, a void-free polymer layer is formed through the above-described steps, so that the void ratio as described above can be achieved in the polymer layer.
Here, the porosity of the polymer layer can be measured by cross-sectional SEM observation of the polymer layer. Specifically, the method described in the examples is used.
<ポリマー層の応用>
 本発明にて得られるポリマー層は、特開2007-107022号公報に記載されているように、それ自体を被めっき層として応用することができる。また、該ポリマー層上に新たに形成されるポリマー層を被めっき層として応用することもできる。この応用の際には、以下に示すポリマーが、適宜、前述の特定ポリマーPとして用いられる。
 以下、本発明にて得られるポリマー層(以下、適宜、「下層」と称する。)、又は、該ポリマー層上に新たに形成されるポリマー層(以下、適宜、「上層」と称する。)が被めっき層である態様について説明する。被めっき層は、めっき触媒又はその前駆体と相互作用する官能基を有するポリマーを用いてなることが好ましく、このようなポリマーを用いた態様について、以下に詳述する。なお、被めっき層が、本発明にて得られるポリマー層上に新たに形成されるポリマー層(上層)である場合、かかるポリマー層(上層)は層中にシアノ基を含むポリマー層であることが好ましい。
<Application of polymer layer>
The polymer layer obtained in the present invention can itself be applied as a layer to be plated, as described in JP-A-2007-107022. In addition, a polymer layer newly formed on the polymer layer can be applied as a layer to be plated. In this application, the following polymers are appropriately used as the specific polymer P described above.
Hereinafter, a polymer layer (hereinafter, appropriately referred to as “lower layer”) obtained by the present invention or a polymer layer newly formed on the polymer layer (hereinafter, appropriately referred to as “upper layer”). The aspect which is a to-be-plated layer is demonstrated. The layer to be plated is preferably made of a polymer having a functional group that interacts with a plating catalyst or a precursor thereof, and an embodiment using such a polymer will be described in detail below. In addition, when a to-be-plated layer is a polymer layer (upper layer) newly formed on the polymer layer obtained by this invention, this polymer layer (upper layer) is a polymer layer containing a cyano group in a layer. Is preferred.
 ここで、めっき触媒又はその前駆体と相互作用する官能基(以下、単に「相互作用性基」と称する。)としては、極性基(親水性基)や、多座配位を形成可能な基、含窒素官能基、含硫黄官能基、含酸素官能基などの非解離性官能基(解離によりプロトンを生成しない官能基)が挙げられる。特に、被めっき層の吸水性、吸湿性を低減するためには、相互作用性基として非解離性官能基を用いることが好ましい。 Here, as a functional group that interacts with the plating catalyst or its precursor (hereinafter simply referred to as “interactive group”), a polar group (hydrophilic group) or a group that can form a multidentate coordination. , Non-dissociable functional groups (functional groups that do not generate protons by dissociation) such as nitrogen-containing functional groups, sulfur-containing functional groups, and oxygen-containing functional groups. In particular, in order to reduce the water absorption and hygroscopicity of the plated layer, it is preferable to use a non-dissociable functional group as the interactive group.
 前記極性基としては、アンモニウム、ホスホニウムなどの正の荷電を有する官能基、若しくは、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などの負の荷電を有するか負の荷電に解離しうる酸性基が挙げられる。これらは解離基の対イオンの形で金属イオンと吸着する。
 また、例えば、水酸基、アミド基、スルホンアミド基、アルコキシ基、シアノ基などの非イオン性の極性基も用いることもできる。
 その他、イミノ基、1~2級のアミノ基、アミド基、ウレタン基、水酸基(フェノールも含む)、チオール基などを用いることもできる。
The polar group may be a functional group having a positive charge, such as ammonium or phosphonium, or a negative charge such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, or a phosphonic acid group, or can be dissociated into a negative charge. An acidic group is mentioned. These adsorb metal ions in the form of counterions of dissociating groups.
Further, for example, nonionic polar groups such as a hydroxyl group, an amide group, a sulfonamide group, an alkoxy group, and a cyano group can also be used.
In addition, an imino group, primary or secondary amino group, amide group, urethane group, hydroxyl group (including phenol), thiol group, and the like can also be used.
 また、前記非解離性官能基としては、具体的には、金属イオンと配位形成可能な基、含窒素官能基、含硫黄官能基、含酸素官能基などが好ましく、具体的には、イミド基、ピリジン基、3級のアミノ基、アンモニウム基、ピロリドン基、アミジノ基、トリアジン環、トリアゾール環、ベンゾトリアゾール基、ベンズイミダゾール基、キノリン基、ピリミジン基、ピラジン基、ナゾリン基、キノキサリン基、プリン基、トリアジン基、ピペリジン基、ピペラジン基、ピロリジン基、ピラゾール基、アニリン基、アルキルアミン基構造を含む基、イソシアヌル構造を含む基、ニトロ基、ニトロソ基、アゾ基、ジアゾ基、アジド基、シアノ基、シアネート基(R-O-CN)などの含窒素官能基、水酸基、カーボネート基、エーテル基、カルボニル基、エステル基、N-オキシド構造を含む基、S-オキシド構造を含む基、N-ヒドロキシ構造を含む基などの含酸素官能基、チオフェン基、チオール基、チオシアヌール酸基、ベンズチアゾール基、メルカプトトリアジン基、チオエーテル基、チオキシ基、スルホキシド基、スルホン基、サルファイト基、スルホキシイミン構造を含む基、スルホキシニウム塩構造を含む基、スルホン酸エステル構造を含む基などの含硫黄官能基、ホスフォート基、ホスフォロアミド基、フォスフィン基などの含リン官能基、塩素、臭素などのハロゲン原子を含む基、及び不飽和エチレン基等が挙げられる。また、隣接する原子又は原子団との関係により非解離性を示す態様であれば、イミダゾール基、ウレア基、チオウレア基を用いてもよい。更には、例えば、シクロデキストリンや、クラウンエーテルなどの包接能を有する化合物に由来する官能基であってもよい。
 中でも、極性が高く、めっき触媒等への吸着能が高いことから、エーテル基(より具体的には、-O-(CH-O-(nは1~5の整数)で表される構造)、又はシアノ基が特に好ましく、シアノ基が最も好ましいものとして挙げられる。
As the non-dissociable functional group, specifically, a group capable of forming a coordination with a metal ion, a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group, and the like are preferable. Group, pyridine group, tertiary amino group, ammonium group, pyrrolidone group, amidino group, triazine ring, triazole ring, benzotriazole group, benzimidazole group, quinoline group, pyrimidine group, pyrazine group, nazoline group, quinoxaline group, purine Group, triazine group, piperidine group, piperazine group, pyrrolidine group, pyrazole group, aniline group, group containing alkylamine group structure, group containing isocyanuric structure, nitro group, nitroso group, azo group, diazo group, azide group, cyano Group, nitrogen-containing functional group such as cyanate group (R—O—CN), hydroxyl group, carbonate group, ether group, carbonyl , Ester groups, groups containing an N-oxide structure, groups containing an S-oxide structure, oxygen-containing functional groups such as a group containing an N-hydroxy structure, thiophene group, thiol group, thiocyanuric acid group, benzthiazole group, mercaptotriazine Groups, thioether groups, thiooxy groups, sulfoxide groups, sulfone groups, sulfite groups, groups containing sulfoximine structures, groups containing sulfoxynium salt structures, sulfur-containing functional groups such as groups containing sulfonate structures, Examples thereof include phosphorus-containing functional groups such as phosphoroamide groups and phosphine groups, groups containing halogen atoms such as chlorine and bromine, and unsaturated ethylene groups. In addition, an imidazole group, a urea group, or a thiourea group may be used as long as it is non-dissociative due to a relationship with an adjacent atom or atomic group. Furthermore, for example, it may be a functional group derived from a compound having an inclusion ability such as cyclodextrin and crown ether.
Among them, it is represented by an ether group (more specifically, —O— (CH 2 ) n —O— (n is an integer of 1 to 5) because of its high polarity and high adsorption ability to a plating catalyst or the like. A cyano group is particularly preferable, and a cyano group is most preferable.
 一般的に、高極性になるほど吸水率が高くなる傾向であるが、シアノ基はポリマー層中にて互いに極性を打ち消しあうように相互作用しあうため、膜が緻密になり、且つ、ポリマー層全体としての極性が下がるため、吸水性が低くなる。また、ポリマー層の良溶剤にて触媒を吸着させることで、シアノ基が溶媒和されてシアノ基間の相互作用がなくなり、めっき触媒と相互作用できるようになる。以上のことから、シアノ基を有するポリマー層は低吸湿でありながら、めっき触媒とはよく相互作用をする、相反する性能を発揮する点で、好ましい。
 また、本発明における相互作用性基としては、シアノアルキル基であることが更に好ましい。これは、シアノ芳香族基は芳香環に電子を吸引されており、めっき触媒等への吸着性として重要な不対電子の供与性が低めになるが、シアノアルキル基はこの芳香環が結合していないため、めっき触媒等への吸着性の点で好ましい。
Generally, the higher the polarity, the higher the water absorption rate. However, since the cyano groups interact in the polymer layer so as to cancel each other's polarity, the film becomes dense and the entire polymer layer Therefore, the water absorption is lowered. Further, by adsorbing the catalyst with the good solvent of the polymer layer, the cyano group is solvated, the interaction between the cyano groups is eliminated, and it becomes possible to interact with the plating catalyst. In view of the above, a polymer layer having a cyano group is preferable in that it exhibits low performance while interacting well with the plating catalyst while exhibiting low moisture absorption.
Further, the interactive group in the present invention is more preferably a cyanoalkyl group. This is because the cyano aromatic group attracts electrons to the aromatic ring and lowers the donation of unpaired electrons, which is important for adsorptivity to the plating catalyst, etc., but the cyanoalkyl group is bonded to this aromatic ring. Therefore, it is preferable in terms of adsorptivity to the plating catalyst.
 また、上述のような相互作用性基を有するポリマーとしては、更に、被めっき層の膜強度を高めるために、更に、重合性基を有していてもよい。
 特に、被めっき層が、本発明にて得られるポリマー層上に新たに形成されるポリマー層(上層)である場合には、このポリマー層(上層)は、下層であるポリマー層との密着性とめっき膜との間に優れた密着性を得るために、相互作用性基と重合性基とを有するポリマーを用いて形成されるものであることが好ましい。
Moreover, as a polymer which has the above interactive groups, in order to raise the film | membrane intensity | strength of a to-be-plated layer, you may have a polymeric group further.
In particular, when the layer to be plated is a polymer layer (upper layer) newly formed on the polymer layer obtained in the present invention, this polymer layer (upper layer) has adhesion to the lower polymer layer. In order to obtain excellent adhesion between the film and the plating film, it is preferably formed using a polymer having an interactive group and a polymerizable group.
-本発明にて得られるポリマー層がシアノ基を含む態様-
 以下、本発明にて得られるポリマー層がシアノ基を含む態様について説明する。この態様は、シアノ基を有するポリマーを用いてポリマー層を形成することで得られる。
 シアノ基を有するポリマーを用いることで、支持体やその上に形成されるめっき膜との界面の凹凸が少ない場合であっても、かかる支持体やめっき膜に対し、優れた密着性が得られる。
 この作用は明確でないが、以下のように推定される。
 シアノ基を有するポリマーは、被膜形成することで、支持体である樹脂基板に対しては、濡れ性や親和性に優れるため、支持体との密着性に優れた下層であるポリマー層を形成することができる。また、下層であるポリマー層の表面に、相互作用性基と重合性基とを有するポリマーを含む塗布液を塗布、乾燥させて、上層であるポリマー層を形成することにより、ポリマー同士の相溶性、親和性に起因して、支持体との密着性に優れた、相互作用性基を有する被めっき層を形成することができる。特に、この相互作用性基と重合性基とを有するポリマーは、分子内に重合性基(好ましくは、ラジカル重合性基)を有するために、エネルギー付与により硬化させることにより、架橋構造を有する強固なポリマー層を形成しうる。このようにして形成された上層であるポリマー層は、支持体との密着性に優れ、更に、めっき触媒又はその前駆体と相互作用を形成しうるため、形成されためっき膜とポリマー層との界面が、金属とポリマー(樹脂)とのハイブリッド状態となり、支持体やめっき膜との界面が平滑であっても、その両者との密着性が高いものと考えられる。
-Aspect where the polymer layer obtained in the present invention contains a cyano group-
Hereinafter, the aspect in which the polymer layer obtained in the present invention contains a cyano group will be described. This embodiment can be obtained by forming a polymer layer using a polymer having a cyano group.
By using a polymer having a cyano group, excellent adhesion to such a support or plating film can be obtained even when there are few irregularities at the interface between the support and the plating film formed thereon. .
Although this effect is not clear, it is estimated as follows.
A polymer having a cyano group is formed into a film, thereby forming a polymer layer as a lower layer having excellent adhesion to the support because it has excellent wettability and affinity for the resin substrate as the support. be able to. In addition, by applying a coating solution containing a polymer having an interactive group and a polymerizable group to the surface of the lower polymer layer and drying it to form the upper polymer layer, the compatibility between the polymers is achieved. Due to the affinity, it is possible to form a plated layer having an interactive group that has excellent adhesion to the support. In particular, since the polymer having an interactive group and a polymerizable group has a polymerizable group (preferably a radical polymerizable group) in the molecule, it has a crosslinked structure by being cured by applying energy. A simple polymer layer can be formed. The upper polymer layer formed in this manner is excellent in adhesion to the support and can form an interaction with the plating catalyst or its precursor. Even if the interface is in a hybrid state between the metal and the polymer (resin) and the interface between the support and the plating film is smooth, it is considered that the adhesion between them is high.
 前記下層に好適な、シアノ基を有するポリマーは、側鎖にシアノ基を有するユニットを重合成分として有するポリマーであれば、特に制限されないが、側鎖にシアノ基を有するユニットとしては、アクリロニトリルが好ましく、シアノ基を有するポリマーは、このようなユニットを含むポリマーであることが好ましい。
 具体的には、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン共重合体(AS)樹脂、ポリアクリロニトリルなどが特に好ましい。
 その他に、シアノ基を有するポリマーとしては、以下に示すようなシアノ基を有するモノマーに由来するユニットを重合成分として含むことが好ましい。
The polymer having a cyano group suitable for the lower layer is not particularly limited as long as it is a polymer having a unit having a cyano group in the side chain as a polymerization component, but as the unit having a cyano group in the side chain, acrylonitrile is preferable. The polymer having a cyano group is preferably a polymer containing such a unit.
Specifically, acrylonitrile-butadiene-styrene copolymer (ABS) resin, nitrile-butadiene rubber (NBR), acrylonitrile-styrene copolymer (AS) resin, polyacrylonitrile, and the like are particularly preferable.
In addition, the polymer having a cyano group preferably includes a unit derived from a monomer having a cyano group as shown below as a polymerization component.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000003

 
 
Figure JPOXMLDOC01-appb-C000003

 
 
 上記したモノマー中、Rは水素原子又はメチル基を表す。 In the above monomers, R represents a hydrogen atom or a methyl group.
 シアノ基を有するポリマーとしては、上記モノマー由来のユニットを1種のみ含んでいても、2種以上含んでいてもよく、また、シアノ基を含有しないユニットを共重合成分として含んでいてもよい。シアノ基を有するポリマーに含まれるシアノ基の量は、支持体及び上層であるポリマー層との密着性の観点から、ポリマー1g当たり1.0mmol~9.0mmolであることが好ましい。
 シアノ基を有するポリマーに含まれる他のユニットとしては、極性基を含まないユニットであれは、特に制限はないが、例えば、直鎖或いは環状のオレフィン系構造を有するユニット、共役ジエン系ユニット、極性基を持たない重合性モノビニル芳香族系ユニット、極性基を持たない(メタ)アクリレートモノマー由来のユニット、極性基を持たない(メタ)アクリルアミドモノマー由来のユニット等が好ましい。具体的には、例えば、以下に示すようなモノマーに由来するユニットが挙げられる。
The polymer having a cyano group may contain only one type of unit derived from the above monomer or two or more types, and may contain a unit not containing a cyano group as a copolymerization component. The amount of the cyano group contained in the polymer having a cyano group is preferably 1.0 mmol to 9.0 mmol per 1 g of the polymer from the viewpoint of adhesion between the support and the upper polymer layer.
The other unit contained in the polymer having a cyano group is not particularly limited as long as it is a unit not containing a polar group. For example, a unit having a linear or cyclic olefin structure, a conjugated diene unit, a polarity A polymerizable monovinyl aromatic unit having no group, a unit derived from a (meth) acrylate monomer having no polar group, a unit derived from a (meth) acrylamide monomer having no polar group, and the like are preferable. Specifically, for example, units derived from monomers as shown below can be mentioned.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 上記したモノマー中、Rは水素原子又はメチル基を表し、XはO又はNHを表す。 In the above monomers, R represents a hydrogen atom or a methyl group, and X represents O or NH.
 シアノ基を有するポリマーにおいて、側鎖にシアノ基を有するユニットを重合成分として含む場合の含有量は、モル比で、10モル%~100モル%の範囲であることが好ましく、より好ましくは、30モル%~100モル%である。
 シアノ基を有するポリマーの重量平均分子量は、1000以上70万以下が好ましく、更に好ましくは2000以上20万以下である。
 特に、支持体との密着性の観点から、シアノ基を有するポリマーの重量平均分子量は、10000以上であることが好ましい。また、シアノ基を有するポリマーの重合度としては、10量体以上のものを使用することが好ましく、更に好ましくは20量体以上のものである。また、7000量体以下が好ましく、3000量体以下がより好ましく、2000量体以下が更に好ましく、1000量体以下が特に好ましい。
In the polymer having a cyano group, the content when the unit having a cyano group in the side chain is contained as a polymerization component is preferably in the range of 10 mol% to 100 mol%, more preferably 30 mol%. Mol% to 100 mol%.
The weight average molecular weight of the polymer having a cyano group is preferably 1000 or more and 700,000 or less, more preferably 2000 or more and 200,000 or less.
In particular, from the viewpoint of adhesion to the support, the polymer having a cyano group preferably has a weight average molecular weight of 10,000 or more. Moreover, as a polymerization degree of the polymer which has a cyano group, it is preferable to use a 10-mer or more thing, More preferably, it is a 20-mer or more thing. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
 以下、本発明に用いられるシアノ基含有ポリマーの具体例を示すが、本発明はこれに制限されるものではない。 Hereinafter, specific examples of the cyano group-containing polymer used in the present invention will be shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000005

 
 
Figure JPOXMLDOC01-appb-C000005

 
 
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000008

 
 
Figure JPOXMLDOC01-appb-C000008

 
 
 上述したシアノ基を有するポリマーは、本発明にて得られるポリマー層に用いられることが好ましい。
 なお、上述したシアノ基を有するポリマーが、更に、重合性基を有する構造(重合性基を有するユニットを含む構造)であれば、本発明にて得られるポリマー層上に新たに形成されるポリマー層(上層)に好適なポリマーとなる。
The polymer having a cyano group described above is preferably used in the polymer layer obtained in the present invention.
In addition, if the polymer having a cyano group described above further has a structure having a polymerizable group (a structure including a unit having a polymerizable group), the polymer newly formed on the polymer layer obtained in the present invention. It becomes a polymer suitable for the layer (upper layer).
 本発明のポリマー層の形成方法で得られたポリマー層は、例えば、パソコン用部品、自動車用部品、家電用部品、装飾用部品等に適用することができる。本発明のポリマー層の形成方法では、用途に応じて、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、ポリカーボネート、液晶ポリマー、ポリイミド、エポキシ、アクリル、TAC、ニトリルブタジエンゴム等を用いて、所望のポリマー層を形成することが可能となる。
 特に、前述のように、特定ポリマーとして相互作用性基を有するポリマーを用いてポリマー層(下層)を形成する、又は、本発明にて得られるポリマー層上に相互作用性基を有するポリマーを用いてポリマー層(上層)を形成すれば、この形成された下層及び上層は被めっき層となりうる。このように、被めっき層が形成されれば、以下のような工程に供することで、該被めっき層上にめっき膜を形成することができる。
The polymer layer obtained by the method for forming a polymer layer of the present invention can be applied to, for example, personal computer parts, automobile parts, home appliance parts, decorative parts, and the like. In the method for forming a polymer layer of the present invention, ABS resin (acrylonitrile-butadiene-styrene copolymer), polycarbonate, liquid crystal polymer, polyimide, epoxy, acrylic, TAC, nitrile butadiene rubber, etc. are used depending on the intended use. It is possible to form a polymer layer.
In particular, as described above, a polymer layer (lower layer) is formed using a polymer having an interactive group as a specific polymer, or a polymer having an interactive group is used on the polymer layer obtained in the present invention. Thus, if the polymer layer (upper layer) is formed, the formed lower layer and upper layer can be plated layers. Thus, if a to-be-plated layer is formed, a plating film can be formed on this to-be-plated layer by using for the following processes.
〔めっき触媒付与工程〕
 まず、被めっき層に対してめっき触媒又はその前駆体を付与する。
 本工程においては、被めっき層を構成するポリマーが有する相互作用性基が、その機能に応じて、付与されためっき触媒又はその前駆体を付着(吸着)する。
 ここで、めっき触媒又はその前駆体としては、後述するめっき工程における、めっきの触媒や電極として機能するものが挙げられる。そのため、めっき触媒又はその前駆体は、めっき工程におけるめっきの種類により決定される。
 なお、ここで、本工程において用いられるめっき触媒又はその前駆体は、無電解めっき触媒又はその前駆体であることが好ましい。
[Plating catalyst application process]
First, a plating catalyst or a precursor thereof is applied to the layer to be plated.
In this step, the interactive group possessed by the polymer constituting the layer to be plated adheres (adsorbs) the applied plating catalyst or its precursor depending on its function.
Here, examples of the plating catalyst or its precursor include those that function as a plating catalyst or an electrode in a plating step described later. Therefore, a plating catalyst or its precursor is determined by the kind of plating in a plating process.
Here, the plating catalyst or its precursor used in this step is preferably an electroless plating catalyst or its precursor.
(無電解めっき触媒)
 本発明において用いられる無電解めっき触媒は、無電解めっき時の活性核となるものであれば、如何なるものも用いることができ、具体的には、自己触媒還元反応の触媒能を有する金属(Niよりイオン化傾向の低い無電解めっきできる金属として知られるもの)などが挙げられ、具体的には、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数、触媒能の高さから、Ag、Pdが特に好ましい。
 この無電解めっき触媒は、金属コロイドとして用いてもよい。一般に、金属コロイドは、荷電を持った界面活性剤又は荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。金属コロイドの荷電は、ここで使用される界面活性剤又は保護剤により調節することができる。
(Electroless plating catalyst)
As the electroless plating catalyst used in the present invention, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Specifically, a metal (Ni And the like, which are known as metals capable of electroless plating with a lower ionization tendency), and specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, and the like. Among them, those capable of multidentate coordination are preferable, and Ag and Pd are particularly preferable in view of the number of types of functional groups capable of coordination and high catalytic ability.
This electroless plating catalyst may be used as a metal colloid. In general, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent. The charge of the metal colloid can be adjusted by the surfactant or protective agent used here.
(無電解めっき触媒前駆体)
 本工程において用いられる無電解めっき触媒前駆体とは、化学反応により無電解めっき触媒となりうるものであれば、特に制限なく使用することができる。主には、上記無電解めっき触媒として挙げた金属の金属イオンが用いられる。無電解めっき触媒前駆体である金属イオンは、還元反応により無電解めっき触媒である0価金属になる。無電解めっき触媒前駆体である金属イオンは、被めっき層へ付与した後、無電解めっき浴への浸漬前に、別途還元反応により0価金属に変化させて無電解めっき触媒としてもよいし、無電解めっき触媒前駆体のまま無電解めっき浴に浸漬し、無電解めっき浴中の還元剤により金属(無電解めっき触媒)に変化させてもよい。
(Electroless plating catalyst precursor)
The electroless plating catalyst precursor used in this step can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction. The metal ions of the metals mentioned as the electroless plating catalyst are mainly used. The metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. The metal ion, which is an electroless plating catalyst precursor, may be used as an electroless plating catalyst after being applied to the layer to be plated and before being immersed in the electroless plating bath, by separately changing to a zero-valent metal by a reduction reaction. The electroless plating catalyst precursor may be immersed in an electroless plating bath and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating bath.
 実際には、無電解めっき前駆体である金属イオンは、金属塩を用いて被めっき層上に付与する。使用される金属塩としては、適切な溶媒に溶解して金属イオンと塩基(陰イオン)とに解離されるものであれば特に制限はなく、M(NO、MCln、M2/n(SO)、M3/n(PO)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Agイオン、Cuイオン、Alイオン、Niイオン、Coイオン、Feイオン、Pdイオンが挙げられ、中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数、及び触媒能の点で、Agイオン、Pdイオンが好ましい。 Actually, the metal ion which is the electroless plating precursor is applied onto the layer to be plated using a metal salt. The metal salt used is not particularly limited as long as it is dissolved in an appropriate solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCn, M 2 / n (SO 4 ), M 3 / n (PO 4 ) (M represents an n-valent metal atom), and the like. As a metal ion, the thing which said metal salt dissociated can be used suitably. Specific examples include, for example, Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferable, and in particular, functionalities capable of coordination. In view of the number of types of groups and catalytic ability, Ag ions and Pd ions are preferable.
 本発明で用いられる無電解めっき触媒又はその前駆体の好ましい例の一つとして、パラジウム化合物が挙げられる。このパラジウム化合物は、めっき処理時に活性核となり金属を析出させる役割を果たす、めっき触媒(パラジウム)又はその前駆体(パラジウムイオン)として作用する。パラジウム化合物としては、パラジウムを含み、めっき処理の際に核として作用すれば、特に限定されないが、例えば、パラジウム(II)塩、パラジウム(0)錯体、パラジウムコロイドなどが挙げられる。 As a preferred example of the electroless plating catalyst or precursor thereof used in the present invention, a palladium compound may be mentioned. This palladium compound acts as a plating catalyst (palladium) or a precursor thereof (palladium ions), which acts as an active nucleus during the plating treatment and plays a role of depositing metal. The palladium compound is not particularly limited as long as it contains palladium and acts as a nucleus in the plating process, and examples thereof include a palladium (II) salt, a palladium (0) complex, and a palladium colloid.
 パラジウム塩としては、例えば、酢酸パラジウム、塩化パラジウム、硝酸パラジウム、臭化パラジウム、炭酸パラジウム、硫酸パラジウム、ビス(ベンゾニトリル)ジクロロパラジウム(II)、ビス(アセトニトリル)ジクロロパラジウム(II)、ビス(エチレンジアミン)パラジウム(II)塩化物などが挙げられる。中でも、取り扱いやすさと溶解性の点で、硝酸パラジウム、酢酸パラジウム、硫酸パラジウム、ビス(アセトニトリル)ジクロロパラジウム(II)が好ましい。
 パラジウム錯体としては、テトラキストリフェニルホスフィンパラジウム錯体、ジパラジウムトリスベンジリデンアセトン錯体などが挙げられる。
 パラジウムコロイドは、パラジウム(0)から構成される粒子で、その大きさは特に制限されないが、液中での安定性の観点から、5nm~300nmが好ましく、10nm~100nmがより好ましい。パラジウムコロイドは、必要に応じて、他の金属を含んでいてもよく、他の金属としては、例えば、スズなどが挙げられる。パラジウムコロイドとしては、例えば、スズ-パラジウムコロイドなどが挙げられる。なお、パラジウムコロイドは、公知の方法で合成してもよいし、市販品を使用してもよい。例えば、荷電を持った界面活性剤又は荷電を持った保護剤が存在する溶液中において、パラジウムイオンを還元することによりパラジウムコロイドを作製することができる。
Examples of the palladium salt include palladium acetate, palladium chloride, palladium nitrate, palladium bromide, palladium carbonate, palladium sulfate, bis (benzonitrile) dichloropalladium (II), bis (acetonitrile) dichloropalladium (II), and bis (ethylenediamine). ) Palladium (II) chloride and the like. Of these, palladium nitrate, palladium acetate, palladium sulfate, and bis (acetonitrile) dichloropalladium (II) are preferable in terms of ease of handling and solubility.
Examples of the palladium complex include tetrakistriphenylphosphine palladium complex and dipalladium trisbenzylideneacetone complex.
The palladium colloid is a particle composed of palladium (0), and its size is not particularly limited, but is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm, from the viewpoint of stability in the liquid. The palladium colloid may contain other metals as necessary, and examples of the other metals include tin. Examples of the palladium colloid include tin-palladium colloid. In addition, a palladium colloid may be synthesize | combined by a well-known method and a commercial item may be used. For example, a palladium colloid can be prepared by reducing palladium ions in a solution containing a charged surfactant or a charged protective agent.
 また、本発明で用いられる無電解めっき触媒又はその前駆体としては、選択的に被めっき層に吸着させることができるといった観点から、銀、及び銀イオンが好ましい別の例として挙げられる。
 めっき触媒前駆体として銀イオンを用いる場合、以下に示すような銀化合物が解離したものを好適に用いることができる。銀化合物の具体例としては、硝酸銀、酢酸銀、硫酸銀、炭酸銀、シアン化銀、チオシアン酸銀、塩化銀、臭化銀、クロム酸銀、クロラニル酸銀、サリチル酸銀、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミド酸銀、p-トルエンスルホン酸銀が挙げられる。この中でも、水溶性の観点から硝酸銀が好ましい。
Moreover, as an electroless-plating catalyst used by this invention, or its precursor, silver and a silver ion are mentioned as another preferable example from a viewpoint that it can selectively adsorb | suck to a to-be-plated layer.
When silver ions are used as the plating catalyst precursor, those obtained by dissociating silver compounds as shown below can be suitably used. Specific examples of the silver compound include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate. Among these, silver nitrate is preferable from the viewpoint of water solubility.
 無電解めっき触媒である金属、或いは、無電解めっき前駆体である金属塩を被めっき層に付与する方法としては、金属を適当な分散媒に分散した分散液、或いは、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液を調製し、その分散液又は溶液を被めっき層上に塗布するか、或いは、その分散液又は溶液中に被めっき層が形成された支持体を浸漬すればよい。 As a method of applying a metal that is an electroless plating catalyst or a metal salt that is an electroless plating precursor to a layer to be plated, a dispersion in which the metal is dispersed in an appropriate dispersion medium, or a metal salt that is an appropriate solvent. Prepare a solution containing dissolved and dissociated metal ions and apply the dispersion or solution on the layer to be plated, or immerse the support on which the layer to be plated is formed in the dispersion or solution. do it.
 また、上述するような方法の代わりに、被めっき層を形成する際の塗布液中に、無電解めっき触媒又はその前駆体を添加する方法を用いてもよい。つまり、被めっき層を形成するためのポリマーと、無電解めっき触媒又はその前駆体と、を含有する組成物を、支持体上に塗布、乾燥させて、めっき触媒又はその前駆体を含有する被めっき層を形成してもよい。なお、この方法を用いれば、工程の省略が可能となる。 Further, instead of the method as described above, a method of adding an electroless plating catalyst or a precursor thereof to a coating solution for forming a plated layer may be used. That is, a composition containing a polymer for forming a layer to be plated and an electroless plating catalyst or a precursor thereof is applied onto a support and dried, and then a coating containing a plating catalyst or a precursor thereof is coated. A plating layer may be formed. If this method is used, the process can be omitted.
 なお、支持体として樹脂フィルムを用い、該樹脂フィルムの両面に対して被めっき層が形成されている場合には、その両面の被めっき層に対して同時に無電解めっき触媒又はその前駆体を接触させるために、上記の浸漬法を用いることが好ましい。 When a resin film is used as the support and the plated layers are formed on both sides of the resin film, the electroless plating catalyst or its precursor is simultaneously contacted with the plated layers on both sides. Therefore, it is preferable to use the above immersion method.
 上記のように無電解めっき触媒又はその前駆体を接触させることで、被めっき層中の相互作用性基に、ファンデルワールス力のような分子間力による相互作用、又は、孤立電子対による配位結合による相互作用を利用して、無電解めっき触媒又はその前駆体を吸着させることができる。
 このような吸着を充分に行なわせるという観点からは、分散液、溶液、組成物中の金属濃度、又は溶液中の金属イオン濃度は、0.001質量%~50質量%の範囲であることが好ましく、0.005質量%~30質量%の範囲であることが更に好ましい。
 また、接触時間としては、30秒~24時間程度であることが好ましく、1分~1時間程度であることがより好ましい。
By contacting the electroless plating catalyst or its precursor as described above, the interaction group in the layer to be plated can interact with an intermolecular force such as van der Waals force, or be distributed by a lone electron pair. An electroless plating catalyst or a precursor thereof can be adsorbed by utilizing the interaction due to the coordinate bond.
From the viewpoint of sufficiently performing such adsorption, the metal concentration in the dispersion, solution, or composition, or the metal ion concentration in the solution may be in the range of 0.001% by mass to 50% by mass. The range of 0.005% by mass to 30% by mass is more preferable.
The contact time is preferably about 30 seconds to 24 hours, more preferably about 1 minute to 1 hour.
 なお、無電解めっき触媒又はその前駆体を含有する溶液、分散液、或いは組成物にパラジウム化合物を用いる場合、パラジウム化合物は、溶液、分散液、或いは組成物の全量に対して、0.001質量%~10質量%の範囲で用いることが好ましく、0.05質量%~5質量%で用いることがより好ましく、更に0.10質量%~1質量%で用いることが好ましい。
 また、無電解めっき触媒前駆体を含有する溶液に銀化合物を用いる場合、銀化合物は、溶液の全量に対して、0.1質量%~20質量%の範囲で用いることが好ましく、0.1質量%~20質量%の範囲で用いるがより好ましく、更に0.5質量%~10質量%の範囲で用いるが好ましい。
 どちらの化合物を用いる場合であっても、含有量が少なすぎると後述するめっきの析出がし難くなり、含有量が多すぎると、所望とされない領域までめっきが析出したり、エッチング残渣除去性が損なわれたりすることがある。
When a palladium compound is used in the solution, dispersion, or composition containing the electroless plating catalyst or its precursor, the palladium compound is 0.001 mass relative to the total amount of the solution, dispersion, or composition. % To 10% by mass, more preferably 0.05% to 5% by mass, and further preferably 0.10% to 1% by mass.
When a silver compound is used in the solution containing the electroless plating catalyst precursor, the silver compound is preferably used in a range of 0.1% by mass to 20% by mass with respect to the total amount of the solution. More preferably, it is used in the range of 20% by mass to 20% by mass, and more preferably in the range of 0.5% by mass to 10% by mass.
Regardless of which compound is used, if the content is too small, it will be difficult to deposit the plating described later. If the content is too large, the plating may be deposited to an undesired region, or the etching residue removal property will be reduced. It may be damaged.
 被めっき層のめっき触媒又はその前駆体の吸着量に関しては、使用する無電解めっき触媒又はその前駆体の種類にもよるが、例えば、銀イオンの場合は、無電解めっきの析出性の観点から、300mg/m以上が好ましく、500mg/m以上がより好ましく、600mg/m以上が更に好ましい。また、支持体との密着力の高いめっき膜を作製するという観点からは、被めっき層の銀イオンの吸着量は1000mg/m以下であることが好ましい。
 また、パラジウムイオンの場合、被めっき層の吸着量は、無電解めっきの析出性の観点から、5mg/m以上が好ましく、10mg/m以上がより好ましい。また、支持体との密着力の高いめっき膜を作製するという観点からは、被めっき層のパラジウムイオンの吸着量は1000mg/m以下であることが好ましい。
Regarding the adsorption amount of the plating catalyst of the layer to be plated or its precursor, depending on the type of electroless plating catalyst or its precursor to be used, for example, in the case of silver ions, from the viewpoint of the depositability of electroless plating 300 mg / m 2 or more is preferable, 500 mg / m 2 or more is more preferable, and 600 mg / m 2 or more is more preferable. Further, from the viewpoint of producing a plating film having high adhesion to the support, the adsorption amount of silver ions of the layer to be plated is preferably 1000 mg / m 2 or less.
In the case of palladium ions, the adsorption amount of the layer to be plated is preferably 5 mg / m 2 or more, more preferably 10 mg / m 2 or more, from the viewpoint of the depositability of electroless plating. Further, from the viewpoint of producing a plating film having high adhesion to the support, the amount of palladium ion adsorbed on the layer to be plated is preferably 1000 mg / m 2 or less.
(その他の触媒)
 本発明において、後述のめっき工程において、被めっき層に対して、無電解めっきを行わず直接電気めっきを行うために用いられる触媒としては、0価金属を使用することができる。この0価金属としては、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられ、中でも、多座配位可能なものが好ましく、特に、相互作用性基(シアノ基)に対する吸着(付着)性、触媒能の高さから、Pd、Ag、Cuが好ましい。
(Other catalysts)
In the present invention, a zero-valent metal can be used as a catalyst used for direct electroplating on the layer to be plated without performing electroless plating in the plating step described later. Examples of the zero-valent metal include Pd, Ag, Cu, Ni, Al, Fe, and Co. Among them, those capable of multidentate coordination are preferable, and in particular, adsorption to an interactive group (cyano group) ( Pd, Ag, and Cu are preferable from the viewpoint of adhesion and high catalytic ability.
(有機溶剤、及び水)
 上記のようなめっき触媒又は前駆体は、前述のように、分散液や溶液(触媒液)として被めっき層に付与される。
 本発明における触媒液には、有機溶剤や水が用いられる。
 この有機溶剤を含有することで、被めっき層に対するめっき触媒又は前駆体の浸透性が向上し、相互作用性基に効率よくめっき触媒又はその前駆体を吸着させることができる。
(Organic solvent and water)
As described above, the plating catalyst or precursor as described above is applied to the layer to be plated as a dispersion or solution (catalyst solution).
An organic solvent or water is used for the catalyst solution in the present invention.
By containing this organic solvent, the permeability of the plating catalyst or precursor to the layer to be plated is improved, and the plating catalyst or precursor thereof can be efficiently adsorbed to the interactive group.
 本発明における触媒液には、水を用いてもよく、この水としては、不純物を含まないことが好ましく、そのような観点からは、RO水(逆浸透膜濾過水)や脱イオン水、蒸留水、精製水などを用いるのが好ましく、脱イオン水や蒸留水を用いるのが特に好ましい。 Water may be used for the catalyst solution in the present invention, and it is preferable that this water does not contain impurities. From such a viewpoint, RO water (reverse osmosis membrane filtered water), deionized water, distillation Water, purified water or the like is preferably used, and deionized water or distilled water is particularly preferably used.
 めっき触媒液の調製に用いられる有機溶剤としては、被めっき層に浸透しうる溶剤であれば特に制限は無いが、具体的には、アセトン、アセト酢酸メチル、アセト酢酸エチル、エチレングリコールジアセテート、シクロヘキサノン、アセチルアセトン、アセトフェノン、2-(1-シクロヘキセニル)、プロピレングリコールジアセテート、トリアセチン、ジエチレングリコールジアセテート、ジオキサン、N-メチルピロリドン、ジメチルカーボネート、ジメチルセロソルブなどを用いることができる。 The organic solvent used for the preparation of the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the layer to be plated. Specifically, acetone, methyl acetoacetate, ethyl acetoacetate, ethylene glycol diacetate, Cyclohexanone, acetylacetone, acetophenone, 2- (1-cyclohexenyl), propylene glycol diacetate, triacetin, diethylene glycol diacetate, dioxane, N-methylpyrrolidone, dimethyl carbonate, dimethyl cellosolve, and the like can be used.
 また、その他の有機溶剤としては、ダイアセトンアルコール、γブチロラクトン、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、テトラヒドロフラン、1,4ジオキサン、n-メチル-2-ピロリドンなどが挙げられる。 Other organic solvents include diacetone alcohol, γ-butyrolactone, methanol, ethanol, isopropyl alcohol, normal propyl alcohol, propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, ethylene glycol tertiary butyl ether, tetrahydrofuran, 1,4 dioxane. N-methyl-2-pyrrolidone and the like.
 特に、めっき触媒又はその前駆体との相溶性、及び被めっき層への浸透性の観点では水溶性の有機溶剤が好ましく、アセトン、ジメチルカーボネート、ジメチルセロソルブ、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルが好ましい。 In particular, a water-soluble organic solvent is preferable from the viewpoint of compatibility with a plating catalyst or a precursor thereof and permeability to a layer to be plated. Acetone, dimethyl carbonate, dimethyl cellosolve, triethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether is preferred.
 更に、本発明における触媒液には、目的に応じて他の添加剤を含有することができる。
 他の添加剤としては、例えば、膨潤剤(ケトン、アルデヒド、エーテル、エステル類等の有機化合物など)や、界面活性剤(アニオン性、カチオン性、双性、ノニオン性及び低分子性又は高分子性など)などが挙げられる。
Furthermore, the catalyst solution in the present invention may contain other additives depending on the purpose.
Other additives include, for example, swelling agents (organic compounds such as ketones, aldehydes, ethers, esters, etc.) and surfactants (anionic, cationic, zwitterionic, nonionic and low molecular or high molecular weight). Etc.).
 以上説明しためっき触媒付与工程を経ることで、被めっき層中の相互作用性基とめっき触媒又はその前駆体との間に相互作用を形成することができる。 By passing through the plating catalyst provision process demonstrated above, interaction can be formed between the interactive group in a to-be-plated layer, and a plating catalyst or its precursor.
〔めっき工程〕
 上述のようにして、めっき触媒又はその前駆体が付与された被めっき層に対して、めっきを行うことで、めっき膜が形成される。形成されためっき膜は、優れた導電性、密着性を有する。
 本工程において行われるめっきの種類は、無電解めっき、電気めっき等が挙げられ、前記めっき触媒付与工程において、被めっき層との間に相互作用を形成しためっき触媒又はその前駆体の機能によって、選択することができる。
 つまり、本工程では、めっき触媒又はその前駆体が付与された被めっき層に対し、電気めっきを行ってもよいし、無電解めっきを行ってもよい。
 中でも、本発明においては、被めっき層中に発現するハイブリッド構造の形成性及び密着性向上の点から、無電解めっきを行うことが好ましい。また、所望の膜厚のめっき膜を得るために、無電解めっきの後に、更に電気めっきを行うことがより好ましい態様である。
 以下、本工程において好適に行われるめっきについて説明する。
[Plating process]
As described above, a plating film is formed by performing plating on the layer to be plated to which the plating catalyst or its precursor has been applied. The formed plating film has excellent conductivity and adhesion.
The type of plating performed in this step includes electroless plating, electroplating, etc., and in the plating catalyst application step, depending on the function of the plating catalyst or its precursor that forms an interaction with the layer to be plated, You can choose.
That is, in this step, electroplating may be performed on the layer to be plated to which the plating catalyst or its precursor has been applied, or electroless plating may be performed.
Among these, in the present invention, it is preferable to perform electroless plating from the viewpoint of improving the formability and adhesion of the hybrid structure that appears in the layer to be plated. Further, in order to obtain a plating film having a desired film thickness, it is a more preferable aspect that electroplating is further performed after electroless plating.
Hereinafter, the plating suitably performed in this step will be described.
(無電解めっき)
 無電解めっきとは、めっきとして析出させたい金属イオンを溶かした溶液を用いて、化学反応によって金属を析出させる操作のことをいう。
 本工程における無電解めっきは、例えば、無電解めっき触媒が付与された被めっき層を有する支持体を、水洗して余分な無電解めっき触媒(金属)を除去した後、無電解めっき浴に浸漬して行なう。使用される無電解めっき浴としては一般的に知られている無電解めっき浴を使用することができる。
 また、無電解めっき触媒前駆体が付与された被めっき層を有する支持体を、無電解めっき触媒前駆体が被めっき層に吸着又は含浸した状態で無電解めっき浴に浸漬する場合には、基板を水洗して余分な前駆体(金属塩など)を除去した後、無電解めっき浴中へ浸漬される。この場合には、無電解めっき浴中において、めっき触媒前駆体の還元とこれに引き続き無電解めっきが行われる。ここで使用される無電解めっき浴としても、上記同様、一般的に知られている無電解めっき浴を使用することができる。
 なお、無電解めっき触媒前駆体の還元は、上記のような無電解めっき液を用いる態様とは別に、触媒活性化液(還元液)を準備し、無電解めっき前の別工程として行うことも可能である。触媒活性化液は、無電解めっき触媒前駆体(主に金属イオン)を0価金属に還元できる還元剤を溶解した液で、液全体に対する該還元剤の濃度が0.1質量%~50質量%、好ましくは1質量%~30質量%がよい。還元剤としては、水素化ホウ素ナトリウム、ジメチルアミンボランのようなホウ素系還元剤、ホルムアルデヒド、次亜リン酸などの還元剤を使用することが可能である。
 浸漬の際には、無電解めっき触媒又はその前駆体が接触する被めっき層表面付近の無電解めっき触媒又はその前駆体の濃度を一定に保つ上で、攪拌或いは揺動を加えながら浸漬することが好ましい。
(Electroless plating)
Electroless plating refers to an operation of depositing a metal by a chemical reaction using a solution in which metal ions to be deposited as a plating are dissolved.
In the electroless plating in this step, for example, a support having a layer to be plated to which an electroless plating catalyst is applied is washed with water to remove excess electroless plating catalyst (metal), and then immersed in an electroless plating bath. And do it. As the electroless plating bath to be used, a generally known electroless plating bath can be used.
In addition, when a support having a layer to be plated with an electroless plating catalyst precursor is immersed in an electroless plating bath in a state where the electroless plating catalyst precursor is adsorbed or impregnated in the layer to be plated, a substrate is used. Is washed with water to remove excess precursor (metal salt, etc.) and then immersed in an electroless plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless plating are performed in the electroless plating bath. As the electroless plating bath used here, a generally known electroless plating bath can be used as described above.
In addition, the reduction of the electroless plating catalyst precursor may be performed as a separate step before electroless plating by preparing a catalyst activation liquid (reducing liquid) separately from the embodiment using the electroless plating liquid as described above. Is possible. The catalyst activation liquid is a liquid in which a reducing agent capable of reducing electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 mass% to 50 mass. %, Preferably 1% by mass to 30% by mass. As the reducing agent, it is possible to use a boron-based reducing agent such as sodium borohydride or dimethylamine borane, or a reducing agent such as formaldehyde or hypophosphorous acid.
When dipping, maintain the concentration of the electroless plating catalyst or its precursor in the vicinity of the surface of the layer to be plated with which the electroless plating catalyst or its precursor comes into contact, and soak with stirring or shaking. Is preferred.
 一般的な無電解めっき浴の組成としては、溶剤の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤など公知の添加物が含まれていてもよい。 General composition of electroless plating bath is as follows: 1. metal ions for plating; 2. reducing agent; Additives (stabilizers) that improve the stability of metal ions are mainly included. In addition to these, the plating bath may contain known additives such as a plating bath stabilizer.
 めっき浴に用いられる有機溶剤としては、水に可溶な溶媒である必要があり、その点から、アセトンなどのケトン類、メタノール、エタノール、イソプロパノールなどのアルコール類が好ましく用いられる。 The organic solvent used in the plating bath needs to be a water-soluble solvent, and from this point, ketones such as acetone and alcohols such as methanol, ethanol, and isopropanol are preferably used.
 無電解めっき浴に用いられる金属の種類としては、銅、すず、鉛、ニッケル、金、パラジウム、ロジウムが知られており、中でも、導電性の観点からは、銅、金が特に好ましい。 As the types of metals used in the electroless plating bath, copper, tin, lead, nickel, gold, palladium, and rhodium are known, and copper and gold are particularly preferable from the viewpoint of conductivity.
 また、上記金属に合わせて最適な還元剤、添加物が選択される。
 例えば、銅の無電解めっきの浴は、銅塩としてCuSO、還元剤としてHCOH、添加剤として銅イオンの安定剤であるEDTAやロッシェル塩などのキレート剤、トリアルカノールアミンなどが含まれている。
 また、CoNiPの無電解めっきに使用されるめっき浴には、その金属塩として硫酸コバルト、硫酸ニッケル、還元剤として次亜リン酸ナトリウム、錯化剤としてマロン酸ナトリウム、りんご酸ナトリウム、こはく酸ナトリウムが含まれている。また、パラジウムの無電解めっき浴は、金属イオンとして(Pd(NH)Cl、還元剤としてNH、HNNH、安定化剤としてEDTAが含まれている。これらのめっき浴には、上記成分以外の成分が入っていてもよい。
Moreover, the optimal reducing agent and additive are selected according to the said metal.
For example, a copper electroless plating bath contains CuSO 4 as a copper salt, HCOH as a reducing agent, a chelating agent such as EDTA or Rochelle salt, which is a stabilizer of copper ions, and a trialkanolamine. .
The plating bath used for electroless plating of CoNiP includes cobalt sulfate and nickel sulfate as metal salts, sodium hypophosphite as a reducing agent, sodium malonate, sodium malate, and sodium succinate as complexing agents. It is included. Moreover, the electroless plating bath of palladium contains (Pd (NH 3 ) 4 ) Cl 2 as metal ions, NH 3 and H 2 NNH 2 as reducing agents, and EDTA as a stabilizer. These plating baths may contain components other than the above components.
 このようにして形成される無電解めっきによるめっき膜の膜厚は、めっき浴の金属イオン濃度、めっき浴への浸漬時間、或いは、めっき浴の温度などにより制御することができるが、導電性の観点からは、0.1μm以上であることが好ましく、0.2μm~2μmであることがより好ましい。
 ただし、無電解めっきによるめっき膜を導通層として、後述する電気めっきを行う場合は、少なくとも0.1μm以上の膜が均一に付与されていればよい。
 また、めっき浴への浸漬時間としては、1分~6時間程度であることが好ましく、1分~3時間程度であることがより好ましい。
The thickness of the plating film formed by electroless plating can be controlled by the metal ion concentration of the plating bath, the immersion time in the plating bath, or the temperature of the plating bath. From the viewpoint, it is preferably 0.1 μm or more, and more preferably 0.2 μm to 2 μm.
However, when electroplating described later is performed using a plating film formed by electroless plating as a conductive layer, it is sufficient that a film of at least 0.1 μm or more is provided uniformly.
The immersion time in the plating bath is preferably about 1 minute to 6 hours, and more preferably about 1 minute to 3 hours.
 以上のようにして得られた無電解めっきによるめっき膜は、走査型電子顕微鏡(SEM)による断面観察により、被めっき層中にめっき触媒やめっき金属からなる微粒子が高密度で分散していること、また更に被めっき層上にめっき金属が析出していることが確認される。被めっき層とめっき膜との界面は、樹脂複合体と微粒子とのハイブリッド状態であるため、被めっき層(有機成分)と無機物(めっき触媒金属又はめっき金属)との界面が平滑(例えば、1mmの領域でRaが1.5μm以下)であっても、密着性が良好となる。 The plating film obtained by electroless plating obtained as described above has fine particles of a plating catalyst and a plating metal dispersed at a high density in the layer to be plated by cross-sectional observation with a scanning electron microscope (SEM). Further, it is confirmed that the plating metal is deposited on the layer to be plated. Since the interface between the layer to be plated and the plating film is a hybrid state of the resin composite and fine particles, the interface between the layer to be plated (organic component) and the inorganic substance (plating catalyst metal or plating metal) is smooth (for example, 1 mm Adhesiveness is good even if Ra is 1.5 μm or less in the region 2 .
(電気めっき)
 本工程おいては、めっき触媒付与工程において付与されためっき触媒又はその前駆体が電極としての機能を有する場合、その触媒又はその前駆体が付与された被めっき層に対して、電気めっきを行うことができる。
 また、前述の無電解めっきの後、形成されためっき膜を電極とし、更に、電気めっきを行ってもよい。これにより基板との密着性に優れた無電解めっき膜をベースとして、そこに新たに任意の厚みをもつ金属膜を容易に形成することができる。このように、無電解めっきの後に、電気めっきを行うことで、めっき膜を目的に応じた厚みに形成しうるため、得られためっき膜を種々の応用に適用するのに好適である。
(Electroplating)
In this step, when the plating catalyst or its precursor applied in the plating catalyst application step has a function as an electrode, electroplating is performed on the layer to be plated to which the catalyst or its precursor is applied. be able to.
In addition, after the above-described electroless plating, the formed plating film may be used as an electrode, and electroplating may be further performed. As a result, a new metal film having an arbitrary thickness can be easily formed on the electroless plating film having excellent adhesion to the substrate. Thus, since electroplating is performed after electroless plating, the plating film can be formed to a thickness according to the purpose, and thus the obtained plating film is suitable for application to various applications.
 本発明における電気めっきの方法としては、従来公知の方法を用いることができる。なお、本工程の電気めっきに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。 A conventionally known method can be used as the electroplating method in the present invention. In addition, as a metal used for the electroplating of this process, copper, chromium, lead, nickel, gold, silver, tin, zinc, etc. are mentioned. From the viewpoint of conductivity, copper, gold, and silver are preferable, and copper is preferable. More preferred.
 また、電気めっきにより得られるめっき膜の膜厚は、めっき浴中に含まれる金属濃度、又は、電流密度などを調整することで制御することができる。
 なお、得られためっき膜を一般的な電気配線などに適用する場合の金属膜の膜厚は、導電性の観点から、0.5μm以上であることが好ましく、1μm~30μmがより好ましい。
 なお、電気配線の厚みは、電気配線の線幅が狭くなる、すなわち微細化するほどアスペクト比を維持するために薄くなる。従って、電気めっきによって形成されるめっき膜の層厚は、上記に限定されず、任意に設定できる。
 2009年9月18日出願の日本特許出願第2009-217794号公報は、その開示全体がここに参照文献として組み込まれるものである。
 
Moreover, the film thickness of the plating film obtained by electroplating can be controlled by adjusting the metal concentration contained in the plating bath, the current density, or the like.
Note that the thickness of the metal film when the obtained plated film is applied to general electric wirings is preferably 0.5 μm or more, more preferably 1 μm to 30 μm from the viewpoint of conductivity.
In addition, the thickness of the electrical wiring is reduced in order to maintain the aspect ratio as the line width of the electrical wiring is reduced, that is, as the size is reduced. Therefore, the thickness of the plating film formed by electroplating is not limited to the above, and can be set arbitrarily.
Japanese Patent Application No. 2009-217794, filed on Sep. 18, 2009, the entire disclosure of which is incorporated herein by reference.
 以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「%」「部」は質量基準である。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto. Unless otherwise specified, “%” and “part” are based on mass.
〔実施例1~3〕
 アクリロニトリル-スチレン共重合体(AS)樹脂(Aldrich(株)、ガラス転移温度:100℃)をシクロヘキサノン(沸点:156℃)に溶かした液(9質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が6μmになるように塗布)。
 その後、得られた塗膜を有する基板を、水(沸点:100℃、実施例1)、メタノール(沸点:64.7℃、実施例2)、又は水/メタノール(1/1)混合液(実施例3)に、10秒間浸漬した。水/メタノール(1/1)混合液を既述のように加熱して測定した混合液の沸点は71℃であった。
 浸漬後の塗膜中のシクロヘキサノンの残存量を測定したところ、7.5質量%(実施例1)、6.0質量%(実施例2)、8.8質量%(実施例3)であった。
[Examples 1 to 3]
A solution (9% by mass solution) of acrylonitrile-styrene copolymer (AS) resin (Aldrich Co., Ltd., glass transition temperature: 100 ° C.) dissolved in cyclohexanone (boiling point: 156 ° C.) was prepared. It applied to the glass epoxy resin board | substrate using the coater (it applied so that the film thickness might be 6 micrometers after drying).
Then, the board | substrate which has the obtained coating film is water (boiling point: 100 degreeC, Example 1), methanol (boiling point: 64.7 degreeC, Example 2), or a water / methanol (1/1) liquid mixture ( It was immersed for 10 seconds in Example 3). The boiling point of the mixture measured by heating the water / methanol (1/1) mixture as described above was 71 ° C.
When the residual amount of cyclohexanone in the coating film after immersion was measured, it was 7.5% by mass (Example 1), 6.0% by mass (Example 2), and 8.8% by mass (Example 3). It was.
 その後、オーブンを用いて、60℃で5分間乾燥した。
 乾燥後、得られたポリマー層中のシクロヘキサノンの残存量を、図1に示す。
 また、得られたポリマー層をFEI製Nova-200型FIB-SEMを用い、FIBによる断面加工を行った後、断面SEM観察したところ、ボイドはみられなかった。
Then, it dried for 5 minutes at 60 degreeC using oven.
FIG. 1 shows the residual amount of cyclohexanone in the polymer layer obtained after drying.
Further, the obtained polymer layer was subjected to cross section processing by FIB using a FEI Nova-200 type FIB-SEM, and then a cross section SEM observation showed no voids.
〔比較例1~4〕
 実施例1で用いたAS樹脂をシクロヘキサノンに溶かした液(9質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が6μmになるように塗布)。
 その後、60℃8hの加熱乾燥し、その後、常温で0日間(比較例1)、1日間(比較例2)、3日間(比較例3)、又は7日間(比較例4)、真空乾燥した。
[Comparative Examples 1 to 4]
A liquid (9% by mass solution) obtained by dissolving the AS resin used in Example 1 in cyclohexanone was prepared and applied to a glass epoxy resin substrate using a spin coater (so that the film thickness after drying was 6 μm). Applied to).
Thereafter, it was heated and dried at 60 ° C. for 8 hours, and then dried at room temperature for 0 days (Comparative Example 1), 1 day (Comparative Example 2), 3 days (Comparative Example 3), or 7 days (Comparative Example 4). .
 乾燥後、得られたポリマー層中のシクロヘキサノンの残存量を、図2に示す。また、実施例の比較のために、実施例2の乾燥後、得られたポリマー層中のシクロヘキサノンの残存量を図2に示す。
 図2から明らかなように、実施例2のように塗膜とメタノールを接触させることで、シクロヘキサノンの塗膜中の残存量が、比較例のように長期間真空乾燥させた場合よりも大きく減少していることが分かる。
 また、得られたポリマー層をFEI製Nova-200型FIB-SEMを用い、FIBによる断面加工を行った後、断面SEM観察したところ、ボイドが形成されていることが分かった。
The residual amount of cyclohexanone in the polymer layer obtained after drying is shown in FIG. For comparison of the examples, the residual amount of cyclohexanone in the polymer layer obtained after drying of Example 2 is shown in FIG.
As is clear from FIG. 2, by contacting the coating film with methanol as in Example 2, the remaining amount of cyclohexanone in the coating film is greatly reduced as compared with the case of vacuum drying for a long period of time as in the comparative example. You can see that
Further, when the obtained polymer layer was subjected to cross-sectional processing by FIB using a FEI Nova-200 type FIB-SEM, cross-sectional SEM observation revealed that voids were formed.
〔実施例4~6〕
 実施例1で用いたAS樹脂をN-エチルモルホリン(沸点:138℃)に溶かした液(3質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が1μmになるように塗布)。
 その後、得られた塗膜を有する基板を、水(沸点:100℃、実施例4)、エタノール(沸点:78.4℃、実施例5)、イソプロパノール(沸点:82.4℃、実施例6)に、10秒間浸漬した。
 浸漬後の塗膜中のN-エチルモルホリンの残存量を測定したところ、0.95質量%(実施例4)、0.56質量%(実施例5)、0.93質量%(実施例6)であった。
[Examples 4 to 6]
A liquid (3% by mass solution) obtained by dissolving the AS resin used in Example 1 in N-ethylmorpholine (boiling point: 138 ° C.) was prepared, and this was applied to a glass epoxy resin substrate using a spin coater ( (Apply so that the film thickness is 1 μm after drying).
Thereafter, the substrate having the obtained coating film was subjected to water (boiling point: 100 ° C., Example 4), ethanol (boiling point: 78.4 ° C., Example 5), isopropanol (boiling point: 82.4 ° C., Example 6). ) For 10 seconds.
When the residual amount of N-ethylmorpholine in the coating film after immersion was measured, it was 0.95% by mass (Example 4), 0.56% by mass (Example 5), 0.93% by mass (Example 6). )Met.
 その後、実施例1と同様にしてオーブンを用いて、60℃で5分間乾燥した。
 乾燥後、得られたポリマー層中のN-エチルモルホリンの残存量を、図3に示す。
 また、乾燥後、得られたポリマー層をFEI製Nova-200型FIB-SEMを用い、FIBによる断面加工を行った後、断面SEM観察したところ、いずれの試料にもボイドはみられなかった。
Then, it dried at 60 degreeC for 5 minute (s) using the oven similarly to Example 1. FIG.
FIG. 3 shows the residual amount of N-ethylmorpholine in the polymer layer obtained after drying.
Further, after drying, the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
〔比較例5〕
 実施例1で用いたAS樹脂をN-エチルモルホリン(沸点:138℃)に溶かした液(3質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が1μmになるように塗布)。
 その後、塗膜を有する基板を60℃8hで加熱乾燥し、乾燥後のポリマー層中のN-エチルモルホリンの残存量を測定した。その結果を図3に示す。
[Comparative Example 5]
A liquid (3% by mass solution) obtained by dissolving the AS resin used in Example 1 in N-ethylmorpholine (boiling point: 138 ° C.) was prepared, and this was applied to a glass epoxy resin substrate using a spin coater ( (Apply so that the film thickness is 1 μm after drying).
Thereafter, the substrate having the coating film was dried by heating at 60 ° C. for 8 hours, and the residual amount of N-ethylmorpholine in the polymer layer after drying was measured. The result is shown in FIG.
 図3から明らかなように、実施例4~6のように溶剤Aを接触させることで、N-エチルモルホリンの塗膜中の残存量が、比較例5のように長期間乾燥させた場合よりも大きく減少していることが分かる。 As is clear from FIG. 3, by contacting the solvent A as in Examples 4 to 6, the residual amount of N-ethylmorpholine in the coating film was higher than that in the case of drying for a long time as in Comparative Example 5. It can be seen that there is a significant decrease.
〔実施例7~9〕
 実施例1で用いたAS樹脂に代えて、ポリメタクリル酸メチル樹脂(Aldrich(株)、ガラス転移温度:99℃)(PMMA樹脂)をシクロヘキサノンに溶かした液(3質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が3μmになるように塗布)。その後、得られた塗膜を有する基板を、水(沸点:100℃、実施例7)、エタノール(沸点:78.4℃、実施例8)、イソプロパノール(沸点:82.4℃、実施例9)に、10秒間浸漬した。
 浸漬後の塗膜中のシクロヘキサノンの残存量を測定したところ、3.83質量%(実施例7)、3.32質量%(実施例8)、2.04質量%(実施例9)であった。
[Examples 7 to 9]
Instead of the AS resin used in Example 1, a liquid (3 mass% solution) prepared by dissolving polymethyl methacrylate resin (Aldrich Co., Ltd., glass transition temperature: 99 ° C.) (PMMA resin) in cyclohexanone was prepared. This was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 3 μm). Thereafter, the substrate having the obtained coating film was subjected to water (boiling point: 100 ° C., Example 7), ethanol (boiling point: 78.4 ° C., Example 8), isopropanol (boiling point: 82.4 ° C., Example 9). ) For 10 seconds.
When the residual amount of cyclohexanone in the coating film after immersion was measured, it was 3.83% by mass (Example 7), 3.32% by mass (Example 8), and 2.04% by mass (Example 9). It was.
 その後、実施例1と同様にしてオーブンを用いて、60℃で5分間乾燥した。
 乾燥後、得られたポリマー層中のシクロヘキサノンの残存量を、図4に示す。
 また、乾燥後、得られたポリマー層をFEI製Nova-200型FIB-SEMを用い、FIBによる断面加工を行った後、断面SEM観察したところ、いずれの試料にもボイドはみられなかった。
Then, it dried at 60 degreeC for 5 minute (s) using the oven similarly to Example 1. FIG.
FIG. 4 shows the residual amount of cyclohexanone in the polymer layer obtained after drying.
Further, after drying, the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
〔比較例6〕
 実施例7~9で用いたPMMA樹脂をシクロヘキサノンに溶かした液(3質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が3μmになるように塗布)。
 その後、塗膜を有する基板を60℃8hで加熱乾燥し、乾燥後のポリマー層中のシクロヘキサノンの残存量を測定した。その結果を図4に示す。
[Comparative Example 6]
A liquid (3 mass% solution) obtained by dissolving the PMMA resin used in Examples 7 to 9 in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (the film thickness after drying was 3 μm). To be applied).
Then, the board | substrate which has a coating film was heat-dried at 60 degreeC for 8 hours, and the residual amount of cyclohexanone in the polymer layer after drying was measured. The result is shown in FIG.
 図4から明らかなように、実施例7~9のように溶剤Aを接触させることで、シクロヘキサノンの塗膜中の残存量が、比較例6のように長期間乾燥させた場合よりも大きく減少していることが分かる。 As is clear from FIG. 4, by contacting the solvent A as in Examples 7 to 9, the residual amount of cyclohexanone in the coating film was greatly reduced as compared with the case of drying for a long time as in Comparative Example 6. You can see that
〔実施例10、11、参考例1〕
 AS樹脂をシクロヘキサノンに溶かした液(9質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が6μmになるように塗布)。
 その後、得られた塗膜を有する基板を、60℃4hの加熱乾燥(参考例1)に供し、その乾燥後、水(沸点:100℃、実施例10)、又はメタノール(沸点:64.7℃、実施例11)に、10秒間浸漬した。
 ここで、60℃4hの加熱乾燥後の塗膜中のシクロヘキサノンの残存量を測定したところ、13.2質量%(参考例1)であった。
 また、接触後の塗膜中のシクロヘキサノンの残存量を測定したところ、11.9質量%(実施例10)、11.1質量%(実施例11)であった。
[Examples 10 and 11, Reference Example 1]
A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 μm).
Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 4 hours (Reference Example 1). After the drying, water (boiling point: 100 ° C., Example 10) or methanol (boiling point: 64.7). C. for 10 seconds in Example 11).
Here, when the residual amount of cyclohexanone in the coating film after drying at 60 ° C. for 4 hours was measured, it was 13.2% by mass (Reference Example 1).
Moreover, it was 11.9 mass% (Example 10) and 11.1 mass% (Example 11) when the residual amount of the cyclohexanone in the coating film after contact was measured.
 その後、実施例1と同様にしてオーブンを用いて、60℃で5分間乾燥した。
 乾燥後、得られたポリマー層中のシクロヘキサノンの残存量を、図5に示す。また、比較のため、60℃4hの加熱乾燥後(参考例1)の塗膜中のシクロヘキサノンの残存量と、実施例1及び実施例2の得られたポリマー層中のシクロヘキサノンの残存量と、を図5に示す。
 また、乾燥後、得られたポリマー層をFEI製Nova-200型FIB-SEMを用い、FIBによる断面加工を行った後、断面SEM観察したところ、いずれの試料にもボイドはみられなかった。
Then, it dried at 60 degreeC for 5 minute (s) using the oven similarly to Example 1. FIG.
FIG. 5 shows the remaining amount of cyclohexanone in the polymer layer obtained after drying. For comparison, the residual amount of cyclohexanone in the coating film after heating and drying at 60 ° C. for 4 hours (Reference Example 1), the residual amount of cyclohexanone in the polymer layers obtained in Examples 1 and 2, and Is shown in FIG.
Further, after drying, the polymer layer obtained was subjected to cross section processing by FIB using Nova-200 type FIB-SEM manufactured by FEI, and then observed by cross section SEM, no void was observed in any of the samples.
 図5から明らかなように、塗膜を60℃4hの加熱乾燥した後に、水やエタノールと接触させた場合(実施例11、12)に対し、塗膜に対して加熱乾燥を行わずに、水やエタノールと接触させた場合(実施例1、2)では、得られたポリマー層中のシクロヘキサノンの残存量が非常に小さいことが分かる。
 これにより、最終的に得られるポリマー層中の溶媒Aの残存量を減らすためには、本発明における(a)工程と(b)工程との間には乾燥工程を含まないことが好ましいことが分かる。
As is clear from FIG. 5, when the coating film was heated and dried at 60 ° C. for 4 hours and then contacted with water or ethanol (Examples 11 and 12), the coating film was not dried by heating. In the case of contact with water or ethanol (Examples 1 and 2), it can be seen that the residual amount of cyclohexanone in the obtained polymer layer is very small.
Thereby, in order to reduce the residual amount of the solvent A in the finally obtained polymer layer, it is preferable that a drying step is not included between the steps (a) and (b) in the present invention. I understand.
〔実施例12、13、比較例7〕
 AS樹脂をシクロヘキサノンに溶かした液(9質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が6μmになるように塗布)。
 その後、得られた塗膜を有する基板を、60℃1hの加熱乾燥(比較例7)に供し、ポリマー層を形成させた。
 他に、得られた塗膜を有する基板を、水(沸点:100℃、実施例12)に5分間浸漬、又はメタノール(沸点:64.7℃、実施例13)に3分間浸漬させた後、60℃で5分間乾燥させてポリマー層を形成させた。
[Examples 12 and 13, Comparative Example 7]
A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 μm).
Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 1 h (Comparative Example 7) to form a polymer layer.
In addition, the substrate having the obtained coating film was immersed in water (boiling point: 100 ° C., Example 12) for 5 minutes, or immersed in methanol (boiling point: 64.7 ° C., Example 13) for 3 minutes. The polymer layer was formed by drying at 60 ° C. for 5 minutes.
 得られたポリマー層を60℃95%で100h保持し、その後、接着剤を用いて冶具と固定し、引張試験機((株)島津製作所製、オートグラフ)を用いて、引張強度10mm/minにて、90°ピール強度の測定を行ったところ、それぞれ、0.24kN/m(比較例7)、0.52kN/m(実施例12)、0.45kN/m(実施例13)であった。なお、剥離部分を観察したところ、全てAS樹脂の内部破壊であった。結果を図6に示す。
 この結果より、本発明のポリマー層の形成方法により、ボイドのないポリマー層を形成することができ、その結果として、ポリマー層の膜強度が高くなることが分かる。
The obtained polymer layer was held at 60 ° C. and 95% for 100 hours, and then fixed to a jig using an adhesive, and a tensile strength tester (manufactured by Shimadzu Corporation, Autograph) was used to obtain a tensile strength of 10 mm / min. The 90 ° peel strength was measured at 0.24 kN / m (Comparative Example 7), 0.52 kN / m (Example 12), and 0.45 kN / m (Example 13), respectively. It was. In addition, when the peeling part was observed, it was all internal destruction of AS resin. The results are shown in FIG.
From this result, it can be seen that a void-free polymer layer can be formed by the method for forming a polymer layer of the present invention, and as a result, the film strength of the polymer layer is increased.
〔実施例14、15、比較例8〕
 AS樹脂をシクロヘキサノンに溶かした液(9質量%溶液)を調液し、これを、スピンコーターを用いてガラスエポキシ樹脂基板に塗布した(乾燥後皮膜厚が6μmになるように塗布)。
 その後、得られた塗膜を有する基板を、60℃1hの加熱乾燥(比較例8)に供し、ポリマー層を形成させた。
 他に、得られた塗膜を有する基板を、水(沸点:100℃、実施例14)に5分間浸漬、又はメタノール(沸点:64.7℃、実施例15)に3分間浸漬させた後、60℃で5分間乾燥させてポリマー層を形成させた。
[Examples 14 and 15, Comparative Example 8]
A liquid (9% by mass solution) obtained by dissolving AS resin in cyclohexanone was prepared, and this was applied to a glass epoxy resin substrate using a spin coater (applied so that the film thickness after drying was 6 μm).
Thereafter, the substrate having the obtained coating film was subjected to heat drying at 60 ° C. for 1 h (Comparative Example 8) to form a polymer layer.
In addition, the substrate having the obtained coating film was immersed in water (boiling point: 100 ° C., Example 14) for 5 minutes, or immersed in methanol (boiling point: 64.7 ° C., Example 15) for 3 minutes. The polymer layer was formed by drying at 60 ° C. for 5 minutes.
 得られたポリマー層の空隙率を以下の方法で測定したところ、それぞれ58%(比較例8)、0%(実施例14)、0%(実施例15)であった。
 得られた実施例14、15、及び比較例8のポリマー層について、FEI製Nova-200型FIB-SEMを用い、それぞれの無作為に1ヶ所、FIBによる断面加工を行った後(加速電圧30kV)、断面SEM観察を行った(加速電圧2kV)。
 なお、空隙率は、約10μm×10μmのサイズの断面SEM写真を用い、この断面SEM写真に写っているボイド(空隙)の面積と、かかるボイドを含むポリマー層の総面積を計算し、下記式(1)のように、ボイドの面積をポリマー層の総面積で割り、これに100を掛けることで求めた。1つ1つのボイドの断面は、極めて円に近い形をしているため、円又は楕円として扱い、その直径(楕円の場合は長い方と短い方の直径)から面積を求め、足し合わせることで、断面SEM写真中のボイドの面積を求めた。
 式(1)  空隙率(%)=ボイドの面積/ポリマー層の総面積×100
 この結果より、本発明のポリマー層の形成方法により、ボイドがなく、空隙率の低いポリマー層を形成することができることが分かる。
The porosity of the obtained polymer layer was measured by the following method and found to be 58% (Comparative Example 8), 0% (Example 14), and 0% (Example 15), respectively.
The obtained polymer layers of Examples 14 and 15 and Comparative Example 8 were subjected to FIB Nova-200 type FIB-SEM and subjected to FIB cross section processing at one random location (acceleration voltage 30 kV). ), Cross-sectional SEM observation was performed (acceleration voltage 2 kV).
The porosity is calculated by calculating the area of voids (voids) in the cross-sectional SEM photograph and the total area of the polymer layer containing the voids using a cross-sectional SEM photograph having a size of about 10 μm × 10 μm. As in (1), the void area was divided by the total area of the polymer layer and multiplied by 100. Since the cross section of each void is very close to a circle, treat it as a circle or an ellipse, find the area from its diameter (longer and shorter diameter in the case of an ellipse), and add them together. The area of voids in the cross-sectional SEM photograph was determined.
Formula (1) Porosity (%) = void area / total area of polymer layer × 100
From this result, it can be seen that the polymer layer forming method of the present invention can form a polymer layer having no voids and a low porosity.
 以上のように、前記各実施例では、塗膜に対して水及び/又はアルコールを10秒という短時間、接触させることで、塗膜中のシクロヘキサノンやN-エチルモルホリン(溶剤A)の大部分が除去されることが分かった。また、塗膜への液体Bの接触は、塗膜を乾燥する前に行うことが、溶媒Aの除去効果が高くなるため、好ましいことが分かった。また、塗膜中の溶剤Aの多くが除去されることで、ポリマー層中のボイド(空隙)が形成され難いことが分かった。
 このように、本発明の方法によれば、ポリマーの塗布溶媒とそれを浸漬する液体とを選択することで、より短時間で、ポリマー層中の溶媒を除去することができ、ボイドのないポリマー層を、短い乾燥時間で形成可能であることが分かる。そして、ボイドのないポリマー層を形成することで、膜強度が高くなることが分かった。
As described above, in each of the above embodiments, most of the cyclohexanone and N-ethylmorpholine (solvent A) in the coating film were obtained by bringing water and / or alcohol into contact with the coating film for a short time of 10 seconds. Was found to be removed. Moreover, since the removal effect of the solvent A became high, it turned out that it is preferable to perform the contact of the liquid B to a coating film before drying a coating film. Moreover, it turned out that the void (void | void) in a polymer layer is hard to be formed by removing most of the solvent A in a coating film.
As described above, according to the method of the present invention, the solvent in the polymer layer can be removed in a shorter time by selecting the polymer coating solvent and the liquid in which the polymer is immersed, and the polymer without voids. It can be seen that the layer can be formed in a short drying time. And it turned out that film | membrane intensity | strength becomes high by forming a polymer layer without a void.
 本発明によれば、ボイドのないポリマー層を、塗布液に用いる溶媒の沸点に関わらず、短い乾燥時間で形成することが可能な、ポリマー層の形成方法を提供することができる。
 本発明のポリマー層の形成方法により、膜強度の面内均一性に優れたポリマー層を得ることができる。
 また、通常、乾燥工程において大気中に拡散させてしまう塗布液に用いる溶媒に関して、本発明ではこの溶媒に相当する溶媒Aを液体B中に回収することができるため、環境負荷を軽減することができる。
ADVANTAGE OF THE INVENTION According to this invention, the formation method of a polymer layer which can form a polymer layer without a void in short drying time irrespective of the boiling point of the solvent used for a coating liquid can be provided.
According to the method for forming a polymer layer of the present invention, a polymer layer having excellent in-plane uniformity of film strength can be obtained.
In addition, regarding the solvent used for the coating solution that normally diffuses into the atmosphere in the drying step, the present invention can recover the solvent A corresponding to this solvent in the liquid B, thereby reducing the environmental burden. it can.
 本発明の具体的態様の前記記述は、記述と説明の目的で提供するものである。開示された、まさにその形態に本発明を限定することを企図するものでもなく、或いは網羅的なものを企図するものでもない。明らかに、当業者が多くの修飾や変形をすることができることは自明である。該態様は、本発明の概念やその実際の応用を最もよく説明するために選定されたものであって、それによって、当業者の他者が企図する特定の用途に適合させるべく種々の態様や種々の変形をなすことができるように、当業者の他者に本発明を理解せしめるためのものである。 The above description of specific embodiments of the present invention is provided for purposes of description and explanation. It is not intended to limit the invention to the precise form disclosed, nor is it intended to be exhaustive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments have been selected to best illustrate the concepts of the invention and their practical application, and thus various embodiments and methods to adapt them to specific applications contemplated by others skilled in the art. It is intended to allow others skilled in the art to understand the present invention so that various modifications can be made.
       本明細書に記述された全ての刊行物や特許出願、並びに技術標準は、それら個々の刊行物や特許出願、並びに技術標準が引用文献として特別に、そして個々に組み込むことが指定されている場合には、該引用文献と同じ限定範囲においてここに組み込まれるものである。本発明の範囲は下記特許請求の範囲及びその等価物に拠って決定されることを企図するものである。 All publications, patent applications, and technical standards mentioned in this specification are intended to be specifically and individually incorporated by reference as individual references, patent applications, and technical standards. Is incorporated herein to the same extent as the cited references. It is intended that the scope of the invention be determined by the following claims and their equivalents.

Claims (8)

  1.  (a)ガラス転移温度が180℃以下のポリマーP、及び、該ポリマーPを溶解する溶媒Aを含む塗布液を、支持体上に塗布して塗膜を形成する工程と、
     (b)該塗膜に、前記ポリマーPを溶解しない、水及びアルコールの少なくとも一方を含む液体Bを接触させて、当該塗膜から溶媒Aを取り除く工程と、
     (c)該塗膜を乾燥する工程と、
    をこの順に含み、
     前記溶媒Aと前記液体Bとが以下の関係を満たすポリマー層の形成方法。
     溶媒Aの沸点 > 液体Bの沸点
    (A) applying a coating liquid containing a polymer P having a glass transition temperature of 180 ° C. or less and a solvent A for dissolving the polymer P on a support to form a coating film;
    (B) contacting the coating film with a liquid B containing at least one of water and alcohol that does not dissolve the polymer P, and removing the solvent A from the coating film;
    (C) drying the coating film;
    In this order,
    A method for forming a polymer layer in which the solvent A and the liquid B satisfy the following relationship.
    Boiling point of solvent A> Boiling point of liquid B
  2.  前記ポリマー層中の空隙率が50%以下である請求項1に記載のポリマー層の形成方法。 The method for forming a polymer layer according to claim 1, wherein the porosity in the polymer layer is 50% or less.
  3.  前記溶媒Aの沸点と前記ポリマーPのガラス転移温度とが以下の関係を満たす請求項1に記載のポリマー層の形成方法。
     溶媒Aの沸点 > ポリマーPのガラス転移温度-50℃
    The method for forming a polymer layer according to claim 1, wherein the boiling point of the solvent A and the glass transition temperature of the polymer P satisfy the following relationship.
    Boiling point of solvent A> Glass transition temperature of polymer P-50 ° C
  4.  前記アルコールが炭素数4以下のアルコールである請求項1~請求項3のいずれか1項に記載のポリマー層の形成方法。 The method for forming a polymer layer according to any one of claims 1 to 3, wherein the alcohol is an alcohol having 4 or less carbon atoms.
  5.  前記溶媒Aが水溶性である請求項1~請求項3のいずれか1項に記載のポリマー層の形成方法。 The method for forming a polymer layer according to any one of claims 1 to 3, wherein the solvent A is water-soluble.
  6.  前記ポリマーPがシアノ基を含むポリマーである請求項1~請求項3のいずれか1項に記載のポリマー層の形成方法。 The method for forming a polymer layer according to any one of claims 1 to 3, wherein the polymer P is a polymer containing a cyano group.
  7.  前記ポリマーPがシアノ基を含むポリマーである請求項5に記載のポリマー層の形成方法。 The method for forming a polymer layer according to claim 5, wherein the polymer P is a polymer containing a cyano group.
  8.  前記シアノ基を含むポリマーが側鎖にシアノアルキル基を含むポリマーである請求項6に記載のポリマー層の形成方法。
     
    The method for forming a polymer layer according to claim 6, wherein the polymer containing a cyano group is a polymer containing a cyanoalkyl group in a side chain.
PCT/JP2010/057821 2009-09-18 2010-05-07 Method for forming polymer layer WO2011033819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009217794A JP2011062674A (en) 2009-09-18 2009-09-18 Method for forming polymer layer
JP2009-217794 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011033819A1 true WO2011033819A1 (en) 2011-03-24

Family

ID=43758432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057821 WO2011033819A1 (en) 2009-09-18 2010-05-07 Method for forming polymer layer

Country Status (2)

Country Link
JP (1) JP2011062674A (en)
WO (1) WO2011033819A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875252B2 (en) * 2017-10-26 2021-05-19 信越化学工業株式会社 Method of drying polyimide paste and method of manufacturing high photoelectric conversion efficiency solar cell
JP7299114B2 (en) * 2019-09-11 2023-06-27 マクセル株式会社 Electroless plating suppressing composition and method for producing plated parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104889A (en) * 1984-10-29 1986-05-23 Mitsubishi Rayon Co Ltd Manufacture of paper having excellent cationic dye-dry transfer color-forming property
JPH0625451A (en) * 1991-07-17 1994-02-01 Nisshinbo Ind Inc Surface treatment of hydrophobic film
JP2003200525A (en) * 2002-01-10 2003-07-15 Nitto Denko Corp Metal foil laminate and method for manufacturing the same
JP2007196184A (en) * 2006-01-30 2007-08-09 Toyo Cloth Co Ltd Sheet material and method for manufacturing sheet material
JP2008068512A (en) * 2006-09-14 2008-03-27 Nisshinbo Ind Inc Flame-retardant recording material
JP2008080241A (en) * 2006-09-27 2008-04-10 Toyo Cloth Co Ltd Sheet material and manufacturing method of sheet material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104889A (en) * 1984-10-29 1986-05-23 Mitsubishi Rayon Co Ltd Manufacture of paper having excellent cationic dye-dry transfer color-forming property
JPH0625451A (en) * 1991-07-17 1994-02-01 Nisshinbo Ind Inc Surface treatment of hydrophobic film
JP2003200525A (en) * 2002-01-10 2003-07-15 Nitto Denko Corp Metal foil laminate and method for manufacturing the same
JP2007196184A (en) * 2006-01-30 2007-08-09 Toyo Cloth Co Ltd Sheet material and method for manufacturing sheet material
JP2008068512A (en) * 2006-09-14 2008-03-27 Nisshinbo Ind Inc Flame-retardant recording material
JP2008080241A (en) * 2006-09-27 2008-04-10 Toyo Cloth Co Ltd Sheet material and manufacturing method of sheet material

Also Published As

Publication number Publication date
JP2011062674A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5258489B2 (en) Metal film forming method
EP3351657B1 (en) Electroless copper plating compositions
US8293846B2 (en) Composition for forming layer to be plated, method of producing metal pattern material, metal pattern material
US8273463B2 (en) Multilayer film for plating, method of manufacturing metal film-coated material and metal film-coated material
US20130295287A1 (en) Composition for forming layer to be plated, and process for producing laminate having metal film
US20110240482A1 (en) Plating catalyst liquid, plating method, and method for producing laminate having metal film
US20090266583A1 (en) Photosensitive resin composition, laminate, method of producing metal plated material, metal plated material, method of producing metal pattern material, metal pattern material and wiring substrate
JP5258283B2 (en) Substrate with metal foil and manufacturing method thereof
US20100279012A1 (en) Method for adsorbing plating catalyst, method for preparing substrate provided with metal layer, and plating catalyst solution used in the same
JP2009164575A (en) Method of manufacturing surface metal film material, surface metal film material, method of manufacturing patterned metal material, patterned metal material, and polymer layer-forming composition
US20100243461A1 (en) Method of fabricating circuit board
US20170171982A1 (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
US20100247880A1 (en) Novel copolymer, novel copolymer-containing composition, laminate body, method of producing metal film-coated material, metal film-coated material, method of producing metallic pattern-bearing material and metallic pattern-bearing material
TWI617700B (en) Method of electroless plating
TWI438301B (en) Metal plated article of molded form and method for producing it
WO2011033819A1 (en) Method for forming polymer layer
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
WO2012133684A1 (en) Production method for laminate having patterned metal films, and plating layer-forming composition
WO2010047330A1 (en) Resin complex and laminate
JP2013095958A (en) Manufacturing method of laminate having metal layer
JP2012097296A (en) Method of forming metal film
JP2012209392A (en) Manufacturing method of laminate having patterned metal film and composition for forming plated layer
JP2011208174A (en) Plated article having polycarbonate resin as base material
JP2011213019A (en) Plating receptive film and method for manufacturing metal film material using the same
JP2008088273A (en) Hydrophobic polymer, laminated form with electrically conductive film using the same, method for producing electrically conductive pattern, printed wiring board utilizing the laminated form, thin-layer transistor, and device equipped with them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816932

Country of ref document: EP

Kind code of ref document: A1