JP5741673B2 - Rotor phase estimation device for synchronous motor - Google Patents

Rotor phase estimation device for synchronous motor Download PDF

Info

Publication number
JP5741673B2
JP5741673B2 JP2013248366A JP2013248366A JP5741673B2 JP 5741673 B2 JP5741673 B2 JP 5741673B2 JP 2013248366 A JP2013248366 A JP 2013248366A JP 2013248366 A JP2013248366 A JP 2013248366A JP 5741673 B2 JP5741673 B2 JP 5741673B2
Authority
JP
Japan
Prior art keywords
frequency
phase
signal
rotor
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248366A
Other languages
Japanese (ja)
Other versions
JP2014060919A (en
Inventor
新中 新二
新二 新中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2013248366A priority Critical patent/JP5741673B2/en
Publication of JP2014060919A publication Critical patent/JP2014060919A/en
Application granted granted Critical
Publication of JP5741673B2 publication Critical patent/JP5741673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、駆動基本周波数より高い周波数の信号(例えば、高周波電圧)の印加に対し回転子が突極特性を示す同期電動機(例えば、回転子に永久磁石を有する永久磁石同期電動機、巻線形同期電動機、同期リラクタンス電動機、回転子に永久磁石と界磁巻線とをもつハイブリッド界磁形同期電動機など)のための駆動制御装置に使用される回転子の位相(位置と同義)、速度を、位置速度センサを利用することなくすなわちセンサレスで、推定するための回転子位相推定装置に関する。 The present invention relates to a synchronous motor (for example, a permanent magnet synchronous motor having a permanent magnet in the rotor, winding-type synchronization) in which the rotor exhibits salient pole characteristics with respect to application of a signal having a frequency higher than the drive fundamental frequency (for example, high frequency voltage). The phase (synonymous with position) and speed of the rotor used in the drive control device for an electric motor, a synchronous reluctance motor, a hybrid field synchronous motor having a permanent magnet and a field winding on the rotor, etc. The present invention relates to a rotor phase estimation device for estimation without using a position velocity sensor, that is, sensorless.

同期電動機の高性能な制御は、いわゆるベクトル制御法により達成することができる。ベクトル制御法には、回転子位相の情報が必要であり、従来よりエンコーダ等の位置速度センサが利用されてきた。しかし、この種の位置速度センサの利用は、信頼性、軸方向の容積、センサケーブルの引回し、コスト等の観点において、好ましいものではなく、位置速度センサを必要としない、いわゆるセンサレスベクトル制御法の研究開発が長年に行なわれてきた。 High-performance control of the synchronous motor can be achieved by a so-called vector control method. The vector control method requires information on the rotor phase, and conventionally a position speed sensor such as an encoder has been used. However, the use of this type of position / velocity sensor is not preferable in terms of reliability, axial volume, sensor cable routing, cost, and the like, so-called sensorless vector control method that does not require a position / velocity sensor. Research and development has been conducted for many years.

有力なセンサレスベクトル制御法として、駆動基本周波数より高い周波数の高周波信号を電動機に強制印加し、この応答である応答高周波信号を検出・処理して回転子位相を推定する高周波信号印加法が、これまで、種々、開発・報告されてきた。高周波信号印加法は、高周波電圧を印加して応答である高周波電流を検出・処理して回転子位相推定値を得る(広義)高周波電圧印加法と、高周波電流を印加して応答である高周波電圧を検出・処理して回転子位相推定値を得る(広義)高周波電流印加法と、がある。実際性が高いのは、前者の(広義)高周波電圧印加法である。この点を考慮し、以降では、実用性の高い高周波電圧印加法を中心に説明を行う。高周波電流印加法に関しては、必要に応じ補足的に説明する。 A powerful sensorless vector control method is a high-frequency signal application method in which a high-frequency signal with a frequency higher than the drive fundamental frequency is forcibly applied to the motor, and the response high-frequency signal that is the response is detected and processed to estimate the rotor phase. Various developments and reports have been made. The high-frequency signal application method applies a high-frequency voltage to detect and process a high-frequency current that is a response to obtain a rotor phase estimate (in a broad sense), and a high-frequency voltage that is a response by applying a high-frequency current. (In a broad sense) a high-frequency current application method for obtaining and estimating the rotor phase estimation value. The practicality is the former (broad sense) high-frequency voltage application method. Considering this point, hereinafter, the description will focus on a high-practical high-frequency voltage application method. The high-frequency current application method will be supplementarily described as necessary.

推定すべき回転子位相は回転子の任意の位置に定めてよいが、回転子の負突極位相または正突極位相の何れかを回転子位相に選定するのが一般的である。当業者には周知のように、負突極位相と正突極位相の間には、電気的に±π/2(rad)の位相差があるに過ぎず、何れかの位相が判明すれば、他の位相は自ずと判明する。以上を考慮の上、以降では、特に断らない限り、回転子の負突極位相を回転子位相とする。 The rotor phase to be estimated may be determined at an arbitrary position of the rotor, but generally, either the negative salient pole phase or the positive salient pole phase of the rotor is selected as the rotor phase. As is well known to those skilled in the art, there is only an electrical phase difference of ± π / 2 (rad) between the negative salient pole phase and the positive salient pole phase. The other phases are naturally found. Considering the above, hereinafter, the negative salient pole phase of the rotor will be referred to as the rotor phase unless otherwise specified.

広義の高周波電圧印加法は、印加すべき高周波電圧の生成法を定めた狭義高周波電圧印加法と、印加高周波電圧の応答である高周波電流を処理し回転子位相推定値の生成を定めた位相推定法との組合せとして構成される。正弦形状の高周波電圧を印加する狭義高周波電圧印加法としては、一般化楕円形高周波電圧印加法、一定真円形高周波電圧印加法(一定振幅の真円形高周波電圧印加法)、直線形高周波電圧印加法が少なくとも知られている。 The high-frequency voltage application method in a broad sense includes a narrow-sense high-frequency voltage application method that determines the method of generating the high-frequency voltage to be applied, and a phase estimation that determines the generation of the rotor phase estimate by processing the high-frequency current that is the response of the applied high-frequency voltage Composed as a combination with law. Narrowly defined high-frequency voltage application methods that apply sinusoidal high-frequency voltage include generalized elliptical high-frequency voltage application method, constant circular high-frequency voltage application method (constant-amplitude high-frequency voltage application method), and linear high-frequency voltage application method. Is at least known.

正弦形状高周波電圧の印加は、uvw座標系上、αβ固定座標系上、回転子位相をd軸位相とするdq同期座標系への位相差のない同期を目指したγδ準同期座標系上のいずれの座標系上でも印加は可能である。αβ固定座標系、dq同期座標系、γδ準同期座標系を特別の場合として包含する、座標速度ωγで回転するγδ一般座標系上で電圧印加する場合、一般化楕円形高周波電圧印加法による正弦形状高周波電圧は次式で表現される。

Figure 0005741673

また、一定真円形高周波電圧印加法による正弦形状高周波電圧は次式で表現される。
Figure 0005741673

また、直線形高周波電圧印加法による正弦形状高周波電圧は次式で表現される。
Figure 0005741673
The sinusoidal high-frequency voltage can be applied on the uvw coordinate system, on the αβ fixed coordinate system, or on the γδ quasi-synchronous coordinate system aiming at synchronization without phase difference to the dq synchronous coordinate system with the rotor phase as the d-axis phase. Application is also possible on the coordinate system. When applying voltage on a γδ general coordinate system that rotates at a coordinate speed ωγ , including αβ fixed coordinate system, dq synchronous coordinate system, and γδ quasi-synchronous coordinate system as special cases, a sine by a generalized elliptical high-frequency voltage application method The shape high frequency voltage is expressed by the following equation.
Figure 0005741673

Further, the sinusoidal high-frequency voltage by the constant true high-frequency voltage application method is expressed by the following equation.
Figure 0005741673

The sinusoidal high-frequency voltage obtained by the linear high-frequency voltage application method is expressed by the following equation.
Figure 0005741673

上に(1)〜(3)式を用いて疑義のない形で明示したように、いずれの高周波電圧もベクトル各要素の信号は、正確に正弦形状(余弦関数あるいは正弦関数で表現される形状)をなしている。正弦形状の高周波電圧を印加するには、正弦形状の高周波電圧指令値を電流制御ループ外部から与え、これを電力変換器(インバータ)への入力とすればよい。これにより、正弦形状の高周波電圧を生成・印加することができる。本発明が扱う狭義高周波電圧印加法は、上記のような正弦形状の高周波電圧を印加するものである。特に、印加高周波電圧のγ軸要素(第1要素、余弦関数表記部分)とδ軸要素(第2要素、正弦関数表記部分)との振幅を同一とし、印加高周波電圧の軌跡が真円軌跡となるものである。
As clearly shown in an unquestionable form using equations (1) to (3) above, the signal of each high-frequency voltage vector element is a sine shape (a shape expressed by a cosine function or a sine function). ). In order to apply the sine-shaped high-frequency voltage, a sine-shaped high-frequency voltage command value is given from the outside of the current control loop, and this is used as an input to the power converter (inverter). Thereby, a sinusoidal high frequency voltage can be generated and applied. The narrowly defined high frequency voltage application method handled by the present invention applies the sinusoidal high frequency voltage as described above. In particular, the amplitude of the γ-axis element (first element, cosine function notation) and the δ-axis element (second element, sine function notation) of the applied high-frequency voltage are the same, and the locus of the applied high-frequency voltage is a perfect circle locus. It will be.

正弦形状の高周波電圧を印加する高周波電圧印加法(狭義)のための位相推定法としては種々存在するが、本発明と関連する位相推定法は、ベクトルヘテロダイン法、スカラヘテロダイン法(以下、ヘテロダイン法と総称)である。ヘテロダイン法に関しては、後掲の「先行技術文献」欄に列挙した先行発明がある。 There are various types of phase estimation methods for applying a sinusoidal high-frequency voltage (in a narrow sense). The phase estimation methods related to the present invention include vector heterodyne method, scalar heterodyne method (hereinafter referred to as heterodyne method). Generic name). With respect to the heterodyne method, there are prior inventions listed in the “prior art document” column below.

ベクトルへテロダイン法は、一定真円形高周波電圧印加法のために開発されたものであり(非特許文献1〜3)、他の狭義高周波電圧印加法(一般化楕円形高周波電圧印加法、直線形高周波電圧印加法等)への適用を示した事例はない。一方、スカラヘテロダイン法は直線形高周波電圧印加法のために開発されたものであり(特許文献1、非特許文献4〜6)、他の狭義電圧印加法(一般化楕円形高周波電圧印加法、一定真円形高周波電圧印加法等)への適用を示した事例はない。これらヘテロダイン法は、元来、ゼロ速近傍のごく低速領域での位相推定法として開発されたもので、中〜高速域での安定的な利用を示した事例はない。 The vector heterodyne method was developed for a constant true circular high-frequency voltage application method (Non-Patent Documents 1 to 3), and other narrowly defined high-frequency voltage application methods (generalized elliptical high-frequency voltage application method, linear shape). There are no examples showing application to high-frequency voltage application methods. On the other hand, the scalar heterodyne method was developed for a linear high-frequency voltage application method (Patent Document 1, Non-Patent Documents 4 to 6), and other narrowly defined voltage application methods (generalized elliptical high-frequency voltage application method, There is no example showing application to a constant circular high-frequency voltage application method. These heterodyne methods were originally developed as a phase estimation method in a very low speed region near zero speed, and there is no example showing stable use in a medium to high speed region.

一般には、回転子位相推定のための高周波電圧の印加は、uvw座標系、αβ固定座標系、γδ準同期座標系のいずれの座標系上でも可能である。また、印加高周波電圧の応答である高周波電流の処理も、いずれの座標系上でも可能である。高周波電圧印加と高周波電流処理をγδ準同期座標系上で行う場合には、同座標系上の駆動用電流の周波数は定常的にはゼロ(すなわち、直流)となるので、駆動用電流と高周波電流とは、任意の速度において、高周波数ωhと実質的に同等な周波数差ωhをもつことになる。一般に、回転子位相情報を有する高周波電流の処理においては、回転子位相情報を有しない駆動用電流の影響を排除することが好ましい。両電流間における大きな周波数差ωhは、両電流の分離、さらには高周波残留外乱の選択的抑圧に好都合である。本発明は、回転子位相推定の総合的な簡易性を考慮し、主として、γδ準同期座標系上で高周波電圧を印加し、同座標系上で高周波電流を処理する。 In general, application of a high-frequency voltage for rotor phase estimation can be performed on any coordinate system of the uvw coordinate system, the αβ fixed coordinate system, and the γδ quasi-synchronous coordinate system. Further, the processing of the high-frequency current that is the response of the applied high-frequency voltage can be performed on any coordinate system. When high-frequency voltage application and high-frequency current processing are performed on the γδ quasi-synchronous coordinate system, the frequency of the drive current on the coordinate system is constantly zero (ie, direct current). The current has a frequency difference ωh substantially equal to the high frequency ωh at an arbitrary speed. In general, in the processing of a high-frequency current having rotor phase information, it is preferable to eliminate the influence of a driving current that does not have rotor phase information. The large frequency difference ωh between the two currents is advantageous for the separation of both currents and the selective suppression of high-frequency residual disturbance. In consideration of the comprehensive simplicity of rotor phase estimation, the present invention mainly applies a high frequency voltage on the γδ quasi-synchronous coordinate system and processes the high frequency current on the same coordinate system.

γδ準同期座標系上で回転子位相推定を行う、従来のベクトルへテロダイン法としては、非特許文献3がある。図10は、同文献で提示された図面を再掲したものである。同文献では、先ず、固定子電流から高周波電流を抽出し、次に、抽出した高周波電流と印加高周波電圧(正相かつ一定振幅で(2)式で表現されるもの)に対し逆相順のベクトルキャリア信号との乗算を介して高周波積信号を生成し、続いて、高周波積信号をローパスフィルタ(LPF)で処理して高周波成分を除去した直流成分を抽出し、最後に、本直流成分を1次PI形位相制御器を備えた2次直流PLLブロックへの入力信号とし、回転位相推定値を生成している。図と上記説明より明白なように、本推定法の特徴は、先ず、高周波積信号を高周波成分除去用ローパスフィルタで処理して直流成分のみを抽出し、次に、本直流成分を直流PLLブロックへの入力信号とする点にある。 Non-Patent Document 3 is a conventional vector heterodyne method for estimating a rotor phase on a γδ quasi-synchronous coordinate system. FIG. 10 is a reproduction of the drawing presented in this document. In this document, first, a high-frequency current is extracted from the stator current, and then in the reverse-phase order with respect to the extracted high-frequency current and the applied high-frequency voltage (expressed by the equation (2) with a positive phase and a constant amplitude). A high-frequency product signal is generated through multiplication with a vector carrier signal, and then the high-frequency product signal is processed by a low-pass filter (LPF) to extract a DC component from which the high-frequency component has been removed. A rotational phase estimation value is generated as an input signal to a secondary DC PLL block including a primary PI type phase controller. As is clear from the figure and the above description, the feature of this estimation method is that the high-frequency product signal is first processed by a low-pass filter for high-frequency component removal to extract only the DC component, and then this DC component is converted to a DC PLL block. It is in the point to be an input signal to.

γδ準同期座標系上で回転子位相推定を行う、従来のスカラへテロダイン法としては、特許文献1、非特許文献4〜6がある。図11は、特許文献1で提示された図面を、複写再掲したものである。これによる位相推定の手順は、図より理解されるように、以下のように説明される。γδ準同期座標系上で(3)式の直線形高周波電圧指令値を、電流制御ループ外部から与える。この上で、先ず、γδ準同期座標系上における固定子電流のδ軸要素からこの高周波成分(すなわち、高周波電流のδ軸要素)を抽出する。次に、抽出した高周波電流δ軸要素と印加高周波電圧に対し−π/2(rad)の位相差をもつスカラキャリア信号との積を取り、高周波積信号を生成する。続いて、高周波積信号に対して、移動平均形ローパスフィルタ(FIRディジタルフィルタ)を用いて高周波成分の除去処理を行い、直流成分を抽出する。最後に、本直流成分を1次PI形位相制御器を備えた2次の直流PLLブロックへ入力し、回転位相推定値を生成する。図と上記説明より明白なように、本推定法の特徴は、先ず、高周波積信号を高周波成分除去用ローパスフィルタで処理して高周波成分を除去した直流成分を抽出し、次に、本直流成分を直流PLLブロックへの入力信号とする点にある。非特許文献4〜6も同様に、先ず、高周波積信号を高周波成分除去用ローパスフィルタでフィルタ処理して高周波成分を除去した直流成分を抽出し、次に、本直流成分を直流PLLブロックに代表される位相推定ブロックへの入力信号としている。 As a conventional scalar heterodyne method for estimating a rotor phase on a γδ quasi-synchronous coordinate system, there are Patent Document 1 and Non-Patent Documents 4-6. FIG. 11 is a reproduction of the drawing presented in Patent Document 1. The phase estimation procedure based on this is explained as follows, as understood from the figure. On the γδ quasi-synchronous coordinate system, the linear high-frequency voltage command value of equation (3) is given from outside the current control loop. Then, first, this high frequency component (that is, the δ axis element of the high frequency current) is extracted from the δ axis element of the stator current on the γδ quasi-synchronous coordinate system. Next, a product of the extracted high-frequency current δ-axis element and a scalar carrier signal having a phase difference of −π / 2 (rad) with respect to the applied high-frequency voltage is taken to generate a high-frequency product signal. Subsequently, the high-frequency product signal is subjected to high-frequency component removal processing using a moving average low-pass filter (FIR digital filter) to extract a DC component. Finally, the DC component is input to a secondary DC PLL block having a primary PI type phase controller to generate a rotational phase estimation value. As is clear from the figure and the above description, the feature of this estimation method is that the high-frequency product signal is first processed by a high-frequency component removing low-pass filter to extract the DC component from which the high-frequency component has been removed, and then the DC component. Is the input signal to the DC PLL block. Similarly, in Non-Patent Documents 4 to 6, first, a high-frequency product signal is filtered by a high-frequency component removing low-pass filter to extract a DC component from which the high-frequency component has been removed, and then this DC component is represented by a DC PLL block. As an input signal to the phase estimation block.

しかしながら、直流PLLブロックに高周波成分除去用ローパスフィルタを前置した従来の位相推定法では、PLL推定系が容易に不安定化することが知られている。直流PLLブロックに前置された高周波成分除去用ローパスフィルタは、結果的には、位相推定ループであるPLL推定系にダイナミックスを導入することを意味し、これがPLL推定系を不安定化する大きな要因となった。しかしながら、従来技術は、直流PLLブロックへの入力信号が高周波成分を有することを許容できず、第1等の目的である位相推定のためには、不安定化要因になるといえども、高周波成分除去用ローパスフィルタの導入・前置は避けることができなかった。 However, it is known that the PLL estimation system is easily destabilized by the conventional phase estimation method in which a high-frequency component removing low-pass filter is placed in front of the DC PLL block. The high-frequency component removal low-pass filter placed in front of the DC PLL block results in introducing dynamics into the PLL estimation system, which is a phase estimation loop, and this greatly destabilizes the PLL estimation system. It became a factor. However, the prior art cannot allow the input signal to the DC PLL block to have a high frequency component, and although it may be a destabilizing factor for the first purpose, such as phase estimation, it eliminates the high frequency component. The introduction and pre-installation of low-pass filters for use was inevitable.

後に本発明の説明に際して明らかにするが、高周波積信号を高周波成分除去用ローパスフィルタで処理して得た直流成分の大きさは、少なくとも、高周波電圧の振幅、周波数、電動機の固定子インダクタンスの関数となる。このため、これらを無視して、PLL推定系の1次PI形位相制御器を設計することは、大変困難であり、高周波電圧の振幅、周波数を変更するたびに、1次PI形位相制御器の再設計に大きな苦労を強いられてきた。非特許文献2では、位相推定系における制御器の設計における上述の問題が繰り返し指摘されている。しかしながら、位相推定系の安定性を保証する制御器(直流PLLでは、位相制御器に該当)の設計法に関しては、そのあるべき構造を含め未確立のままである。 As will be clarified later in the description of the present invention, the magnitude of the DC component obtained by processing the high-frequency product signal with the high-frequency component removing low-pass filter is at least a function of the amplitude of the high-frequency voltage, the frequency, and the stator inductance of the motor. It becomes. For this reason, it is very difficult to design a primary PI type phase controller for the PLL estimation system ignoring these, and every time the amplitude and frequency of the high frequency voltage are changed, the primary PI type phase controller. Has been forced to redesign. Non-Patent Document 2 repeatedly points out the above-mentioned problem in designing a controller in a phase estimation system. However, the design method of the controller that guarantees the stability of the phase estimation system (corresponding to the phase controller in the DC PLL) remains unestablished, including the structure that should be.

山本康弘:「PMモータの制御装置」、公開特許公報、特開2003-348896 (2002-5-24)Yasuhiro Yamamoto: “PM motor control device”, published patent publication, JP 2003-348896 (2002-5-24)

L.Wang and R.D.Lorenz: “RotorPosition Estimation for Permanent-Magnet Synchronous Motor UsingSaliency-Tracking Self-Sensing Method”、 ConferenceRecord of 2000 IEEE Industry Applications Conference (IAS 2000)、 pp. 445-450、 (2000-10)L.Wang and R.D.Lorenz: “RotorPosition Estimation for Permanent-Magnet Synchronous Motor UsingSaliency-Tracking Self-Sensing Method”, ConferenceRecord of 2000 IEEE Industry Applications Conference (IAS 2000), pp. 445-450, (2000-10) Y.Chen、 L.Wang、 and LKong: “Research of Position SensorlessControl of PMSM Based on High Frequency Signal Injection”、 Proc. of International Conference of Electrical Machines andSystems (ICEMS 2008)、 pp.3973-3977 (2008-10)Y. Chen, L. Wang, and LKong: “Research of Position SensorlessControl of PMSM Based on High Frequency Signal Injection”, Proc. Of International Conference of Electrical Machines and Systems (ICEMS 2008), pp.3973-3977 (2008-10) 近藤圭一郎・米山崇・谷口峻・望月伸亮・若尾真治:「鉄道駆動用永久磁石同期電動機の回転角速度センサレス制御に関する考察、シンプルかつ高性能な制御システム」、電気学会研究会資料、SPC-06-185、 LD-06-87、 pp. 37-42 (2006)Junichiro Kondo, Takashi Yoneyama, Shun Taniguchi, Shinsuke Mochizuki, Shinji Wakao: “Study on rotational angular velocity sensorless control of permanent magnet synchronous motor for railway drive, simple and high performance control system”, IEEJ Technical Committee Materials, SPC-06- 185, LD-06-87, pp. 37-42 (2006) J.H.Jang、 S.K.Sul、 J.I.Ha、 K.Ide、 and M.Sawamura: “Sensorless Driveof SMPM Motor by High-Frequency Signal Injection Based on Magnet Saliency”、 Proc. of 17th IEEE Applied Power Electronics Conference andExposition (APEC 2002)、 Vol. 1、pp. 279-285 (2002-3).JHJang, SKSul, JIHa, K.Ide, and M. Sawamura: “Sensorless Driveof SMPM Motor by High-Frequency Signal Injection Based on Magnet Saliency”, Proc. Of 17th IEEE Applied Power Electronics Conference and Exposition (APEC 2002), Vol. 1, pp. 279-285 (2002-3). J.H.Jang、 S.K.Sul、 J.I.Ha、 K.Ide、 and M.Sawamura: “Sensorless Driveof Surface-Mounted Permanent-Magnet Motor by High-Frequency Signal InjectionBased on Magnet Saliency”、 IEEE Trans. on IndustryApplications、 Vol. 39、 No. 4、 pp. 1031-1039 (2003-7/8)JHJang, SKSul, JIHa, K.Ide, and M. Sawamura: “Sensorless Driveof Surface-Mounted Permanent-Magnet Motor by High-Frequency Signal Injection Based on Magnet Saliency”, IEEE Trans. On IndustryApplications, Vol. 39, No .4, pp. 1031-1039 (2003-7 / 8) Y.Nakano、 H.Sugiyama、 Y.Yamamoto、 and T.Ashikaga:“Sensor-less Vector Control System Using ConcentratedWinding Permanent Magnet Motor”、 Proc. of 22nd InternationalBattery、 Hybrid and Fuel Cell Electric VehicleSymposium & Exposition (EVS22)、 pp. 677-686(2006-10)Y. Nakano, H. Sugiyama, Y. Yamamoto, and T. Ashikaga: “Sensor-less Vector Control System Using Concentrated Winding Permanent Magnet Motor”, Proc. Of 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition (EVS22), pp 677-686 (2006-10) 新中新二:「永久磁石同期モータのベクトル制御技術、上巻(原理から最先端まで)」、電波新聞社 (2008-12)Shinnaka Shinji: “Vector control technology of permanent magnet synchronous motor, first volume (from principle to the latest)”, Denpa Shimbun (2008-12) 新中新二:「永久磁石同期モータのベクトル制御技術、下巻(センサレス駆動制御の真髄)」、電波新聞社 (2008-12)Shinnaka Shinji: “Vector control technology of permanent magnet synchronous motor, second volume (the essence of sensorless drive control)”, Denpa Shimbun (2008-12)

以上の説明から明らかなように、狭義高周波電圧印加法のための位相推定法としての従来のヘテロダイン法は、以下の問題点を有していた。
2)直流PLLブロックの前段に高周波成分除去用ローパスフィルタを前置して高周波積信号から高周波成分を除去し、直流成分のみからなる直流PLLブロック入力信号を生成する必要があった。しかしながら、前置した高周波成分除去用ローパスフィルタのために、PLL推定系の安定性がしばしば損なわれ不安定化した。
3)PLL推定系の安定性を確保するためのPLL推定系の構造、さらにはPLL推定系の制御器設計法は未確立であり、制御器係数の設計は試行錯誤的に行われてきた。
4)直流成分のみからなる直流PLLブッロク入力信号は、少なくとも、高周波電圧の振幅、周波数、固定子インダクタンスの関数であり、これらの変更あるいは変動により、PLL推定系は不安定化した。制御器設計法が未確立のため、高周波電圧の変更に伴い、PLL推定系における位相制御器の再設計に、試行錯誤を伴う多大な労力が強要された。
As is apparent from the above description, the conventional heterodyne method as a phase estimation method for the narrowly defined high-frequency voltage application method has the following problems .
2) A high-frequency component removing low-pass filter is placed in front of the direct-current PLL block to remove the high-frequency component from the high-frequency product signal, thereby generating a direct-current PLL block input signal consisting only of the direct-current component. However, the stability of the PLL estimation system is often impaired and destabilized due to the low-pass filter for removing high-frequency components.
3) The structure of the PLL estimation system for ensuring the stability of the PLL estimation system and the controller design method for the PLL estimation system have not been established, and the controller coefficients have been designed on a trial and error basis.
4) The DC PLL block input signal consisting only of the DC component is at least a function of the amplitude, frequency, and stator inductance of the high-frequency voltage, and the PLL estimation system has become unstable due to these changes or fluctuations. Since the controller design method has not been established, a great deal of effort and trial and error has been imposed on the redesign of the phase controller in the PLL estimation system as the high frequency voltage is changed.

本発明は上記背景の下になされたものであり、狭義高周波電圧印加法として一般化楕円形高周波電圧印加法((1)式における楕円係数Kを1としたもの)、または一定真円形高周波電圧印加法((2)式参照)を用いた位相推定装置に関し、次の特徴を備えた位相推定装置を提供することを目的とする。
2) PLL推定系の不安定化の主要因となった高周波成分除去用ローパスフィルタの導入・前置を必要としない、構造的に安定性が確保しやすい位相推定装置を提供する。
3) 第2)目的に示した構造において、PLL推定系の安定性を保証できる設計法を備えた位相推定装置を提供する。
4) 高周波電圧の振幅、周波数、固定子インダクタンスの変更変動がある場合にも、推定系における位相制御器等の再設計を一切必要としない位相推定装置を提供する。
The present invention has been made under the above-mentioned background. As a method for applying a high-frequency voltage in a narrow sense, a generalized elliptical high-frequency voltage application method (with elliptic coefficient K in equation (1) set to 1), or a constant perfect circular high-frequency voltage. It is an object of the present invention to provide a phase estimation device having the following characteristics with respect to a phase estimation device using an application method (see equation (2)).
2) To provide a phase estimation device that is structurally easy to ensure stability and that does not require the introduction or preposition of a high-frequency component removal low-pass filter that has become a major factor in the instability of a PLL estimation system.
3) A phase estimation apparatus having a design method capable of ensuring the stability of a PLL estimation system in the structure shown in the second) objective is provided.
4) Provided is a phase estimation device that does not require any redesign of a phase controller or the like in an estimation system even when there is a change in the amplitude, frequency, and stator inductance of a high-frequency voltage.

上記目的を達成するために、本願明細書には、駆動基本周波数より高い周波数をもつ高周波信号の印加に対し回転子が突極特性を示す同期電動機のための駆動制御装置に使用され、かつ、印加高周波信号の応答である応答高周波信号の検出・処理を通じて回転子位相推定値を生成出力する回転子位相推定装置であって、高周波電圧印加のために駆動制御装置内の電力変換器への最終電圧指令値に含まれ、かつ、回転子位相推定値を基軸(γ軸)位相とする2軸直交のγδ準同期座標系上で正弦形状となる高周波電圧指令値を固定子電流制御ループ外部で生成する手段と、高周波電圧指令値のγ軸要素に対して約−π/2( rad)または約+π/2(rad)の位相差を有する信号をδ軸要素とするキャリア信号を生成し、キャリア信号と高周波電圧指令値に起因した高周波電流とを利用した乗算処理を通じて、またはキャリア信号と高周波電流を含有する固定子電流とを利用した乗算処理を通じて、高周波成分を含有しうる高周波積信号を生成する手段と、高周波積信号をuPLLで、回転子位相推定値を

Figure 0005741673
で表現するとき、次形式の3次以上の有理関数(sは微分演算子またはラプラス演算子、cdi,cniは係数)
Figure 0005741673

として記述され、高周波積信号自体を直接入力として回転子位相推定値を生成出力する高周波PLL手段と、を備えることが記載されている。 In order to achieve the above object, the present specification uses a rotor for a drive control device for a synchronous motor in which salient pole characteristics are exhibited with respect to application of a high-frequency signal having a frequency higher than the drive fundamental frequency, and A rotor phase estimation device that generates and outputs a rotor phase estimation value through detection and processing of a response high frequency signal, which is a response of an applied high frequency signal, to a power converter in a drive control device for high frequency voltage application A high-frequency voltage command value that is included in the voltage command value and has a sinusoidal shape on a two-axis orthogonal γδ quasi-synchronous coordinate system with the rotor phase estimation value as the base axis (γ-axis) phase is external to the stator current control loop. Generating means and a carrier signal having a δ-axis element as a signal having a phase difference of about −π / 2 (rad) or about + π / 2 (rad) with respect to the γ-axis element of the high-frequency voltage command value; Due to carrier signal and high frequency voltage command value Through multiplication process using a high-frequency current, or through multiplication process using a stator current containing carrier signal and high frequency current, means for generating a high-frequency product signal which may contain high frequency components, the high frequency product signal u In the PLL , the rotor phase estimate is
Figure 0005741673
Is expressed by a rational function of the third or higher order (where s is a differential operator or Laplace operator, and c di and c ni are coefficients)
Figure 0005741673

And a high-frequency PLL means for generating and outputting a rotor phase estimation value using the high-frequency product signal itself as a direct input.

本願明細書には、回転子位相推定装置であって、該高周波PLL手段を記述した該有理関数の係数を、該印加高周波電圧指令値の振幅、周波数等から定まる信号係数Κθをもつ多項式

Figure 0005741673
が区間0<K≦2の任意の振動係数Κに対してフルビッツ多項式(安定多項式)となるように、定めることが記載されている。 Polynomial this specification, having a rotor phase estimation apparatus, the coefficients of the organic physical function that describes the high-frequency PLL means, the amplitude of the indicia pressurized high-frequency voltage command value, a signal coefficient kappa theta determined from frequency, etc.
Figure 0005741673
Is defined to be a Hurwitz polynomial (stable polynomial) for an arbitrary vibration coefficient Κ h in the interval 0 <K h ≦ 2.

本願明細書には、上述の回転子位相推定装置であって、該高周波積信号の生成をγδ準同期座標系上で遂行することが記載されている。 The specification of the present application describes the above-described rotor phase estimation device that performs generation of the high-frequency product signal on a γδ quasi-synchronous coordinate system.

本願明細書には、上述の回転子位相推定装置であって、該キャリア信号のγ軸要素を常時ゼロとし、該キャリア信号を実質的にスカラ信号とすることが記載されている。 The present specification describes the above-described rotor phase estimation device, in which the γ-axis element of the carrier signal is always set to zero, and the carrier signal is substantially a scalar signal.

請求項1に記載の発明は、駆動基本周波数より高い周波数をもつ高周波信号の印加に対し回転子が突極特性を示す同期電動機のための駆動制御装置に使用され、かつ、印加高周波信号の応答である応答高周波信号の検出・処理を通じて回転子位相推定値を生成出力する回転子位相推定装置であって、高周波信号印加のために駆動制御装置内の電力変換器への最終信号指令値に含まれ、かつ、真円軌跡を描く高周波信号指令値を生成する手段と、高周波信号指令値に起因した応答高周波信号の中から、印加高周波信号に対し逆相順となる逆相成分を抽出する手段と、抽出した逆相成分をベクトルとして捕らえ、このノルムを1に代表される値に正規化して、正規化逆相成分を生成する手段と、高周波信号指令値に対し逆相順となるキャリア信号を生成し、生成キャリア信号を用いて正規化逆相成分を処理し、回転子位相推定値を生成出力する手段と、を備えることを特徴とする。 The invention according to claim 1 is used in a drive control device for a synchronous motor in which a rotor exhibits salient pole characteristics with respect to application of a high-frequency signal having a frequency higher than the drive fundamental frequency, and the response of the applied high-frequency signal. A rotor phase estimation device that generates and outputs a rotor phase estimation value through detection and processing of a response high-frequency signal, and is included in a final signal command value to a power converter in the drive control device for applying a high-frequency signal And a means for generating a high-frequency signal command value that draws a perfect circular locus and a means for extracting a negative-phase component that is out of phase with the applied high-frequency signal from the response high-frequency signal resulting from the high-frequency signal command value And means for capturing the extracted anti-phase component as a vector, normalizing the norm to a value typified by 1, and generating a normalized anti-phase component, and a carrier signal having an anti-phase order with respect to the high-frequency signal command value Generated using the generated carrier signal to process the normalized inverse phase component, characterized by comprising: means for generating and outputting a rotor phase estimate value.

請求項2に記載の発明は、請求項1記載の回転子位相推定装置であって、生成される該高周波信号指令値を高周波電圧指令値とし、これに起因した該応答高周波信号を高周波電流とすることを特徴とする。 The invention according to claim 2 is the rotor phase estimation device according to claim 1, wherein the generated high-frequency signal command value is set as a high-frequency voltage command value, and the response high-frequency signal resulting therefrom is set as a high-frequency current. It is characterized by doing.

請求項3に記載の発明は、請求項1記載の回転子位相推定装置であって、該キャリア信号を用いた該正規化逆相成分の処理を、回転子位相推定値を基軸(γ軸)位相とする2軸直交のγδ準同期座標系上で遂行することを特徴とする。 A third aspect of the present invention is the rotor phase estimation device according to the first aspect, wherein the processing of the normalized antiphase component using the carrier signal is performed by using the rotor phase estimation value as a base axis (γ axis). It is carried out on a biaxial orthogonal γδ quasi-synchronous coordinate system as a phase.

本願明細書に記載されている効果を、数式を用いて説明する。図1に示したように、任意の速度ωγで回転するγδ一般座標系を考える(非特許文献7参照)。主軸(γ軸)から副軸(δ軸)への回転を正方向とする。また、突極特性をもつ同期電動機の回転子位相がγ軸に対し、ある瞬時に位相θγをなしているものとする。以下に扱う同期電動機の物理量を表現した2x1ベクトル信号は、特に断らない限り、すべて本座標系上で定義されているものとする。γδ一般座標系は、その特別の場合として、αβ固定座標系、dq同期座標系、γδ準同期座標系を含んでいる。すなわち、γδ準同期座標系は、γδ一般座標系の特別な場合であり、この点を考慮して両座標系では同一の表現を採用している。 The effects described in the present specification will be described using mathematical expressions. As shown in FIG. 1, a γδ general coordinate system rotating at an arbitrary speed ω γ is considered (see Non-Patent Document 7). The rotation from the main axis (γ axis) to the sub axis (δ axis) is defined as the positive direction. Further, it is assumed that the rotor phase of the synchronous motor having salient pole characteristics has a phase θ γ instantaneously with respect to the γ axis. Unless otherwise specified, all 2x1 vector signals that represent the physical quantities of the synchronous motor to be handled below are defined on this coordinate system. As a special case, the γδ general coordinate system includes an αβ fixed coordinate system, a dq synchronous coordinate system, and a γδ quasi-synchronous coordinate system. That is, the γδ quasi-synchronous coordinate system is a special case of the γδ general coordinate system, and in consideration of this point, both coordinate systems adopt the same expression.

以下の説明では、一般性を失うことなく、電動機はゼロ速度を含め正方向へ回転するもの、γδ一般座標系の速度もゼロを含め正とする。また、回転子位相推定のために、駆動用電圧に重畳される高周波電圧の一定周波数ωは正とする。本前提は、高周波電圧、高周波電流の正相、逆相成分を区別するためのものであり、これにより説明の一般性を失うことも、本発明原理の本質を失うこともない(非特許文献8)。以上の前提は、(1)〜(3)式に示した高周波電圧にも当然のことながら適用する。正弦形状をもつ高周波電圧の表現は、余弦関数(cos関数)、正弦関数(sin関数)のいずれを用いても可能であるが、本発明の説明では、(1)〜(3)式に示した高周波電圧のように、印加電圧のγ軸要素(第1要素)を余弦関数で表現するものとする。また、印加電圧のγ軸要素(第1要素)を基準に、他の信号の位相を表現するものとする(非特許文献8参照)。 In the following description, without losing generality, the motor rotates in the positive direction including zero speed, and the speed of the γδ general coordinate system is also positive including zero. In addition, for the rotor phase estimation, the constant frequency ω h of the high frequency voltage superimposed on the driving voltage is positive. This premise is for distinguishing the high-frequency voltage and the positive-phase and negative-phase components of the high-frequency current, so that the generality of the explanation and the essence of the principle of the present invention are not lost (non-patent document). 8). The above assumptions are naturally applied to the high-frequency voltages shown in the equations (1) to (3). The high-frequency voltage having a sine shape can be expressed using either a cosine function (cos function) or a sine function (sin function), but in the description of the present invention, it is expressed by equations (1) to (3). Like the high-frequency voltage, the γ-axis element (first element) of the applied voltage is expressed by a cosine function. In addition, the phase of other signals is expressed based on the γ-axis element (first element) of the applied voltage (see Non-Patent Document 8).

以降の説明の簡明性を期し、若干の信号、関数等の定義を行っておく。γδ一般座標系上に存在し、一定高周波数ωかつ単位ノルムをもつ正相信号u(ωt)、逆相信号u(ωt)を以下のように定義する(非特許文献8参照)。

Figure 0005741673

Figure 0005741673

また、2x2行列であるベクトル回転器R(θγ)を以下のように定義する(非特許文献8)。
Figure 0005741673
For the sake of simplicity in the following explanation, some signals, functions, etc. are defined. A normal phase signal u ph t) and a negative phase signal u nh t) that exist on the γδ general coordinate system and have a constant high frequency ω h and a unit norm are defined as follows (non-patent document) Reference 8).
Figure 0005741673

Figure 0005741673

Also, a vector rotator R (θ γ ) that is a 2 × 2 matrix is defined as follows (Non-patent Document 8).
Figure 0005741673

更には、(6)、(7)式の正相信号、逆相信号に対してπ/2(rad)位相進みをもつ正相信号、逆相信号を各々ujp(ωt), ujn(ωt)と定義する。すなわち、

Figure 0005741673

Figure 0005741673

(9)、(10)式に示した正相信号、逆相信号においては、そのδ軸要素(すなわち、第2要素、sinωht)は印加高周波電圧のγ軸要素(すなわち第1要素、cosωht、(1)〜(3)式参照)に対して、高周波数ωhが正の場合には−π/2(rad)の位相差を有する点には、反対に高周波数ωhが負の場合に約+π/2(rad)の位相差を有する点には、特に注意されたい。本発明では、このような信号を、高周波積信号生成のためのキャリア信号として利用する。このため、これらの信号をキャリア正相信号、キャリア逆相信号と呼称する。 Furthermore, (6), (7) a positive-phase signal type, the positive phase signal having a [pi / 2 (rad) phase lead with respect to the phase-inverted signal, respectively u uk reverse phase signal (omega h t), u It is defined as jnh t). That is,
Figure 0005741673

Figure 0005741673

In the positive phase signal and the negative phase signal shown in the equations (9) and (10), the δ-axis element (that is, the second element, sinω h t) is the γ-axis element (that is, the first element, cos ω h t (see equations (1) to (3)), when the high frequency ωh is positive, on the contrary, the high frequency ωh is negative when it has a phase difference of −π / 2 (rad). In particular, it should be noted that the phase difference is approximately + π / 2 (rad). In the present invention, such a signal is used as a carrier signal for generating a high-frequency product signal. For this reason, these signals are called a carrier positive phase signal and a carrier negative phase signal.

突極性をもつ同期電動機に、正弦形状をもつ(1)〜(3)式のような高周波電圧をγδ一般座標系上で印加する場合には、この応答である高周波電流i1hは、γδ一般座標系上では、次式となる(非特許文献8参照)。

Figure 0005741673

(11)式が明示しているように、一般には、高周波電流の正相成分ihp、逆相成分ihnのいずれにも、回転子位相情報がR(2θγ)u(ωt),R(2θγ)u(ωt)という形式で含まれている。真円軌跡を描く真円形高周波電圧を印加する場合に限り、次の(12)式が成立し、回転子位相情報は高周波電流の逆相成分のみに含まれる(非特許文献8参照)。
Figure 0005741673
When a high-frequency voltage such as equations (1) to (3) having a sine shape is applied to a synchronous motor having saliency on the γδ general coordinate system, the high-frequency current i 1h corresponding to this response is On the coordinate system, the following expression is obtained (see Non-Patent Document 8).
Figure 0005741673

As (11) is indicated, generally, the positive phase component i hp of the high-frequency current, in any of the anti-phase component i hn, the rotor phase information R (2θ γ) u p ( ω h t ), it is included in the form of R (2θ γ) u n ( ω h t). Only when a perfect circular high-frequency voltage that draws a perfect circular locus is applied, the following equation (12) is established, and the rotor phase information is included only in the anti-phase component of the high-frequency current (see Non-Patent Document 8).
Figure 0005741673

(11)式の高周波電流は、固定子電流iの高周波成分として含まれる。これは、数式を用いて以下のように表現することができる。

Figure 0005741673
上式における脚符f、hは、それぞれ駆動周波数、高周波数の成分であることを示している。 (11) of the high-frequency current is included as a high frequency component of the stator current i 1. This can be expressed as follows using mathematical formulas.
Figure 0005741673
The symbols f and h in the above formula indicate that they are components of a driving frequency and a high frequency, respectively.

請求項1の発明では、高周波積信号を生成するためのキャリア信号として、(9)、(10)式のキャリア正相信号、キャリア逆相信号、あるいは両者をベクトル合成した信号を使用する。この代表は、次のキャリア和信号u(ωt)である。

Figure 0005741673

(14)式のキャリア和信号も、本信号の元となった(9)、(10)式のキャリア正相信号、キャリア逆相信号と同様に、そのδ軸要素(すなわち、第2要素、sinωt)は、印加高周波電圧のγ軸要素(すなわち第1要素、cosωht、(1)〜(3)式参照)に対して±π/2(rad )の位相差を有する点には、特に注意されたい。 In the first aspect of the present invention, the carrier positive phase signal, the carrier negative phase signal of Equations (9) and (10), or a signal obtained by vector synthesis of both is used as the carrier signal for generating the high frequency product signal. This representative is the next carrier sum signal u jh t).
Figure 0005741673

Similarly to the carrier positive phase signal and carrier negative phase signal of (9) and (10), the carrier sum signal of equation (14) is also the δ-axis element (that is, the second element, sin .omega h t) is, gamma longitudinal element (i.e. the first element, cos .omega h t, (1) of the applied high frequency voltage to a point having a phase difference of - (3) see formula) ± [pi / 2 with respect to (rad) Please be especially careful.

本願明細書では、キャリア信号と高周波電流または高周波電流を含む固定子電流とを利用した乗算処理を通じて、高周波成分を含有しうる高周波積信号を生成する。たとえば、キャリア信号としてのキャリア和信号u(ωht)と固定子電流iとの乗算処理を通じて生成した高周波積信号は次式となる。

Figure 0005741673

ここに、iδfは駆動用電流(固定子電流の駆動周波数成分)i1fのδ軸要素を意味する。 In the present specification, a high-frequency product signal that can contain a high-frequency component is generated through multiplication processing using a carrier signal and a high-frequency current or a stator current including a high-frequency current. For example, high-frequency product signal generated through multiplication of the carrier sum signal u j and h t) and the stator current i 1 as a carrier signal becomes the following equation.
Figure 0005741673

Here, i δf means the δ-axis element of the drive current (drive frequency component of the stator current) i 1f .

(15)式における高周波積信号の右辺第1項sは、ある範囲の回転子位相と正相関を有する、回転子位相検出上最も重要な信号である。本発明では、本第1項を高周波正相関信号と呼称する。高周波正相関信号は直流成分と周波数2ωの高周波成分から成っており、θγ=0の場合に限りゼロとなる。(11)式より理解されるように、高周波正相関信号の振幅を支配する係数(gpm+gnm)の内、第1係数は高周波電流の正相成分から、第2係数は高周波電流の逆相成分から来ている。高周波電流正相成分が有する位相情報は、キャリア正相信号との乗算処理(内積処理)により得ている。また、高周波電流逆相成分が有する位相情報は、キャリア逆相信号との乗算処理(内積処理)により得ている。キャリア和信号は、キャリア正相信号とキャリア逆相信号との正逆両相の合成信号であるので、高周波電流の正相成分、逆相成分に含まれる位相情報を共に抽出することができる。当然のことながら、キャリア正相信号のみと固定子電流との乗算処理により高周波積信号を生成する場合には、高周波電流の正相成分が有する位相情報しか抽出できない。同様に、キャリア逆相信号のみと固定子電流との乗算処理により高周波積信号を生成する場合には、高周波電流の逆相成分が有する位相情報しか抽出できない。本願明細書では、このような高周波積信号を高周波PLL手段への入力信号uPLLとして表現している((4)式参照)。 (15) the first term on the right side s h of the high frequency product signal in the equation has a rotor phase and positive correlation range, the most important signal on the rotor phase detection. In the present invention, the first term is referred to as a high-frequency positive correlation signal. RF positive correlation signal is composed of high-frequency component of the DC component and frequency 2 [omega h, becomes zero only if θ γ = 0. As understood from the equation (11), out of the coefficient (g pm + g nm ) governing the amplitude of the high-frequency positive correlation signal, the first coefficient is from the positive phase component of the high-frequency current, and the second coefficient is the inverse of the high-frequency current. Comes from phase components. The phase information of the high-frequency current positive phase component is obtained by multiplication processing (inner product processing) with the carrier positive phase signal. Further, the phase information of the high-frequency current anti-phase component is obtained by multiplication processing (inner product processing) with the carrier anti-phase signal. Since the carrier sum signal is a composite signal of both the positive and negative phases of the carrier positive phase signal and the carrier negative phase signal, it is possible to extract both phase information contained in the positive phase component and the negative phase component of the high-frequency current. Naturally, when a high-frequency product signal is generated by multiplying only the carrier positive-phase signal and the stator current, only phase information of the positive-phase component of the high-frequency current can be extracted. Similarly, when a high-frequency product signal is generated by multiplying only the carrier reverse-phase signal and the stator current, only phase information possessed by the reverse-phase component of the high-frequency current can be extracted. In the present specification, such a high-frequency product signal is expressed as an input signal u PLL to the high-frequency PLL means (see equation (4)).

(15)式の高周波積信号の右辺第2項nは、周波数2ω、ωの高周波成分を示しており、これは回転子位相の如何にかかわらず非ゼロである。本高周波成分は、回転子位相がゼロであるθγ=0の場合には、以下のように整理される。

Figure 0005741673
上式の右辺第2項は、駆動用電流i1fのδ軸要素iδfに起因する項であり、固定子電流に代わって高周波電流とキャリア信号との乗算処理による場合には、本項は存在しない。換言するならば、固定子電流から駆動用電流を除去することにより、本項は除去できる。一方、右辺第1項は、印加高周波電圧によって支配される項であり、高周波積信号に常時残留し、回転子位相推定上の外乱として作用する。高周波積信号に含まれる残留成分(本発明では、高周波残留外乱と呼称している)に対する位相推定上の対策の良し悪しが、ヘテロダイン法の性能を支配する。 The second term n h on the right-hand side of the high-frequency product signal in equation (15) indicates the high-frequency component of the frequencies 2ω h and ω h , which is non-zero regardless of the rotor phase. This high frequency component is arranged as follows when θ γ = 0 where the rotor phase is zero.
Figure 0005741673
The second term on the right side of the above equation is a term resulting from the δ-axis element i δf of the driving current i 1f , and this term is obtained when the high-frequency current is multiplied by the carrier signal instead of the stator current. not exist. In other words, this term can be removed by removing the driving current from the stator current. On the other hand, the first term on the right side is a term governed by the applied high-frequency voltage, and always remains in the high-frequency product signal and acts as a disturbance in estimating the rotor phase. The quality of the phase estimation measure against the residual component contained in the high frequency product signal (referred to as high frequency residual disturbance in the present invention) dominates the performance of the heterodyne method.

1例を示す。(4)式に示した高周波PLL手段の直接入力(すなわち、高周波積信号)として、キャリア和信号と固定子電流の乗算処理を介して得た(15)式のものを用いることを考える。更に、γδ一般座標系を、この特別の場合としてγδ準同期座標系とする。この場合、(15)式と(4)式とによるPLL推定系は、図2のように表現することができる。同図の例では、(4)式の有理関数を、次の(17)式のように高周波位相制御器C(s)と位相積分器1/sに分離して実現している。

Figure 0005741673

この場合には、位相積分器の出力が高周波PLLブロックの出力となり、回転子位相推定値(γδ準同期座標系の位相)
Figure 0005741673
となる。同時に、位相積分器の入力(高周波位相制御器C(s)の出力)が、γδ準同期座標系の速度ωγとなる。なお、同図では、固定子電流の駆動用成分のδ成分の分離除去が可能である点を考慮して、これに起因する高周波残留外乱は破線で示している。(4)式、(17)式、更には図2により明白なように、高周波積信号は、ローパスフィルタ処理されることなく、直接的に、高周波PLLブロックに入力されている。この点には特に注意されたい。 An example is shown. Consider the use of the equation (15) obtained through the multiplication of the carrier sum signal and the stator current as the direct input (ie, the high frequency product signal) of the high frequency PLL means shown in equation (4). Furthermore, the γδ general coordinate system is a γδ quasi-synchronous coordinate system in this special case. In this case, the PLL estimation system based on the equations (15) and (4) can be expressed as shown in FIG. In the example shown in the figure, the rational function of the equation (4) is realized by separating the high-frequency phase controller C (s) and the phase integrator 1 / s as the following equation (17).
Figure 0005741673

In this case, the output of the phase integrator becomes the output of the high-frequency PLL block, and the rotor phase estimation value (phase of the γδ quasi-synchronous coordinate system)
Figure 0005741673
It becomes. At the same time, the input of the phase integrator (the output of the high-frequency phase controller C (s)) becomes the velocity ω γ of the γδ quasi-synchronous coordinate system. In the figure, in consideration of the fact that the δ component of the driving component of the stator current can be separated and removed, the high-frequency residual disturbance resulting from this is indicated by a broken line. As is clear from the equations (4), (17), and FIG. 2, the high frequency product signal is directly input to the high frequency PLL block without being subjected to the low pass filter processing. Special attention should be paid to this point.

図2のPLL推定系は、3次以上の有理関数C(s)/=C(s)/(sC(s))で高周波PLLブロックを構成しているので、大きな設計自由度を有する。本自由度を利用することにより、PLL推定系の安定性の確保が可能となる(安定化のための高周波位相制御器の設計は、本願明細書に記載の効果の説明に関連して行う)。この場合、高周波数2ωhの高周波残留外乱は、定常的には、位相推定値に次式の率を乗じた形で増幅あるいは低減して出現する。

Figure 0005741673

本願明細書に記載されている効果の説明に関連して、具体例を交えながら改めて説明するが、高周波PLL手段(高周波PLLブロック)を定めた有理関数の次数を3次以上とする場合には、(すなわち、高周波位相制御器の次数を2次以上とする場合には)、(18)式の減衰率を十分に小さくできる。 The PLL estimation system of FIG. 2 has a high degree of design freedom because the high-frequency PLL block is configured with a rational function C (s) / = C N (s) / (sC D (s)) of the third or higher order. . By using this degree of freedom, it is possible to ensure the stability of the PLL estimation system (design of a high-frequency phase controller for stabilization is performed in connection with the explanation of the effects described in the present specification). . In this case, the high-frequency residual disturbance having a high frequency of 2ωh appears regularly after being amplified or reduced by multiplying the phase estimation value by the rate of the following equation.
Figure 0005741673

In connection with the description of the effect described in the present specification, a description will be given again with specific examples. When the order of the rational function that defines the high-frequency PLL means (high-frequency PLL block) is set to the third order or higher, (I.e., when the order of the high-frequency phase controller is second or higher), the attenuation factor of the equation (18) can be made sufficiently small.

(15)式を用いて説明したように、本願明細書の記載によれば、正弦形状の高周波電圧を印加する狭義高周波電圧印加法(一般化楕円形高周波電圧印加法、一定真円形高周波電圧印加法、直線形高周波電圧印加法等を含む)によって発生した高周波電流に含まれる回転子位相情報を、高周波積信号に取り込むことができる。また、(17)、(18)式と図2を用いて説明したように、高次の高周波位相制御器を有しているPLL推定系は安定化でき(安定化の詳細は、後述の発明効果に関連して説明する)、高周波残留外乱の影響を実質的に排除して回転子位相推定値を得ることができる。これらは、本願明細書の記載によれば、以下の効果が得られることを意味する。
1)正弦形状の高周波電圧を印加する狭義高周波電圧印加法(一般化楕円形高周波電圧印加法、一定真円形高周波電圧印加法、直線形高周波電圧印加法等を含む)に広く適用できる、汎用性に富む位相推定装置を実現できるようになる。
2)PLL推定系の不安定化の主要因となった高周波成分除去用ローパスフィルタの導入・前置を必要としない、構造的に安定性が確保しやすい位相推定装置が実現できるようになる。
As explained using equation (15), according to the description of the present specification, a narrowly defined high-frequency voltage application method for applying a sinusoidal high-frequency voltage (generalized elliptical high-frequency voltage application method, constant circular high-frequency voltage application method) Method, linear phase high-frequency voltage application method, etc.) can be incorporated into the high-frequency product signal. Further, as described with reference to equations (17) and (18) and FIG. 2, the PLL estimation system having a high-order high-frequency phase controller can be stabilized (details of the stabilization are described later in the invention). The rotor phase estimation value can be obtained by substantially eliminating the influence of the high-frequency residual disturbance, which will be described in relation to the effect). These mean that the following effects can be obtained according to the description of the present specification.
1) Versatile, widely applicable to narrowly defined high-frequency voltage application methods (including generalized elliptical high-frequency voltage application method, constant true high-frequency voltage application method, linear high-frequency voltage application method, etc.) for applying sinusoidal high-frequency voltage It is possible to realize a phase estimation device rich in.
2) It is possible to realize a phase estimation device that does not require the introduction / prefix of a high-frequency component removal low-pass filter, which has become a major factor in destabilizing the PLL estimation system, and is structurally easy to ensure stability.

続いて本願明細書にに記載されている効果を説明する。上述したPLL推定系において、回転子位相推定値

Figure 0005741673
が回転子位相真値θαに概ね収斂した状態では、回転子位相真値から同推定値に至る伝達特性F(s)は、以下のように近似表現される。

Figure 0005741673
Then, the effect described in this specification is demonstrated. In the PLL estimation system described above, the rotor phase estimation value
Figure 0005741673
There in the state where almost converges to the rotor phase true value theta alpha, the transfer characteristic F C leading to the estimate from the rotor phase true value (s) is approximately represented as follows.

Figure 0005741673

上の伝達特性は、図2において、高周波残留外乱を撤去し、(15)式の高周波正相関信号sを以下のように近似することによっても得ることができる。

Figure 0005741673

信号係数Kθは、印加高周波電圧の振幅、周波数、インダクタンス等によって定まる係数である。信号係数は、例えば、(1)〜(3)式に示した一般化楕円形高周波電圧、一定真円形高周波電圧、直線形高周波電圧では、各々次式となる。
Figure 0005741673

上式におけるLmは、d軸インダクタンスLd、q軸インダクタンスLqから一意に定まる鏡相インダクタンスである(非特許文献7参照)。また振動係数Khは、(20)式に明示しているように、0〜2の間で高周波振動するゲイン相当値を係数化したものである。 Transfer characteristics of the above, in FIG. 2, to remove the high-frequency residual disturbance, it can also be obtained by approximating as follows RF positive correlation signal s h of (15).
Figure 0005741673

The signal coefficient is a coefficient determined by the amplitude, frequency, inductance, and the like of the applied high frequency voltage. For example, the signal coefficients for the generalized elliptical high-frequency voltage, the constant true high-frequency voltage, and the linear high-frequency voltage shown in the equations (1) to (3) are as follows.
Figure 0005741673

Lm in the above equation is a mirror phase inductance uniquely determined from the d-axis inductance Ld and the q-axis inductance Lq (see Non-Patent Document 7). The vibration coefficient Kh is obtained by converting a gain equivalent value that vibrates at a high frequency between 0 and 2 as specified in the equation (20).

本願明細書によれば、(5)式で定義した多項式F(s)が、任意の振動係数0<K≦2に対してフルビッツ多項式(すなわち、安定多項式)となるように有理関数の係数(高周波制御器係数の係数と同一)を定めることになる。(5)式で定義した多項式は(19)式の伝達特性をもつ分母多項式そのものであり、ひいては、分母多項式が振動係数の高周波振動にもかかわらず、フルビッツ多項式となる。この結果、(19)式の伝達特性をもつPLL推定系が安定に動作するようになる。すなわち、本願明細書の記載によれば、上述の手段を備えた回転子位相推定装置が安定に動作できるようになる、と言う効果が得られるようになる。 According to the present specification, the rational function of the polynomial F D (s) defined by the equation (5) is such that it becomes a Hurwitz polynomial (that is, a stable polynomial) for an arbitrary vibration coefficient 0 <K h ≦ 2. The coefficient (same as the coefficient of the high frequency controller coefficient) is determined. The polynomial defined by equation (5) is the denominator polynomial itself having the transfer characteristic of equation (19). As a result, the denominator polynomial is a Hurwitz polynomial despite the high frequency vibration of the vibration coefficient. As a result, the PLL estimation system having the transfer characteristic of Equation (19) operates stably. That is, according to the description of the present specification, the effect that the rotor phase estimation apparatus including the above-described means can operate stably can be obtained.

高周波位相制御器を次式の形状の2次とし、有理関数を3次とする場合には、振動係数Khが1の時にPLL推定系が安定化するように、有理関数の係数(高周波位相制御器係数)を設計しておけば、任意の振動係数に対してPLL推定系は安定化する。

Figure 0005741673

3次分母多項式が安定な3重実根p0をもつようにするには、有理関数係数(高周波位相制御器係数)は以下のように定めればよい。
Figure 0005741673

この場合、(18)式で記述した高周波残留外乱の低減率は次式となり、一般に十分な低減が確保される。
Figure 0005741673
When the high-frequency phase controller is quadratic in the form of the following equation and the rational function is cubic, the rational function coefficient (high-frequency phase control) is used to stabilize the PLL estimation system when the vibration coefficient Kh is 1. If the design coefficient is designed, the PLL estimation system can be stabilized against any vibration coefficient.
Figure 0005741673

In order for the third-order denominator polynomial to have a stable triple real root p0, the rational function coefficient (high-frequency phase controller coefficient) may be determined as follows.
Figure 0005741673

In this case, the reduction rate of the high-frequency residual disturbance described by the equation (18) is as follows, and generally a sufficient reduction is ensured.
Figure 0005741673

高周波位相制御器を次式の形状の3次とし、有理関数を4次とする場合には、振動係数Khが2の時にPLL推定系が安定化するように、有理関数の係数(高周波位相制御器係数)を設計しておけば、任意の振動係数に対してPLL推定系は安定化する。

Figure 0005741673

4次分母多項式が安定な4重実根p0をもつようにするには、有理関数係数(高周波位相制御器係数)は以下のように定めればよい。
Figure 0005741673

この場合、(18)式で記述した高周波残留外乱の低減率は次式となり、一般に十分な低減が確保される。
Figure 0005741673
If the high-frequency phase controller is cubic of the following form and the rational function is quaternary, the rational function coefficient (high-frequency phase control) is used so that the PLL estimation system stabilizes when the vibration coefficient Kh is 2. If the design coefficient is designed, the PLL estimation system can be stabilized against any vibration coefficient.
Figure 0005741673

In order for the fourth-order denominator polynomial to have a stable quadruple real root p0, the rational function coefficient (high-frequency phase controller coefficient) may be determined as follows.
Figure 0005741673

In this case, the reduction rate of the high-frequency residual disturbance described by the equation (18) is as follows, and generally a sufficient reduction is ensured.
Figure 0005741673

高周波位相制御器を次式の形状の3次とし、有理関数を4次とする場合には、振動係数Khが2の時にPLL推定系が安定化するように、有理関数の係数(高周波位相制御器係数)を設計しておけば、任意の振動係数に対してPLL推定系は安定化する。

Figure 0005741673

4次分母多項式が安定な4重実根p0をもつようにするには、有理関数係数(高周波位相制御器係数)は以下のように定めればよい。
Figure 0005741673

この場合、(18)式で記述した高周波残留外乱の低減率は次式のようにゼロとなり、理論上は完全な外乱排除が実施される。
Figure 0005741673
If the high-frequency phase controller is cubic of the following form and the rational function is quaternary, the rational function coefficient (high-frequency phase control) is used so that the PLL estimation system stabilizes when the vibration coefficient Kh is 2. If the design coefficient is designed, the PLL estimation system can be stabilized against any vibration coefficient.
Figure 0005741673

In order for the fourth-order denominator polynomial to have a stable quadruple real root p0, the rational function coefficient (high-frequency phase controller coefficient) may be determined as follows.
Figure 0005741673

In this case, the reduction rate of the high-frequency residual disturbance described by the equation (18) becomes zero as shown in the following equation, and theoretically complete disturbance rejection is performed.
Figure 0005741673

上記に提示した設計法から理解されるように、明細書に記載の発明を遂行するための有理関数の係数(高周波位相制御器の係数)は、伝達特性の分母多項式の根の指定を通じ、一意に定めることができる。このように、本願明細書に記載の構成にさらに他の構成を備えさすことにより、「PLL推定系の安定性を保証するための設計法を備えた位相推定装置を実現できる」と言う効果を得ることができる。ひいては、明細書に記載の発明の効果を高めることができる。 As can be understood from the design method presented above, the rational function coefficient (coefficient of the high-frequency phase controller) for carrying out the invention described in the specification is unique through the specification of the root of the denominator polynomial of the transfer characteristic. Can be determined. Thus, by providing another configuration in addition to the configuration described in the present specification, the effect that “a phase estimation device having a design method for guaranteeing the stability of the PLL estimation system can be realized” can be achieved. Can be obtained. As a result, the effect of the invention described in the specification can be enhanced.

続いて、明細書に記載された他の効果を説明する。既に説明したように、印加高周波電圧の応答である高周波電流に対する処理は、uvw座標系、αβ固定座標系、γδ準同期座標系のいずれの座標系上でも可能である。高周波電圧印加と高周波電流処理を同一のγδ準同期座標系上で行う場合には、同座標系上の駆動用電流の周波数は定常的にはゼロとなるので、駆動用電流と高周波電流とは、任意の速度において、高周波数ωhと実質的に同等な周波数差ωhをもつことになる。この結果、高周波積信号に含まれる高周波残留外乱の周波数を2ωhとなる。直流に対する高周波残留外乱の大きな周波数差は、この排除に有利である。事実、(24)、(27)式には、2ωhのべき乗に応じて、高周波残留外乱の低減率が定まる様子が示されている。以上の説明より理解されるように、本願明細書に記載の構成によれば、「高周波成分除去用ローパスフィルタを導入・前置しない上述したPLL推定系においても、高周波残留外乱の排除をより容易に行えるようになる」と言う効果が得られる。ひいては、上述した効果を高めることができる。 Subsequently, other effects described in the specification will be described. As already described, the processing for the high-frequency current that is the response of the applied high-frequency voltage can be performed on any coordinate system of the uvw coordinate system, the αβ fixed coordinate system, and the γδ quasi-synchronous coordinate system. When high-frequency voltage application and high-frequency current processing are performed on the same γδ quasi-synchronous coordinate system, the frequency of the drive current on the same coordinate system is constantly zero. At an arbitrary speed, the frequency difference ωh is substantially equal to the high frequency ωh. As a result, the frequency of the high-frequency residual disturbance included in the high-frequency product signal is 2ωh. A large frequency difference of the high-frequency residual disturbance with respect to the direct current is advantageous for this elimination. In fact, equations (24) and (27) show how the reduction rate of high-frequency residual disturbance is determined according to the power of 2ωh. As understood from the above description, according to the configuration described in the present specification, “high-frequency residual disturbance can be easily eliminated even in the above-described PLL estimation system that does not introduce / prepend a low-frequency filter for removing high-frequency components. The effect of “being able to do this” is obtained. As a result, the effect mentioned above can be heightened.

続いて、本願明細書に記載された別の効果を説明する。(15)式を用いて説明したように、(14)式のキャリア和信号を用いて高周波積信号を生成する場合には、高周波電流の正相成分と逆相成分に含まれる回転子位相情報を、共に、高周波積信号に取り込むことができる。このときのキャリア和信号は、(14)式の右辺に明示しているように、「キャリア信号のγ軸要素を常時ゼロとし、キャリア信号を実質的にスカラ信号とする」ことを意味する。この場合には、高周波積信号の生成を示した(15)式の乗算処理は、次の(31)式のように再整理することができる。

Figure 0005741673

(31)式は、スカラキャリア信号と高周波電流のδ軸要素あるいは高周波電流を含む固定子電流のδ軸要素とのスカラ乗算処理で、高周波積信号が生成できることを意味している。ベクトル乗算と比較するならば、高周波積信号生成のための演算をおおよそ半減できる。以上の説明より明白なように、本願明細書に記載の構成によれば、「高周波電流の正相成分、逆相成分の両成分に含まれる回転子位相情報を、少ない演算量で、高周波積信号に含有させることができる」と言う効果が得られる。ひいては、上述の本願明細書に記載の構成の効果を高めることができる。 Subsequently, another effect described in the present specification will be described. As described using equation (15), when generating a high-frequency product signal using the carrier sum signal of equation (14), rotor phase information included in the positive-phase component and the negative-phase component of the high-frequency current Can be incorporated into a high-frequency product signal. The carrier sum signal at this time, as clearly shown on the right side of equation (14), means that the γ-axis element of the carrier signal is always zero and the carrier signal is substantially a scalar signal. In this case, the multiplication processing of the equation (15) showing the generation of the high frequency product signal can be rearranged as the following equation (31).
Figure 0005741673

Equation (31) means that a high-frequency product signal can be generated by scalar multiplication of the scalar carrier signal and the δ-axis element of the high-frequency current or the δ-axis element of the stator current including the high-frequency current. Compared with vector multiplication, the operation for generating a high-frequency product signal can be roughly halved. As is clear from the above description, according to the configuration described in the present specification, “the rotor phase information contained in both the positive-phase component and the negative-phase component of the high-frequency current is reduced with a small amount of computation and the high-frequency product. The effect of “can be included in the signal” is obtained. As a result, the effect of the structure as described in this-application specification can be heightened.

続いて、請求項1に記載の発明の効果を説明する。請求項1に記載の発明によれば、真円軌跡を描く高周波信号を印加して、この応答である応答高周波信号を検出し、これから逆相成分を抽出することになる。ここでは、簡単のため、印加高周波信号としては高周波電圧とし、応答高周波信号としては高周波電流を考え、本発明の効果を説明する。また、真円軌跡を描く高周波信号としては、応速形と一定形が知られているが、ここでは(2)式の一定真円形高周波電圧の印加の場合を例にとり、本発明の効果を説明する。(2)式に対応した高周波電流は、(11c)式の特別の場合として、次式で記述される((12)式参照)。

Figure 0005741673

Then, the effect of the invention of Claim 1 is demonstrated. According to the first aspect of the present invention, a high frequency signal that draws a perfect circular locus is applied, a response high frequency signal that is this response is detected, and a reverse phase component is extracted therefrom. Here, for the sake of simplicity, the effect of the present invention will be described assuming that the applied high-frequency signal is a high-frequency voltage and the response high-frequency signal is a high-frequency current. Further, as a high-frequency signal for drawing a perfect circle locus, a response type and a constant type are known, but here, the effect of the present invention is taken by taking the case of application of a constant perfect circular high-frequency voltage of equation (2) as an example. explain. The high-frequency current corresponding to equation (2) is described by the following equation as a special case of equation (11c) (see equation (12)).
Figure 0005741673

上式に明示しているように、逆相成分には(11c)式の右辺第1項に対応した成分が存在せず、第2項に対応した成分のみから構成される。請求項1に記載の発明に従って、(32)式の逆相成分を、例えば、ノルム1に正規化すると、次の正規化逆相成分を得る。

Figure 0005741673

(32)式の逆相成分は、印加高周波電圧の振幅、周波数等の影響を受けているが、(33)式の正規化逆相成分は、これらの影響を全て排除した形で、回転子位相情報のみを有している。 As clearly shown in the above equation, the component corresponding to the first term on the right side of the equation (11c) does not exist in the antiphase component, and is composed only of the component corresponding to the second term. According to the first aspect of the present invention, when the antiphase component of the equation (32) is normalized to the norm 1, for example, the following normalized antiphase component is obtained.
Figure 0005741673

The anti-phase component of equation (32) is affected by the amplitude and frequency of the applied high-frequency voltage, but the normalized anti-phase component of equation (33) eliminates all these effects, and the rotor It has only phase information.

請求項1に記載の発明に従い、(33)式の正規化逆相成分と(10)式に定義したキャリア逆相信号との乗算処理(内積処理)を通じて、積信号を生成する。すなわち、

Figure 0005741673

(34)式は、積信号は、γδ一般座標系のγ軸から見た回転子位相の正弦値そのものとなってること示している。特に、本積信号は、高周波残留外乱の影響も、印加高周波電圧の振幅、周波数の影響も、更には、電動機のインダクタンスの影響も排除した形となっている。すなわち、直流の積信号となっている。本積信号を、直流PLLブロック、トラッキングオブザーバ等に用いることにより、これらの影響を排除した状態で、αβ固定座標系のα軸からみた回転子位相推定値を得ることができる。上記は、印加高周波信号として高周波電圧を用いた場合の説明であるが、印加高周波信号として高周波電流を用いた場合にも同様の説明が可能である。 According to the first aspect of the present invention, a product signal is generated through multiplication processing (inner product processing) of the normalized antiphase component of Equation (33) and the carrier antiphase signal defined by Equation (10). That is,
Figure 0005741673

Equation (34) indicates that the product signal is the sine value of the rotor phase as viewed from the γ-axis of the γδ general coordinate system. In particular, the product signal has a form that excludes the influence of high-frequency residual disturbance, the influence of the amplitude and frequency of the applied high-frequency voltage, and the influence of the inductance of the motor. That is, it is a direct current product signal. By using this product signal for a DC PLL block, a tracking observer, etc., it is possible to obtain a rotor phase estimation value viewed from the α axis of the αβ fixed coordinate system in a state where these influences are eliminated. The above is a description when a high-frequency voltage is used as the applied high-frequency signal, but the same description can be made when a high-frequency current is used as the applied high-frequency signal.

以上の説明より明らかなように、請求項1に記載の発明による場合には、「高周波残留外乱の影響も、印加高周波電圧の振幅、周波数の影響も、更には、電動機のインダクタンスの影響も排除した形で回転子位相推定値が得られるようになる」と言う効果が得られる。更には、「印加高周波電圧の振幅、周波数、電動機のインダクタンスが変更変動がある場合にも、PLL推定系における位相制御器等の再設計を一切必要としない位相推定装置が構成できるようになる」と言う効果が得られる。 As is clear from the above description, according to the invention described in claim 1, “the influence of the high-frequency residual disturbance, the influence of the amplitude and frequency of the applied high-frequency voltage, and the influence of the inductance of the motor are excluded. In this way, the rotor phase estimation value can be obtained. ” Furthermore, “a phase estimation device that does not require any redesign of the phase controller or the like in the PLL estimation system can be configured even when the amplitude and frequency of the applied high-frequency voltage and the inductance of the motor are changed and changed.” The effect is said.

続いて、請求項2に記載の発明の効果を説明する。電動機への高周波信号印加は、電力変換器(インバータ)を介して行うことになる。電力変換器としては電圧形と電流形が存在するが、今日では電圧形が主流である。電圧形電力変換器の利用を前提とするとき、真円軌跡をもつ高周波信号としては、高周波電圧の発生・印加がより容易である。以上より、既に明らかなように、請求項2に記載の発明によれば、「真円形軌跡をもつ高周波信号を容易に電動機へ印加できるようになる」と言う効果が得られる。ひいては、請求項1に記載の発明の効果を高める効果が得られるようになる。 Then, the effect of the invention of Claim 2 is demonstrated. Application of a high frequency signal to the electric motor is performed via a power converter (inverter). There are a voltage type and a current type as power converters, but the voltage type is the mainstream today. When it is assumed that a voltage source power converter is used, it is easier to generate and apply a high frequency voltage as a high frequency signal having a perfect circular locus. As can be seen from the above, according to the second aspect of the present invention, an effect that “a high-frequency signal having a true circular locus can be easily applied to the motor” can be obtained. As a result, the effect which improves the effect of the invention of Claim 1 comes to be acquired.

続いて、請求項3に記載の発明の効果を説明する。請求項3に記載の発明によれば、印加高周波信号の周波数をωhとするならば、本周波数を、応答高周波信号の逆相成分と駆動用成分との周波数差とすることができ、ひいては、逆相成分の抽出がより容易となる。この結果、請求項3に記載の発明によれば、より簡単に正規化逆相成分、回転子位相推定値を得られるようになると言う効果が得られる。ひいては、請求項1に記載の発明の効果を高める効果が得られるようになる。 Then, the effect of the invention of Claim 3 is demonstrated. According to the third aspect of the present invention, if the frequency of the applied high-frequency signal is ωh, this frequency can be the frequency difference between the negative-phase component and the driving component of the response high-frequency signal, Extraction of the reverse phase component becomes easier. As a result, according to the third aspect of the invention, an effect is obtained that the normalized antiphase component and the rotor phase estimation value can be obtained more easily. As a result, the effect which improves the effect of the invention of Claim 1 comes to be acquired.

「3種の座標系と回転子位相の1関係例を示す図」"Figure showing an example of the relationship between the three coordinate systems and the rotor phase" 「本発明に基づく回転子位相推定の原理を示す図」"Figure showing the principle of rotor phase estimation according to the present invention" 「1実施例における駆動制御装置の基本構成を示すブロック図」"Block diagram showing the basic configuration of the drive control apparatus in one embodiment" 「1実施例における位相速度推定器の基本構成を示すブロック図」“Block diagram showing basic configuration of phase velocity estimator in one embodiment” 「1実施例における発明の妥当性を示す試験データ図」"Test data diagram showing validity of invention in one embodiment" 「1実施例における発明の妥当性を示す試験データ図」"Test data diagram showing validity of invention in one embodiment" 「1実施例における発明の妥当性を示す試験データ図」"Test data diagram showing validity of invention in one embodiment" 「1実施例における位相速度生成器の基本構成を示すブロック図」"Block diagram showing basic configuration of phase velocity generator in one embodiment" 「1実施例における位相速度生成器の基本構成を示すブロック図」"Block diagram showing basic configuration of phase velocity generator in one embodiment" 「従来のベクトルヘテロダイン法を示すブロック図」"Block diagram showing conventional vector heterodyne method" 「従来のスカラヘテロダイン法を示すブロック図」"Block diagram showing the conventional scalar heterodyne method"

以下、図面を用いて、本発明の実施例を詳細に説明する。代表的な同期電動機である永久磁石同期電動機に対し、本発明の回転子位相推定装置を備えた駆動制御装置の1例を図3に示す。本発明の主眼は回転子位相推定装置にあるが、電動機駆動制御システム全体における回転子位相推定装置の位置づけを明示すべく、あえて、駆動制御装置を含む電動機駆動制御システム全体から説明する。1は同期電動機を、2は電力変換器(電圧形)を、3は電流検出器を、4a、4bは夫々3相2相変換器、2相3相変換器を、5a、5bは共にベクトル回転器を、6は電流制御器を、7は指令変換器を、8は速度制御器を、9はバンドストップフィルタを、10は本発明を利用した位相速度推定器を、11は係数器を、12は余弦正弦信号発生器を、各々示している。図3では、1の電動機を除く、2から12までの諸機器が駆動制御装置を構成している。本図では、簡明性を確保すべく、2x1のベクトル信号を1本の太い信号線で表現している。以下のブロック図表現もこれを踏襲する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 shows an example of a drive control device provided with the rotor phase estimation device of the present invention for a permanent magnet synchronous motor which is a typical synchronous motor. Although the main point of the present invention is in the rotor phase estimation device, the entire motor drive control system including the drive control device will be described in order to clarify the positioning of the rotor phase estimation device in the entire motor drive control system. 1 is a synchronous motor, 2 is a power converter (voltage type), 3 is a current detector, 4a and 4b are 3 phase 2 phase converters, 2 phase 3 phase converters, 5a and 5b are both vectors Rotator, 6 Current controller, 7 Command converter, 8 Speed controller, 9 Band stop filter, 10 Phase speed estimator using the present invention, 11 Coefficient unit , 12 respectively indicate cosine sine signal generators. In FIG. 3, various devices from 2 to 12 except for one electric motor constitute a drive control device. In this figure, a 2 × 1 vector signal is represented by one thick signal line to ensure simplicity. The following block diagram expression follows this.

電流検出器3で検出された3相の固定子電流は、3相2相変換器4aでαβ固定座標系上の2相電流に変換された後、ベクトル回転器5aで回転子位相へゼロ位相差で位相同期を目指したγδ準同期座標系の2相電流に変換される。変換電流からバンドストップフィルタ9を介して駆動用電流を抽出し、これを電流制御器6へ送る。電流制御器6は、γδ準同期座標系上の駆動用2相電流が、各相の電流指令値に追随すべくγδ準同期座標系上の駆動用2相電圧指令値を生成する。ここで、位相速度推定器10から受けた2相の高周波電圧指令値を、駆動用2相電圧指令値に重畳させ、重畳合成した2相電圧指令値を、ベクトル回転器5bへ送る。5bでは、γδ準同期座標系上の重畳合成の電圧指令値をαβ固定座標系の2相電圧指令値に変換し、2相3相変換器4bへ送る。4bでは、2相電圧指令値を3相電圧指令値に変換し、電力変換器2への最終指令値として出力する。電力変換器2は、指令値に応じた電力を発生し、同期電動機1へ印加しこれを駆動する。 The three-phase stator current detected by the current detector 3 is converted into a two-phase current on the αβ fixed coordinate system by the three-phase two-phase converter 4a, and then moved to the rotor phase by the vector rotator 5a. The phase difference is converted into a two-phase current in a γδ quasi-synchronous coordinate system aimed at phase synchronization. A drive current is extracted from the converted current through the band stop filter 9 and sent to the current controller 6. The current controller 6 generates a driving two-phase voltage command value on the γδ quasi-synchronous coordinate system so that the driving two-phase current on the γδ quasi-synchronous coordinate system follows the current command value of each phase. Here, the two-phase high-frequency voltage command value received from the phase velocity estimator 10 is superimposed on the driving two-phase voltage command value, and the two-phase voltage command value superimposed and synthesized is sent to the vector rotator 5b. In 5b, the voltage command value for superposition and synthesis on the γδ quasi-synchronous coordinate system is converted into a two-phase voltage command value in the αβ fixed coordinate system, and sent to the two-phase three-phase converter 4b. In 4b, the two-phase voltage command value is converted into a three-phase voltage command value and output as a final command value to the power converter 2. The power converter 2 generates electric power according to the command value, applies it to the synchronous motor 1 and drives it.

位相速度推定器10は、ベクトル回転器5aの出力である固定子電流を受けて(必要に応じて、駆動用電流の指令値も受けて)、回転子位相推定値、回転子の電気速度推定値、及び高周波電圧指令値を出力している。回転子位相推定値は、余弦正弦信号発生器12で余弦・正弦信号に変換された後、γδ準同期座標系を決定づけるベクトル回転器5a、5bへ渡される。これは、回転子位相推定値をγδ準同期座標系の位相とすることを意味する。 The phase speed estimator 10 receives the stator current that is the output of the vector rotator 5a (and receives the command value of the driving current as necessary), and estimates the rotor phase estimated value and the electric speed of the rotor. Value and high-frequency voltage command value are output. The rotor phase estimation value is converted into a cosine / sine signal by the cosine sine signal generator 12, and then passed to the vector rotators 5a and 5b that determine the γδ quasi-synchronous coordinate system. This means that the rotor phase estimation value is the phase of the γδ quasi-synchronous coordinate system.

γδ準同期座標系上の2相電流指令値は、当業者には周知のように、トルク指令値を指令変換器7に通じ変換することにより得ている。速度制御器8には、位相速度推定器10からの出力信号の1つである回転子速度推定値(電気速度推定値)が、一定値である極対数Npの逆数を係数器11を介して乗じられ機械速度推定値に変換された後、送られている。図3の本例では、速度制御システムを構成した例を示しているので、速度制御器8の出力としてトルク指令値を得ている。当業者には周知のように、制御目的がトルク制御にあり速度制御システムを構成しない場合には、速度制御器8は不要である。この場合には、トルク指令値が外部から直接印加される。 As is well known to those skilled in the art, the two-phase current command value on the γδ quasi-synchronous coordinate system is obtained by converting the torque command value through the command converter 7. In the speed controller 8, the rotor speed estimated value (electric speed estimated value), which is one of the output signals from the phase speed estimator 10, is sent through the coefficient unit 11 as the inverse of the pole pair number Np, which is a constant value. It is sent after being multiplied and converted to a machine speed estimate. In the present example of FIG. 3, an example in which a speed control system is configured is shown, and thus a torque command value is obtained as an output of the speed controller 8. As is well known to those skilled in the art, the speed controller 8 is unnecessary when the control purpose is torque control and the speed control system is not configured. In this case, the torque command value is directly applied from the outside.

本発明の核心は、回転子位相推定装置と実質同義でる位相速度推定器10にある。速度制御、トルク制御の何れにおいても、位相速度推定器10には何らの変更を要しない。また、駆動対象電動機を他の同期電動機とする場合にも位相速度推定器10には何らの変更を要しない。以下では、速度制御、トルク制御等の制御モードに関し一般性を失うことなく、更には、駆動対象の同期電動機に対して一般性を失うことなく、位相速度推定器10の実施例について説明する。 The core of the present invention resides in the phase velocity estimator 10 which is substantially synonymous with the rotor phase estimation device. In any of the speed control and the torque control, the phase speed estimator 10 does not require any change. Even when the motor to be driven is another synchronous motor, the phase speed estimator 10 does not require any change. In the following, an embodiment of the phase speed estimator 10 will be described without losing generality with respect to control modes such as speed control and torque control, and without losing generality with respect to the synchronous motor to be driven.

図4に、位相速度推定器10の1実施例を示した。本位相速度推定器10は、基本的に、高周波電圧指令器(HFVCと表示)10−1、高周波積信号生成器10−2、高周波位相同期器10−3の3機器から構成されている。 FIG. 4 shows an embodiment of the phase velocity estimator 10. The phase velocity estimator 10 basically includes three devices: a high-frequency voltage command device (displayed as HFVC) 10-1, a high-frequency product signal generator 10-2, and a high-frequency phase synchronizer 10-3.

高周波電圧指令器10−1は、回転子位相推定値を基軸(γ軸)位相とする2軸直交のγδ準同期座標系上で正弦形状となる高周波電圧指令値を生成している。図3に示したように、高周波電圧指令器10−1は、駆動制御装置内の機器5b、4b、2と共に、高周波電圧印加を遂行している。高周波電圧指令器で生成される高周波電圧指令値としては、(1)〜(3)式に基づく次のものが、少なくとも考えられる。

Figure 0005741673

Figure 0005741673

Figure 0005741673

(35)式の高周波電圧指令値生成では、γ軸速度に代わって、回転子電気速度推定値を利用している。図4に明示しているように、電気速度推定値はγ軸速度と本質的に等価であるが、必要に応じ、γ軸速度をローパスフィルタ処理して電気速度推定値を得るようにしている。なお、このときのローパスフィルタは、通常は、簡単な1次フィルタでよい。 The high-frequency voltage command device 10-1 generates a high-frequency voltage command value having a sine shape on a biaxial orthogonal γδ quasi-synchronous coordinate system having the rotor phase estimation value as a base axis (γ-axis) phase. As shown in FIG. 3, the high-frequency voltage command device 10-1 performs high-frequency voltage application together with the devices 5b, 4b, and 2 in the drive control device. As the high-frequency voltage command value generated by the high-frequency voltage command device, at least the following values based on the equations (1) to (3) are conceivable.
Figure 0005741673

Figure 0005741673

Figure 0005741673

In the generation of the high-frequency voltage command value of equation (35), the estimated rotor electric speed is used instead of the γ-axis speed. As clearly shown in FIG. 4, the electrical speed estimation value is essentially equivalent to the γ-axis speed, but the γ-axis speed is low-pass filtered as necessary to obtain the electrical speed estimation value. . Note that the low-pass filter at this time may normally be a simple primary filter.

高周波電圧指令値が駆動用電圧指令値に重畳されて、電力変換器を介して高周波電圧が同期電動機に印加され、ひいては高周波電流が流れる。高周波電流は、固定子電流の高周波成分としてこれに含まれている。高周波成分を含有しうる高周波積信号を生成する役割を担っている高周波積信号生成器10−2は、図4の実施例では、次式の最終式を忠実に実現している。

Figure 0005741673

すなわち、固定子電流のδ軸要素から駆動用電流指令値のδ軸要素を減じ、実質的に高周波電流のδ軸要素を得て、高周波電流δ軸要素と印加高周波電圧指令値のγ軸要素に対して−π/2(rad)の位相差を有するキャリア信号sinωtとの(スカラ)乗算処理を通じて、高周波積信号を生成している。本高周波信号の生成は、(38)式の第2式が示しているように、印加高周波電圧のγ軸要素に対して−π/2(rad)の位相差を有する信号をδ軸要素とするキャリア和信号(ベクトル)と高周波電流(ベクトル)の内積処理と等価である。高周波電圧指令値が(35)、(36)式のようにδ軸要素をもつ場合には、キャリア信号を本δ軸要素から直接生成するようにすると、演算量を低減できる。図4はこの例を示している。すなわち、高周波積信号生成器は、実質的にスカラ乗算器のみで実現できる。なお、(37)式のようなδ軸要素を持たない高周波電圧指令値を利用する場合には、高周波電圧指令値のγ軸要素に所定の位相差を付与して、キャリア信号を生成することになる。 The high-frequency voltage command value is superimposed on the driving voltage command value, and the high-frequency voltage is applied to the synchronous motor via the power converter, so that a high-frequency current flows. The high frequency current is included in this as a high frequency component of the stator current. The high-frequency product signal generator 10-2 that plays a role of generating a high-frequency product signal that can contain a high-frequency component faithfully realizes the final expression of the following expression in the embodiment of FIG.

Figure 0005741673

That is, the δ-axis element of the driving current command value is subtracted from the δ-axis element of the stator current to substantially obtain the δ-axis element of the high-frequency current, and the γ-axis element of the high-frequency current δ-axis element and the applied high-frequency voltage command value through (scalar) multiplication process of the carrier signal sin .omega h t having a phase difference of - [pi] / 2 (rad) with respect to, and generates a high-frequency product signal. This high-frequency signal is generated by using a signal having a phase difference of −π / 2 (rad) with respect to the γ-axis element of the applied high-frequency voltage as the δ-axis element, as shown in the second equation of equation (38). This is equivalent to the inner product processing of the carrier sum signal (vector) and the high-frequency current (vector). When the high-frequency voltage command value has a δ-axis element as in equations (35) and (36), the amount of calculation can be reduced by generating the carrier signal directly from the δ-axis element. FIG. 4 shows this example. That is, the high-frequency product signal generator can be realized substantially only by a scalar multiplier. When using a high-frequency voltage command value that does not have a δ-axis element as in equation (37), a predetermined phase difference is given to the γ-axis element of the high-frequency voltage command value to generate a carrier signal. become.

高周波積信号生成器は、(38)式に代わって、次の高周波積信号を生成するように構成してもよい。

Figure 0005741673

Figure 0005741673
(39)式におけるFdc(s)はFdc(0)=0の性質をもつ、直流成分のみの除去を目的とした広帯域幅をもつ直流成分除去フィルタである。(39)式は広帯域の直流成分除去フィルタのPLL推定系内への導入を意味するが、この種のフィルタの導入は、高周波位相同期器の設計に実質影響を与えない。換言するならば、この導入を無視して、PLL推定系を安定化するための高周波位相同期器を設計できる。 The high frequency product signal generator may be configured to generate the next high frequency product signal, instead of the equation (38).
Figure 0005741673

Figure 0005741673
F dc (s) in the equation (39) is a DC component removal filter having a property of F dc (0) = 0 and having a wide bandwidth for the purpose of removing only the DC component. Equation (39) means the introduction of a broadband DC component removal filter into the PLL estimation system, but the introduction of this type of filter does not substantially affect the design of the high-frequency phase synchronizer. In other words, this introduction can be ignored and a high-frequency phase synchronizer for stabilizing the PLL estimation system can be designed.

高周波位相同期器は、高周波PLL手段を実現したものであり、本例では、(17)式に忠実に従い実現されている。すなわち、高周波積信号を入力として得て、γδ準同期座標系の速度ωγと回転子位相推定値

Figure 0005741673
とを出力している。このときの高周波位相制御器C(S)の係数(有理関数の係数)は、既に説明した設計法に従い、PLL推定系が安定に動作するように設計されている。 The high-frequency phase synchronizer realizes a high-frequency PLL means, and in this example, is realized according to the expression (17). That is, the high frequency product signal is obtained as an input, and the speed ω γ and the rotor phase estimation value of the γδ quasi-synchronous coordinate system
Figure 0005741673
Is output. The coefficient (rational function coefficient) of the high-frequency phase controller C (S) at this time is designed so that the PLL estimation system operates stably in accordance with the design method already described.

次に、本発明の効果ひいては有用性を確認すべく遂行した数値実験の1例を示す。駆動制御システムの構成は、図2、図3、図4に示した実施例と同一である。高周波電圧指令器10−1としては、一般化楕円形高周波電圧法に基づく(35)式に従い構成した。この際、この際、高周波位相同期器による高周波残留外乱の低減特性を確認すべく、最大の高周波残留外乱が発生する楕円パラメータK=1を選定した。供試電動機の仕様概要を表1に示す。 Next, an example of a numerical experiment carried out in order to confirm the effects and usefulness of the present invention will be shown. The configuration of the drive control system is the same as that of the embodiment shown in FIGS. The high frequency voltage command device 10-1 was configured according to the equation (35) based on the generalized elliptical high frequency voltage method. At this time, in order to confirm the reduction characteristic of the high-frequency residual disturbance by the high-frequency phase synchronizer, the elliptic parameter K = 1 at which the maximum high-frequency residual disturbance occurs was selected. Table 1 shows an overview of the specifications of the test motor.

Figure 0005741673
Figure 0005741673

印加高周波電圧の振幅、周波数は次式とする。

Figure 0005741673

この場合、(21)式の第1式で定義した信号係数Kθは次の値をとる。
Figure 0005741673

高周波位相制御器C(s)の係数(有理関数の係数と同一)の設計は、PLL推定系の帯域幅が概ね150(rad/s)となるように、行うものとする。 The amplitude and frequency of the applied high-frequency voltage are as follows.
Figure 0005741673

In this case, (21) the signal coefficient K theta defined by the first equation of the following values.
Figure 0005741673

The coefficient of the high-frequency phase controller C (s) (same as the coefficient of the rational function) is designed so that the bandwidth of the PLL estimation system is approximately 150 (rad / s).

高周波位相制御器は(22)式の2次のものを、ひいては有理関数は3次のものを利用するものとする。PLL推定系の伝達特性の分母多項式が安定な3重根をもつように定めることする。所期の帯域幅を持たせるには、このときの根は根pは概ねp=−88となる。振動係数Kを1として、(23)式を利用し高周波位相制御器係数を算定すると、直ちに次を得る。

Figure 0005741673

また、(24)式に定めた高周波残留外乱低減率に関し、以下を得る。
Figure 0005741673

上の高周波位相制御器係数は、試行錯誤的には選定が難しい、桁数の大きく異なる幅のある数値を示している。また、高周波残留外乱低減率は、実用上十分に小さい値を示している。 It is assumed that the high-frequency phase controller uses a quadratic one of the equation (22), and that the rational function uses a cubic one. The denominator polynomial of the transfer characteristic of the PLL estimation system is determined to have a stable triple root. In order to have the desired bandwidth, the root p 0 at this time is approximately p o = −88. When the vibration coefficient Kh is set to 1 and the high frequency phase controller coefficient is calculated using the equation (23), the following is immediately obtained.
Figure 0005741673

Further, the following is obtained with respect to the high-frequency residual disturbance reduction rate defined in the equation (24).
Figure 0005741673

The upper high-frequency phase controller coefficient indicates a numerical value with a large difference in the number of digits, which is difficult to select by trial and error. Further, the high-frequency residual disturbance reduction rate is a sufficiently small value for practical use.

永久磁石同期電動機は電気速度30(rad/s)で一定速回転中とし、また、PLL推定系は、回転子位相真値θα=π/6 (rad)のときに回転子位相推定値の初期値を

Figure 0005741673
(rad)として、回転子位相推定動作を開始させた。数値実験結果を図5に示す。図5(a)は、回転子位相推定の様子を示したものであり、上から、回転子位相真値θα、同推定値
Figure 0005741673
、位相偏差
Figure 0005741673
を示している。位相偏差の軸スケールは、位相真値、同推定値に比較し、5倍大きくしている。同図(b)は、これに対応した速度を示したものであり、上から、回転子の電気速度真値ω2n、座標系速度ωγ、座標系速度を帯域幅150(rad/s)の1次ローパスフィルタで処理して得た速度推定値
Figure 0005741673
である。同図(c)は、時刻1(s)近傍の定常状態における高周波積信号、すなわち高周波位相制御器への入力信号(高周波位相同期器への入力信号)uPLLである。図(a)より、回転子位相は約0.1(s)後には正しく推定されていることが確認される。一方、座標系速度には高い振幅(約9(rad/s))の高周波成分が出現しており、速度推定値として利用するには、追加的なフィルタが不可欠であることが確認される。図(c)より、高周波位相制御器への入力信号(高周波積信号)は回転子位相推定値が同真値へ実質的に収斂した後も高周波残留外乱を有していることを示している。しかしながら、この高周波残留外乱は、回転子位相推定値に対しては、(44)式の低減率で低減されており、回転子位相推定値上には実質的には出現していない。これら応答は、すでに解説した「本発明の効果」を裏付けるものである。 The permanent magnet synchronous motor is rotating at a constant speed at an electric speed of 30 (rad / s), and the PLL estimation system is the rotor phase true value θ α = π / 6. The initial value of the rotor phase estimate is
Figure 0005741673
The rotor phase estimation operation was started as (rad). The numerical experiment results are shown in FIG. Fig. 5 (a) shows the state of the rotor phase estimation. From the top, the rotor phase true value θ α and the estimated value are shown.
Figure 0005741673
, Phase deviation
Figure 0005741673
Is shown. The axis scale of the phase deviation is 5 times larger than the true phase value and the estimated value. FIG. 4B shows the speed corresponding to this. From the top, the rotor electrical speed true value ω 2n , the coordinate system speed ω γ , and the coordinate system speed are set to a bandwidth 150 (rad / s). Estimated velocity obtained by processing with the first-order low-pass filter
Figure 0005741673
It is. FIG. 4C shows a high-frequency product signal in a steady state near time 1 (s), that is, an input signal to the high-frequency phase controller (input signal to the high-frequency phase synchronizer) u PLL . From Fig. (A), it is confirmed that the rotor phase is correctly estimated after about 0.1 (s). On the other hand, a high-frequency component having a high amplitude (about 9 (rad / s)) appears in the coordinate system velocity, and it is confirmed that an additional filter is indispensable for use as a velocity estimation value. Figure (c) shows that the input signal (high-frequency product signal) to the high-frequency phase controller has high-frequency residual disturbance even after the rotor phase estimate has substantially converged to the same true value. . However, this high frequency residual disturbance is reduced with respect to the rotor phase estimated value by the reduction rate of the equation (44), and does not substantially appear on the rotor phase estimated value. These responses support the “effect of the present invention” already described.

高周波位相制御器は(25)式の3次のものを、ひいては有理関数は4次のものを利用するものとする。PLL推定系の伝達特性の分母多項式が安定な4重根をもつように定めることする。所期の帯域幅を持たせるには、このときの根は根pは概ねp=-115となる。振動係数Kを2として、(26)式を利用し高周波位相制御器係数を算定すると、直ちに次を得る。

Figure 0005741673

また、(27)式に定めた高周波残留外乱低減率に関し、以下を得る。
Figure 0005741673

上の高周波位相制御器係数は、試行錯誤的には選定が難しい桁数の大きく異なる幅のある数値を示している。また、高周波残留外乱低減率は、実用上十分に小さい値を示している。 It is assumed that the high-frequency phase controller uses the third order of the equation (25), and the rational function uses the fourth order. The denominator polynomial of the transfer characteristic of the PLL estimation system is determined to have a stable quadruple root. In order to have the desired bandwidth, the root p o at this time is approximately p o = −115. When the vibration coefficient Kh is set to 2 and the high frequency phase controller coefficient is calculated using the equation (26), the following is immediately obtained.
Figure 0005741673

Further, the following is obtained with respect to the high frequency residual disturbance reduction rate defined in the equation (27).
Figure 0005741673

The upper high-frequency phase controller coefficient indicates a numerical value with a large difference in the number of digits that is difficult to select by trial and error. Further, the high-frequency residual disturbance reduction rate is a sufficiently small value for practical use.

図5と同一条件で実験を行った。数値実験結果を図6に示す。図6の波形の意味は、図5と同様である。図(a)の位相偏差

Figure 0005741673
から、約0.3(s)後には回転子位相は適切に推定されていることが確認される。また、座標系速度ωγには、若干の高周波残留外乱が出現しているが(本図では、必ずしも明瞭でない)、その振幅は実用上の許容範囲内に収まっている。座標系速度とこのフィルタ処理後の信号である
Figure 0005741673
との間には、大きな違いはない。なお、本数値実験における、定常状態での入力信号(高周波積信号)は図5(c)と同様であるので、この表示は避けた。これら応答は、すでに解説した「本発明の効果」を裏付けるものである。 The experiment was performed under the same conditions as in FIG. The result of the numerical experiment is shown in FIG. The meaning of the waveform in FIG. 6 is the same as that in FIG. Phase deviation in figure (a)
Figure 0005741673
Thus, it is confirmed that the rotor phase is properly estimated after about 0.3 (s). In addition, a slight high-frequency residual disturbance appears in the coordinate system speed ω γ (not necessarily clear in this figure), but the amplitude is within a practical allowable range. The coordinate system speed and the signal after this filter processing
Figure 0005741673
There is no big difference between In this numerical experiment, the input signal (high-frequency product signal) in a steady state is the same as that shown in FIG. These responses support the “effect of the present invention” already described.

高周波位相制御器は(28)式の3次のものを、ひいては有理関数は4次のものを利用するものとする。PLL推定系の伝達特性の分母多項式が安定な4重根をもつように定めることする。所期の帯域幅を持たせるには、このときの根は根pは概ねp=-100となる。振動係数Kを2として、(29)式を利用し高周波位相制御器係数を算定すると、直ちに次を得る。

Figure 0005741673

上の高周波位相制御器係数は、試行錯誤的には選定が難しい桁数の大きく異なる幅のある数値を示している。本高周波位相制御器による高周波残留外乱低減率は、(30)式に示したように、ゼロである。 It is assumed that the high-frequency phase controller uses the third order of equation (28), and the rational function uses the fourth order. The denominator polynomial of the transfer characteristic of the PLL estimation system is determined to have a stable quadruple root. To have the desired bandwidth, root root p o at this time is generally a p o = -100. When the vibration coefficient Kh is set to 2 and the high frequency phase controller coefficient is calculated using the equation (29), the following is immediately obtained.
Figure 0005741673

The upper high-frequency phase controller coefficient indicates a numerical value with a large difference in the number of digits that is difficult to select by trial and error. The high frequency residual disturbance reduction rate by this high frequency phase controller is zero as shown in the equation (30).

図5、6と同一条件で実験を行った。数値実験結果を図7に示す。図7の波形の意味は、図5と同様である。図(a)の位相偏差

Figure 0005741673
から、約0.3(s)後には回転子位相は適切に推定されていることが確認される。また、座標系速度ωγには、高周波残留外乱が実質的に出現していないことも確認される。すなわち、(30)式の性質が確認される。高周波残留外乱の回転子推定値への出現有無を除けば、本高周波位相制御器による応答は、図6に示した高周波位相制御器による応答と、過渡応答においても、概ね同様である。これら応答は、すでに解説した「本発明の効果」を裏付けるものである。 Experiments were performed under the same conditions as in FIGS. The result of the numerical experiment is shown in FIG. The meaning of the waveform in FIG. 7 is the same as that in FIG. Phase deviation in figure (a)
Figure 0005741673
Thus, it is confirmed that the rotor phase is properly estimated after about 0.3 (s). It is also confirmed that the high frequency residual disturbance does not substantially appear in the coordinate system speed ω γ . That is, the property of equation (30) is confirmed. Except for the presence or absence of high-frequency residual disturbance in the estimated rotor value, the response by the high-frequency phase controller is substantially the same in the response by the high-frequency phase controller shown in FIG. 6 and the transient response. These responses support the “effect of the present invention” already described.

続いて、第2実施例を示す。図8に、位相速度推定器10の1実施例を示した。高周波電圧指令器10−1、高周波位相同期器10−3は、図5の実施例と同一である。図8と図5の相違は、高周波積信号生成器10−2にある。まず、直流成分除去フィルタFdc(s)を用いて固定子電流から直流成分である駆動用電流を除去し、高周波電流を得る。次に、高周波電流とキャリア逆相信号との内積演算を行い、高周波積信号(高周波位相制御器の入力信号)を生成している。このときのキャリア逆相信号のδ軸要素は、(10)式の第2式が示しているように、高周波電圧指令値のγ軸要素に対して−π/2(rad)の位相差を有する。上記の内積演算は、数式を用いて、以下のように表現することもできる。

Figure 0005741673
Subsequently, a second embodiment will be shown. FIG. 8 shows an embodiment of the phase velocity estimator 10. The high frequency voltage command device 10-1 and the high frequency phase synchronizer 10-3 are the same as those in the embodiment of FIG. The difference between FIG. 8 and FIG. 5 resides in the high-frequency product signal generator 10-2. First, a direct current component removal filter F dc (s) is used to remove a drive current that is a direct current component from the stator current to obtain a high frequency current. Next, the inner product calculation of the high frequency current and the carrier reverse phase signal is performed to generate a high frequency product signal (input signal of the high frequency phase controller). At this time, the δ-axis element of the carrier reverse-phase signal has a phase difference of −π / 2 (rad) with respect to the γ-axis element of the high-frequency voltage command value, as shown in the second expression of equation (10). Have. The above inner product operation can also be expressed as follows using mathematical expressions.
Figure 0005741673

キャリア逆相信号との乗算処理(内積処理)に利用する信号としては、(48)式に代わって、次式を利用してもよい。

Figure 0005741673

Figure 0005741673
As a signal used for multiplication processing (inner product processing) with a carrier reverse phase signal, the following equation may be used instead of equation (48).
Figure 0005741673

Figure 0005741673

高周波電圧指令値が(35)、(36)式のようなベクトル信号の場合には、キャリア逆相信号は、これらのγ軸、δ軸要素から直接得ることができる。図8はこの例を示しており、高周波積信号生成器は、実質的に内積器のみで実現できる。また、(37)式のようなγ軸要素しか持たない高周波電圧指令値を利用する場合には、キャリア逆相信号は、高周波電圧指令値のγ軸要素に所定の位相差を付与して生成することになる。 In the case where the high-frequency voltage command value is a vector signal as expressed by equations (35) and (36), the carrier reverse phase signal can be obtained directly from these γ-axis and δ-axis elements. FIG. 8 shows this example, and the high-frequency product signal generator can be realized substantially only by the inner product. In addition, when using a high-frequency voltage command value having only a γ-axis element as in equation (37), the carrier reverse phase signal is generated by giving a predetermined phase difference to the γ-axis element of the high-frequency voltage command value. Will do.

以上は、キャリア逆相信号を利用した実施例であるが、当業者には既に容易に理解できるように、キャリア正相信号を利用する場合も同様である。 The above is an embodiment using a carrier reverse phase signal, but the same applies to the case where a carrier positive phase signal is used, as can be easily understood by those skilled in the art.

続いて、請求項1〜3に記載発明を利用した1実施例(第3実施例)を示す。電動機駆動制御システムの代表的構成は、図3と概ね同様である。請求項1〜3の発明に基づき構成されている機器が、位相速度推定器10である。図8に、請求項1〜3に記載の発明を利用した位相速度推定器10の1実施例を示した。これは、高周波電圧指令器(HFVCと表示)10−1、逆相成分抽出器10−4、正規化器10−5、最終位相生成器10−6の4機器から構成されている。 Subsequently, one example (third example) using the invention according to claims 1 to 3 is shown. The typical configuration of the motor drive control system is substantially the same as that shown in FIG. A device configured based on the inventions of claims 1 to 3 is a phase velocity estimator 10. FIG. 8 shows an embodiment of the phase velocity estimator 10 using the inventions according to claims 1 to 3. This is composed of four devices: a high-frequency voltage command device (indicated as HFVC) 10-1, an anti-phase component extractor 10-4, a normalizer 10-5, and a final phase generator 10-6.

本実施例の高周波電圧指令器10−1は、K=1を条件とした(35)式、あるいは(36)式等に基づき、真円軌跡を描く高周波電圧指令値を生成している。逆相成分抽出器10−4は、固定子電流より、高周波電流の逆相成分を抽出する役割を担っている。このときの逆相成分は、印加高周波信号と逆相順にある成分である。逆相成分の抽出には、非特許文献7に解説されているD因子フィルタ等を利用すればよい。抽出された逆相成分は、正規化器10−5へ送られる。正規化器は、逆相成分を正規化し、正規化逆相成分を最終位相生成器10−6へ向け、出力している。 The high-frequency voltage command device 10-1 of the present embodiment generates a high-frequency voltage command value that draws a perfect circular locus based on the equation (35) or the equation (36), etc., with K = 1 as a condition. The negative phase component extractor 10-4 plays a role of extracting the negative phase component of the high frequency current from the stator current. The anti-phase component at this time is a component in the order of anti-phase with the applied high-frequency signal. For extraction of the reverse phase component, a D-factor filter described in Non-Patent Document 7 may be used. The extracted antiphase component is sent to the normalizer 10-5. The normalizer normalizes the anti-phase component and outputs the normalized anti-phase component to the final phase generator 10-6.

本実施例における最終位相生成器は、先ず、(34)式に示した内積処理を行い、次式の積信号を生成している。

Figure 0005741673

このときの積信号は、(51)式が示しているように、高周波成分を含有しない、直流的な成分である。最終位相生成器では、本積信号を位相同期器で処理して、回転子位相推定値とγδ準同期座標系の速度を出力している。直流的な位相偏差を入力として、回転子位相推定値等を生成出力する役割を担っている位相同期器は、通常の代表的な直流PLL法に基づき構成すればよい。この種の位相同期器の構成法に関しては、非特許文献7等に詳説されており、当業者には公知であるので、これ以上の説明は省略する。位相同期器の出力の1つである座標系速度は、必要に応じてローパスフィルタで処理して、回転子速度推定値として利用される。この点は、図5、8の実施例と同様であるので、これ以上の説明は、省略する。 The final phase generator in the present embodiment first performs the inner product processing shown in the equation (34) to generate a product signal of the following equation.
Figure 0005741673

The product signal at this time is a direct current component that does not contain a high frequency component, as shown in equation (51). In the final phase generator, the product signal is processed by the phase synchronizer, and the rotor phase estimation value and the speed of the γδ quasi-synchronous coordinate system are output. A phase synchronizer having a role of generating and outputting a rotor phase estimation value or the like with a DC phase deviation as an input may be configured based on a typical typical DC PLL method. The configuration method of this type of phase synchronizer is described in detail in Non-Patent Document 7 and the like, and is well known to those skilled in the art, so further explanation is omitted. The coordinate system speed, which is one of the outputs of the phase synchronizer, is processed by a low-pass filter as necessary and used as a rotor speed estimation value. Since this point is the same as the embodiment of FIGS. 5 and 8, further description is omitted.

図8の実施例は、位相速度推定器をγδ準同期座標系上で構成した例である。位相速度推定器は、αβ固定座標系上でも構成可能である。本発明による位相速度推定器を、αβ固定座標系上での構成は、積信号の生成に留意すればよい。積信号の生成上の留意点は非特許文献1、2と同様である。当業者はこれら文献より留意点を容易に理解できるので、これ以上の説明は省略する。 The embodiment of FIG. 8 is an example in which the phase velocity estimator is configured on a γδ quasi-synchronous coordinate system. The phase velocity estimator can also be configured on an αβ fixed coordinate system. The configuration of the phase velocity estimator according to the present invention on the αβ fixed coordinate system should be noted in the generation of the product signal. The points to be noted in generating the product signal are the same as in Non-Patent Documents 1 and 2. Since those skilled in the art can easily understand the points to be noted from these documents, further explanation will be omitted.

図8の実施例は、印加高周波信号、応答高周波信号を、各々、高周波電圧、高周波電流とした。印加高周波信号、応答高周波信号を、各々、高周波電流、高周波電圧とする場合の構成は、当業者には、図8より容易に理解できるので、これ以上の説明を省略する。 In the example of FIG. 8, the applied high frequency signal and the response high frequency signal are a high frequency voltage and a high frequency current, respectively. A person skilled in the art can easily understand the configuration when the applied high-frequency signal and the response high-frequency signal are a high-frequency current and a high-frequency voltage, respectively, and will not be described further.

図8の実施例では、最終位相生成器として、直流成分の積信号と位相同期器とを用いた構成にしたが、本発明は、最終位相生成器の構成をこれに限定するものでないことを指摘しておく。 In the embodiment of FIG. 8, the final phase generator is configured to use a product signal of a DC component and a phase synchronizer. However, the present invention does not limit the configuration of the final phase generator. Please point out.

本発明は、同期を電動機をセンサレス駆動する応用の中で、特に、ゼロ速度を含む低速域で高トルク発生を必要とする用途に好適である。 The present invention is suitable for applications that require generation of high torque in a low speed range including zero speed, among applications in which the motor is sensorlessly driven for synchronization.

1 同期電動機
2 電力変換器
3 電流検出器
4a 3相2相変換器
4b 2相3相変換器
5a ベクトル回転器
5b ベクトル回転器
6 電流制御器
7 指令変換器
8 速度制御器
9 バンドストップフィルタ
10 位相速度推定器
10−1 高周波電圧指令器
10−2 高周波積信号生成器
10−3 高周波位相同期器
10−4 逆相成分抽出器
10−5 正規化器
10−6 最終位相生成器
11 係数器
12 余弦正弦信号発生器
DESCRIPTION OF SYMBOLS 1 Synchronous motor 2 Power converter 3 Current detector 4a 3 phase 2 phase converter 4b 2 phase 3 phase converter 5a Vector rotator 5b Vector rotator 6 Current controller 7 Command converter 8 Speed controller 9 Band stop filter 10 Phase velocity estimator 10-1 High frequency voltage command device 10-2 High frequency product signal generator 10-3 High frequency phase synchronizer 10-4 Reverse phase component extractor 10-5 Normalizer 10-6 Final phase generator 11 Coefficient unit 12 Cosine sine signal generator

Claims (3)

駆動基本周波数より高い周波数をもつ高周波信号の印加に対し回転子が突極特性を示す同期電動機のための駆動制御装置に使用され、かつ、印加高周波信号の応答である応答高周波信号の検出・処理を通じて回転子位相推定値を生成出力する回転子位相推定装置であって、
高周波信号印加のために駆動制御装置内の電力変換器への最終信号指令値に含まれ、かつ、真円軌跡を描く高周波信号指令値を生成する手段と、
高周波信号指令値に起因した応答高周波信号の中から、印加高周波信号に対し逆相順となる逆相成分を抽出する手段と、
抽出した逆相成分をベクトルとして捕らえ、このノルムを1に代表される値に正規化して、正規化逆相成分を生成する手段と、
高周波信号指令値に対し逆相順となるキャリア信号を生成し、生成キャリア信号を用いて正規化逆相成分を処理し、回転子位相推定値を生成出力する手段と、
を備えることを特徴とする回転子位相推定装置。
Detecting and processing response high-frequency signals that are used in drive control devices for synchronous motors where the rotor shows salient pole characteristics when a high-frequency signal having a frequency higher than the drive fundamental frequency is applied, and that is a response to the applied high-frequency signal A rotor phase estimation device that generates and outputs a rotor phase estimation value through
Means for generating a high-frequency signal command value that is included in the final signal command value to the power converter in the drive control device for high-frequency signal application and that draws a perfect circle locus;
Means for extracting a negative phase component that is out of phase with respect to the applied high frequency signal from the response high frequency signal resulting from the high frequency signal command value;
Means for capturing the extracted antiphase component as a vector, normalizing the norm to a value represented by 1, and generating a normalized antiphase component;
Means for generating a carrier signal having a reverse phase order with respect to the high-frequency signal command value, processing the normalized anti-phase component using the generated carrier signal, and generating and outputting a rotor phase estimation value;
A rotor phase estimation apparatus comprising:
生成される該高周波信号指令値を高周波電圧指令値とし、これに起因した該応答高周波信号を高周波電流とすることを特徴とする請求項1記載の回転子位相推定装置。 The rotor phase estimation apparatus according to claim 1, wherein the generated high-frequency signal command value is a high-frequency voltage command value, and the response high-frequency signal resulting therefrom is a high-frequency current. 該キャリア信号を用いた該正規化逆相成分の処理を、回転子位相推定値を基軸(γ軸)位相とする2軸直交のγδ準同期座標系上で遂行することを特徴とする請求項1記載の回転子位相推定装置。
The normalized antiphase component processing using the carrier signal is performed on a biaxial orthogonal γδ quasi-synchronous coordinate system having a rotor phase estimation value as a base axis (γ axis) phase. 1. The rotor phase estimation device according to 1.
JP2013248366A 2013-11-29 2013-11-29 Rotor phase estimation device for synchronous motor Active JP5741673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248366A JP5741673B2 (en) 2013-11-29 2013-11-29 Rotor phase estimation device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248366A JP5741673B2 (en) 2013-11-29 2013-11-29 Rotor phase estimation device for synchronous motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009164237A Division JP5499539B2 (en) 2009-06-20 2009-06-20 Rotor phase estimation device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2014060919A JP2014060919A (en) 2014-04-03
JP5741673B2 true JP5741673B2 (en) 2015-07-01

Family

ID=50616855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248366A Active JP5741673B2 (en) 2013-11-29 2013-11-29 Rotor phase estimation device for synchronous motor

Country Status (1)

Country Link
JP (1) JP5741673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327172A (en) * 2018-10-25 2019-02-12 核工业理化工程研究院 Method for controlling permanent magnet synchronous motor and control system based on pulsating high frequency signal injection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968688B2 (en) * 2000-11-28 2007-08-29 有限会社シー・アンド・エス国際研究所 Vector control method and apparatus for AC motor
US6762573B2 (en) * 2002-02-26 2004-07-13 General Motors Corporation System and method for estimating rotor position of a permanent magnet motor
JP4120775B2 (en) * 2002-03-18 2008-07-16 有限会社シー・アンド・エス国際研究所 Vector control method and apparatus for AC motor
JP4178834B2 (en) * 2002-05-24 2008-11-12 株式会社明電舎 PM motor control device
US6763622B2 (en) * 2002-10-10 2004-07-20 General Motors Corporation Amplitude detection method and apparatus for high frequency impedance tracking sensorless algorithm
US7602139B2 (en) * 2006-07-13 2009-10-13 International Rectifier Corporation Signal conditioning apparatus and method for determination of permanent magnet motor rotor position
JP5176406B2 (en) * 2007-05-24 2013-04-03 日本電産株式会社 Rotor phase speed estimation device for AC motor

Also Published As

Publication number Publication date
JP2014060919A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5720677B2 (en) Rotor phase speed estimation device for AC motor
Wu et al. Enhanced position sensorless control using bilinear recursive least squares adaptive filter for interior permanent magnet synchronous motor
Sun et al. Unified wide-speed sensorless scheme using nonlinear optimization for IPMSM drives
JP4587110B2 (en) Rotor phase estimation method for synchronous motor drive control
JP6492320B2 (en) Digital rotor phase speed estimation device for AC motor
JP4899509B2 (en) AC motor rotor phase estimation device
JP5176406B2 (en) Rotor phase speed estimation device for AC motor
Reill et al. Utilisation of magnetic saliency for sensorless-control of permanent-magnet synchronous motors
JP5499539B2 (en) Rotor phase estimation device for synchronous motor
JP2016201924A (en) Rotation position estimation method for motor, and control apparatus for motor
Wu et al. Multiple discrete adaptive filter-based position error reduction for sensorless ipmsm drives
Wu et al. Improved position observer using adaptive training control-based filter for interior permanent magnet synchronous motor drives
JP5741673B2 (en) Rotor phase estimation device for synchronous motor
JP6150211B2 (en) Digital rotor phase speed estimation device for AC motor
Manzolini et al. The crowded axis of the frequency: Optimal pole/zero allocation for a full speed sensorless synchronous motor drives
JP5692572B2 (en) Synchronous motor drive control device
Wang et al. Comparative study of low-pass filter and phase-locked loop type speed filters for sensorless control of AC drives
CN108494307B (en) Inverter nonlinear effect compensation method of permanent magnet synchronous motor
Pravica et al. Interior permanent magnet wind generator torque estimation considering low-pass filter phase shift compensation
JP5828441B2 (en) Rotor phase estimator for synchronous motor
Li et al. High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives
JP2016201923A (en) Rotation position estimation method for motor, and control apparatus for motor
JP2016003926A (en) Binary-phase signal phase detector and binary-phase signal phase detection method
JP6150212B2 (en) Digital rotor phase speed estimation device for AC motor
Yang et al. Two high performance position estimation schemes based on sliding-mode observer for sensorless SPMSM drives

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250