JP6150211B2 - Digital rotor phase speed estimation device for AC motor - Google Patents

Digital rotor phase speed estimation device for AC motor Download PDF

Info

Publication number
JP6150211B2
JP6150211B2 JP2013176046A JP2013176046A JP6150211B2 JP 6150211 B2 JP6150211 B2 JP 6150211B2 JP 2013176046 A JP2013176046 A JP 2013176046A JP 2013176046 A JP2013176046 A JP 2013176046A JP 6150211 B2 JP6150211 B2 JP 6150211B2
Authority
JP
Japan
Prior art keywords
phase
rotor
frequency voltage
axis
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013176046A
Other languages
Japanese (ja)
Other versions
JP2015037376A (en
Inventor
新中 新二
新二 新中
Original Assignee
有限会社シー・アンド・エス国際研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社シー・アンド・エス国際研究所 filed Critical 有限会社シー・アンド・エス国際研究所
Priority to JP2013176046A priority Critical patent/JP6150211B2/en
Publication of JP2015037376A publication Critical patent/JP2015037376A/en
Application granted granted Critical
Publication of JP6150211B2 publication Critical patent/JP6150211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、駆動基本周波数より高い周波数の高周波電圧の印加に対し回転子が突極特性を示す交流電動機(例えば、回転子に永久磁石を有する永久磁石同期電動機、巻線形同期電動機、同期リラクタンス電動機、回転子に永久磁石と界磁巻線をもつハイブリッド界磁形同期電動機、誘導電動機など)のための駆動制御装置に使用される回転子の位相(位置と同義)、速度を位置速度センサを利用することなく、すなわちセンサレスで推定するためのデジタル式回転子位相速度推定装置に関する。特に、印加高周波電圧の形状は矩形状とし、印加高周波電圧の周波数は、電力変換器のスイッチング周波数(PWMによる場合には搬送波周波数)と同程度(すなわち、同一またはその数分の一程度)という限界的に高い周波数とするデジタル式回転子位相速度推定装置に関する。The present invention relates to an AC motor in which a rotor exhibits salient pole characteristics with respect to application of a high-frequency voltage having a frequency higher than the drive fundamental frequency (for example, a permanent magnet synchronous motor having a permanent magnet in the rotor, a wound synchronous motor, and a synchronous reluctance motor). , Rotor phase (synonymous with position), speed and position speed sensor used in drive control device for hybrid field type synchronous motor, induction motor, etc. with permanent magnet and field winding on rotor The present invention relates to a digital rotor phase speed estimation apparatus for estimation without using, that is, sensorless. In particular, the shape of the applied high-frequency voltage is rectangular, and the frequency of the applied high-frequency voltage is about the same as the switching frequency of the power converter (the carrier frequency in the case of PWM) (that is, the same or a fraction of that). The present invention relates to a digital rotor phase speed estimation device that has a critically high frequency.

交流電動機の高性能な制御は、いわゆるベクトル制御法により達成することができる。ベクトル制御法には、回転子の位相あるいはこの微分値である速度の情報が必要であり、従前よりエンコーダ等の位置速度センサが利用されてきた。しかし、この種の位置速度センサの利用は、信頼性、軸方向の容積、センサケーブルの引回し、コスト等の観点において、好ましいものではなく、位置速度センサを必要としない、いわゆるセンサレスベクトル制御法の研究開発が長年行なわれてきた。High-performance control of the AC motor can be achieved by a so-called vector control method. The vector control method requires information on the rotor phase or speed, which is a differential value thereof, and a position speed sensor such as an encoder has been used for some time. However, the use of this type of position / velocity sensor is not preferable in terms of reliability, axial volume, sensor cable routing, cost, and the like, so-called sensorless vector control method that does not require a position / velocity sensor. Research and development has been conducted for many years.

有力なセンサレスベクトル制御法として、駆動基本周波数より高い周波数の高周波電圧を電動機に強制印加し、これに対応した高周波電流(応答高周波電流)を処理して回転子位相を推定する方法(いわゆる高周波電圧印加法)が、これまで、種々、開発・報告されてきた。なお、本明細書では、固定子電圧、固定子電流の構成成分を、駆動用基本波成分と高周波成分とに2分して捕えている。駆動用基本波成分は、電動機の回転速度と直接的に関係した成分(すなわち、回転子の速度(電気速度)と同程度の周波数成分)であり、高周波成分は、駆動用基本波成分よりはるかに高い周波数(周波数の値は既知)の成分である。特に、本発明においては、高周波成分は、電力変換器のスイッチング周波数(PWMによる場合には搬送波周波数)と同程度(すなわち、同一またはその数分の一程度)という限界的に高い周波数の成分を意味する。As a powerful sensorless vector control method, a high-frequency voltage with a frequency higher than the drive fundamental frequency is forcibly applied to the motor, and the corresponding high-frequency current (response high-frequency current) is processed to estimate the rotor phase (so-called high-frequency voltage) Various application methods have been developed and reported so far. In the present specification, the constituent components of the stator voltage and the stator current are divided into the driving fundamental wave component and the high-frequency component in two. The driving fundamental wave component is a component directly related to the rotation speed of the motor (that is, a frequency component comparable to the rotor speed (electrical speed)), and the high frequency component is much higher than the driving fundamental wave component. It is a component of a very high frequency (frequency value is known). In particular, in the present invention, the high-frequency component is a component having a marginally high frequency that is about the same as the switching frequency of the power converter (the carrier frequency in the case of PWM) (that is, the same or a fraction thereof). means.

推定すべき回転子位相は回転子の任意の位置に定めてよいが、回転子の負突極位相または正突極位相の何れかを回転子位相に選定するのが一般的である。当業者には周知のように、負突極位相と正突極位相の間には、電気的に±π/2(rad)の位相偏差があるに過ぎず、何れかの位相が判明すれば、他の位相は自ずと判明する。以上を考慮の上、以降では、特に断らない限り、回転子の負突極位相を回転子位相とする。また、回転子位相と位相偏差なく同期したd軸、d軸と直交したq軸から構成される2軸直交座標系をdq同期座標系と呼ぶ(図1参照)。The rotor phase to be estimated may be determined at an arbitrary position of the rotor, but generally, either the negative salient pole phase or the positive salient pole phase of the rotor is selected as the rotor phase. As is well known to those skilled in the art, there is only an electrical phase deviation of ± π / 2 (rad) between the negative salient pole phase and the positive salient pole phase. The other phases are naturally found. Considering the above, hereinafter, the negative salient pole phase of the rotor will be referred to as the rotor phase unless otherwise specified. A biaxial orthogonal coordinate system composed of a d axis synchronized with the rotor phase without phase deviation and a q axis orthogonal to the d axis is called a dq synchronous coordinate system (see FIG. 1).

高周波電圧印加法の技術的な分類は幾つか考えられるが、第1の分類方法は、印加高周波電圧の形状に基づく分類方法である。高周波電圧印加法は、印加高周波電圧の形状を正弦形状とするものと、矩形状とするものとに大別される。本発明が対象とする印加高周波電圧の形状は、矩形状である。Although several technical classifications of the high-frequency voltage application method are conceivable, the first classification method is a classification method based on the shape of the applied high-frequency voltage. The high-frequency voltage application method is broadly classified into those in which the shape of the applied high-frequency voltage is a sine shape and a rectangular shape. The shape of the applied high-frequency voltage targeted by the present invention is rectangular.

矩形状の高周波電圧を印加する高周波電圧印加法は、高周波電圧を印加する座標系の観点から、更に細分される。具体的には、αβ固定座標系上で高周波電圧を印加する方法と、dq同期座標系へ位相差ゼロでの収斂を目指したγδ準同期座標系(回転座標系の1種)上で高周波電圧を印加する方法とに細分される(図1参照)。本発明が対象とする高周波電圧印加法は、γδ準同期座標系上で矩形状の高周波電圧印加を行うものである。さらには、γ軸上でのみ矩形状の高周波電圧を印加するものである。すなわち、δ軸上での高周波電圧印加は一切行なわない。The high frequency voltage application method of applying a rectangular high frequency voltage is further subdivided from the viewpoint of a coordinate system for applying the high frequency voltage. Specifically, a method of applying a high-frequency voltage on an αβ fixed coordinate system and a high-frequency voltage on a γδ quasi-synchronous coordinate system (a kind of rotating coordinate system) aiming at convergence with zero phase difference to a dq synchronous coordinate system Is subdivided into a method of applying (see FIG. 1). The high-frequency voltage application method targeted by the present invention is to apply a rectangular high-frequency voltage on the γδ quasi-synchronous coordinate system. Furthermore, a rectangular high-frequency voltage is applied only on the γ-axis. That is, no high-frequency voltage is applied on the δ axis.

矩形状の高周波電圧を印加する高周波電圧印加法は、応答高周波電流の処理に際し、応答高周波電流に該当する高周波成分を固定子電流からフィルタ等で分離抽出を必要とするものとそうでないものとに2分される。本発明の方法は、後者に属し、固定子電流から高周波成分をフィルタ等で分離抽出を必要としない。The high-frequency voltage application method for applying a rectangular high-frequency voltage is based on whether a high-frequency component corresponding to the response high-frequency current needs to be separated and extracted from the stator current by a filter or the like when processing the response high-frequency current. 2 minutes. The method of the present invention belongs to the latter and does not require separation and extraction of high-frequency components from the stator current by a filter or the like.

本明細書では、▲1▼矩形状の高周波電圧を印加する高周波電圧印加法であって、▲2▼γδ準同期座標系のγ軸上でのみ矩形状の高周波電圧を印加し、▲3▼印加高周波電圧の周波数は、電力変換器のスイッチング周波数(PWMによる場合には搬送波周波数)と同程度(すなわち、同一またはその数分の一程度)の高い周波数であり、かつ、▲4▼フィルタ等で固定子電流から高周波成分(応答高周波電流)の分離抽出を必要としない、と言う4条件を満たした高周波電圧印加法を、簡単に、「矩形限界高周波電圧印加法」と呼称する。本発明が属する矩形限界高周波電圧印加法の先行発明としては、先行技術文献欄に列挙した特許文献1、非特許文献1〜4がある。In this specification, (1) a high-frequency voltage application method for applying a rectangular high-frequency voltage, (2) a rectangular high-frequency voltage is applied only on the γ-axis of the γδ quasi-synchronous coordinate system, and (3) The frequency of the applied high-frequency voltage is as high as the switching frequency of the power converter (carrier frequency in the case of PWM) (that is, the same or a fraction of that), and (4) a filter or the like The high-frequency voltage application method that satisfies the four conditions of not requiring separation and extraction of the high-frequency component (response high-frequency current) from the stator current is simply referred to as “rectangular limit high-frequency voltage application method”. As prior inventions of the rectangular limit high-frequency voltage application method to which the present invention belongs, there are Patent Document 1 and Non-Patent Documents 1 to 4 listed in the Prior Art Document column.

本発明が属する矩形限界高周波電圧印加法では、回転子位相情報の抽出と回転子位相推定値の生成とに関し、高周波成分を含む固定子電流の処理を遂行する座標系に応じて異なった技術が必要という特性がある。本特性に立脚して、矩形限界高周波電圧印加法は、高周波成分を含む固定子電流の処理を遂行する座標系に基づき、さらに技術分類することもできる。固定子電流を処理する座標系としては、αβ固定座標系とこれ以外の座標系に分類される。固定子電流処理座標系に基づく先行発明の技術分類は、下の表1のように整理される。なお、同表の第3コラムには、固定子電流の駆動用基本波成分を制御するための制御周期をTsとした場合、回転子位相推定値生成に必要とされる電流検出周期も示した。回転子位相推定値生成に必要とされる電流検出周期は、固定子電流処理座標系と同様に、回転子位相情報の抽出と回転子位相推定値の生成とに関する技術に深く関係している。In the rectangular limit high-frequency voltage application method to which the present invention belongs, regarding the extraction of the rotor phase information and the generation of the rotor phase estimation value, there are different techniques depending on the coordinate system that performs processing of the stator current including high-frequency components. There is a characteristic that it is necessary. Based on this characteristic, the rectangular limit high-frequency voltage application method can be further classified into technologies based on a coordinate system that performs processing of a stator current including a high-frequency component. The coordinate system for processing the stator current is classified into an αβ fixed coordinate system and other coordinate systems. The technical classification of the prior invention based on the stator current processing coordinate system is organized as shown in Table 1 below. The third column of the table also shows the current detection period required for generating the rotor phase estimation value when the control period for controlling the fundamental driving component of the stator current is Ts. . Similar to the stator current processing coordinate system, the current detection period required for generating the rotor phase estimation value is deeply related to the technology related to the extraction of the rotor phase information and the generation of the rotor phase estimation value.

Figure 0006150211
Figure 0006150211

本発明は、高周波成分を含む固定子電流の処理をγδ準同期座標系上で遂行するものである。本発明と同様に、高周波成分を含む固定子電流を処理をγδ準同期座標系上で遂行する先行発明としては、すなわち本発明と同一技術分野に属する先行発明としては、特許文献1がある。以下、図面を用いて、特許文献1の技術を概説する。The present invention performs processing of a stator current including a high frequency component on a γδ quasi-synchronous coordinate system. As in the present invention, there is Patent Document 1 as a prior invention in which a stator current including a high frequency component is processed on a γδ quasi-synchronous coordinate system, that is, as a prior invention belonging to the same technical field as the present invention. Hereinafter, the technique of Patent Document 1 will be outlined with reference to the drawings.

図5は、永久磁石同期電動機に対する駆動制御システムに関し、矩形限界高周波電圧印加法に基づくデジタル式回転子位相速度推定装置(位相速度推定器10)を備えたデジタル式駆動制御装置の代表的構成例である。1は交流電動機(同期電動機)を、2は電力変換器(インバータ)を、3は電流検出器を、4a、4bは夫々3相2相変換器、2相3相変換器を、5a、5bは共にベクトル回転器を、6は電流制御器を、7は指令変換器を、8は速度制御器を、9はローパスフィルタを、10は位相速度推定器を、11は係数器を、12は余弦正弦信号発生器を、各々示している。図5では、1の電動機を除く、2から12までの諸機器が駆動制御装置を構成している。本図では、簡明性を確保すべく、2x1のべクトル信号を1本の太い信号線で表現している。以下のブロック図表現もこれを踏襲する。FIG. 5 relates to a drive control system for a permanent magnet synchronous motor, and is a typical configuration example of a digital drive control apparatus including a digital rotor phase speed estimation apparatus (phase speed estimator 10) based on a rectangular limit high-frequency voltage application method. It is. 1 is an AC motor (synchronous motor), 2 is a power converter (inverter), 3 is a current detector, 4a and 4b are 3 phase 2 phase converters, 2 phase 3 phase converters, 5a and 5b, respectively. Are vector rotators, 6 is a current controller, 7 is a command converter, 8 is a speed controller, 9 is a low-pass filter, 10 is a phase speed estimator, 11 is a coefficient unit, and 12 is a coefficient unit. Each cosine sine signal generator is shown. In FIG. 5, various devices from 2 to 12 except for one electric motor constitute a drive control device. In this figure, a 2 × 1 vector signal is represented by a single thick signal line to ensure simplicity. The following block diagram expression follows this.

電流検出器3で検出された3相の固定子電流は、3相2相変換器4aでαβ固定座標系上の2相電流に変換された後、ベクトル回転器5aで回転子位相(dq同期座標系の位相と同一)ヘゼロ位相偏差で位相同期を目指したγδ準同期座標系の2相電流に変換される。変換電流からローパスフィルタ9を介して駆動用電流(固定子電流の駆動基本周波数成分)を抽出し、これを電流制御器6へ送る。電流制御器6は、γδ準同期座標系上の駆動用2相電流が、各相の電流指令値に追随すべくγδ準同期座標系上の駆動用2相電圧指令値を生成する。ここで、位相速度推定器10から受けた矩形状の単相高周波電圧指令値(γ軸高周波電圧指令値)を、駆動用2相電圧指令値のγ軸要素に重畳させ、重畳合成した2相電圧指令値(δ軸電圧指令値は駆動用電圧指令値のままで、変更なし)を、ベクトル回転器5bへ送る。5bでは、γδ準同期座標系上の重畳合成の電圧指令値をαβ固定座標系の2相電圧指令値に変換し、2相3相変換器4bへ送る。4bでは、2相電圧指令値を3相電圧指令値に変換し、電力変換器2への最終指令値として出力する。電力変換器2は、指令値に応じた電力を発生し、同期電動機1へ印加しこれを駆動する。The three-phase stator current detected by the current detector 3 is converted into a two-phase current on the αβ fixed coordinate system by the three-phase two-phase converter 4a and then the rotor phase (dq synchronization) by the vector rotator 5a. It is converted into a two-phase current in the γδ quasi-synchronous coordinate system aiming for phase synchronization with zero phase deviation. A driving current (driving fundamental frequency component of the stator current) is extracted from the converted current through the low-pass filter 9 and is sent to the current controller 6. The current controller 6 generates a driving two-phase voltage command value on the γδ quasi-synchronous coordinate system so that the driving two-phase current on the γδ quasi-synchronous coordinate system follows the current command value of each phase. Here, the rectangular single-phase high-frequency voltage command value (γ-axis high-frequency voltage command value) received from the phase velocity estimator 10 is superimposed on the γ-axis element of the driving two-phase voltage command value, and superimposed and synthesized. A voltage command value (the δ-axis voltage command value remains the drive voltage command value and remains unchanged) is sent to the vector rotator 5b. In 5b, the voltage command value for superposition and synthesis on the γδ quasi-synchronous coordinate system is converted into a two-phase voltage command value in the αβ fixed coordinate system, and sent to the two-phase three-phase converter 4b. In 4b, the two-phase voltage command value is converted into a three-phase voltage command value and output as a final command value to the power converter 2. The power converter 2 generates electric power according to the command value, applies it to the synchronous motor 1 and drives it.

位相速度推定器10は、ベクトル回転器5aの出力信号である固定子電流を入カとして受けて、回転子位相推定値、回転子(電気)速度推定値、及び矩形状の単相高周波電圧指令値を出力している。回転子位相推定値は、余弦正弦信号発生器12で余弦・正弦信号に変換された後、γδ準同期座標系を決定づけるベクトル回転器5a、5bへ渡される。これは、回転子位相推定値をγδ準同期座標系の位相(γ軸の位相と等価)とすることを意味する。The phase speed estimator 10 receives a stator current as an output signal of the vector rotator 5a as an input, and receives a rotor phase estimation value, a rotor (electrical) speed estimation value, and a rectangular single-phase high-frequency voltage command. The value is output. The rotor phase estimation value is converted into a cosine / sine signal by the cosine sine signal generator 12, and then passed to the vector rotators 5a and 5b that determine the γδ quasi-synchronous coordinate system. This means that the rotor phase estimation value is the phase of the γδ quasi-synchronous coordinate system (equivalent to the phase of the γ axis).

γδ準同期座標系上の2相電流指令値は、当業者には周知のように、トルク指令値を指令変換器7に通じ変換することにより得ている。速度制御器8には、位相速度推定器10からの出力信号の1つである回転子速度推定値(回転子電気速度推定値)が、一定値である極対数Npの逆数を係数器11を介して乗じられ機械速度推定値に変換された後、送られている。図5の例では、速度制御システムを構成した例を示しているので、速度制御器8の出力としてトルク指令値を得ている。当業者には周知のように、制御目的がトルク制御にあり速度制御システムを構成しない場合には、速度制御器8は不要である。この場合には、トルク指令値が外部から直接印加される。As is well known to those skilled in the art, the two-phase current command value on the γδ quasi-synchronous coordinate system is obtained by converting the torque command value through the command converter 7. In the speed controller 8, the rotor speed estimated value (rotor electrical speed estimated value), which is one of the output signals from the phase speed estimator 10, is a constant value, and the coefficient unit 11 is used to calculate the reciprocal of the pole pair number Np. And then converted to a machine speed estimate and sent. In the example of FIG. 5, an example in which the speed control system is configured is shown, and thus the torque command value is obtained as the output of the speed controller 8. As is well known to those skilled in the art, the speed controller 8 is unnecessary when the control purpose is torque control and the speed control system is not configured. In this case, the torque command value is directly applied from the outside.

図9は、図5における位相速度推定器10の内部構造の1例を、特許文献1を参考に、示したものである。同図の上段に示されているように、本位相速度推定器10は、基本的に、磁極位置推定手段と脈動電圧印加手段から構成されている。脈動電圧印加手段は、矩形状の単相高周波電圧指令値vγ*(原図では、vhd*と表記)を生成している。図9の下段は、上段の位相速度推定器10に利用された磁極位置推定手段の細部構成を示したものである。磁極位置推定手段の入力信号は、γ軸電流(すなわち、固定子電流のγ軸要素、原図ではIdcと表記)と矩形状の単相高周波電圧指令値vγ*(原図では、vhd*と

Figure 0006150211
相偏差θγと同一。位相偏差はγ軸からみたd軸の位相でもある。図1参照)。FIG. 9 shows an example of the internal structure of the phase velocity estimator 10 in FIG. As shown in the upper part of the figure, the present phase velocity estimator 10 basically includes a magnetic pole position estimating means and a pulsating voltage applying means. The pulsating voltage applying means generates a rectangular single-phase high-frequency voltage command value vγ * (denoted as vhd * in the original drawing). The lower part of FIG. 9 shows the detailed configuration of the magnetic pole position estimation means used in the upper phase velocity estimator 10. The input signal of the magnetic pole position estimating means includes a γ-axis current (that is, a γ-axis element of the stator current, expressed as Idc in the original drawing) and a rectangular single-phase high-frequency voltage command value vγ * (in the original drawing, vhd *).
Figure 0006150211
Same as phase deviation θγ. The phase deviation is also the d-axis phase viewed from the γ-axis. (See FIG. 1).

図10は、磁極位置推定手段において処理された信号とその時間的タイミングの様子を示したものである。同図の波形図(b)は、PWM搬送波の2倍周期を1周期とする矩形状の単相高周波電圧指令値の様子が示されている。また、波形図(f)には、矩形状の単相高周波電圧指令値の半周期ごとに4回(1周期では8回)にわたりγ軸電流(原図では、dc軸電流)の離散時間検出する様子が示されている。また、波形図(h)には、γ軸電流(原図ではIdcと表記)の極性を示す電流極性信号Sp(電圧極性信号ではない)が示されている。波形図(i)には、電流極性信号Sp(電圧極性信号ではない)を利用して生成された軸誤差生成上最も重要な信号が示されている。FIG. 10 shows a signal processed by the magnetic pole position estimating means and its temporal timing. The waveform diagram (b) in the figure shows a state of a rectangular single-phase high-frequency voltage command value in which a cycle twice the PWM carrier wave is one cycle. Further, in the waveform diagram (f), discrete time detection of γ-axis current (dc-axis current in the original diagram) is performed four times (8 times in one cycle) every half cycle of the rectangular single-phase high-frequency voltage command value. The situation is shown. The waveform diagram (h) shows a current polarity signal Sp (not a voltage polarity signal) indicating the polarity of the γ-axis current (indicated by Idc in the original drawing). The waveform diagram (i) shows the most important signal for generating an axis error generated by using the current polarity signal Sp (not the voltage polarity signal).

波形図(f)が明瞭に示しているように、特許文献1の方法は、矩形状の高周波電圧の半周期に、基本的に4回の離散時間電流検出(電流サンプル値)を必要とする。これは、固定子電流の制御周期をTsとする場合、1制御周期の間に2回の電流検出を必要とすることを意味する。換言するならば、推定のための固定子電流のサンプリング周期は、0.5Tsであることを意味する(表1の第3コラムを参照)。矩形限界高周波電圧印加法の特長は、印加高周波電圧の周波数を限界的に高めた上で、高い速応性を有する回転子位相推定値を得ることにある。印加高周波電圧の周波数の上限は、応答高周波電流を含む固定子電流の検出周波数によっても制限を受けるので、高い速応性を有する回転子位相推定値を得るには、可能な限り少ない電流サンプル値で回転子位相推定を遂行する必要がある。しかしながら、従前の特許文献1の方法では、電流制御周期の半周期に2回の電流検出を必要とし、必ずしも十分に高い速応性を備えた回転子位相推定値を得ることができない(この点は、従前の非特許文献1〜3も同様である、表1の第3コラムを参照)。また、図9の下段図に示した磁極位置推定手段の内部構成より理解されるように、特許文献1の方法は、所期の位相推定値生成に、複雑な演算を必要とする。As the waveform diagram (f) clearly shows, the method of Patent Document 1 basically requires four discrete-time current detections (current sample values) in a half cycle of a rectangular high-frequency voltage. . This means that when the control period of the stator current is Ts, current detection is required twice during one control period. In other words, it means that the sampling period of the stator current for estimation is 0.5 Ts (see the third column of Table 1). The feature of the rectangular limit high-frequency voltage application method is that a rotor phase estimation value having a high speed response is obtained after the frequency of the applied high-frequency voltage is increased critically. Since the upper limit of the frequency of the applied high-frequency voltage is also limited by the detection frequency of the stator current including the response high-frequency current, in order to obtain a rotor phase estimation value having a high speed response, the current sample value should be as small as possible. Rotor phase estimation needs to be performed. However, the conventional method of Patent Document 1 requires current detection twice in a half period of the current control period, and cannot always obtain a rotor phase estimation value having sufficiently high speed response (this point is The same applies to the conventional non-patent documents 1 to 3, see the third column of Table 1). Further, as understood from the internal configuration of the magnetic pole position estimating means shown in the lower diagram of FIG. 9, the method of Patent Document 1 requires a complicated calculation to generate the expected phase estimated value.

金子大吾・岩路善尚・坂本潔・遠藤常博:「交流電動機の制御装置及び交流電動機システム」、特開第2005−20918号(2003−6−27)、同補正(2006−6−15)Daigo Kaneko, Yoshinao Iwaji, Kiyoshi Sakamoto, Tsunehiro Endo: “AC Motor Control Device and AC Motor System”, JP 2005-20918 (2003-6-27), Correction (2006-6-15) )

正木良三・金子悟・櫻井芳美・本部光幸:「搬送波に同期した電圧重畳に基づくIPMモータの位置センサレス制御システム」、電気学会論文誌D、122巻、1号、pp.37−43(2002−2)Ryozo Masaki, Satoru Kaneko, Yoshimi Sakurai, Mitsuyuki Motobu: “Position sensorless control system of IPM motor based on voltage superposition synchronized with carrier wave”, IEEJ Transactions, Vol. 122, No. 1, pp. 37-43 (2002-2) Y.D.Yoon,S.K.Sul,S.Morimoto,and K.Ide:“High−Bandwidth Sensorless Algorithm for AC Machines Based on Square−Wave−Type Voltage Injection”,IEEE Trans Ind.Appl.,Vol.47,No.3,pp.1361−1370(2011−5/6)Y. D. Yoon, S .; K. Sul, S.M. Morimoto, and K.M. Ide: “High-Bandwidth Sensorless Algorithm for AC Machines Based on Square-Wave-Type Voltage Injection”, IEEE Trans Ind. Appl. , Vol. 47, no. 3, pp. 1361-1370 (2011-5 / 6) S.Kim,J.I.Ha,and S.K.Sul:“PWM Switching Frequency Signal Injection Sensorless Method in IPMSM”,IEEE Trans Ind.Appl.,Vol.48,No.5,pp.1576−1587(2012−9/10).S. Kim, J. et al. I. Ha, and S.H. K. Sul: “PWM Switching Frequency Signal Injection Sensor Method in IPMSM”, IEEE Trans Ind. Appl. , Vol. 48, no. 5, pp. 1576-1587 (2012-9 / 10).

本発明は上記背景の下になされたものであり、その目的は、矩形限界高周波電圧印加法の特長を最大限活かし、最少の電流サンプル値(推定用電流の離散時間検出は、電流制御用電流の離散時間検出と同一)で位相推定を遂行し、ひいてはより高い高周波の電圧印加を可能とし、高い速応性を有する位相推定値を生成し得る、加えて、より少ない演算でかつ精度よく推定値を生成できるデジタル式回転子位相速度推定装置(位相速度推定器)を提供することにある。The present invention has been made under the above background, and its purpose is to make the most of the features of the rectangular limit high-frequency voltage application method, and to minimize the current sample value (discrete time detection of the estimation current is a current control current). The phase estimation is performed in the same manner as in discrete time detection), so that a higher frequency voltage can be applied, and a phase estimation value having a high speed response can be generated. Is to provide a digital rotor phase velocity estimation device (phase velocity estimator).

上記目的を達成するために、請求項1の発明は、駆動基本周波数より高い周波数の高周波電圧の印加に対し回転子が突極特性を示す交流電動機のための、電力変換器と固定子電流検出器とを用いた周期Tsの固定子電流デジタル制御機能を備えたデジタル式駆動制御装置に使用されるデジタル式回転子位相速度推定装置であって、回転子位相に位相偏差ゼロで同期を目指したγ軸とこれに直交したδ軸とで構成されるγδ準同期座標系のγ軸上で、Nhを正偶数とするとき周期Th=Nh*Tsの矩形状高周波電圧を、固定子電流の離散時間検出時刻と同期した形で印加するようにした高周波電圧印加手段と、周期Tsで該固定子電流検出器を用いて離散時間検出された、駆動基本周波数成分と高周波成分とを含む固定子電流を、該γδ準同期座標系上で周期Tsごとに時間差分し、時間差分固定子電流に、時間差分期間Tsに対応した矩形状高周波電圧の極性を乗じてγ軸要素信号cγ、δ軸要素信号sδの少なくとも一つを生成し、生成した軸要素信号を用いて、回転子位相とγ軸位相の位相偏差に対し正相関をもつ正相関信号pcを周期Tsごとに生成する正相関信号生成手段と、該正相関信号pcがゼロとなるように該正相関信号pcを信号処理して、γ軸位相と、回転子位相の推定値あるいは回転子位相と基本的に微積分関係にある回転子速度の推定値の少なくとも何れかの推定値を、周期Tsごとに生成する回転子位相速度生成手段と、を備えることを特徴とする。To achieve the above object, the invention of claim 1 is directed to a power converter and a stator current detection for an AC motor in which a rotor exhibits salient pole characteristics with respect to application of a high-frequency voltage having a frequency higher than a drive fundamental frequency. Is a digital rotor phase speed estimation device used for a digital drive control device having a stator current digital control function with a period Ts using a detector, aiming for synchronization with a rotor phase with zero phase deviation On the γ-axis of the γδ quasi-synchronous coordinate system composed of the γ-axis and the δ-axis orthogonal thereto, a rectangular high-frequency voltage with a period Th = Nh * Ts is obtained when Nh is a positive and even number, and the stator current is discrete. A high-frequency voltage applying means that is applied in synchronization with the time detection time, and a stator current including a driving fundamental frequency component and a high-frequency component that are detected in discrete time using the stator current detector at a period Ts. Γδ quasi-synchronous locus A time difference is performed for each period Ts on the system, and at least one of the γ-axis element signal cγ and the δ-axis element signal sδ is obtained by multiplying the time difference stator current by the polarity of the rectangular high-frequency voltage corresponding to the time difference period Ts. A positive correlation signal generating means for generating a positive correlation signal pc having a positive correlation with respect to the phase deviation between the rotor phase and the γ-axis phase using the generated axial element signal for each period Ts; The positive correlation signal pc is signal-processed so that pc becomes zero, and at least one of the γ-axis phase and the estimated value of the rotor phase or the estimated value of the rotor speed that is basically in a calculus with the rotor phase. And a rotor phase speed generating means for generating the estimated value for each period Ts.

請求項2の発明は、請求項1記載のデジタル式回転子位相速度推定装置であって、該正偶数Nhを2とすることを特徴とする。According to a second aspect of the present invention, in the digital rotor phase speed estimation device according to the first aspect, the positive / even number Nh is set to two.

請求項3の発明は、請求項1記載のデジタル式回転子位相速度推定装置であって、該交流電動機を同期電動機とすることを特徴とする。A third aspect of the invention is the digital rotor phase speed estimation device according to the first aspect, wherein the AC motor is a synchronous motor.

以下に示す本発明の効果等に関する説明は、駆動基本周波数より高い周波数の高周波電圧の印加に対し回転子が突極特性を示す交流電動機であれば、回転子に永久磁石を有する永久磁石同期電動機、巻線形同期電動機、同期リラクタンス電動機、ハイブリッド界磁形同期電動機、誘導電動機などの何れの交流電動機にも適用される。埋込磁石形永久磁石同期電動機、同期リラクタンス電動機等は、駆動用電圧・電流に対して突極特性を示す。これらの電動機は、高周波電圧の印加に対しても同様に突極特性を示す。一方、駆動用電圧・電流に対しては突極特性を示さない表面磁石形永久磁石同期電動機、誘導電動機は、高周波電圧の印加に対しては突極特性を示す。ハイブリッド界磁形同期電動機は、永久磁石形と巻線形の両同期電動機の特性を有しており、高周波電圧印加に対して突極特性を示し得る。特に、自励式ハイブリッド界磁同期電動機は、突極性が強い。The following description of the effects and the like of the present invention is based on a permanent magnet synchronous motor having a permanent magnet in the rotor if the rotor is an AC motor having salient pole characteristics with respect to application of a high-frequency voltage having a frequency higher than the drive fundamental frequency. The present invention is applicable to any AC motor such as a wound synchronous motor, a synchronous reluctance motor, a hybrid field synchronous motor, and an induction motor. Embedded magnet type permanent magnet synchronous motors, synchronous reluctance motors, and the like exhibit salient pole characteristics with respect to driving voltage and current. These electric motors similarly exhibit salient pole characteristics even when a high frequency voltage is applied. On the other hand, a surface magnet type permanent magnet synchronous motor and an induction motor that do not show salient pole characteristics with respect to the driving voltage / current show salient pole characteristics when a high frequency voltage is applied. The hybrid field type synchronous motor has characteristics of a permanent magnet type and a wound type synchronous motor, and can exhibit salient pole characteristics with respect to application of a high frequency voltage. In particular, the self-excited hybrid field synchronous motor has a strong saliency.

図1に示したように、制御設計者が指定した座標系速度ωγで回転するγδ準同期座標系を考える。座標系速度ωγは、回転子の速度推定値の1つとなりえる。主軸(γ軸)から副軸(δ軸)への回転を正方向とする。以下に扱う交流電動機の物理量を表現した2x1ベクトル信号は、特に断らない限り、すべて本座標系上で定義されているものとする。Consider a γδ quasi-synchronous coordinate system that rotates at a coordinate system speed ωγ specified by the control designer, as shown in FIG. The coordinate system speed ωγ can be one of the estimated speed values of the rotor. The rotation from the main axis (γ axis) to the sub axis (δ axis) is defined as the positive direction. The 2 × 1 vector signals expressing the physical quantities of the AC motor to be handled below are all defined on this coordinate system unless otherwise specified.

先ず、請求項1の発明の効果を説明する。電動機駆動用の電圧に、位相推定用の高周波電圧を重畳印加することを考える。この場合には、次のように、固定子の電圧v1、電流i1、鎖交磁束φ1は、大きくは2成分の合成ベクトルとして表現することができる。

Figure 0006150211
First, the effect of the invention of claim 1 will be described. Consider applying a high-frequency voltage for phase estimation superimposed on a voltage for driving an electric motor. In this case, the stator voltage v1, current i1, and linkage flux φ1 can be expressed as a composite vector of two components as follows.
Figure 0006150211

(1)式右辺の信号の脚符f、hは、それぞれ駆動基本周波数、高周波の成分であることを示している。特に、(1)式各3式の第2項であるv1h、i1h、φ1hの3信号が、本発明と深く関係する、印加された高周波電圧、この応答としての高周波電流、印加高周波電圧に起因した高周波磁束、を各々示している。なお、位相推定用に重畳印加した高周波電圧の周波数ωhは、次の(2)式の関係が成立する十分に高いものとする(周波数相対比は、実際的には0.01以下)。The symbols f and h of the signal on the right side of the expression (1) indicate that they are components of a driving fundamental frequency and a high frequency, respectively. In particular, the three signals v1h, i1h, and φ1h, which are the second terms of each of the three formulas (1), are closely related to the present invention due to the applied high-frequency voltage, the high-frequency current as a response, and the applied high-frequency voltage. The high-frequency magnetic flux is shown respectively. It is assumed that the frequency ωh of the high-frequency voltage superimposed and applied for phase estimation is sufficiently high so that the relationship of the following equation (2) is satisfied (the frequency relative ratio is practically 0.01 or less).

Figure 0006150211
以降では、記号sは微分演算子d/dtを、Iは2x2単位行列を、Jは次式で定義された2x2交代行列を意味するものとする。
Figure 0006150211
Figure 0006150211
Hereinafter, the symbol s is the differential operator d / dt, I is the 2 × 2 unit matrix, and J is the 2 × 2 alternating matrix defined by the following equation.
Figure 0006150211

(2)式が成立する場合には、高周波電圧の印加に対し回転子が突極特性を示す交流電動機における固定子の高周波成分に関しては、次の(4)〜(6)式の関係が成立する。

Figure 0006150211
Figure 0006150211
Figure 0006150211
When the equation (2) is established, the following equations (4) to (6) are established for the high-frequency component of the stator in the AC motor in which the rotor exhibits salient pole characteristics with respect to the application of the high-frequency voltage. To do.
Figure 0006150211
Figure 0006150211
Figure 0006150211

ここに、Li、Lmは固定子の同相インダクタンス、鏡相インダクタンスであり、d軸、q軸インダクタンスとは次の関係を有する。

Figure 0006150211
なお、鏡相インダクタンスLmは、回転子位相として負突極位相を選定する場合には負となる。Here, Li and Lm are the in-phase inductance and mirror phase inductance of the stator, and have the following relationship with the d-axis and q-axis inductances.
Figure 0006150211
The mirror phase inductance Lm is negative when a negative salient pole phase is selected as the rotor phase.

以上の準備の下で、請求項1の発明の第1手段である高周波電圧印加手段を説明する。
(2)式の関係が成立している状況下で、γ軸上でのみに高周波電圧vγhを印加する場合、次式が成立する。

Figure 0006150211
Based on the above preparation, the high frequency voltage applying means which is the first means of the invention of claim 1 will be described.
When the high frequency voltage vγh is applied only on the γ-axis under the condition where the relationship of the expression (2) is established, the following expression is established.
Figure 0006150211

γ軸上で印加する高周波電圧vγhを振幅Vの矩形状とする場合には、本電圧は次のようにシグナム関数を用い表現することができる。

Figure 0006150211
When the high-frequency voltage v γh applied on the γ-axis has a rectangular shape with an amplitude V h , this voltage can be expressed using a signum function as follows.
Figure 0006150211

(9)式の矩形状高周波電圧の周期Thは、請求項1の発明に従い、固定子電流制御周期である周期Tsに対して次式を満足するように選定するものとする。

Figure 0006150211
矩形状高周波電圧の周期Thの上限は、電動機の電気的時定数の1/20程度である。周期Thの上限より、(10)式における正偶数Nhの最大値は、おのずと定まることになる。According to the invention of claim 1, the period Th of the rectangular high-frequency voltage in the formula (9) is selected so as to satisfy the following formula with respect to the period Ts that is the stator current control period.
Figure 0006150211
The upper limit of the period Th of the rectangular high frequency voltage is about 1/20 of the electrical time constant of the electric motor. From the upper limit of the period Th, the maximum value of positive and even Nh in the equation (10) is naturally determined.

したがって、請求項1の発明の第1手段である高周波電圧印加手段によって発生した高周波電流は、次式で表現されるものとなる。

Figure 0006150211
Therefore, the high-frequency current generated by the high-frequency voltage applying means as the first means of the invention of claim 1 is expressed by the following equation.
Figure 0006150211

つづいて、請求項1の発明の第2手段である正相関生成手段を説明する。請求項1の発明に従い、矩形状高周波電圧の印加を固定子電流の離散時間検出時刻(サンプリング時刻)と同期した形で行なうものとする。すなわち、矩形高周波電圧の波形切換わり時刻を離散時間検出時刻の1つに一致させるものとする。この場合、離散時間検出時刻間の高周波電流は直線的に変化することになる。したがって、この場合には、高周波電流の微分値は、正確にサンプル値の時間差分に置換される。すなわち、(10)、(11)式より、次式を得る。

Figure 0006150211
ここに、電流の脚符kはt=kTsでの離散時間検出時刻を意味し、電圧の脚符k−1は時間t=(k−1)Ts〜kTsの間に印加された電圧を意味する。Next, the positive correlation generating means as the second means of the invention of claim 1 will be described. According to the first aspect of the present invention, the application of the rectangular high-frequency voltage is performed in synchronization with the discrete time detection time (sampling time) of the stator current. That is, the waveform switching time of the rectangular high-frequency voltage is made to coincide with one of the discrete time detection times. In this case, the high-frequency current between the discrete time detection times changes linearly. Therefore, in this case, the differential value of the high-frequency current is accurately replaced with the time difference of the sample value. That is, the following equation is obtained from the equations (10) and (11).
Figure 0006150211
Here, the current mark k means the discrete time detection time at t = kTs, and the voltage mark k-1 means the voltage applied during the time t = (k−1) Ts to kTs. To do.

図2に、矩形状高周波電圧の波形切換わり時刻と電流の離散時間検出時刻(サンプリング時刻)の1例として、Nh=2の場合を示した。同図の(a)は、固定子電流の周期Tsの離散時間検出時刻(サンプリング時刻)を、(b)は周期Th=2Tsの矩形状の高周波電圧を、(c)は印加高周波電圧に対応した高周波電流と同離散時間検出値(○印で明示)を意味する。なお、(d)、(e)は、高周波電圧印加に際し利用される電力変換器のためのPWM搬送波の2例である。PWM搬送波利用の電力変換器を用いた駆動制御装置において、精度よく固定子電流を離散時間検出するには、検出時刻はPWM搬送波の山あるいは谷あるいは両者の時刻とする必要がある。2例が示しているように、電流の離散時間検出時刻は、PWM搬送波とも同期している。図3は、矩形状高周波電圧の波形切換わり時刻と電流の離散時間検出時刻(サンプリング時刻)の1例として、Nh=4の場合を示した。波形図(a)〜(e)の意味は、図2の場合と同様である。FIG. 2 shows the case of Nh = 2 as an example of the waveform switching time of the rectangular high frequency voltage and the discrete time detection time (sampling time) of the current. (A) of the figure corresponds to the discrete time detection time (sampling time) of the period Ts of the stator current, (b) corresponds to the rectangular high frequency voltage of the period Th = 2Ts, and (c) corresponds to the applied high frequency voltage. Means the high frequency current and the same discrete time detection value (denoted by a circle). In addition, (d) and (e) are two examples of the PWM carrier wave for the power converter used when applying the high frequency voltage. In a drive control apparatus using a power converter using a PWM carrier wave, in order to detect the stator current in a discrete time with high accuracy, the detection time needs to be the peak or valley of the PWM carrier wave or both. As the two examples show, the current discrete time detection time is also synchronized with the PWM carrier. FIG. 3 shows the case of Nh = 4 as an example of the waveform switching time of the rectangular high-frequency voltage and the current discrete time detection time (sampling time). The meanings of the waveform diagrams (a) to (e) are the same as those in FIG.

請求項1の発明では、周期Tsで離散時間検出された、駆動基本周波数成分と高周波成分とを含む固定子電流を、γδ準同期座標系上で周期Tsごとに時間差分し、時間差分固定子電流に、時間差分期間Tsに対応した矩形状高周波電圧の極性(高周波電流の極性でない)を乗じてγ軸要素信号cγ、δ軸要素信号sδを生成する。これは、数式を用いて次式のように表現される。

Figure 0006150211
上式における頭符*は、高周波電圧の指令値を意味する。本明細書では、同様に、関連信号の指令値は、関連信号に頭符*を付して表現している。According to the first aspect of the present invention, a stator current including a drive fundamental frequency component and a high frequency component, which are detected for a discrete time with a period Ts, is time-differed for each period Ts on the γδ quasi-synchronous coordinate system, and a time difference stator is obtained. The current is multiplied by the polarity of the rectangular high-frequency voltage corresponding to the time difference period Ts (not the polarity of the high-frequency current) to generate the γ-axis element signal cγ and the δ-axis element signal sδ. This is expressed by the following equation using a mathematical expression.
Figure 0006150211
The prefix * in the above equation means a command value of the high frequency voltage. In the present specification, similarly, the command value of the related signal is expressed by adding a prefix * to the related signal.

離散時間検出周期は、駆動用基本周波成分の周期に比較して十分に小さく、さらには電動機の電気的時定数に比較しても十分に小さいので((10)式直後の説明を参照)、離散時間検出周期の間における固定子電流の駆動用基本周波成分の値は実質一定と見なせる。したがって、(13)式に従って生成されたγ軸要素信号cγ、δ軸要素信号sδの特性は、(12)、(13)式より、次式のように解析される。

Figure 0006150211
Since the discrete time detection cycle is sufficiently small compared to the cycle of the fundamental frequency component for driving and further sufficiently small compared to the electrical time constant of the motor (see the explanation immediately after the equation (10)), The value of the driving fundamental frequency component of the stator current during the discrete time detection period can be regarded as substantially constant. Therefore, the characteristics of the γ-axis element signal cγ and the δ-axis element signal sδ generated according to the equation (13) are analyzed as follows by the equations (12) and (13).
Figure 0006150211

請求項1の発明による正相関信号生成手段では、γ軸要素信号cγ、δ軸要素信号sδの少なくとも1つを用いて回転子(d軸)とγ軸の位相偏差θγに対し正相関をもつ正相関信号pcを周期Tsごとに生成する。本発明による正相関信号pcの生成は、一般に、次式で表現される。

Figure 0006150211
The positive correlation signal generating means according to the first aspect of the present invention has a positive correlation with respect to the phase deviation θγ between the rotor (d-axis) and the γ-axis using at least one of the γ-axis element signal cγ and the δ-axis element signal sδ. A positive correlation signal pc is generated every period Ts. The generation of the positive correlation signal pc according to the present invention is generally expressed by the following equation.
Figure 0006150211

本発明による代表的正相関信号の生成の1つは次式で表現される。

Figure 0006150211
(16)式の正相関信号pの正相関特性は、(14)式より、次のように解析される。
Figure 0006150211
One of the generation of a representative positive correlation signal according to the present invention is expressed by the following equation.
Figure 0006150211
(16) a positive correlation properties of the positive correlation signal p c of the expressions (14) from the equation, is analyzed as follows.
Figure 0006150211

図4に、(17)式を用いて種々の突極比rsに対する正相関特性を示した。図より、大きい突極比rs=0.5の場合には位相偏差θγが1.1[rad]以内の領域で正相関が確保され、小さい突極比rs=0.1の場合にも位相偏差θγが約0.8[rad]以内の領域で正相関が確保されることがわかる。図より理解されるように、位相偏差θγが0.5[rad]以内の領域では、次の関係が成立している。

Figure 0006150211
図4の正相関特性から理解されるように、正相関領域での正相関信号は、実効的な位相偏差θγであり、位相偏差相当値と呼ぶべきものである(図1参照)。当然のことながら、正相関信号の単位は、位相偏差の単位と同一のradである。FIG. 4 shows positive correlation characteristics with respect to various salient pole ratios rs using the equation (17). From the figure, when the salient pole ratio rs = 0.5 is large, a positive correlation is ensured in the region where the phase deviation θγ is within 1.1 [rad], and the phase is also obtained when the salient pole ratio rs = 0.1. It can be seen that a positive correlation is secured in a region where the deviation θγ is within about 0.8 [rad]. As understood from the figure, the following relationship is established in the region where the phase deviation θγ is within 0.5 [rad].
Figure 0006150211
As understood from the positive correlation characteristic of FIG. 4, the positive correlation signal in the positive correlation region is an effective phase deviation θγ and should be called a phase deviation equivalent value (see FIG. 1). Of course, the unit of the positive correlation signal is the same rad as the unit of the phase deviation.

つづいて、請求項1の発明の第3手段である回転子位相速度生成手段を説明する。請求項1の発明では、正相関信号pcがゼロとなるように正相関信号pcを信号処理して、γδ準同期座標系の位相の推定値を生成する。図4の例から理解されるように、正相関領域における正相関信号をゼロに追い込むことは、位相偏差θγをゼロに追い込むこと、ひいては、γδ準同期座標系がdq同期座標系へ収斂させることを意味する(図1参照)。γδ準同期座標系(γ軸)の位相と同微分相当値は、交流電動機においては、回転子の位相あるいは速度の少なくとも何れかの推定値に該当するので、γδ準同期座標系の位相(γ軸の位相)より、回転子位相推定値、回転子速度推定値を得ることができる。Next, the rotor phase speed generating means as the third means of the invention of claim 1 will be described. In the first aspect of the present invention, the positive correlation signal pc is signal-processed so that the positive correlation signal pc becomes zero, and an estimated value of the phase of the γδ quasi-synchronous coordinate system is generated. As understood from the example of FIG. 4, driving the positive correlation signal in the positive correlation region to zero drives the phase deviation θγ to zero, and thus causes the γδ quasi-synchronous coordinate system to converge to the dq synchronous coordinate system. (See FIG. 1). The phase equivalent to the phase and the same differential value of the γδ quasi-synchronous coordinate system (γ-axis) corresponds to an estimated value of at least one of the rotor phase and the speed in the AC motor. From the phase of the shaft, a rotor phase estimation value and a rotor speed estimation value can be obtained.

以上の説明より既に明白なように、フィルタ等で固定子電流から高周波成分(応答高周波電流)の分離抽出を必要としない等の特徴を備えた「矩形限界高周波電圧印加法」を扱った請求項1の発明によれば、γδ準同期座標系の位相(γ軸位相)と、回転子位相の推定値あるいは回転子位相と基本的に微積分関係にある回転子速度の推定値の少なくとも何れかの推定値を得ることができるという効果が得られる。この際、図2、図3の例から理解されるように、これらの値は、最少の電流サンプル値(推定用電流の離散時間検出は、電流制御用電流の離散時間検出と同一)で得ることができるという効果も得られる。この効果は、従前の「矩形限界高周波電圧印加法」では得れらない効果である(表1の第3コラム参照)。さらには、(13)式、(15)式、(16)式が示しているように、非常に少ない演算量でこれらの値を得ることができるという効果も得られる。請求項1の発明では、従前の非特許文献1〜3と異なり、高周波電圧印加と高周波電流の処理を同一のγδ準同期座標系上で遂行するため(表1の第2コラムを参照)、整合性のとれた形でひいては精度よく、所期のγδ準同期座標系の位相等を生成できるという効果も得られる。As is clear from the above description, the claim dealing with the “rectangular limit high-frequency voltage application method” having features such as no need to separate and extract a high-frequency component (response high-frequency current) from the stator current by a filter or the like According to the first aspect of the invention, at least one of the phase of the γδ quasi-synchronous coordinate system (γ-axis phase) and the estimated value of the rotor phase or the estimated value of the rotor speed that is basically in a calculus with the rotor phase. The effect that an estimated value can be obtained is obtained. At this time, as understood from the examples of FIGS. 2 and 3, these values are obtained by the minimum current sample value (the discrete time detection of the estimation current is the same as the discrete time detection of the current control current). The effect that it can be also obtained. This effect cannot be obtained by the conventional “rectangular limit high-frequency voltage application method” (see the third column of Table 1). Furthermore, as indicated by the equations (13), (15), and (16), there is an effect that these values can be obtained with a very small amount of calculation. In the invention of claim 1, unlike the conventional non-patent documents 1 to 3, in order to perform high-frequency voltage application and high-frequency current processing on the same γδ quasi-synchronous coordinate system (see the second column of Table 1), As a result, the phase and the like of the intended γδ quasi-synchronous coordinate system can be generated in a consistent form with high accuracy.

続いて、請求項2の発明による効果について説明する。図2、図3を用いて示したように、電流制御周期Tsを基準とする場合、矩形状高周波電圧の周期Thの最小値はTh=2Tsである。請求項2の発明は、この最小値を選択するものである。換言するならば、最も高い高周波数を選択するものである。この結果、同一の電流制御周期の下では、推定に関し最も高い速応性を得ることができると言う効果をえられる。ひいては、請求項1の効果を高めることができるという効果が得られる。Then, the effect by the invention of Claim 2 is demonstrated. As shown in FIGS. 2 and 3, when the current control period Ts is used as a reference, the minimum value of the period Th of the rectangular high-frequency voltage is Th = 2Ts. The invention of claim 2 selects this minimum value. In other words, the highest high frequency is selected. As a result, under the same current control period, there is an effect that it is possible to obtain the highest speed response regarding estimation. As a result, the effect that the effect of Claim 1 can be heightened is acquired.

続いて、請求項3の発明の効果を説明する。本発明の対象とする交流電動機は、大きくは、同期電動機と誘導電動機とに分類することができる。位置速度センサを利用しないいわゆるセンサレス駆動において、より困難を伴う電動機は同期電動機である。従って、交流電動機を同期電動機とする請求項3の発明によれば、請求項1に示した本発明の効果さらには有用性を一段と際立たせることができると言う効果が得られる。Next, the effect of the invention of claim 3 will be described. The AC motors targeted by the present invention can be broadly classified into synchronous motors and induction motors. In so-called sensorless driving that does not use a position / speed sensor, a more difficult motor is a synchronous motor. Therefore, according to the invention of claim 3 in which the AC motor is a synchronous motor, the effect of the present invention shown in claim 1 and the effect that the usefulness can be further enhanced can be obtained.

「3種の座標系と回転子位相の1関係例を示す図」"Figure showing an example of the relationship between the three coordinate systems and the rotor phase" 「制御周期、離散時間電流検出周期、高周波電圧周期の1関係例を示す図」“Figure showing one example of relationship between control cycle, discrete-time current detection cycle, and high-frequency voltage cycle” 「制御周期、離散時間電流検出周期、高周波電圧周期の1関係例を示す図」“Figure showing one example of relationship between control cycle, discrete-time current detection cycle, and high-frequency voltage cycle” 「1正相関信号例の正相関特性を示す図」“Figure showing positive correlation characteristics of one positive correlation signal example” 「1実施例のための駆動制御システムを示すブロック図」"Block diagram showing drive control system for one embodiment" 「1実施例における位相速度推定器の基本構成を示すブロック図」“Block diagram showing basic configuration of phase velocity estimator in one embodiment” 「1実施例における位相速度推定器の基本構成を示すブロック図」“Block diagram showing basic configuration of phase velocity estimator in one embodiment” 「1実施例における位相速度推定器の基本構成を示すブロック図」“Block diagram showing basic configuration of phase velocity estimator in one embodiment” 「従前の位相速度生成器の基本構成例を示すブロック図」"Block diagram showing a basic configuration example of a conventional phase velocity generator" 「従前の位相速度生成器による諸信号の関係例を示す図」"Figure showing an example of the relationship between various signals from a conventional phase velocity generator"

以下、図面を用いて、本発明の実施例を詳細に説明する。代表的な交流電動機である永久磁石同期電動機に対し、本発明のデジタル式回転子位相速度推定装置を備えたデジタル式駆動制御装置の1例を図5に示す。本駆動制御装置の全般的構成は、従前のそれと同様である。本発明の主眼はデジタル式回転子位相速度推定装置にある。全般的構成の同様性と発明の主眼とを考慮し、駆動制御システム、駆動制御装置の説明は省略する。これらに関しては、「背景技術欄」で既に述べた説明を参照されたい。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 5 shows an example of a digital drive control device provided with the digital rotor phase speed estimation device of the present invention for a permanent magnet synchronous motor which is a typical AC motor. The general configuration of this drive control device is the same as that of the prior art. The main point of the present invention is a digital rotor phase velocity estimation apparatus. Considering the similarity of the general configuration and the main point of the invention, description of the drive control system and the drive control device is omitted. For these, refer to the explanation already given in the “Background Art” section.

本発明の核心は、デジタル式回転子位相速度推定装置と実質同義でる位相速度推定器10にある。速度制御、トルク制御の何れにおいても、位相速度推定器10には何らの変更を要しない。また、駆動対象電動機を他の同期電動機、あるいは誘導電動機とする場合にも位相速度推定器10には何らの変更を要しない。以下では、速度制御、トルク制御等の制御モードに関し一般性を失うことなく、更には、駆動対象の交流電動機に対して一般性を失うことなく、位相速度推定器10の実施例について説明する。The core of the present invention is the phase speed estimator 10 which is substantially synonymous with the digital rotor phase speed estimation device. In any of the speed control and the torque control, the phase speed estimator 10 does not require any change. Further, even when the driven motor is another synchronous motor or induction motor, the phase speed estimator 10 does not require any change. In the following, an embodiment of the phase speed estimator 10 will be described without losing generality regarding control modes such as speed control and torque control, and without losing generality with respect to the AC motor to be driven.

図6に、本発明を利用した位相速度推定器10の1実施例を示した。本位相速度推定器10を構成する基本的機器は、矩形高周波電圧指令器10−1、相関信号生成器10−2、位相同期器10−3の3機器である。同図は、時刻t=kTsでの固定子電流入手後から時刻t=(k+1)Tsまでの1制御周期における動作の様子を示したものである。なお、図における「zの逆数」は、離散時間信号に対して1サンプリング周期Tsの時間遅れを発生させる「遅延器」(演算的には、「遅れ演算子」)を意味する。本明細書では、他所でも、同様の意味で「zの逆数」を利用する。FIG. 6 shows an embodiment of the phase velocity estimator 10 using the present invention. The basic devices constituting the phase velocity estimator 10 are three devices: a rectangular high-frequency voltage command device 10-1, a correlation signal generator 10-2, and a phase synchronizer 10-3. This figure shows the operation in one control cycle from the acquisition of the stator current at time t = kTs to time t = (k + 1) Ts. Note that “reciprocal of z” in the figure means a “delay device” (in terms of operation, “delay operator”) that generates a time delay of one sampling period Ts with respect to a discrete-time signal. In the present specification, the “reciprocal of z” is used in the same way in other places.

矩形高周波電圧指令器10−1は、回転子位相推定値を基軸(γ軸)位相とするγδ準同期座標系上で矩形状の単相高周波電圧指令値(γ軸高周波電圧指令値)を生成している。図6に示したように、矩形高周波電圧指令器10−1は位相速度推定器内の高周波電圧印加手段に該当するものであり、駆動制御装置内の機器5b、4b、2と共に、高周波電圧印加を遂行している。矩形高周波電圧指令器で生成される高周波電圧指令値は、(9)式、(10)式で示した通りであるが、その周期は請求項2の発明に従い、最小の正偶数Nh=2に対応するものがよい。生成された高周波電圧指令値は、時刻t=(k+1)Tsがら1制御周期にわたり、電力変換器により電動機に実印加される。高周波電圧指令値は駆動用電圧指令値に重畳されて、電力変換器を介して同期電動機に印加され、ひいては高周波電流が流れる。高周波電流は、固定子電流の高周波成分としてこれに含まれる。The rectangular high-frequency voltage command device 10-1 generates a rectangular single-phase high-frequency voltage command value (γ-axis high-frequency voltage command value) on the γδ quasi-synchronous coordinate system with the rotor phase estimation value as a base axis (γ-axis) phase. doing. As shown in FIG. 6, the rectangular high frequency voltage command device 10-1 corresponds to the high frequency voltage application means in the phase velocity estimator, and applies the high frequency voltage application together with the devices 5b, 4b, 2 in the drive control device. Has been carried out. The high-frequency voltage command value generated by the rectangular high-frequency voltage command device is as shown in the equations (9) and (10), and the period is set to the minimum positive even number Nh = 2 according to the invention of claim 2. The corresponding one is good. The generated high-frequency voltage command value is actually applied to the motor by the power converter over one control period from time t = (k + 1) Ts. The high-frequency voltage command value is superimposed on the driving voltage command value and applied to the synchronous motor via the power converter, so that a high-frequency current flows. The high frequency current is included in this as the high frequency component of the stator current.

図6には、請求項1の発明に従って構成した正相関信号生成手段を、相関信号生成器10−2として示している。同図の相関信号生成器は、(13)式と(15)式に正確に従って構成している。FIG. 6 shows a positive correlation signal generating means configured according to the invention of claim 1 as a correlation signal generator 10-2. The correlation signal generator shown in the figure is constructed in accordance with the equations (13) and (15) exactly.

図6における位相同期器は、第3手段である回転子位相速度生成手段を実現したものである。位相同期器は、(19)式に示したデジタル一般化積分形PLL法に基づき構成されている。

Figure 0006150211
位相同期器は、相関信号生成器からの正相関信号を入力信号として受け、γδ準同期座標系の位相(本例では、γδ準同期座標系の位相は回転子位相推定値と等価)θα^とγδ準同期座標系の速度ωγとを出力している。座標系速度は回転子(電気)速度推定値ω2n^と実効的に同一である。座標系速度そのもののを回転子速度推定値として利用することもあれば(図6では、この様子を示している)、必要に応じローパスフィルタ処理して回転子速度推定値として利用することもある。一般化積分形PLL法に基づく位相同期器に関しては、当業者には周知であるので、これ以上の説明は省略する。The phase synchronizer in FIG. 6 implements a rotor phase speed generation means that is a third means. The phase synchronizer is configured based on the digital generalized integral PLL method shown in Equation (19).
Figure 0006150211
The phase synchronizer receives the positive correlation signal from the correlation signal generator as an input signal, and the phase of the γδ quasi-synchronous coordinate system (in this example, the phase of the γδ quasi-synchronous coordinate system is equivalent to the rotor phase estimation value) θα ^ And the velocity ωγ of the γδ quasi-synchronous coordinate system are output. The coordinate system speed is effectively the same as the rotor (electrical) speed estimate ω2n ^. The coordinate system speed itself may be used as a rotor speed estimation value (this state is shown in FIG. 6), or may be used as a rotor speed estimation value by low-pass filtering if necessary. . Since the phase synchronizer based on the generalized integral PLL method is well known to those skilled in the art, further explanation is omitted.

図7は、本発明に従って構成した位相速度推定器の第2構成例である。図6の実施例との違いは、相関信号生成器10−2にある。矩形高周波電圧指令器、位相同期器に関しては、図6の実施例と同一である。相関信号生成器の本構成例は、(16)式に基づいている。(16)式の正相関信号は、(13)式を考慮すると、次式のように評価することもできる。

Figure 0006150211
すなわち、高周波電圧指令値の極性に基づく乗算処理は省略できる。この省略可能を考慮し、図7の実施例では、高周波電圧指令値の極性に基づく乗算処理を破線で示した。FIG. 7 shows a second configuration example of the phase velocity estimator configured according to the present invention. The difference from the embodiment of FIG. 6 is the correlation signal generator 10-2. The rectangular high-frequency voltage command device and the phase synchronizer are the same as those in the embodiment of FIG. This configuration example of the correlation signal generator is based on the equation (16). The positive correlation signal of equation (16) can also be evaluated as the following equation, considering equation (13).
Figure 0006150211
That is, the multiplication process based on the polarity of the high-frequency voltage command value can be omitted. In consideration of this omission, the multiplication process based on the polarity of the high-frequency voltage command value is indicated by a broken line in the embodiment of FIG.

図8は、本発明に従って構成した位相速度推定器の第3構成例である。図6、図7の実施例との違いは、相関信号生成器10−2にある。矩形高周波電圧指令器、位相同期器に関しては、図6、図7の実施例と同一である。相関信号生成器の本構成例は、次の(21)式に基づいている。

Figure 0006150211
すなわち、δ軸要素信号sδそのものを正相関信号pcとしている。このため、位相速度推定器への入力信号はδ軸電流(固定子電流のδ軸要素)のみとしている。なお、本正相関信号pcは、位相偏差θγと次の正相関をもつ。
Figure 0006150211
FIG. 8 is a third configuration example of the phase velocity estimator configured according to the present invention. The difference from the embodiment of FIGS. 6 and 7 resides in the correlation signal generator 10-2. The rectangular high-frequency voltage command device and the phase synchronizer are the same as those in the embodiments of FIGS. This configuration example of the correlation signal generator is based on the following equation (21).
Figure 0006150211
That is, the δ-axis element signal sδ itself is used as the positive correlation signal pc. For this reason, the input signal to the phase velocity estimator is only the δ-axis current (δ-axis element of the stator current). The positive correlation signal pc has the following positive correlation with the phase deviation θγ.
Figure 0006150211

以上、本発明によるデジタル式回転子位相速度推定装置(位相速度推定器)に関し、具体的実施例を3例挙げて、これを詳しく説明した。デジタル式回転子位相速度推定装置の具体的説明の都合上、駆動用電動機として同期電動機としこれに関連した駆動制御装置を取り上げたが、本発明によるデジタル式回転子位相速度推定装置は、同期電動機に限定されるものでないことを重ねて指摘しておく。駆動用電動機を他の交流電動機とする駆動制御装置におけるデジタル式回転子位相速度推定装置にも、詳述した具体的実施例のものが実質そのまま利用できる。駆動用電動機を同期リラクタンス電動機、誘導電動機とする駆動制御装置と同装置内での回転子位相速度推定装置の一般的配置に関しては、例えば特許文献(新中新二:「交流電動機のベクトル制御方法及び同装置」、特許第4120775号(1902−3−18))等に説明されている。このため、この説明は省略する。The digital rotor phase speed estimation apparatus (phase speed estimator) according to the present invention has been described in detail with reference to three specific examples. For the convenience of specific description of the digital rotor phase speed estimation device, the synchronous motor is used as the driving motor and the drive control device related thereto is taken up. However, the digital rotor phase speed estimation device according to the present invention is a synchronous motor. It is pointed out repeatedly that it is not limited to. The digital rotor phase speed estimation device in the drive control device using another AC motor as the drive motor can be used as it is in the specific embodiment described in detail. Regarding the general arrangement of a drive phase control device and a drive control device in which the drive motor is a synchronous reluctance motor or an induction motor, refer to, for example, Patent Literature (Shinji Shinnaka: “Vector control method of AC motor” And the same device ", Japanese Patent No. 4120775 (1902-3-18)) and the like. Therefore, this description is omitted.

本発明は、交流電動機をセンサレス駆動する応用の中で、特に、ゼロ速度を含む速度領域で高い速応性を備えた位相推定性能を必要とする用途に好適である。The present invention is suitable for applications that require phase estimation performance with high responsiveness in a speed range including zero speed, among applications in which an AC motor is sensorlessly driven.

1 交流電動機(同期電動機)
2 電力変換器
3 電流検出器
4a 3相2相変換器
4b 2相3相変換器
5a ベクトル回転器
5b ベクトル回転器
6 電流制御器
7 指令変換器
8 速度制御器
9 ローパスフィルタ
10 位相速度推定器
10−1 矩形高周波電圧指令器
10−2 相関信号生成器
10−3 位相同期器
11 係数器
12 余弦正弦信号発生器
1 AC motor (synchronous motor)
DESCRIPTION OF SYMBOLS 2 Power converter 3 Current detector 4a 3 phase 2 phase converter 4b 2 phase 3 phase converter 5a Vector rotator 5b Vector rotator 6 Current controller 7 Command converter 8 Speed controller 9 Low pass filter 10 Phase speed estimator 10-1 Rectangular High Frequency Voltage Commander 10-2 Correlation Signal Generator 10-3 Phase Synchronizer 11 Coefficient Unit 12 Cosine Sine Signal Generator

Claims (3)

駆動基本周波数より高い周波数の高周波電圧の印加に対し回転子が突極特性を示す交流電動機のための、電力変換器と固定子電流検出器とを用いた周期Tsの固定子電流デジタル制御機能を備えたデジタル式駆動制御装置に使用されるデジタル式回転子位相速度推定装置であって、
回転子位相に位相偏差ゼロで同期を目指したγ軸とこれに直交したδ軸とで構成されるγδ準同期座標系のγ軸上で、Nhを正偶数とするとき周期Th=Nh*Tsの矩形状高周波電圧を、固定子電流の離散時間検出時刻と同期した形で印加するようにした高周波電圧印加手段と、
周期Tsで該固定子電流検出器を用いて離散時間検出された、駆動基本周波数成分と高周波成分とを含む固定子電流を、該γδ準同期座標系上で周期Tsごとに時間差分し、時間差分固定子電流に、時間差分期間Tsに対応した矩形状高周波電圧の極性を乗じてγ軸要素信号cγ、δ軸要素信号sδの少なくとも一つを生成し、生成した軸要素信号を用いて、回転子位相とγ軸位相の位相偏差に対し正相関をもつ正相関信号pcを周期Tsごとに生成する正相関信号生成手段と、
該正相関信号pcがゼロとなるように該正相関信号pcを信号処理して、γ軸位相と、回転子位相の推定値あるいは回転子位相と基本的に微積分関係にある回転子速度の推定値の少なくとも何れかの推定値を、周期Tsごとに生成する回転子位相速度生成手段と、
を備えることを特徴とするデジタル式回転子位相速度推定装置。
A stator current digital control function with a period Ts using a power converter and a stator current detector for an AC motor in which the rotor exhibits salient pole characteristics when a high frequency voltage having a frequency higher than the drive fundamental frequency is applied. A digital rotor phase speed estimation device used in a digital drive control device comprising:
On the γ-axis of the γδ quasi-synchronous coordinate system composed of the γ-axis aiming for synchronization with the rotor phase with zero phase deviation and the δ-axis orthogonal thereto, the cycle Th = Nh * Ts A high frequency voltage applying means adapted to apply the rectangular high frequency voltage in synchronization with the discrete time detection time of the stator current;
A stator current including a driving fundamental frequency component and a high-frequency component, which are detected in a discrete time using the stator current detector at a period Ts, is time-differed for each period Ts on the γδ quasi-synchronous coordinate system, and time Multiplying the difference stator current by the polarity of the rectangular high frequency voltage corresponding to the time difference period Ts to generate at least one of the γ-axis element signal cγ and the δ-axis element signal sδ, and using the generated axis element signal, Positive correlation signal generation means for generating a positive correlation signal pc having a positive correlation with respect to the phase deviation between the rotor phase and the γ-axis phase every period Ts;
The positive correlation signal pc is subjected to signal processing so that the positive correlation signal pc becomes zero, and the γ-axis phase and the estimated value of the rotor phase or the estimation of the rotor speed basically having a calculus relationship with the rotor phase. A rotor phase velocity generating means for generating at least one estimated value of each value for each period Ts;
A digital rotor phase speed estimation apparatus comprising:
該正偶数Nhを2とすることを特徴とする請求項1記載のデジタル式回転子位相速度推定装置。2. The digital rotor phase speed estimation apparatus according to claim 1, wherein the positive and even Nh is set to 2. 該交流電動機を同期電動機とすることを特徴とする請求項1記載のデジタル式回転子位相速度推定装置。2. The digital rotor phase speed estimation apparatus according to claim 1, wherein the AC motor is a synchronous motor.
JP2013176046A 2013-08-09 2013-08-09 Digital rotor phase speed estimation device for AC motor Active JP6150211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176046A JP6150211B2 (en) 2013-08-09 2013-08-09 Digital rotor phase speed estimation device for AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176046A JP6150211B2 (en) 2013-08-09 2013-08-09 Digital rotor phase speed estimation device for AC motor

Publications (2)

Publication Number Publication Date
JP2015037376A JP2015037376A (en) 2015-02-23
JP6150211B2 true JP6150211B2 (en) 2017-06-21

Family

ID=52687640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176046A Active JP6150211B2 (en) 2013-08-09 2013-08-09 Digital rotor phase speed estimation device for AC motor

Country Status (1)

Country Link
JP (1) JP6150211B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225617B2 (en) * 2018-09-13 2023-02-21 株式会社アドヴィックス motor controller
CN109617487B (en) * 2018-11-14 2022-03-01 创驱(上海)新能源科技有限公司 Permanent magnet synchronous motor rotor position observation method based on high-frequency voltage signal injection
CN114301357B (en) * 2022-03-09 2022-06-03 四川奥库科技有限公司 Single-resistor motor initial position detection method and motor control method
WO2023228885A1 (en) * 2022-05-27 2023-11-30 ミネベアミツミ株式会社 Driving control device, driving control system, and state estimation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241218B2 (en) * 2003-06-27 2009-03-18 株式会社日立産機システム AC motor control device and AC motor system
JP4895703B2 (en) * 2006-06-28 2012-03-14 三洋電機株式会社 Motor control device
ATE476010T1 (en) * 2007-01-12 2010-08-15 Abb Oy METHOD FOR ESTIMATING THE ROTOR SPEED AND POSITION OF A SYNCHRONOUS PERMANENT MAGNET MACHINE WITHOUT A POSITION ENCODER
WO2011129423A1 (en) * 2010-04-17 2011-10-20 日本電産株式会社 Rotor phase/velocity estimation device for alternating-current motor
JP5543388B2 (en) * 2011-01-31 2014-07-09 東芝シュネデール・インバータ株式会社 Control device for permanent magnet synchronous motor
WO2013024780A1 (en) * 2011-08-15 2013-02-21 株式会社明電舎 Pm motor position-sensorless control device

Also Published As

Publication number Publication date
JP2015037376A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5720677B2 (en) Rotor phase speed estimation device for AC motor
CN104079217B (en) Motor control assembly and magnetic pole position estimation method
JP6492320B2 (en) Digital rotor phase speed estimation device for AC motor
Lin et al. Improved rotor position estimation in sensorless-controlled permanent-magnet synchronous machines having asymmetric-EMF with harmonic compensation
JP4587110B2 (en) Rotor phase estimation method for synchronous motor drive control
JP4644010B2 (en) Vector control method and apparatus for synchronous reluctance motor
JP6150211B2 (en) Digital rotor phase speed estimation device for AC motor
JP5176406B2 (en) Rotor phase speed estimation device for AC motor
JP4899509B2 (en) AC motor rotor phase estimation device
JP4670405B2 (en) Vector control method for synchronous motor
WO2004032316A1 (en) Motor magnetic pole position estimation device and control device
Wang et al. Sensorless control of a novel IPMSM based on high-frequency injection
JP6150212B2 (en) Digital rotor phase speed estimation device for AC motor
Semenov et al. Position estimation for sensorless FOC of five-phase PMSM in electric vehicles
Alaei et al. Dynamic performance analysis of high frequency signal injection based sensorless methods for IPM synchronous motors
JP4924115B2 (en) Permanent magnet synchronous motor drive control device
Pravica et al. Interior permanent magnet wind generator torque estimation considering low-pass filter phase shift compensation
Hosooka et al. New sensorless vector control of PMSM by discrete-time voltage injection of PWM carrier frequency—High-frequency current correlation method
JP6286733B2 (en) Digital rotor phase speed estimation device for AC motor
JP5423263B2 (en) Rotor phase speed estimation device for AC motor
Ghule et al. High frequency injection based rotor position self-sensing for synchronous electrostatic machines
Uzel et al. Resolver motivated sensorless rotor position estimation of wound rotor synchronous motors with Kalman filter
Hosooka et al. New sensorless vector control of PMSM by discrete-time voltage injection of PWM carrier frequency—Sine-and cosine-form amplitudes extraction method
Kong et al. Research of sensorless control for multiphase induction motor based on high frequency injection signal technique
Uzel et al. Estimator comparison for resolver motivated sensorless rotor position estimation of wound rotor synchronous motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170513

R150 Certificate of patent or registration of utility model

Ref document number: 6150211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250