JP5740638B2 - Manufacturing method of ceramic product and molding die used therefor - Google Patents

Manufacturing method of ceramic product and molding die used therefor Download PDF

Info

Publication number
JP5740638B2
JP5740638B2 JP2011038558A JP2011038558A JP5740638B2 JP 5740638 B2 JP5740638 B2 JP 5740638B2 JP 2011038558 A JP2011038558 A JP 2011038558A JP 2011038558 A JP2011038558 A JP 2011038558A JP 5740638 B2 JP5740638 B2 JP 5740638B2
Authority
JP
Japan
Prior art keywords
slurry
frame
absorbing material
water
median diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038558A
Other languages
Japanese (ja)
Other versions
JP2012171333A (en
Inventor
中村 浩章
中村  浩章
小倉 知之
知之 小倉
紀子 齋藤
紀子 齋藤
友幸 三浦
友幸 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2011038558A priority Critical patent/JP5740638B2/en
Publication of JP2012171333A publication Critical patent/JP2012171333A/en
Application granted granted Critical
Publication of JP5740638B2 publication Critical patent/JP5740638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空状のセラミックス製品の製造方法およびこれに用いられる成形型に関する。   The present invention relates to a method for producing a hollow ceramic product and a mold used for the method.

円筒状のセラミックス製品の製造方法として、石膏型または樹脂などの円筒状成形型を回転させる遠心成形方法が提案されている(特許文献1、特許文献2および非特許文献1参照)。また、鋳込み成形方法をベースとして、揺動または振動などが加えられる成形方法が提案されている(特許文献3参照)。   As a method for producing a cylindrical ceramic product, a centrifugal molding method in which a cylindrical molding die such as a gypsum mold or a resin is rotated has been proposed (see Patent Document 1, Patent Document 2, and Non-Patent Document 1). Further, a molding method in which rocking or vibration is applied based on a casting molding method has been proposed (see Patent Document 3).

特開平09−193130号公報JP 09-193130 A 特開平05−253921号公報Japanese Patent Laid-Open No. 05-253921 特開2005−153495号公報JP 2005-153495 A

産総研/セラミックスの遠心成形技術(URL:http://unit.aist.go.jp/ chubu/ci/vm/sub3/sub3_06_3.html)AIST / Ceramics forming technology (URL: http://unit.aist.go.jp/chubu/ci/vm/sub3/sub3_06_3.html)

しかし、遠心成形法または揺動もしくは振動を伴う成形方法によれば、成形型の劣化または破損が生じやすいため、設備コストの節約の観点から好ましくない。また、成形中は、常に着肉層に対して応力が作用するため、完全に乾燥固化していない状態の着肉層には、チクソトロピー性によるダレまたは崩壊が起こる。その結果、成形体に、生密度ムラおよび残留応力によるクラック等が発生する。これは、成形体が大型であるほど顕著となる。   However, the centrifugal molding method or the molding method with rocking or vibration is not preferable from the viewpoint of saving the equipment cost because the mold is likely to be deteriorated or broken. Further, since stress always acts on the inking layer during molding, sagging or collapse due to thixotropy occurs in the inking layer that is not completely dried and solidified. As a result, cracks and the like due to green density unevenness and residual stress occur in the molded body. This becomes more prominent as the compact becomes larger.

さらに、遠心成形法によれば、成形型が、その軸が略水平である状態で当該軸回りに回転されるため、重力の影響によって焼結体の真円度が低下する傾向がある。また、回転作用を利用するという性質上、製品形状が円筒状に限定されてしまう。   Further, according to the centrifugal molding method, the roundness of the sintered body tends to decrease due to the influence of gravity because the mold is rotated around the axis with the axis thereof being substantially horizontal. In addition, the product shape is limited to a cylindrical shape due to the property of utilizing a rotating action.

そこで、本発明は、中空状のセラミックス製品の大型化または高背化を図りながらも、高品質化を図ることができる、当該セラミックス製品の製造方法等を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the said ceramic product etc. which can aim at quality improvement, aiming at the enlargement or heightening of a hollow ceramic product.

本発明は、中空状のセラミックス製品を製造する方法であって、多孔質の吸水性材料からなる筒状の側部および非吸水性材料からなる底部を有する有底筒状の枠と、前記枠の内側に設けられる、少なくとも表面層が非吸水性材料からなる中子とを備えている成形型を、前記筒の軸方向を鉛直方向に合わせて設置する工程と、セラミックス粉末の粒子径分布が単一のピークを有し、全粒子のうちメジアン径(M)を有する粒子の頻度が10[%]以上であり、メジアン径(M)が0.5[μm]であり、メジアン径(M)に対する最小粒子径(B)の比(B/M)が0.2以上であり、かつ、メジアン径(M)に対する最大粒子径(A)の比(A/M)が11.0以下になるように原料を調整する工程と、粒子径分布が調節された前記セラミックス粉末が分散されたスラリーを調整する工程と、前記成形型に対して前記スラリーを注入する工程と、前記成形型における前記スラリーの流動が収まった後、前記枠の側部の外側表面に沿った複数の方向のそれぞれについて均等に配置され、前記枠の側部の外側表面に対して気密に形成されている空間を−90[kPa]と同じまたはこれより強い圧力で真空吸引することにより、前記スラリー中の水分を前記吸水性材料に吸収させるとともに、前記セラミックス粉末を前記成形型に着肉させ、セラミックス成形体を形成する工程と、前記セラミックス成形体を乾燥させた後、焼成する工程とを含んでいることを特徴とする。 The present invention is a method for producing a hollow ceramic product, comprising a bottomed cylindrical frame having a cylindrical side part made of a porous water-absorbing material and a bottom part made of a non-water-absorbing material, and the frame A step of installing a molding die provided at least with a core made of a non-water-absorbing material at the surface layer so that the axial direction of the cylinder is aligned with the vertical direction, and the particle size distribution of the ceramic powder is The frequency of particles having a single peak and having a median diameter (M) of all particles is 10% or more, the median diameter (M) is 0.5 [μm], and the median diameter (M The ratio (B / M) of the minimum particle diameter (B) to 0.2) is 0.2 or more, and the ratio (A / M) of the maximum particle diameter (A) to the median diameter (M) is 11.0 or less. A step of adjusting the raw material so that the particle size distribution is adjusted. A step of adjusting the slurry in which the powder is dispersed, a step of injecting the slurry into the mold, and after the flow of the slurry in the mold is settled, along the outer surface of the side portion of the frame By vacuum-sucking a space that is evenly arranged in each of a plurality of directions and is airtight with respect to the outer surface of the side portion of the frame at a pressure equal to or higher than -90 [kPa], A step of causing the water-absorbing material to absorb moisture in the slurry, a step of forming the ceramic molded body by depositing the ceramic powder on the mold, and a step of firing the ceramic molded body after drying. It is characterized by including.

本発明の方法によれば、原料であるセラミックス粉末を分散させたスラリーが成形型に注入され、スラリーの流動が収束した後、有底筒状の枠の側部の外側に形成されている気密空間が高真空度(−90[kPa]と同じまたは強い吸引圧力)で真空吸引される。気密空間は枠の側部の外側表面に沿った複数の方向のそれぞれについて均等に配置されているため、セラミックス粉末の着肉層が側部の表面の各法線方向について均等に形成される。 According to the method of the present invention, a slurry in which ceramic powder as a raw material is dispersed is injected into a mold, and after the flow of the slurry is converged, the airtightness formed outside the side portion of the bottomed cylindrical frame The space is vacuumed with a high degree of vacuum (suction pressure equal to or higher than −90 [kPa]). Since the airtight spaces are evenly arranged in each of a plurality of directions along the outer surface of the side portion of the frame, the ceramic powder layer is uniformly formed in each normal direction of the surface of the side portion.

セラミックス粉末の着肉層の形成に際し、スラリーに対して圧力が掛けられるわけではなく、枠の側部に作用する吸引圧力および当該枠を構成する吸水性材料の毛管吸引力の作用によってスラリー中の水分が除去される。このため、枠の側部近傍における原料粉末の着肉層が当該側部から離れることなく、成形体が形成されうる。また、中子の少なくとも表面は非吸水材料であることから、当該中子から外側に向かう方向からのみ吸水が進行するため、成形体にウェルドラインが生じることはない。   During the formation of the ceramic powder layer, pressure is not applied to the slurry, but due to the suction pressure acting on the side of the frame and the capillary suction force of the water-absorbing material constituting the frame, Moisture is removed. For this reason, a molded object can be formed, without the flaking layer of the raw material powder in the side part vicinity of a frame leaving | separating from the said side part. Further, since at least the surface of the core is made of a non-water-absorbing material, water absorption proceeds only from the direction from the core toward the outside, so that no weld line is generated in the molded body.

さらに、原料であるセラミックス粉末の着肉方向が側部表面の法線方向、すなわち、水平方向であって、鉛直方向に対して垂直である。このため、沈降作用の影響が軽減されるようにセラミックス粉末の粒度分布が調節されていることにより、成形体の高さ方向または上下方向について生密度差またはムラが生じず、変形または歪みおよびクラックがない高品質の成形体および焼結体が得られる。   Furthermore, the thickness direction of the ceramic powder as the raw material is the normal direction of the side surface, that is, the horizontal direction and is perpendicular to the vertical direction. For this reason, by adjusting the particle size distribution of the ceramic powder so as to reduce the influence of the sedimentation effect, there is no difference in density or unevenness in the height direction or the vertical direction of the molded body, and deformation, distortion and cracks are not caused. A high-quality molded body and sintered body without the above can be obtained.

したがって、中空状のセラミックス製品の大型化または高背化を図りながらも、その高品質化を図ることができる。尚、粒度は、混合前の分級、混合処理方法で調整することが可能である。 Therefore, it is possible to improve the quality of the hollow ceramic product while increasing the size or height of the hollow ceramic product. The particle size can be adjusted by classification before mixing and a mixing treatment method.

本発明の成形型は、筒状または有底筒状の外枠と、多孔質の吸水性材料からなる筒状の側部および非吸水性材料からなる底部を有する内枠と、前記内枠の内側に設けられる、少なくとも表面層が非吸水性材料からなる中子とを備え、前記内枠の側部の外側表面に沿った複数の方向のそれぞれについて均等に配置され、真空吸引装置に対して気密に接続されることにより前記内枠の側部の外側表面に対して気密に形成されている空間を形成する吸引経路が、前記外枠において前記内枠の側部に当接する箇所に形成されていることを特徴とする。 The molding die of the present invention comprises a cylindrical or bottomed cylindrical outer frame, an inner frame having a cylindrical side portion made of a porous water-absorbing material and a bottom portion made of a non-water-absorbing material, An inner core provided with at least a surface layer made of a non-water-absorbing material, and arranged uniformly in each of a plurality of directions along the outer surface of the side portion of the inner frame, with respect to the vacuum suction device A suction path that forms a space that is airtightly formed with respect to the outer surface of the side portion of the inner frame by being hermetically connected is formed at a location where the outer frame contacts the side portion of the inner frame. It is characterized by.

本発明の成形型が筒状のセラミック製品の製造に際して用いられることにより、前記のように、大型または高背でありながら高品質の任意の所望形状の中空状セラミックス製品が製造されうる。   By using the mold of the present invention in the production of a cylindrical ceramic product, as described above, a hollow ceramic product of any desired shape having a high quality can be produced while being large or tall.

図1(a)は本発明の方法に用いられる成形型の上面図。図1(b)は図1(a)のIb−Ib線に沿った当該成形型の断面図。Fig.1 (a) is a top view of the shaping | molding die used for the method of this invention. FIG.1 (b) is sectional drawing of the said shaping | molding die along the Ib-Ib line | wire of Fig.1 (a). 本発明の一実施形態としてのセラミックス製品の製造方法に関する説明図。Explanatory drawing regarding the manufacturing method of the ceramic product as one Embodiment of this invention.

本発明の一実施形態として、セラミックス製品としてのアルミナ焼結体の製造方法について説明する。   As an embodiment of the present invention, a method for producing an alumina sintered body as a ceramic product will be described.

(スラリーの調整)
セラミックス粉末の粒子径分布が単一のピークを有し、メジアン径(M)が0.5[μm]であり、その頻度が10[%]以上であり、最大粒子径/メジアン径比(A/M)が11.0以下であり、かつ、最小粒子径/メジアン径比(B/M)が0.2以上になるようにスラリーが調整された。
(Slurry adjustment)
The particle size distribution of the ceramic powder has a single peak, the median size (M) is 0.5 [μm], the frequency is 10 [%] or more, and the maximum particle size / median size ratio (A / M) was 11.0 or less, and the slurry was adjusted so that the minimum particle diameter / median diameter ratio (B / M) was 0.2 or more.

なお、セラミックス粉末はアルミナ粉末のほか、炭化珪素、窒化珪素、ジルコニア、スピネルまたはイットリアなどからなる各種のセラミック粉末であってもよい。分散剤は、ポリカルボン酸系など公知のものが用いられる。溶媒は、水、特に不純物が少ないイオン交換水であることが好ましいが、アルコールなど公知の溶媒が用いられうる。バインダは、ポリビニルアルコールやアクリルエマルジョンなどの公知のものが用いられる。また、必要に応じて、pH調整剤または消泡剤等の添加剤が添加されてもよい。   In addition to the alumina powder, the ceramic powder may be various ceramic powders made of silicon carbide, silicon nitride, zirconia, spinel, yttria, or the like. As the dispersant, a known one such as a polycarboxylic acid type is used. The solvent is preferably water, particularly ion-exchanged water with few impurities, but a known solvent such as alcohol can be used. As the binder, known materials such as polyvinyl alcohol and acrylic emulsion are used. Moreover, additives, such as a pH adjuster or an antifoamer, may be added as needed.

(成形型の構成)
図1(a)および図1(b)に示されている成形型は、外枠10と、内枠20と、中子30とを備えている。
(Configuration of mold)
The mold shown in FIGS. 1A and 1B includes an outer frame 10, an inner frame 20, and a core 30.

外枠10は、略有底円筒状のステンレスからなり、その高さはたとえば950[mm]である。外枠10の側壁には、図1(a)に示されているように周方向について回転対称性(たとえば8回転対称性)を有するように配置され、かつ、図1(b)に示されているように上下方向(軸方向)について等間隔に(上下方向について並進対称性を有するように)配置されている複数の吸引口12が設けられている。   The outer frame 10 is made of substantially bottomed cylindrical stainless steel, and its height is, for example, 950 [mm]. As shown in FIG. 1A, the outer frame 10 is disposed so as to have a rotational symmetry (for example, eight rotational symmetry) in the circumferential direction, and as shown in FIG. As shown, a plurality of suction ports 12 arranged at equal intervals in the vertical direction (axial direction) (so as to have translational symmetry in the vertical direction) are provided.

内枠20は、全周にわたり外枠10の内側に接し、円筒状の多孔質の吸水性材料(たとえば石膏)からなる側部21と、側部21の底を塞ぐように設けられている円盤状の非吸水性材料(たとえばクロロプレンゴム)からなる底部22とを備えている。内枠20の内径はたとえば800[mm]であり、その深さはたとえば950[mm]である。所望の高さの成形体が得られるように、石膏からなる側部21の一部が樹脂などによって被覆されることにより、その吸水作用の抑制が図られている。   The inner frame 20 is in contact with the inner side of the outer frame 10 over the entire circumference, and is provided with a side part 21 made of a cylindrical porous water-absorbing material (for example, gypsum) and a disk provided to close the bottom of the side part 21. And a bottom 22 made of a non-water-absorbing material (for example, chloroprene rubber). The inner diameter of the inner frame 20 is, for example, 800 [mm], and the depth thereof is, for example, 950 [mm]. In order to obtain a molded body having a desired height, a part of the side portion 21 made of gypsum is covered with a resin or the like, thereby suppressing the water absorption action.

吸引口12は、真空吸引装置(真空ポンプなど)に気密に接続されることにより、内枠20の側部21の外側表面に対して気密な空間を形成する。前記のように複数の吸引口12が配置されることにより、気密空間は、内枠20の側部21の外側表面に沿った周方向および軸方向のそれぞれについて均等に配置されている。   The suction port 12 is airtightly connected to a vacuum suction device (such as a vacuum pump), thereby forming an airtight space with respect to the outer surface of the side portion 21 of the inner frame 20. By arranging the plurality of suction ports 12 as described above, the airtight spaces are equally arranged in each of the circumferential direction and the axial direction along the outer surface of the side portion 21 of the inner frame 20.

なお、内枠20の側部21の外側表面に沿った複数の方向のそれぞれについて、気密空間が均等に配置されるようにさまざまな形態で吸引経路が形成されうる。たとえば、外枠10の側壁内側に、当該複数の方向のそれぞれに細長い部材がのびているような格子状の吸引溝と、当該吸引溝に連通する吸引口とが吸引経路として形成されてもよい。   In addition, about each of the some direction along the outer surface of the side part 21 of the inner frame 20, a suction path | route can be formed with various forms so that airtight space may be arrange | positioned equally. For example, a lattice-like suction groove in which elongated members extend in each of the plurality of directions and a suction port communicating with the suction groove may be formed inside the side wall of the outer frame 10 as a suction path.

中子30は、少なくともその表面層がショア硬度A(JIS)20〜60°のゴム、シリコンまたはプラスチックなどの非吸水性材料(たとえばショア硬度40°のネオプレンゴム)により構成されている。中子30は、内枠20の内側に配置され、内枠20の深さと同じ高さの略円柱状であって、その直径はたとえば600[mm]である。   The core 30 is made of a non-water-absorbing material (for example, neoprene rubber having a shore hardness of 40 °) such as rubber, silicon or plastic having a shore hardness A (JIS) of 20 to 60 °. The core 30 is disposed inside the inner frame 20 and has a substantially cylindrical shape having the same height as the depth of the inner frame 20 and has a diameter of, for example, 600 [mm].

任意の形状のセラミックス製品の作成のため、外枠10、内枠20および中子30のそれぞれの形状が任意に変更されうる。外枠10の側壁および内枠20の側部21が、円筒状のほか、三角筒状、矩形筒状、台形筒状、多角形筒状または楕円筒状など、周囲が囲まれている任意の形状であってもよい。   The shape of each of the outer frame 10, the inner frame 20, and the core 30 can be arbitrarily changed to create a ceramic product having an arbitrary shape. The side wall 21 of the outer frame 10 and the side portion 21 of the inner frame 20 are not only cylindrical, but also are arbitrarily surrounded by a triangular cylinder, a rectangular cylinder, a trapezoidal cylinder, a polygonal cylinder, or an elliptic cylinder. It may be a shape.

円柱状のほか、角柱状などさまざまな形状の中子30が使用されてもよい。中子30の寸法が調整されることで、成形体および焼結体の肉厚が調節されうる。また。セラミックス製品の全体に対する中空部の体積割合は、5〜95[%]の範囲で調節されうる。   In addition to a columnar shape, a core 30 having various shapes such as a prismatic shape may be used. The thickness of the molded body and the sintered body can be adjusted by adjusting the dimensions of the core 30. Also. The volume ratio of the hollow portion to the entire ceramic product can be adjusted in a range of 5 to 95 [%].

(セラミックス製品の製造方法)
セラミックス粉末の着肉面である底部22の表面が水平になるように、図1に示されている成形型が設置された上で、前記のように粒度調整されたスラリーが、図2(a)に示されているように成形型に注入される。スラリーは、バッチ方式にしたがって所望形状に必要な量が最初から成形型に投入されてもよく、または、着肉の進行に合わせて撹拌タンクなどから成形型に対して随時供給されてもよい。
(Manufacturing method of ceramic products)
After the mold shown in FIG. 1 is installed so that the surface of the bottom portion 22 which is the surface of the ceramic powder is horizontal, the slurry whose particle size is adjusted as described above is shown in FIG. ) Is injected into the mold as shown. The slurry may be charged into the mold from the beginning in an amount necessary for the desired shape in accordance with a batch method, or may be supplied from the stirring tank or the like to the mold as occasion demands.

成形型に注入されたスラリーの流動が収まった段階から、吸引口12を通じて成形型の内部が真空吸引されることにより、着肉による成形体の製造が実施された。真空吸引に際して、真空度は−90[kPa]以上に調節された。これにより、図2(b)および図2(c)に示されているように径方向外側から着肉が進行し、徐々に成形体Pの厚みが増していく。   From the stage where the flow of the slurry injected into the molding die was settled, the inside of the molding die was vacuum-sucked through the suction port 12, thereby producing a molded body by inking. During vacuum suction, the degree of vacuum was adjusted to -90 [kPa] or higher. As a result, as shown in FIGS. 2B and 2C, the inking proceeds from the radially outer side, and the thickness of the molded body P gradually increases.

成形体Pの高さが所望の高さ(600[mm])に到達したところで着肉層上にある余剰スラリーが排出(排泥)された。また、所定時間にわたって−90[kPa]と同じまたはこれより強い圧力で、吸引口12により形成されている気密空間が真空吸引されることにより、側部21による吸水が実施された。   When the height of the molded body P reached the desired height (600 [mm]), the surplus slurry on the inking layer was discharged (mud). In addition, the air-tight space formed by the suction port 12 was vacuum-sucked at a pressure equal to or higher than −90 [kPa] over a predetermined time, whereby water absorption by the side portion 21 was performed.

さらに、成形体Pが脱型された。成形体Pの成形後も吸引が継続されることにより、成形体Pが効率的に乾燥され、成形型からの離型が迅速となる。中子30は、成形完了時点で引き抜かれる。これにより、図2(d)に示されているように円筒状(高さ600[mm]、外径800[mm]、内径600[mm])の成形体Pが得られた。   Further, the molded product P was removed. By continuing the suction even after the molded body P is molded, the molded body P is efficiently dried, and the release from the mold becomes rapid. The core 30 is pulled out when molding is completed. As a result, as shown in FIG. 2D, a molded body P having a cylindrical shape (height 600 [mm], outer diameter 800 [mm], inner diameter 600 [mm]) was obtained.

そして、成形体Pが乾燥され、さらに必要に応じて生加工された後、焼成されることにより、円筒状のセラミックス製品(焼結体)が製造された。なお、中子30を抱えた状態で成形体Pが焼成されることにより、中子30が焼失されることにより、中空部を有する焼結体が作成されてもよい。   And after the molded object P was dried and further raw-processed as needed, it was baked, and the cylindrical ceramic product (sintered body) was manufactured. In addition, the sintered compact which has a hollow part may be created by baking the molded object P in the state which hold | maintained the core 30, and burning the core 30. FIG.

市販のアルミナ粉末(昭和電工社製AL−160SG−4、純度99.7[%])に対して、バインダ(三井東圧化学社製WA−320)、分散剤(互応化学社製KE−552)およびイオン交換水が添加された上で、粉砕混合によってスラリーが調整された。   Commercially available alumina powder (AL-160SG-4, Showa Denko Co., Ltd., purity 99.7 [%]), binder (WA-320, Mitsui Toatsu Chemical Co., Ltd.), dispersant (KE-552, Kyoyo Chemical Co., Ltd.) ) And ion-exchanged water were added, and the slurry was adjusted by grinding and mixing.

メジアン径(0.5[μm])の頻度が10[%]であり、最小粒子径/メジアン径比(B/M)が0.2であり、かつ、最大粒子径/メジアン径比(A/M)が11.0になるように粒子径分布が調節されたスラリーが用いられ、真空吸引圧力が−90[kPa]と同じまたは強くなるように調節されることにより実施例1の成形体および焼結体が得られた。   The frequency of median diameter (0.5 [μm]) is 10 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.2, and the maximum particle diameter / median diameter ratio (A / M) is used, and a slurry whose particle size distribution is adjusted to 11.0 is used, and the vacuum suction pressure is adjusted to be the same as or stronger than −90 [kPa], whereby the molded article of Example 1 And a sintered body was obtained.

メジアン径の頻度が16[%]であり、最小粒子径/メジアン径比(B/M)が0.2であり、かつ、最大粒子径/メジアン径比(A/M)が9.5になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例2の成形体および焼結体が得られた。   The frequency of the median diameter is 16 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.2, and the maximum particle diameter / median diameter ratio (A / M) is 9.5. A molded body and a sintered body of Example 2 were obtained under the same conditions as in Example 1 except that a slurry having a controlled particle size distribution was used.

メジアン径の頻度が21[%]であり、最小粒子径/メジアン径比(B/M)が0.5であり、かつ、最大粒子径/メジアン径比(A/M)が11.0になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例3の成形体および焼結体が得られた。   The frequency of the median diameter is 21 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.5, and the maximum particle diameter / median diameter ratio (A / M) is 11.0. A molded body and a sintered body of Example 3 were obtained under the same conditions as in Example 1 except that a slurry having a controlled particle size distribution was used.

メジアン径の頻度が15[%]であり、最小粒子径/メジアン径比(B/M)が0.3であり、かつ、最大粒子径/メジアン径比(A/M)が9.0になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例4および焼結体が得られた。   The frequency of the median diameter is 15 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.3, and the maximum particle diameter / median diameter ratio (A / M) is 9.0. Example 4 and a sintered body were obtained under the same conditions as in Example 1 except that a slurry with a controlled particle size distribution was used.

メジアン径の頻度が14[%]であり、最小粒子径/メジアン径比(B/M)が0.3であり、かつ、最大粒子径/メジアン径比(A/M)が11.0になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例5の成形体および焼結体が得られた。   The frequency of the median diameter is 14 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.3, and the maximum particle diameter / median diameter ratio (A / M) is 11.0. A molded body and a sintered body of Example 5 were obtained under the same conditions as in Example 1 except that a slurry having a controlled particle size distribution was used.

メジアン径の頻度が18[%]であり、最小粒子径/メジアン径比(B/M)が0.5であり、かつ、最大粒子径/メジアン径比(A/M)が5.0になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例6の成形体および焼結体が得られた。   The frequency of the median diameter is 18 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.5, and the maximum particle diameter / median diameter ratio (A / M) is 5.0. A molded body and a sintered body of Example 6 were obtained under the same conditions as in Example 1 except that a slurry having a controlled particle size distribution was used.

メジアン径の頻度が14[%]であり、最小粒子径/メジアン径比(B/M)が0.3であり、かつ、最大粒子径/メジアン径比(A/M)が4.0になるように粒子径分布が調節されたスラリーが用いられたほかは、実施例1と同一条件下で実施例7の成形体および焼結体が得られた。   The frequency of the median diameter is 14 [%], the minimum particle diameter / median diameter ratio (B / M) is 0.3, and the maximum particle diameter / median diameter ratio (A / M) is 4.0. A molded body and a sintered body of Example 7 were obtained under the same conditions as in Example 1 except that a slurry having a controlled particle size distribution was used.

表1には、実施例1〜7のそれぞれの成形体の作成条件と、成形体および焼結体のそれぞれの相対密度の測定結果および外観の観察結果が示されている。各実施例および後述する比較例において、2つの成形体が作製され、1つの成形体の一部が切り出されて当該切り出し部分から生密度が評価され、もう1つの成形体が焼成されることにより焼結体が製造された。   Table 1 shows the conditions for forming the molded bodies of Examples 1 to 7, the measurement results of the relative densities of the molded bodies and the sintered bodies, and the observation results of the appearance. In each example and comparative example described later, two molded bodies are produced, a part of one molded body is cut out, the green density is evaluated from the cut-out portion, and the other molded body is baked. A sintered body was produced.

表1から明らかなように、実施例1〜7のそれぞれの成形体の上下方向および径方向の相対密度のバラツキは小さく、乾燥後における外観上も成形体の乾燥収縮による割れは観察されなかった。また、実施例1〜7のそれぞれの焼結体の相対密度はいずれも99[%]以上であって非常に緻密であり、外観上も反り、変形および割れは観察されなかった。   As is clear from Table 1, variations in the relative density in the vertical direction and radial direction of each molded body of Examples 1 to 7 were small, and cracks due to drying shrinkage of the molded body were not observed in appearance after drying. . In addition, the relative densities of the sintered bodies of Examples 1 to 7 were all 99% or more and very dense, warped in appearance, and deformation and cracking were not observed.

実施例1〜7のそれぞれと同様に粒子径分布が調整されたスラリーが成形型に注ぎ足されながら成形体が作成された場合、同様に、生密度のバラツキが小さく、かつ、割れの無い成形体が得られ、生加工して焼成したところ、反り、変形および割れが無く、相対密度が99[%]以上に緻密化した焼結体が得られた。   In the same manner as in each of Examples 1 to 7, when a molded body was created while a slurry whose particle size distribution was adjusted was poured into a molding die, similarly, molding with little variation in raw density and no cracking When a body was obtained, raw-processed and fired, a sintered body with no warpage, deformation and cracking, and a relative density of 99 [%] or higher was obtained.

比較例Comparative example

〔比較例1〕 [Comparative Example 1]

実施例1〜7と比較して最小粒子径/メジアン径比(B/M)が0.2以上であり、かつ、最大粒子径/メジアン径比(A/M)が11.0以下である点でと一致する一方、メジアン径の頻度が10[%]未満(9[%])である点で異なる粒子径分布を有するスラリーが用いられたほかは、実施例1〜7と同一条件下で比較例1の成形体および焼結体が得られた。
〔比較例2〕
Compared to Examples 1 to 7, the minimum particle diameter / median diameter ratio (B / M) is 0.2 or more, and the maximum particle diameter / median diameter ratio (A / M) is 11.0 or less. On the other hand, the same conditions as in Examples 1 to 7 except that a slurry having a different particle size distribution was used in that the frequency of the median diameter was less than 10% (9%). Thus, a molded body and a sintered body of Comparative Example 1 were obtained.
[Comparative Example 2]

実施例1〜7と比較してメジアン径の頻度が10[%]であり、かつ、最大粒子径/メジアン径比(A/M)が11.0以下である点で一致する一方、最小粒子径/メジアン径比(B/M)が0.2未満(0.1)である点で異なる粒子径分布を有するスラリーが用いられたほかは、実施例1〜7と同一条件下で比較例2の成形体が得られた。
〔比較例3〕
Compared with Examples 1 to 7, the frequency of the median diameter is 10%, and the maximum particle diameter / median diameter ratio (A / M) is 11.0 or less, which is the same, whereas the smallest particle Comparative Example under the same conditions as in Examples 1-7, except that a slurry having a different particle size distribution was used in that the diameter / median diameter ratio (B / M) was less than 0.2 (0.1) 2 shaped bodies were obtained.
[Comparative Example 3]

実施例1〜7と比較してメジアン径の頻度が10[%]以上であり、かつ、最小粒子径/メジアン径比(B/M)が0.2以上である点で一致する一方、最大粒子径/メジアン径比(A/M)が11.0を超えている(12.0)点で異なる粒子径分布を有するスラリーが用いられたほかは、実施例1〜7と同一条件下で比較例3の成形体が得られた。
〔比較例4〕
Compared with Examples 1-7, the frequency of the median diameter is 10 [%] or more, and the minimum particle diameter / median diameter ratio (B / M) is 0.2 or more. Under the same conditions as in Examples 1-7, except that a slurry having a different particle size distribution was used in that the particle size / median size ratio (A / M) exceeded 11.0 (12.0). The molded body of Comparative Example 3 was obtained.
[Comparative Example 4]

真空吸引圧力が−90[kPa]より弱い(−70[kPa])ほかは、メジアン径の頻度が10[%]であり、最小粒子径/メジアン径比(B/M)が0.2以上であり、かつ、最大粒子径/メジアン径比(A/M)が11.0以下である粒子径分布を有するスラリーが用いられた点を含めて実施例1〜7と同一条件下で比較例4の成形体が得られた。
〔比較例5〕
Besides the vacuum suction pressure is weaker than -90 [kPa] (-70 [kPa]), the frequency of the median diameter is 10 [%], and the minimum particle diameter / median diameter ratio (B / M) is 0.2 or more. And a comparative example under the same conditions as in Examples 1 to 7 including that a slurry having a particle size distribution with a maximum particle size / median size ratio (A / M) of 11.0 or less was used. 4 shaped bodies were obtained.
[Comparative Example 5]

実施例1〜7と比較してメジアン径の頻度が10[%]以上である点で一致する一方、最小粒子径/メジアン径比(B/M)が0.2未満(0.1)であり、かつ、最大粒子径/メジアン径比(A/M)が11.0を超えている(21.0)である点で異なる粒子径分布を有するスラリーが用いられたほかは、実施例1〜7と同一条件下で比較例5の成形体および焼結体が得られた。
〔比較例6〕
Compared with Examples 1-7, while the frequency of the median diameter is equal to or more than 10%, the minimum particle diameter / median diameter ratio (B / M) is less than 0.2 (0.1). Example 1 except that a slurry having a different particle size distribution was used in that the maximum particle size / median size ratio (A / M) exceeded 11.0 (21.0). The molded object and the sintered compact of the comparative example 5 were obtained on the same conditions as -7.
[Comparative Example 6]

実施例1〜7と比較して最小粒子径/メジアン径比(B/M)が0.2以上(0.3)である点で一致する一方、メジアン径の頻度が10[%]未満(7[%])であり、かつ、最大粒子径/メジアン径比(A/M)が11.0を超えている(16.0)である点で異なる粒子径分布を有するスラリーが用いられたことに加え、真空吸引圧力が−90[kPa]より弱い(−89[kPa])ほかは、実施例1〜7と同一条件下で比較例6の成形体が得られた。
〔比較例7〕
Compared with Examples 1-7, while the minimum particle diameter / median diameter ratio (B / M) agrees with 0.2 or more (0.3), the frequency of the median diameter is less than 10% ( 7 [%]), and slurry having different particle size distribution was used in that the maximum particle size / median size ratio (A / M) exceeded 11.0 (16.0). In addition, the molded article of Comparative Example 6 was obtained under the same conditions as in Examples 1 to 7, except that the vacuum suction pressure was weaker than −90 [kPa] (−89 [kPa]).
[Comparative Example 7]

実施例1〜7と比較して最大粒子径/メジアン径比(A/M)が11.0以下である点で一致する一方、メジアン径の頻度が10[%]未満(8[%])であり、かつ、最小粒子径/メジアン径比(B/M)が0.2未満(0.1)である点で異なる粒子径分布を有するスラリーが用いられたほかは、実施例1〜7と同一条件下で比較例7の成形体および焼結体が得られた。   Compared with Examples 1 to 7, the maximum particle diameter / median diameter ratio (A / M) coincides with that of 11.0 or less, while the frequency of the median diameter is less than 10% (8 [%]). And the slurry having different particle size distribution was used in that the minimum particle size / median size ratio (B / M) was less than 0.2 (0.1). A molded body and a sintered body of Comparative Example 7 were obtained under the same conditions.

表2には、比較例1〜7のそれぞれの成形体の作成条件と、成形体および焼結体のそれぞれの相対密度の測定結果および外観の観察結果が示されている。   Table 2 shows the conditions for forming the molded bodies of Comparative Examples 1 to 7, the measurement results of the relative densities of the molded bodies and the sintered bodies, and the observation results of the appearance.

表2から明らかなように、比較例1、5および7の成形体にクラックは観察されなかったものの、比較例1、5および7の焼結体は部分的に緻密化が不十分であり、かつ、クラックが観察された。比較例2〜4、6の成形体において上下に生密度の差異が生じ、かつ、クラックが観察された。   As is apparent from Table 2, cracks were not observed in the molded bodies of Comparative Examples 1, 5, and 7, but the sintered bodies of Comparative Examples 1, 5, and 7 were partially insufficiently densified, And cracks were observed. In the molded bodies of Comparative Examples 2 to 4 and 6, a difference in green density occurred in the upper and lower directions, and cracks were observed.

本発明の方法によれば、原料であるセラミックス粉末を分散させたスラリーが成形型に注入され、スラリーの対流および流動が収束した後、有底筒状の枠の側部の外側に形成されている気密空間が高真空度(−90[kPa]と同じまたは強い吸引圧力)で真空吸引される。吸引口12により形成される気密空間は内枠(枠)20の側部21の外側表面に沿った複数の方向(周方向および軸方向)のそれぞれについて均等に配置されているため、セラミックス粉末の着肉層が側部21の表面の各法線方向について均等に形成される。   According to the method of the present invention, a slurry in which ceramic powder as a raw material is dispersed is injected into a mold, and after the convection and flow of the slurry converge, the slurry is formed outside the side portion of the bottomed cylindrical frame. The airtight space is vacuum-sucked at a high degree of vacuum (the same or strong suction pressure as −90 [kPa]). The airtight space formed by the suction port 12 is evenly arranged in each of a plurality of directions (circumferential direction and axial direction) along the outer surface of the side portion 21 of the inner frame (frame) 20. The inking layer is uniformly formed in each normal direction of the surface of the side portion 21.

セラミックス粉末の着肉層の形成に際し、スラリーに対して圧力が掛けられるわけではなく、内枠20の側部21に作用する吸引圧力および当該内枠21を構成する石膏等の吸水性材料の毛管吸引力の作用によってスラリー中の水分が除去される。このため、内枠20の側部21近傍における原料粉末の着肉層が当該側部21から離れることなく、成形体Pが形成されうる(図2(b)参照)。また、中子30の少なくとも表面は非吸水材料であることから、当該中子30から外側に向かう方向からのみ吸水が進行するため、成形体Pにウェルドラインが生じることはない。また、成形体Pが乾燥収縮しても柔軟性を有した中子30が用いられているため、成形体Pがこの中子30を抱きかかえても成形体Pにクラックが発生しない。   When the ceramic powder layer is formed, pressure is not applied to the slurry, but the suction pressure acting on the side portion 21 of the inner frame 20 and the capillaries of the water-absorbing material such as gypsum constituting the inner frame 21. Water in the slurry is removed by the action of the suction force. For this reason, the molded object P can be formed, without the flaking layer of the raw material powder in the side part 21 vicinity of the inner frame 20 leaving | separating from the said side part 21 (refer FIG.2 (b)). Further, since at least the surface of the core 30 is made of a non-water-absorbing material, water absorption proceeds only from the direction toward the outside from the core 30, so that no weld line is generated in the molded body P. Further, since the core 30 having flexibility is used even when the molded body P is dried and contracted, the molded body P is not cracked even when the molded body P holds the core 30.

さらに、原料であるセラミックス粉末の着肉方向が側部表面の法線方向、すなわち、水平方向であって、鉛直方向に対して垂直である。このため、沈降作用の影響が軽減されるようにセラミックス粉末の粒度分布が調節されていることにより、成形体の高さ方向または上下方向について生密度差またはムラが生じず、変形または歪みおよびクラックがない高品質の成形体および焼結体が得られる。   Furthermore, the thickness direction of the ceramic powder as the raw material is the normal direction of the side surface, that is, the horizontal direction and is perpendicular to the vertical direction. For this reason, by adjusting the particle size distribution of the ceramic powder so as to reduce the influence of the sedimentation effect, there is no difference in density or unevenness in the height direction or the vertical direction of the molded body, and deformation, distortion and cracks are not caused. A high-quality molded body and sintered body without the above can be obtained.

従来の固形鋳込み等に比べて大きさの制約が少なく、小型から大型まで適用可能で、たとえば、一辺が400[mm]以上または直径300[mm]以上で、肉厚が40[mm]以上の大型肉厚形状の成形体およびセラミックス製品が作成されうる。   Compared to conventional solid casting and the like, there is less size restriction and it can be applied from small to large. For example, one side is 400 [mm] or more or a diameter is 300 [mm] or more, and the wall thickness is 40 [mm] or more. Large-walled shaped compacts and ceramic products can be created.

10‥外枠、12‥吸引口、20‥内枠、21‥側部、22‥底部、30‥中子、P‥成形体。 DESCRIPTION OF SYMBOLS 10 ... Outer frame, 12 ... Suction port, 20 ... Inner frame, 21 ... Side part, 22 ... Bottom part, 30 ... Core, P ... Molded object.

Claims (2)

中空状のセラミックス製品を製造する方法であって、
多孔質の吸水性材料からなる筒状の側部および非吸水性材料からなる底部を有する有底筒状の枠と、前記枠の内側に設けられる、少なくとも表面層が非吸水性材料からなる中子とを備えている成形型を、前記筒の軸方向を鉛直方向に合わせて設置する工程と、
セラミックス粉末の粒子径分布が単一のピークを有し、全粒子のうちメジアン径(M)を有する粒子の頻度が10[%]以上であり、メジアン径(M)が0.5[μm]であり、メジアン径(M)に対する最小粒子径(B)の比(B/M)が0.2以上であり、かつ、メジアン径(M)に対する最大粒子径(A)の比(A/M)が11.0以下になるように原料を調整する工程と、
粒子径分布が調節された前記セラミックス粉末が分散されたスラリーを調整する工程と、
前記成形型に対して前記スラリーを注入する工程と、
前記成形型における前記スラリーの流動が収まった後、前記枠の側部の外側表面に沿った複数の方向のそれぞれについて均等に配置され、前記枠の側部の外側表面に対して気密に形成されている空間を−90[kPa]と同じまたはこれより強い圧力で真空吸引することにより、前記スラリー中の水分を前記吸水性材料に吸収させるとともに、前記セラミックス粉末を前記成形型に着肉させ、セラミックス成形体を形成する工程と、
前記セラミックス成形体を乾燥させた後、焼成する工程とを含んでいることを特徴とする方法。
A method for producing a hollow ceramic product, comprising:
A bottomed cylindrical frame having a cylindrical side portion made of a porous water-absorbing material and a bottom portion made of a non-water-absorbing material, and at least a surface layer provided inside the frame is made of a non-water-absorbing material A step of installing a molding die provided with a child so that the axial direction of the cylinder is aligned with the vertical direction;
The particle size distribution of the ceramic powder has a single peak, the frequency of particles having a median diameter (M) of all the particles is 10% or more, and the median diameter (M) is 0.5 [μm]. , and the and the ratio of the minimum particle diameter to the median diameter (M) (B) (B / M) of 0.2 or more, and the ratio of the maximum particle diameter (a) with respect to a median diameter (M) (a / M ) Adjusting the raw material so that it becomes 11.0 or less,
Adjusting the slurry in which the ceramic powder having a controlled particle size distribution is dispersed;
Injecting the slurry into the mold;
After the flow of the slurry in the mold is settled, the slurry is evenly arranged in each of a plurality of directions along the outer surface of the side portion of the frame, and is hermetically formed with respect to the outer surface of the side portion of the frame. By vacuuming the space being at a pressure equal to or higher than −90 [kPa] to cause the water-absorbing material to absorb moisture in the slurry and to allow the ceramic powder to fill the mold. Forming a ceramic molded body;
And drying the ceramic molded body, followed by firing.
筒状または有底筒状の外枠と、多孔質の吸水性材料からなる筒状の側部および非吸水性材料からなる底部を有する内枠と、前記内枠の内側に設けられる、少なくとも表面層が非吸水性材料からなる中子とを備え、
前記内枠の側部の外側表面に沿った複数の方向のそれぞれについて均等に配置され、真空吸引装置に対して気密に接続されることにより前記内枠の側部の外側表面に対して気密に形成されている空間を形成する吸引経路が、前記外枠において前記内枠の側部に当接する箇所に形成されていることを特徴とする成形型。
A cylindrical or bottomed cylindrical outer frame, an inner frame having a cylindrical side part made of a porous water-absorbing material and a bottom part made of a non-water-absorbing material, and at least a surface provided inside the inner frame The layer comprises a core made of a non-water-absorbing material,
Evenly arranged in each of a plurality of directions along the outer surface of the side portion of the inner frame, and hermetically connected to the outer surface of the side portion of the inner frame by being hermetically connected to the vacuum suction device. A molding die characterized in that a suction path that forms a formed space is formed at a location in the outer frame that abuts against a side of the inner frame.
JP2011038558A 2011-02-24 2011-02-24 Manufacturing method of ceramic product and molding die used therefor Active JP5740638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038558A JP5740638B2 (en) 2011-02-24 2011-02-24 Manufacturing method of ceramic product and molding die used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038558A JP5740638B2 (en) 2011-02-24 2011-02-24 Manufacturing method of ceramic product and molding die used therefor

Publications (2)

Publication Number Publication Date
JP2012171333A JP2012171333A (en) 2012-09-10
JP5740638B2 true JP5740638B2 (en) 2015-06-24

Family

ID=46974654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038558A Active JP5740638B2 (en) 2011-02-24 2011-02-24 Manufacturing method of ceramic product and molding die used therefor

Country Status (1)

Country Link
JP (1) JP5740638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107538598A (en) * 2017-09-07 2018-01-05 韶关市欧莱高新材料有限公司 A kind of tubular target injection forming mould

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517455B2 (en) * 1972-07-25 1976-03-08
JPH0210906U (en) * 1988-07-06 1990-01-24
JPH04257401A (en) * 1991-02-12 1992-09-11 Riken Corp Slip casting method and mold
JP2534716Y2 (en) * 1991-09-06 1997-05-07 古河電気工業株式会社 Mold for manufacturing quartz glass rods
JP3382680B2 (en) * 1993-10-05 2003-03-04 住友化学工業株式会社 Alumina for slip cast molding, alumina composition, alumina molded body and alumina sintered body
JP2000159580A (en) * 1998-11-20 2000-06-13 Araco Corp Production of ceramic porous material, and device for producing ceramic porous material
JP2002234010A (en) * 2001-02-08 2002-08-20 Noritake Co Ltd Method for manufacturing ceramic molded article and molding apparatus using the same
JP2002274934A (en) * 2001-03-22 2002-09-25 Sumitomo Metal Mining Co Ltd Method of making large-sized ito molding

Also Published As

Publication number Publication date
JP2012171333A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
KR20140069146A (en) Ceramic cylindrical sputtering target and method for producing same
US9321188B2 (en) Method for manufacturing of ceramic electro-insulating pipes
JP5740638B2 (en) Manufacturing method of ceramic product and molding die used therefor
CN102574295B (en) Honeycomb structure and method for manufacturing same
KR101661114B1 (en) A manufacturing method of high toughness-Yttria with addition of Alumina and zirconia
CN106116536B (en) A kind of ceramic cover plate preparation process
JP2007205696A (en) Baking setter
JP4963217B2 (en) Ceramic molding method
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
KR101410420B1 (en) The ceramic slip casting equipment of step pressure-vacuum hybrid type
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JP2004174861A (en) Bottomed ceramic tube molding die and its manufacturing method
JP6058334B2 (en) Ceramic sintered body and method for producing the same
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4790450B2 (en) Molding method for large thick ceramic molded body
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2009179517A (en) Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same
CN104851772A (en) Liftable ceramic baffle plate structure
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2007055055A (en) Mold, plate-shaped sintered body, method for producing the sintered body, sputtering target, and method for producing sputtering target
CN104191497A (en) Automatic forming vacuum exhausting device
JP2008080683A (en) Molding process of ceramics, and ceramic member using it
JP5778906B2 (en) Ceramic product manufacturing method and ceramic molding mold
JP5791394B2 (en) Method for manufacturing ceramic molded body and method for manufacturing sintered body
JP4831779B2 (en) Inorganic substance powder molded body manufacturing method, inorganic substance powder sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5740638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250