JP2009179517A - Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same - Google Patents

Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same Download PDF

Info

Publication number
JP2009179517A
JP2009179517A JP2008019768A JP2008019768A JP2009179517A JP 2009179517 A JP2009179517 A JP 2009179517A JP 2008019768 A JP2008019768 A JP 2008019768A JP 2008019768 A JP2008019768 A JP 2008019768A JP 2009179517 A JP2009179517 A JP 2009179517A
Authority
JP
Japan
Prior art keywords
ceramic
gas
sintering
dispersion plate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008019768A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ichikawa
佳孝 市川
Katsuyuki Hirano
勝之 平野
Masahito Iguchi
真仁 井口
Tomoyuki Ogura
知之 小倉
Noboru Miyata
昇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2008019768A priority Critical patent/JP2009179517A/en
Publication of JP2009179517A publication Critical patent/JP2009179517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic joined body providing stable flow rate when used as a gas jetting port of a gas distribution plate, and to provide the gas distribution plate using the same and a method of manufacturing the gas distribution plate with high yield. <P>SOLUTION: The ceramic joined body for the gas jetting port is obtained by directly joining a porous ceramic obtained by pressure sintering and having a necking structure of a ceramic coarse granule to a circular dense ceramic without interposing a joining layer. The pressure sintering is discharge plasma sintering. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガス噴出口用セラミックス接合体及びガス分散板並びにそれらの製造方法に関する。 The present invention relates to a ceramic bonded body for a gas outlet, a gas dispersion plate, and a manufacturing method thereof.

従来、ガス分散板には多孔質セラミックスと緻密質セラミックスとを接合した接合体が用いられている。このような接合体の例として、特許文献1には、多孔質セラミックスの外周をほぼ囲繞する内周を有する中空セラミックス仮焼体を嵌合し、これを仮焼温度より高い温度で焼成して得られる接合体が開示されている。また、特許文献2には、緻密質部分がセラミック微粒の焼結によって形成されており、多孔質部分がセラミック粗粒の焼結によって形成されており、セラミック微粒とセラミック粗粒とが一体で加圧焼結されているセラミックス接合体が開示されている。
特開2003-238267号公報 特開2002-338334号公報
Conventionally, a joined body obtained by joining porous ceramics and dense ceramics is used for the gas dispersion plate. As an example of such a joined body, Patent Document 1 is fitted with a hollow ceramic calcined body having an inner circumference that substantially surrounds the outer circumference of the porous ceramic, and is fired at a temperature higher than the calcining temperature. The resulting bonded body is disclosed. In Patent Document 2, the dense portion is formed by sintering ceramic fine particles, and the porous portion is formed by sintering ceramic coarse particles, and the ceramic fine particles and ceramic coarse particles are added together. A pressure-sintered ceramic joined body is disclosed.
JP 2003-238267 A JP 2002-338334 A

特許文献1のように攪拌起泡により多孔質セラミックスを形成する方法では、外部と連通しない独立気泡が大部分であるため、通気性を要するガス分散板には不適であった。また、特許文献2のような加圧焼結により緻密質部分と多孔質部分とを一体化する方法では、加圧条件によって多孔質部分の外径が変化する問題や、多孔質部分を介して加圧された緻密質部分が均一に緻密化せず、それに伴って多孔質部分も変形する問題があった。このような問題があると多孔質部分が不均質になるし、寸法精度も悪くなるため均一にガスを分散することができず実用は難しかった。 In the method of forming porous ceramics by stirring and foaming as in Patent Document 1, most of the closed cells that do not communicate with the outside are unsuitable for a gas dispersion plate that requires air permeability. Further, in the method of integrating the dense portion and the porous portion by pressure sintering as in Patent Document 2, the problem that the outer diameter of the porous portion changes depending on the pressing condition, There is a problem that the pressed dense portion is not uniformly densified, and the porous portion is deformed accordingly. If there is such a problem, the porous portion becomes inhomogeneous and the dimensional accuracy also deteriorates, so that the gas cannot be uniformly dispersed and practical use is difficult.

特許文献1にも示されているように、多孔質セラミックスと緻密質セラミックスとを接合する場合、セラミックスの焼成収縮率を調整して、接合後の形状が一致するようにする方法が行われるが、収縮後の形状を一致させるだけでなく、収縮時期も一致させる必要があるため完全に一体化させることは非常に困難であった。収縮時期が異なると、緻密質セラミックスまたは多孔質セラミックスに割れが生じたり、傾いて接合されて接合部に隙間が生じたりする問題があった。 As shown in Patent Document 1, when porous ceramics and dense ceramics are joined, a method is employed in which the firing shrinkage rate of the ceramics is adjusted so that the shapes after joining coincide with each other. Since it is necessary not only to match the shape after shrinkage but also to match the shrinkage time, it is very difficult to completely integrate them. When the contraction time is different, there is a problem that the dense ceramic or the porous ceramic is cracked or inclined and joined to form a gap at the joint.

また、多数のガス噴出口を持つガス分散板では、個々のガス噴出口のガス流量を同等にしなければ均等にガスを分散することができない。そのため、それぞれのガス噴出口に嵌め込んだ多孔質セラミックスの気孔径及び気孔率、並びに隙間の有無などの接合状態を同等にする必要があり、これを達成することが非常に困難であった。特に、多孔質セラミックスの気孔径や気孔率について均一に作成することは可能であっても、ガス噴出口に嵌め込んだときの接合状態を同等にすることは難しく、ガス流量にばらつきが生じる問題があった。また、個々のガス分散板のガス流量にもばらつきがあるため、それぞれのガス分散板についてガスの圧力調整を行わなければならず、作業が煩雑になるという問題があった。 Further, in a gas dispersion plate having a large number of gas outlets, the gas cannot be evenly distributed unless the gas flow rates of the individual gas outlets are equal. For this reason, it is necessary to make the bonding state such as the pore diameter and the porosity of the porous ceramics fitted in each gas ejection port, and the presence or absence of gaps, and it is very difficult to achieve this. In particular, even if it is possible to make the pore diameter and porosity of porous ceramics uniformly, it is difficult to equalize the joining state when fitted into the gas outlet, resulting in variations in gas flow rate was there. Further, since the gas flow rate of each gas dispersion plate also varies, there is a problem that the gas pressure must be adjusted for each gas dispersion plate, and the operation becomes complicated.

さらに、一部のガス噴出口に隙間等が生じて流量のばらつきが大きくなると、ごく一部の隙間等によりガス分散板としての性能が発揮されなくなる。したがって、ガス分散板の歩留まりが悪くコスト高になる問題もあった。 Furthermore, when gaps or the like are generated in some gas ejection ports and the variation in flow rate becomes large, the performance as a gas dispersion plate cannot be exhibited due to only a part of the gaps. Therefore, there is a problem that the yield of the gas dispersion plate is poor and the cost is high.

本発明はこれらの問題に鑑みて見出されたものであり、多孔質セラミックスと緻密質セラミックスとを隙間なく直接接合し、ガス分散板のガス噴出口として用いたときに安定した流量を得ることができるセラミックス接合体及びそれを用いたガス分散板を提供し、また、歩留まり良くガス分散板を製造できる方法を提供する。 The present invention has been found in view of these problems, and can obtain a stable flow rate when porous ceramics and dense ceramics are directly joined without gaps and used as a gas outlet of a gas dispersion plate. The present invention provides a ceramic joined body that can be manufactured and a gas dispersion plate using the same, and a method that can manufacture the gas dispersion plate with a high yield.

本発明は、上記課題を解決するために、加圧焼結により得られ、セラミックス粗粒のネッキング構造を有する多孔質セラミックスと、環状の緻密質セラミックスとが接合層を介さずに直接接合されたことを特徴とするガス噴出口用セラミックス接合体を提供する。 In order to solve the above-mentioned problems, the present invention provides a porous ceramic having a necking structure of coarse ceramic grains obtained by pressure sintering, and a ring-shaped dense ceramic directly bonded without a bonding layer. A ceramic joined body for a gas outlet is provided.

本発明の多孔質セラミックスは、加圧焼結のなかでも放電プラズマ焼結によるものが望ましい。放電プラズマ焼結であれば、粒子間の放電プラズマによる発熱により焼結が進むので均質な多孔質セラミックスを得ることができる。放電プラズマ焼結では、セラミックス粗粒間の結合を形成しようとする部分に放電プラズマが集中し、ネッキングが形成される。ネッキングは、セラミックス粗粒間の放電プラズマにより表面で局所的に発熱し溶融と気化が起こり進行する。したがって、通常の焼結よりも粒子表面の焼結が進行しているので、その後の環状の緻密質セラミックスとの接合や、ガス分散板の本体との接合の際の焼結収縮が抑制される。 The porous ceramic of the present invention is preferably one produced by spark plasma sintering among pressure sintering. In the case of the discharge plasma sintering, since the sintering proceeds by the heat generated by the discharge plasma between the particles, a homogeneous porous ceramic can be obtained. In the discharge plasma sintering, the discharge plasma concentrates on a portion where a bond between the ceramic coarse grains is to be formed, and necking is formed. Necking is locally generated by the discharge plasma between the ceramic coarse particles, and melts and vaporizes and proceeds. Therefore, since the sintering of the particle surface is proceeding more than normal sintering, sintering shrinkage during subsequent joining with the annular dense ceramics and joining with the main body of the gas dispersion plate is suppressed. .

本発明は、ガス噴出口用セラミックス接合体と、ガス分散板の本体とが接合層を介さずに直接接合されたガス分散板を提供する。ガス噴出口用セラミックス接合体の環状の緻密質セラミックスは、緻密質であるため、本体との接合時に焼結収縮を起こさない。したがって、傾きが生じたり、収縮時期のズレ等によって割れが生じたりすることもない。さらに、ガス噴出口用セラミックス接合体は、環状の緻密質セラミックスが接合されているため、接合前にガス流量の確認ができる。しかも、ガス分散板の本体への接合前後で気孔径、気孔率が変わらないので、接合前に確認したガス噴出口用セラミックス接合体のガス流量特性と同等特性を有するガス噴出口をガス分散板に形成できる。 The present invention provides a gas dispersion plate in which a ceramic bonded body for a gas ejection port and a main body of a gas dispersion plate are directly joined without using a joining layer. Since the annular dense ceramic of the ceramic bonded body for a gas outlet is dense, it does not cause sintering shrinkage when bonded to the main body. Therefore, there is no inclination or cracking due to a shift in contraction timing. Furthermore, since the ceramic dense body for gas jets is joined with an annular dense ceramic, the gas flow rate can be confirmed before joining. In addition, since the pore diameter and the porosity do not change before and after joining the gas dispersion plate to the main body, the gas dispersion plate having the same characteristics as the gas flow rate characteristics of the ceramic joined body for the gas orifice confirmed before joining is used. Can be formed.

さらに本発明は、セラミックス粗粒の成形体を加圧焼結し、多孔質セラミックスを得る第1焼結工程と、セラミックス微粒の環状成形体に前記多孔質セラミックスを嵌め込み、前記環状成形体を緻密化させるとともに、環状の緻密質セラミックスと前記多孔質セラミックスとを直接接合させる第2焼結工程とを含むガス噴出口用セラミックス接合体の製造方法を提供する。 Furthermore, the present invention provides a first sintering step of pressure-sintering a ceramic coarse-grained compact to obtain porous ceramics, and inserting the porous ceramic into a ring-shaped ceramic fine-molded compact, and the annular compacted compact And a method for manufacturing a ceramic bonded body for a gas outlet including a second sintering step of directly bonding an annular dense ceramic and the porous ceramic.

セラミックス粗粒の加圧焼結により得られる多孔質セラミックスと、セラミックス微粒の環状成形体とを組み合わせることにより接合層を介さずに隙間なく接合された接合体を得ることができる。また、先述のように、放電プラズマ焼結では、セラミックス粗粒間の結合を形成しようとする部分に放電プラズマが集中し、ネッキングが形成される。ネッキングは、セラミックス粗粒間の放電プラズマにより表面で局所的に発熱し溶融と気化が起こり進行する。したがって、通常の焼結よりも粒子表面の焼結が進行しているので、その後の緻密質セラミックスとの接合や、ガス分散板の本体との接合の際の焼結収縮が抑制される。 By combining porous ceramics obtained by pressure sintering of ceramic coarse particles and an annular molded body of ceramic fine particles, a joined body joined without a gap without a joining layer can be obtained. Further, as described above, in the discharge plasma sintering, the discharge plasma concentrates on a portion where a bond between ceramic coarse grains is to be formed, and necking is formed. Necking is locally generated by the discharge plasma between the ceramic coarse particles, and melts and vaporizes and proceeds. Therefore, since the sintering of the particle surface proceeds more than normal sintering, sintering shrinkage at the time of subsequent bonding with the dense ceramic and the bonding with the main body of the gas dispersion plate is suppressed.

環状成形体は、前記多孔質セラミックスを嵌め込まずに焼結させたときの内径が、前記多孔質セラミックスの外径よりも1〜7%小さく設計される。焼き締め率をこの範囲とすることで、隙間や割れなしに接合することができる。 The annular molded body is designed so that the inner diameter when sintered without fitting the porous ceramic is 1 to 7% smaller than the outer diameter of the porous ceramic. By setting the baking rate within this range, bonding can be performed without any gaps or cracks.

さらに、得られたガス噴出口用セラミックス接合体を、焼結後にガス分散板の本体となるセラミックス成形体に設けられた穴部に嵌め込む工程と、前記セラミックス成形体を緻密化させるとともに、ガス分散板の本体と前記ガス噴出口用セラミックス接合体とを直接接合させる第3焼結工程とを含むガス分散板の製造方法を提供する。また、本体となるセラミックス成形体の穴部は、前記ガス噴出口用セラミックス接合体を嵌め込まずに焼結させたときの内径が、前記ガス噴出口用セラミックス接合体の外径よりも1〜7%小さく設計される。 Furthermore, the step of fitting the obtained ceramic bonded body for gas outlet into a hole provided in the ceramic molded body that becomes the main body of the gas dispersion plate after sintering, densifying the ceramic molded body, and gas A method for producing a gas dispersion plate is provided, which includes a third sintering step in which a main body of the dispersion plate and the ceramic bonded body for a gas ejection port are directly joined. Moreover, the hole part of the ceramic molded body used as the main body has an inner diameter when sintered without fitting the ceramic joined body for gas ejection port, which is 1 to 7 than the outer diameter of the ceramic joined body for gas ejection port. Designed to be% smaller.

ここで、ガス分散板の本体とガス噴出口用セラミックス接合体とを接合する第3焼結工程の前に、ガス噴出用セラミックス接合体についてガス流量測定を行い所定の条件を満たしたものを用いることが望ましい。先述のように、ガス噴出口用セラミックス接合体は、環状の緻密質セラミックスが接合されているため、接合前にガス流量の確認ができる。しかも、ガス分散板の本体への接合前後で気孔径、気孔率が変わらないので、接合前に確認したガス噴出口用セラミックス接合体のガス流量特性と同等特性を有するガス噴出口をガス分散板に形成できる。したがって、ガス分散板の全体ガス流量を確実に調整でき、ガス分散の均一性も確保できる。さらに、ガス分散板の歩留まりを著しく高めることができる。 Here, before the third sintering step for joining the main body of the gas dispersion plate and the ceramic bonded body for the gas ejection port, a gas flow rate measurement is performed on the gas ejection ceramic bonded body and a predetermined condition is used. It is desirable. As described above, since the annular dense ceramics are joined to the gas spout ceramic joined body, the gas flow rate can be confirmed before joining. In addition, since the pore diameter and the porosity do not change before and after joining the gas dispersion plate to the main body, the gas dispersion plate having the same characteristics as the gas flow rate characteristics of the ceramic joined body for the gas orifice confirmed before joining is used. Can be formed. Therefore, the entire gas flow rate of the gas dispersion plate can be reliably adjusted, and the uniformity of gas dispersion can be secured. Furthermore, the yield of the gas dispersion plate can be significantly increased.

上述のように本発明によれば、安定した流量を得ることができるセラミックス接合体及びそれを用いたガス分散板を提供し、また、歩留まり良くガス分散板を製造できる方法を提供することができる。 As described above, according to the present invention, a ceramic joined body capable of obtaining a stable flow rate and a gas dispersion plate using the ceramic joined body can be provided, and a method capable of producing a gas dispersion plate with a high yield can be provided. .

以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はガス噴出口用セラミックス接合体10の概略断面図である。多孔質セラミックス11と環状の緻密質セラミックス12とは接合層を介さずに隙間なく接合されている。 FIG. 1 is a schematic sectional view of a ceramic bonded body 10 for a gas outlet. The porous ceramics 11 and the annular dense ceramics 12 are joined without a gap without a joining layer.

多孔質セラミックス11は、セラミックス粗粒の加圧焼結によるネッキング構造から構成される。ここで、セラミックス粗粒は、アルミナ、炭化珪素、窒化珪素、窒化アルミニウム、ジルコニア等、種々のセラミックスを用いることができる。その平均粒径(レーザー回折式粒度分布測定によるD50。セラミックス原料粒径について以下同じ)は10〜50μmのものが好ましい。このような原料を用いることにより、多孔質セラミックスの気孔率、気孔径を調整でき、本発明に好適な多孔質セラミックスを得ることができる。 The porous ceramic 11 is composed of a necking structure by pressure sintering of ceramic coarse particles. Here, various ceramics such as alumina, silicon carbide, silicon nitride, aluminum nitride, and zirconia can be used as the ceramic coarse particles. The average particle diameter (D50 by laser diffraction particle size distribution measurement. The same applies to the ceramic raw material particle diameter) is preferably 10 to 50 μm. By using such a raw material, the porosity and pore diameter of the porous ceramic can be adjusted, and a porous ceramic suitable for the present invention can be obtained.

本発明の多孔質セラミックスの焼結後の平均粒径(光学顕微鏡粒径観察インターセプト法による測定値。焼結後の粒径について以下同じ)は、原料のセラミックス粗粒の平均粒径と同等である。これは、放電プラズマ焼結を行っているため、粒子表面のネッキングによる焼結のみが進み、粒成長はほとんど起きないからである。また、多孔質セラミックスの平均気孔径(水銀圧入法)は、2〜25μm、気孔率は10〜50%とすることが望ましい。上記範囲で調整することにより、ガス分散板に好適となる。 The average particle size after sintering of the porous ceramic of the present invention (measured by the optical microscope particle size observation intercept method; the same applies to the particle size after sintering) is equal to the average particle size of the raw ceramic coarse particles. is there. This is because since discharge plasma sintering is performed, only sintering by necking of the particle surface proceeds, and grain growth hardly occurs. The average pore diameter (mercury intrusion method) of the porous ceramic is preferably 2 to 25 μm and the porosity is preferably 10 to 50%. By adjusting within the above range, it is suitable for the gas dispersion plate.

環状の緻密質セラミックス12は、セラミックス微粒の焼結体である。セラミックス微粒としては、アルミナ、炭化珪素、窒化珪素、窒化アルミニウム、ジルコニア等、種々のセラミックスを用いることができる。ただし、多孔質セラミックスに用いたセラミックスと同種の材料が熱膨張マッチングの点で望ましい。セラミックス微粒の平均粒径は、0.1〜1μmのものが好ましい。セラミックス微粒を用いるのは、緻密質セラミックスを得るにはセラミックス粗粒よりも焼結性の高い粉末を用いる必要があるためである。なお、環状の緻密質セラミックスの気孔率は、0.1%以下とすることにより、多孔質セラミックスを環状に囲んだ部分からのガス漏れを抑えることができる。 The annular dense ceramic 12 is a sintered body of ceramic fine particles. As ceramic fine particles, various ceramics such as alumina, silicon carbide, silicon nitride, aluminum nitride, and zirconia can be used. However, the same kind of material as the ceramic used for the porous ceramic is desirable in terms of thermal expansion matching. The average particle size of the ceramic fine particles is preferably 0.1 to 1 μm. The ceramic fine particles are used because it is necessary to use a powder having higher sinterability than the ceramic coarse particles in order to obtain dense ceramics. It should be noted that by setting the porosity of the annular dense ceramic to 0.1% or less, gas leakage from the portion surrounding the porous ceramic in an annular shape can be suppressed.

環状の緻密質セラミックスの肉厚(外半径と内半径の差)は、0.5〜3mmが好ましい。これは、肉厚が0.5mmよりも小さいと加工や取扱時に割れが生じる場合があり、3mmよりも大きいと原料コストや加工コストがかかったり、簡便さが低減したりしてメリットが無いためである。 The thickness (difference between the outer radius and the inner radius) of the annular dense ceramic is preferably 0.5 to 3 mm. This is because if the wall thickness is less than 0.5 mm, cracks may occur during processing and handling, and if it is more than 3 mm, there is no merit in that raw material costs and processing costs are increased or simplicity is reduced. It is.

図2は、本発明のガス分散板20の概略断面図である。先に述べた多孔質セラミックス21と環状の緻密質セラミックス22からなるガス噴出口用セラミックス接合体がガス分散板の本体23に嵌め込まれており、ガス噴出口である多孔質セラミックスはガス穴24に通じている。 FIG. 2 is a schematic sectional view of the gas dispersion plate 20 of the present invention. The ceramic bonded body for the gas ejection port composed of the porous ceramic 21 and the annular dense ceramic 22 described above is fitted into the main body 23 of the gas dispersion plate, and the porous ceramic as the gas ejection port is inserted into the gas hole 24. Communicates.

ガス分散板の本体23は、緻密質セラミックスからなる。セラミックス材料としては、アルミナ、炭化珪素、窒化珪素、窒化アルミニウム、ジルコニア等、種々のセラミックスを用いることができる。ただし、ガス噴出口に用いたセラミックスと同種の材料が熱膨張マッチングの点で望ましく、環状の緻密質セラミックスに用いたものと同等か、それよりも、焼結し易いものを用いることが好ましい。これは、ガス噴出口用セラミックス接合体と本体との接合(第3焼結工程)の際に、本体は焼結収縮するが、接合体は収縮しないようにするためである。したがって、セラミックス粉末としては、少なくとも環状緻密質セラミックスと同等の焼結性を有するものを用いることが望ましい。 The main body 23 of the gas dispersion plate is made of dense ceramics. As the ceramic material, various ceramics such as alumina, silicon carbide, silicon nitride, aluminum nitride, zirconia, and the like can be used. However, the same type of material as the ceramic used for the gas outlet is desirable in terms of thermal expansion matching, and it is preferable to use a material that is equivalent to or easier to sinter than that used for the annular dense ceramic. This is because the main body sinters and shrinks when the ceramic bonded body for gas jets and the main body are joined (third sintering step), but the joined body does not shrink. Therefore, it is desirable to use a ceramic powder having a sinterability at least equivalent to that of the annular dense ceramic.

図2は一つのガス噴出口のみの概略図であるが、実際は複数のガス噴出口が設けられている。その配置は、放射状、同心円状等、種々採用可能であり、その数も特に限定されない。本発明では、多数のガス噴出口のあるガス分散板であっても、ガス噴出口用セラミックス接合体のガス流量が均一であり、接合後のガス流量にも変化がないので、作成が容易であり、歩留まり良く製造することができる。 FIG. 2 is a schematic view of only one gas outlet, but actually a plurality of gas outlets are provided. Various arrangements such as radial and concentric circles can be employed, and the number is not particularly limited. In the present invention, even in the case of a gas dispersion plate having a large number of gas ejection ports, the gas flow rate of the ceramic bonded body for gas ejection ports is uniform, and the gas flow rate after bonding does not change, so that the production is easy. Yes, it can be manufactured with good yield.

次に本発明のガス噴出口用セラミックス接合体及びガス分散板の製造方法について説明する。 Next, the manufacturing method of the ceramic joined body for gas jets of this invention and a gas dispersion plate is demonstrated.

多孔質セラミックスは、平均粒径10〜50μmのセラミックス粗粒の加圧焼結(第1焼結工程)により得られる。セラミックス粗粒の粒径分布は、ばらつきの少ないシャープなものが望ましい。これは、多孔質セラミックス内部の均質性、およびガス噴出口間のガス流量のばらつきを少なくするためである。 The porous ceramic is obtained by pressure sintering (first sintering step) of ceramic coarse particles having an average particle size of 10 to 50 μm. The particle size distribution of the ceramic coarse particles is preferably sharp with little variation. This is to reduce the uniformity in the porous ceramic and the variation in the gas flow rate between the gas outlets.

成形は、カーボン冶具に粉末を充填しプレスすることにより行う。粉末の充填は、プレスが偏らないように均一に充填する。カーボン冶具は所定の気孔率の多孔質セラミックスが得られるように、スペーサを入れて調整する。 Molding is performed by filling a carbon jig with powder and pressing it. The powder is uniformly filled so that the press is not biased. The carbon jig is adjusted by inserting a spacer so that porous ceramics having a predetermined porosity can be obtained.

次にセラミックス粗粒を加圧焼結する。加圧焼結方法としては、ホットプレスが好適であるが、なかでも放電プラズマ焼結が最も好適である。放電プラズマ焼結は、加圧しながらカーボン冶具を介してパルス通電して粒子間にプラズマを発生させ、粒子間にネッキングを形成させることができる。したがって、通常の焼結よりも粒子表面の焼結が進行しており、その後の緻密質セラミックスとの接合や、ガス分散板本体との接合の際に多孔質セラミックスが焼結収縮を起こし難いので隙間無く密着した接合体を得ることができる。また、必要に応じて多孔質セラミックスに加工を施して形状を整えた後、環状の緻密質セラミックスと接合すると良い。 Next, the ceramic coarse particles are subjected to pressure sintering. As the pressure sintering method, hot pressing is preferable, and among these, discharge plasma sintering is most preferable. In the discharge plasma sintering, a pulse current is passed through a carbon jig while applying pressure to generate plasma between particles, and necking can be formed between particles. Therefore, the sintering of the particle surface has progressed more than normal sintering, and porous ceramics are less likely to cause shrinkage during subsequent bonding with dense ceramics or with the gas dispersion plate body. It is possible to obtain a bonded body closely adhered without a gap. Moreover, after processing a porous ceramic as needed and adjusting a shape, it is good to join with a cyclic | annular dense ceramic.

環状の緻密質セラミックスの原料としては、セラミックス微粒を用いることができ、成形方法は、CIP等の一般的な方法を採用できる。ここで、本発明のガス噴出口用セラミックス接合体は、一つのガス分散板について多数個必要となるため、一度に大量に作製できることが好ましい。したがって、例えば、セラミックスの平板成形体に環状部分を島状に多数形成し、環状部分に多孔質セラミックスを嵌め込んで接合した後に平板の部分を切除して作製する方法が採用できる。 Ceramic fine particles can be used as the raw material for the annular dense ceramic, and a general method such as CIP can be adopted as the forming method. Here, since a large number of ceramic bonded bodies for gas ejection ports of the present invention are required for one gas dispersion plate, it is preferable that they can be produced in large quantities at a time. Therefore, for example, it is possible to employ a method in which a large number of annular portions are formed in an island shape on a flat plate molded body of ceramics, and porous ceramics are fitted into the annular portions and joined, and then the flat plate portions are cut off.

セラミックスの環状成形体(環状部分)は、多孔質セラミックスを嵌め込まずに焼結させたときの内径が、多孔質セラミックスの外径よりも1〜7%小さくなるように設計される。焼き締め率がこの範囲であれば、環状の緻密質セラミックスと多孔質セラミックスとの間に隙間ができず、また、割れが生じることなく作製することが可能である。 The annular molded body (annular portion) of the ceramic is designed such that the inner diameter when sintered without fitting the porous ceramic is 1 to 7% smaller than the outer diameter of the porous ceramic. If the baking rate is within this range, a gap is not formed between the annular dense ceramic and the porous ceramic, and it is possible to produce the ceramic without cracking.

第2焼結工程の焼結温度は、第1焼結工程と同等か、それよりも高温にすることができる。これは、第1焼結工程の放電プラズマ焼結は、粒子間に局所的に大きなエネルギーが生じて焼結が進行しているため、第2工程で焼結温度を高めても焼結収縮等の不都合は起きないからである。また、第1焼結工程は加圧焼結であるが、第2焼結工程は常圧焼結である。このように、第1焼結工程を加圧焼結とし、第2焼結工程を常圧焼結とすれば、割れ等の不具合なく容易に接合させることができる。 The sintering temperature in the second sintering step can be equal to or higher than that in the first sintering step. This is because the spark plasma sintering in the first sintering process generates large energy locally between the particles and the sintering proceeds, so even if the sintering temperature is increased in the second process, the sintering shrinkage, etc. This is because the inconvenience does not occur. The first sintering step is pressure sintering, while the second sintering step is atmospheric pressure sintering. In this way, if the first sintering step is pressure sintering and the second sintering step is atmospheric pressure sintering, it is possible to easily join without defects such as cracks.

ガス噴出口用セラミックス接合体を得た後、本体との接合前に、ガス流量を確認することができる。このとき、たとえ所望のガス流量が得られなかったものが生じても、接合前に取り除くことができるので、ガス分散板の歩留まりを著しく向上させることができる。セラミックス接合体のガス流量は、本体に接合した後のガス流量と同等であるので、ガス分散板全体としてのガス流量を調整でき、各ガス噴出口の流量ばらつきを確実に抑えることが可能となる。 The gas flow rate can be confirmed after the ceramic bonded body for the gas outlet is obtained and before the bonding with the main body. At this time, even if a desired gas flow rate cannot be obtained, it can be removed before joining, so that the yield of the gas dispersion plate can be significantly improved. Since the gas flow rate of the ceramic bonded body is equal to the gas flow rate after bonding to the main body, the gas flow rate of the gas dispersion plate as a whole can be adjusted, and the flow rate variation of each gas jet port can be reliably suppressed. .

図3は、焼結後にガス分散板の本体となるセラミックス成形体の穴部の概略断面図である。上述のようにして得られたガス噴出口用セラミックス接合体をセラミックス成形体33に設けられた穴部34aに嵌め込んで焼結することで、このセラミックス成形体の緻密化とともに、ガス分散板の本体とガス噴出口用セラミックス接合体とを直接接合させる。環状成形体の場合と同様に、本体となるセラミックス成形体33の穴部34aは、前記ガス噴出口用セラミックス接合体を嵌め込まずに焼結させたときの内径が、ガス噴出口用セラミックス接合体の外径よりも1〜7%小さくなるように設計される。焼き締め率がこの範囲であれば、ガス噴出口用セラミックス接合体とガス分散板の本体との間に隙間ができず、また、割れが生じることなく作製することが可能である。 FIG. 3 is a schematic cross-sectional view of the hole of the ceramic molded body that becomes the main body of the gas dispersion plate after sintering. By fitting the ceramic joined body for gas ejection port obtained as described above into a hole 34a provided in the ceramic molded body 33 and sintering, the ceramic molded body is densified and the gas dispersion plate The main body and the ceramic bonded body for the gas outlet are directly bonded. As in the case of the annular molded body, the hole 34a of the ceramic molded body 33 serving as the main body has an inner diameter when sintered without fitting the ceramic bonded body for the gas outlet, and the ceramic bonded body for the gas outlet. It is designed to be 1 to 7% smaller than the outer diameter. If the baking rate is within this range, a gap cannot be formed between the ceramic spout for gas ejection port and the main body of the gas dispersion plate, and it can be produced without causing cracks.

第3焼結工程の焼結温度は、第2焼結工程と同等か低温が望ましい。これは、第2焼結工程と第3焼結工程は、通常の常圧焼結であるため、第3焼結工程で高温まで加熱すると、環状の緻密質セラミックスが収縮するおそれがあるためである。 The sintering temperature in the third sintering step is preferably equal to or lower than that in the second sintering step. This is because the second sintering step and the third sintering step are normal atmospheric pressure sintering, and if heated to a high temperature in the third sintering step, the dense ring-shaped ceramics may shrink. is there.

以下、実施例を示して本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

はじめに、ガス噴出口用セラミックス接合体を作製した(表1試験No.1〜16)。表1でSPSと示した放電プラズマ焼結については、アルミナ粗粒(平均粒径20μm、純度99.5%)を内径φ100mmのカーボンダイスに詰め、60MPaで仮プレスし、昇温速度30℃/min、1550℃で30分、60MPaの圧力をかけて放電プラズマ焼結を行った。表1にHPと示したホットプレス焼結については、同様のアルミナ粗粒、カーボンダイスを用いて、0.1MPaで仮プレスし、昇温速度300℃/min、1625℃で180分、8MPaの圧力をかけてホットプレス焼結を行った。得られた多孔質セラミックスのアルキメデス法により測定した気孔率は21%、水銀圧入法により測定した気孔径は3μmであった。また、焼結後の平均粒径を光学顕微鏡観察しインターセプト法により測定したところ、原料粗粒の平均粒径と同等の20μmであった。得られた多孔質セラミックスの加工を行って表1に示した外径、厚さ5mmの円筒形状とした。 First, ceramic bonded bodies for gas jets were produced (Table 1 Test Nos. 1 to 16). For spark plasma sintering indicated as SPS in Table 1, coarse alumina particles (average particle size 20 μm, purity 99.5%) were packed in a carbon die having an inner diameter of φ100 mm, temporarily pressed at 60 MPa, and a temperature increase rate of 30 ° C. / Spark plasma sintering was performed by applying a pressure of 60 MPa for 30 minutes at 1550 ° C. for min. For hot press sintering indicated as HP in Table 1, using similar alumina coarse particles and carbon dies, temporary pressing was performed at 0.1 MPa, the heating rate was 300 ° C./min, 1625 ° C. for 180 minutes, and 8 MPa. Hot press sintering was performed under pressure. The porosity of the obtained porous ceramic measured by the Archimedes method was 21%, and the pore diameter measured by the mercury intrusion method was 3 μm. Moreover, when the average particle diameter after sintering was observed by an optical microscope and measured by the intercept method, it was 20 μm, which is equivalent to the average particle diameter of the raw material coarse particles. The obtained porous ceramic was processed into a cylindrical shape having an outer diameter and a thickness of 5 mm shown in Table 1.

次に環状成形体(平板成形体に環状部分を多数形成したもの)を作製した。アルミナ微粒(平均粒径1μm、純度99.5%)に成型用のバインダを加え、造粒、CIPしたのち生加工を行った。環状成形体(環状部分)の寸法は、焼結後の内径が多孔質セラミックスの外径よりも表1に示した所定の割合(焼き締め率(%))で小さくなるように設計した。環状部分の内側に多孔質セラミックスを入れ、昇温速度10℃/h、1600℃で3時間保持し、焼結を行った(第2焼結工程)。焼結後、平板部分等を加工により除去し、ガス噴出口用セラミックス接合体とした。接合体のうち、環状の緻密質セラミックスの気孔率は、いずれも0.1%以下であった。 Next, an annular molded body (a flat molded body formed with a large number of annular portions) was produced. A molding binder was added to alumina fine particles (average particle size 1 μm, purity 99.5%), granulated, and CIP, followed by raw processing. The dimensions of the annular molded body (annular portion) were designed such that the inner diameter after sintering was smaller than the outer diameter of the porous ceramic at a predetermined ratio (baking rate (%)) shown in Table 1. Porous ceramics was put inside the annular portion, and the temperature was increased at 10 ° C./h and held at 1600 ° C. for 3 hours to perform sintering (second sintering step). After the sintering, the flat plate portion and the like were removed by processing to obtain a ceramic bonded body for a gas outlet. Among the joined bodies, the porosity of the annular dense ceramics was 0.1% or less.

比較のため、成形用バインダを含むアルミナ顆粒を用いてCIP成形した後、常圧焼結して得られた多孔質セラミックスについても同様に接合体を作製した(作製No.16)。 For comparison, a joined body was similarly produced for porous ceramics obtained by CIP molding using alumina granules containing a molding binder and then pressureless sintering (Production No. 16).

このようにして得られた20個のガス噴出口用セラミックス接合体のガス流量を測定した。ガス流量の測定は、ガス噴出口用セラミックス接合体の多孔質セラミックスの一方の面に、吸気管の先に設けた多孔質セラミックスよりも大きな径の吸盤を密着させて、所定排気量の真空ポンプに接続して真空吸引したときに、多孔質セラミックスを流れるガス(大気)流量を測定し、そのばらつき(標準偏差/平均値×100(%))を算出した。結果を表1に示す。 The gas flow rates of the 20 ceramic bonded bodies for gas ejection ports thus obtained were measured. The gas flow rate is measured by placing a suction cup having a larger diameter than the porous ceramic provided at the tip of the intake pipe on one surface of the porous ceramic of the ceramic bonded body for the gas outlet, and a vacuum pump with a predetermined displacement The gas (atmosphere) flow rate flowing through the porous ceramics was measured when connected to and vacuum suctioned, and the variation (standard deviation / average value × 100 (%)) was calculated. The results are shown in Table 1.

Figure 2009179517
Figure 2009179517

本発明のガス噴出口用セラミックス接合体である作製No.1〜13のガス流量のばらつきは、5%よりも小さく、流量が安定していた。焼き締め率の設計値が本発明の範囲よりも小さい作製No.14では、接合部に隙間が生じたため、ガス流量のばらつきが大きかった。また、焼き締め率の設計値が本発明の範囲よりも大きい作製No.15では、環状の緻密質セラミックスに割れが生じたため、接合体を得ることができなかった。常圧焼結の多孔質セラミックスを用いた作製No.16では、第2焼結工程で焼結収縮し、一部に隙間が生じたためガス流量のばらつきが大きくなった。 Production No. 1 which is a ceramic joined body for a gas outlet of the present invention. The variation in the gas flow rate of 1 to 13 was smaller than 5%, and the flow rate was stable. Production No. with a design value of the baking rate smaller than the range of the present invention. In No. 14, since a gap was generated at the joint, the variation in gas flow rate was large. In addition, the production No. in which the design value of the baking rate is larger than the range of the present invention. In No. 15, since the annular dense ceramic was cracked, a joined body could not be obtained. Production No. 1 using porous ceramics sintered at atmospheric pressure In No. 16, since the sintering contracted in the second sintering step and a gap was generated in part, the variation in gas flow rate became large.

次に、ガス噴出口用セラミックス接合体をガス分散板の本体と接合した。本体となるセラミックス成形体は、アルミナ微粒(平均粒径1μm、純度99.5%)に成型用のバインダを加え、造粒、CIPしたのち生加工して作製した。本体となるセラミックス成形体の寸法は、ガス噴出口用セラミックス接合体がはめ込まれる穴部の焼結後の内径が環状の緻密質セラミックスの外径よりも表2に示した所定の割合(焼き締め率(%))で小さくなるように設計した。穴部にガス噴出口用セラミックス接合体を入れ、昇温速度10℃/h、1600℃で3時間保持して焼結を行った(第3焼結工程)。なお、環状の緻密質セラミックスを用いなかった作製No.41〜43(表2)については、穴部の内径が多孔質セラミックスの外径よりも所定割合で小さくなるように設計した。ガス分散板は円板状で外径200mmとし、ガス噴出口用セラミックスが嵌め込まれる穴部は放射状配置、20個とした。焼結後の本体の気孔率は、いずれも0.1%以下であった。ガス流量の試験は、各ガス噴出口に吸盤を密着させて、接合体の場合と同様に測定した。結果を表2に示す。 Next, the ceramic bonded body for gas jet nozzles was bonded to the main body of the gas dispersion plate. The ceramic molded body as the main body was prepared by adding a molding binder to alumina fine particles (average particle size 1 μm, purity 99.5%), granulating and CIP, and then raw processing. The size of the ceramic molded body as the main body is a predetermined ratio (baked and tightened) as shown in Table 2, in which the inner diameter after sintering of the hole portion into which the ceramic bonded body for gas outlets is fitted is larger than the outer diameter of the dense ceramic with annular shape. It was designed to be smaller at a rate (%). The ceramic bonded body for gas outlets was put in the hole, and sintering was performed by holding at a heating rate of 10 ° C./h and 1600 ° C. for 3 hours (third sintering step). In addition, production No. which did not use annular dense ceramics. About 41-43 (Table 2), it designed so that the internal diameter of a hole part might become smaller in a predetermined ratio than the outer diameter of porous ceramics. The gas dispersion plate was disc-shaped and had an outer diameter of 200 mm, and the holes into which the gas jet ceramics were fitted were arranged in a radial pattern, with 20 holes. The porosity of the sintered main body was 0.1% or less. The gas flow rate test was measured in the same manner as in the case of the joined body, with a suction cup in close contact with each gas outlet. The results are shown in Table 2.

Figure 2009179517
Figure 2009179517

本発明のガス分散板である作製No.21〜27、29〜32、及び34〜39のガス流量のばらつきは、接合体と同様に5%よりも小さく、流量が安定していた。また、各ガス噴出口のガス流量も接合体の流量とほぼ同等であった。一方、ガス分散板の本体の焼き締め率の設計値が本発明の範囲よりも小さい作製No.28では、接合部に隙間が生じたため、ガス流量のばらつきが大きかった。また、焼き締め率の設計値が本発明の範囲よりも大きい作製No.33では、環状の緻密質セラミックスに割れが生じたため、ガス分散板を得ることができなかった。常圧焼結の多孔質セラミックスを用いた作製No.40では、第3焼結工程でさらに焼結収縮し、一部に隙間が生じたためガス流量のばらつきが大きくなった。環状の緻密質セラミックスを用いなかった作製No.41〜43では、多孔質セラミックスと本体との間に隙間が生じたため、一部のガス穴からの流量が大きくなり、ばらつきが大きくなった。 Preparation No. which is a gas dispersion plate of the present invention. The variation in the gas flow rate of 21 to 27, 29 to 32, and 34 to 39 was smaller than 5% as in the joined body, and the flow rate was stable. Further, the gas flow rate at each gas outlet was almost the same as the flow rate of the joined body. On the other hand, the design value of the baking rate of the main body of the gas dispersion plate is smaller than the range of the present invention. In No. 28, a gap was generated in the joint portion, so that the variation in the gas flow rate was large. In addition, the production No. in which the design value of the baking rate is larger than the range of the present invention. In No. 33, since a crack was generated in the annular dense ceramic, a gas dispersion plate could not be obtained. Production No. 1 using porous ceramics sintered at atmospheric pressure In No. 40, since the sintering contracted further in the third sintering step and a gap was formed in part, the variation in gas flow rate became large. Production No. without using an annular dense ceramic In 41-43, since the clearance gap produced between porous ceramics and a main body, the flow volume from a part of gas hole became large, and the dispersion | variation became large.

なお、上記の作製例では、ガス分散板の各ガス噴出口について、均等に調整した例を示したが、本発明はこれに限るものではなく、各ガス噴出口について任意のガス流量とすることができ、所望の分散能を有するガス分散板を作製できることは言うまでも無い。 In the above production example, an example in which the gas outlets of the gas dispersion plate are evenly adjusted has been shown. However, the present invention is not limited to this, and the gas outlets may have an arbitrary gas flow rate. Needless to say, a gas dispersion plate having a desired dispersibility can be produced.

本発明のガス噴出口用セラミックス接合体の概略断面図である。It is a schematic sectional drawing of the ceramic joined body for gas jet nozzles of this invention. 本発明のガス分散板の概略断面図である。It is a schematic sectional drawing of the gas dispersion plate of this invention. セラミックス成形体の穴部の概略断面図である。It is a schematic sectional drawing of the hole of a ceramic molded body.

符号の説明Explanation of symbols

10:ガス噴出口用セラミックス接合体
11、21:多孔質セラミックス
12、22:環状の緻密質セラミックス
20:ガス分散板
23:本体
24:ガス穴
33:セラミックス成形体
34a:穴部
DESCRIPTION OF SYMBOLS 10: Ceramic joined body 11 for gas outlets, 21: Porous ceramics 12, 22: Dense ceramics 20 annular: Gas dispersion plate 23: Main body 24: Gas hole 33: Ceramic compact 34a: Hole

Claims (9)

加圧焼結により得られ、セラミックス粗粒のネッキング構造を有する多孔質セラミックスと、環状の緻密質セラミックスとが接合層を介さずに直接接合されたことを特徴とするガス噴出口用セラミックス接合体。 A ceramic bonded body for gas jets, characterized in that a porous ceramic having a necking structure of coarse ceramic grains obtained by pressure sintering and an annular dense ceramic are directly bonded without a bonding layer. . 前記加圧焼結が放電プラズマ焼結であることを特徴とする請求項1記載のガス噴出口用セラミックス接合体。 2. The ceramic bonded body for a gas outlet according to claim 1, wherein the pressure sintering is spark plasma sintering. 請求項1または2記載のガス噴出口用セラミックス接合体と、ガス分散板の本体とが接合層を介さずに直接接合されたガス分散板。 3. A gas dispersion plate, wherein the gas spout ceramic bonded body according to claim 1 and the gas dispersion plate main body are directly joined without a joining layer. セラミックス粗粒の成形体を加圧焼結させ、多孔質セラミックスを得る第1焼結工程と、
セラミックス微粒の環状成形体に前記多孔質セラミックスを嵌め込み、前記環状成形体を緻密化させるとともに、環状の緻密質セラミックスと前記多孔質セラミックスとを直接接合させる第2焼結工程と、
を含むガス噴出口用セラミックス接合体の製造方法。
A first sintering step of pressure-sintering the ceramic coarse-grained compact to obtain porous ceramics;
A second sintering step in which the porous ceramic is fitted into an annular molded body of ceramic fine particles, the annular molded body is densified, and the annular dense ceramic and the porous ceramic are directly joined;
A method for producing a ceramic bonded body for a gas outlet comprising:
前記第1焼結工程は、放電プラズマ焼結である請求項4記載のガス噴出口用セラミックス接合体の製造方法。 The method for producing a ceramic bonded body for a gas jet according to claim 4, wherein the first sintering step is discharge plasma sintering. 前記環状成形体は、前記多孔質セラミックスを嵌め込まずに焼結させたときの内径が、前記多孔質セラミックスの外径よりも1〜7%小さく設計されることを特徴とする請求項4または5記載のガス噴出口用セラミックス接合体の製造方法。 6. The annular molded body is designed such that the inner diameter when sintered without fitting the porous ceramic is 1 to 7% smaller than the outer diameter of the porous ceramic. The manufacturing method of the ceramic joined body for gas ejection outlets of description. 請求項4〜6記載の製造方法により得られたガス噴出口用セラミックス接合体を、焼結後にガス分散板の本体となるセラミックス成形体に設けられた穴部に嵌め込む工程と、
前記セラミックス成形体を緻密化させるとともに、ガス分散板の本体と前記ガス噴出口用セラミックス接合体とを直接接合させる第3焼結工程と、
を含むガス分散板の製造方法。
A step of fitting the ceramic bonded body for a gas nozzle obtained by the manufacturing method according to claim 4 into a hole provided in a ceramic molded body that becomes a main body of a gas dispersion plate after sintering;
A third sintering step of densifying the ceramic molded body and directly bonding the main body of the gas dispersion plate and the ceramic bonded body for the gas outlet;
The manufacturing method of the gas dispersion plate containing this.
前記セラミックス成形体の穴部は、前記ガス噴出口用セラミックス接合体を嵌め込まずに焼結させたときの内径が、前記ガス噴出口用セラミックス接合体の外径よりも1〜7%小さく設計されることを特徴とする請求項7記載のガス分散板の製造方法。 The hole part of the ceramic molded body is designed such that the inner diameter when sintered without fitting the ceramic joint for gas outlet is 1 to 7% smaller than the outer diameter of the ceramic joint for gas outlet. The method of manufacturing a gas dispersion plate according to claim 7. ガス噴出口用セラミックス接合体についてガス流量測定を行い所定の条件を満たしたものを用いる請求項7または8記載のガス分散板の製造方法。 The method for manufacturing a gas dispersion plate according to claim 7 or 8, wherein a gas flow rate measurement is performed on the ceramic bonded body for a gas outlet and a predetermined condition is used.
JP2008019768A 2008-01-30 2008-01-30 Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same Pending JP2009179517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019768A JP2009179517A (en) 2008-01-30 2008-01-30 Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019768A JP2009179517A (en) 2008-01-30 2008-01-30 Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012156945A Division JP5466734B2 (en) 2012-07-12 2012-07-12 Manufacturing method of ceramic joined body and gas dispersion plate

Publications (1)

Publication Number Publication Date
JP2009179517A true JP2009179517A (en) 2009-08-13

Family

ID=41033776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019768A Pending JP2009179517A (en) 2008-01-30 2008-01-30 Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009179517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165195A (en) * 2018-03-14 2019-09-26 Toto株式会社 Electrostatic chuck
JP2020007175A (en) * 2018-07-04 2020-01-16 京セラ株式会社 Ceramic structure and manufacturing method thereof
JPWO2021251020A1 (en) * 2020-06-10 2021-12-16

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151578A (en) * 1999-11-22 2001-06-05 Toshio Hirai Porous silicon carbide sintered compact and method of producing the same
JP2002338334A (en) * 2001-03-14 2002-11-27 Ngk Insulators Ltd Sintered ceramic compact and method of manufacturing for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151578A (en) * 1999-11-22 2001-06-05 Toshio Hirai Porous silicon carbide sintered compact and method of producing the same
JP2002338334A (en) * 2001-03-14 2002-11-27 Ngk Insulators Ltd Sintered ceramic compact and method of manufacturing for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165195A (en) * 2018-03-14 2019-09-26 Toto株式会社 Electrostatic chuck
JP2020007175A (en) * 2018-07-04 2020-01-16 京セラ株式会社 Ceramic structure and manufacturing method thereof
JP7018839B2 (en) 2018-07-04 2022-02-14 京セラ株式会社 Ceramic structure and its manufacturing method
JPWO2021251020A1 (en) * 2020-06-10 2021-12-16
WO2021251020A1 (en) * 2020-06-10 2021-12-16 東亞合成株式会社 Ceramic/resin composite material, and manufacturing method and usage for same
JP7395163B2 (en) 2020-06-10 2023-12-11 東亞合成株式会社 Ceramics/resin composite material, its manufacturing method and its use

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
US7247818B2 (en) Substrate heating apparatus and manufacturing method for the same
JP2007051317A (en) Heating device
JP3830382B2 (en) Ceramic sintered body and method for producing the same
KR102373076B1 (en) Member for semiconductor manufacturing apparatus, manufacturing method and molding type thereof
CN102184873B (en) Method for quickly preparing diamond-silicon carbide electronic packaging material
EP3860783A1 (en) Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form
JP2009179517A (en) Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same
US11090726B2 (en) Apparatus and method for three-dimensional metal printing
JP2017183609A (en) Substrate holding device and manufacturing method therefor
JP5545803B2 (en) Method for producing ceramic porous sintered body
JP5466734B2 (en) Manufacturing method of ceramic joined body and gas dispersion plate
JP2012106929A (en) Method for producing porous body
KR20130132983A (en) Alumina conjugate and bonding method for alumina sintered bodies
WO2015025951A1 (en) Porous ceramic and method for producing same
JP5340755B2 (en) Ceramic porous body and method for producing the same
JP7216611B2 (en) Manufacturing method of SiC sintered member
JP2019059634A (en) Method for producing ceramic member
KR102316956B1 (en) Member for semiconductor manufacturing apparatus, method for manufacturing the same, and mold
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2017191910A (en) Board holding device and manufacturing method thereof
KR101722652B1 (en) A composite ceramic material having ultra high temperature stability in atmosphere and manufacturing method of the composite ceramic material
US20170316909A1 (en) Gas inlet for an ion thruster
JP2023149343A (en) Electrode burying member, and substrate holding member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002