JP5739463B2 - Vibrating transfer device - Google Patents

Vibrating transfer device Download PDF

Info

Publication number
JP5739463B2
JP5739463B2 JP2013040753A JP2013040753A JP5739463B2 JP 5739463 B2 JP5739463 B2 JP 5739463B2 JP 2013040753 A JP2013040753 A JP 2013040753A JP 2013040753 A JP2013040753 A JP 2013040753A JP 5739463 B2 JP5739463 B2 JP 5739463B2
Authority
JP
Japan
Prior art keywords
vibration
spring
transport
pair
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013040753A
Other languages
Japanese (ja)
Other versions
JP2014169142A (en
Inventor
順一 原
順一 原
英樹 折橋
英樹 折橋
恭弘 皆川
恭弘 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2013040753A priority Critical patent/JP5739463B2/en
Publication of JP2014169142A publication Critical patent/JP2014169142A/en
Application granted granted Critical
Publication of JP5739463B2 publication Critical patent/JP5739463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Description

本発明は振動式搬送装置に係り、特に、搬送物の搬送状態を調整するための機構に関する。   The present invention relates to a vibratory transfer device, and more particularly to a mechanism for adjusting the transfer state of a transfer object.

一般に、製造設備において電子部品等を搬送路上で整列させながら検査装置等に供給するための振動式搬送装置が知られている。この場合に、搬送路の下流側に配置される検査装置等の供給先装置では搬送物の処理速度が定められているために、振動式搬送装置の搬送路の供給端では、下流側の供給先装置の処理速度に合わせた速度で搬送物を供給する必要がある。ここで、仮に供給先装置の処理速度よりも搬送物の供給速度が遅くなると製造設備全体の処理効率が低下するため、製造設備の処理能力を十分に活用することができなくなる。したがって、通常は供給先装置の処理速度よりも搬送物の供給速度が速くなるように設定すればよい。しかしながら、供給速度が速すぎると上記供給端の近傍において搬送物が搬送路上で長時間滞留するので、搬送物が搬送路上で摩耗したり前後の搬送物同士の接触で損傷を受けたりする。このため、実際には、振動式搬送装置の搬送速度を供給先装置の処理速度に合わせて精密に調整する必要がある。   2. Description of the Related Art Generally, a vibratory transfer device is known for supplying electronic components and the like to an inspection device while aligning them on a transfer path in a manufacturing facility. In this case, since the processing speed of the conveyed product is determined in the supply destination apparatus such as the inspection apparatus arranged on the downstream side of the conveyance path, the downstream supply is performed at the supply end of the conveyance path of the vibration type conveyance apparatus. It is necessary to supply the conveyed product at a speed that matches the processing speed of the previous apparatus. Here, if the supply speed of the conveyed product is slower than the processing speed of the supply destination device, the processing efficiency of the entire manufacturing facility is reduced, and thus the processing capacity of the manufacturing facility cannot be fully utilized. Therefore, it is usually sufficient to set the supply speed of the conveyed product faster than the processing speed of the supply destination apparatus. However, if the supply speed is too high, the conveyed product stays on the conveying path in the vicinity of the supply end for a long time, so the conveyed item is worn on the conveying path or damaged by contact between the preceding and following conveyed items. Therefore, in practice, it is necessary to precisely adjust the conveyance speed of the vibration type conveyance device in accordance with the processing speed of the supply destination device.

従来の振動式搬送装置では、例えば以下の特許文献1のように、搬送路を備えた搬送体を振動させるための駆動用板ばねの傾斜角度をスペーサや取付部の可動構造等により調整可能に構成したものが知られている。一方、搬送体を振動させるための駆動用板ばねではなく、搬送体に接続されたカウンターウエイトを基台に接続するための防振用板ばねの傾斜角度を調整可能に構成することにより、搬送速度を設定可能に構成したものが特許文献2に開示されている。   In the conventional vibratory transfer device, for example, as in Patent Document 1 below, the inclination angle of the driving leaf spring for vibrating the transfer body provided with the transfer path can be adjusted by the movable structure of the spacer or the mounting portion, etc. The composition is known. On the other hand, it is possible to adjust the inclination angle of the anti-vibration leaf spring for connecting the counterweight connected to the carrier to the base, instead of the driving leaf spring for vibrating the carrier. Patent Document 2 discloses a configuration in which the speed can be set.

特公昭44−3778号公報Japanese Patent Publication No. 44-3778 特開平3−106711号公報JP-A-3-106711

ところで、振動式搬送装置を製造設備に設置する際には、設置すべき装置の上流側や下流側の製造設備との関係で種々の調整作業が必要となる。特に、搬送物の搬送速度は必ず製造ラインに対応する範囲に調整しなければならない。しかしながら、上記従来の特許文献1のような駆動用板ばねの傾斜角度を調整する方法では、搬送体の振動角度が直接調整されるために搬送物の搬送速度を大きく変えることができるものの、駆動用板ばねのばね定数が大きいためにその傾斜角度を変えると振動系全体の共振周波数や振幅も大きく変化する。このために、搬送物の搬送速度などを所望の値に精密に設定しようとすると、種々の条件を考慮して複雑で微妙な調整作業が必要になる。また、駆動用板ばねの傾斜角度を調整すると、搬送体の姿勢や高さがその傾斜角度に応じて大きく変化するため、特に近年の微細な部品を搬送物とする装置では搬送体の姿勢や高さに対する要求精度が高いことから、傾斜角度の調整作業後に搬送路の姿勢や高さを改めて調整し直す必要があり、作業がさらに煩雑になる。   By the way, when installing a vibration type conveying apparatus in a manufacturing facility, various adjustment operations are required in relation to the upstream and downstream manufacturing facilities of the apparatus to be installed. In particular, the conveyance speed of the conveyed product must be adjusted within a range corresponding to the production line. However, in the method of adjusting the inclination angle of the driving leaf spring as in the above-mentioned conventional patent document 1, the vibration angle of the conveyance body is directly adjusted, so that the conveyance speed of the conveyance object can be greatly changed. Since the spring constant of the plate spring is large, changing the inclination angle greatly changes the resonance frequency and amplitude of the entire vibration system. For this reason, in order to precisely set the conveyance speed of the conveyed product to a desired value, complicated and delicate adjustment work is required in consideration of various conditions. Further, when the tilt angle of the driving leaf spring is adjusted, the posture and height of the transport body change greatly depending on the tilt angle. Since the required accuracy with respect to the height is high, it is necessary to readjust the posture and height of the conveyance path after adjusting the inclination angle, which further complicates the operation.

一方、上記従来の特許文献2のような防振用板ばねの傾斜角度を変える方法では、通常、防振用板ばねの振動方向のばね定数は駆動用板ばねのばね定数に比べて小さいため、駆動用板ばねを介して接続された搬送路とカウンターウエイトからなる駆動振動系の共振周波数や振幅に与える影響は少ない。また、防振用板ばねの下端部を移動させるようにすれば搬送体の姿勢や高さを変えずに傾斜角度を変えることも可能である。しかし、この方法は、搬送体の振動態様を直接変えるものではなく、カウンターウエイトを支持する防振用板ばねの傾斜角度を変えるに過ぎない。すなわち、カウンターウエイトの弾性支持特性を変えることで駆動用板ばねを介して弾性支持される搬送体の振動態様を間接的に制御しようとするものである。したがって、防振用板ばねの傾斜角度を或る程度大きく変化させないと搬送物の搬送速度を十分に調整することができず、また、上記傾斜角度を大きく変化させると振動態様が不安定になるという問題点がある。また、この方法では、駆動用板ばねを介して接続された搬送体とカウンターウエイトからなる駆動振動系の搬送方向に沿った支持態様が大きく変化することから、搬送体全体の搬送状態のバランス、例えば、搬送路の全長にわたる搬送速度の均一化又は搬送方向に沿った搬送速度の変化態様を適宜に設定しようとすると、前後の防振用板ばねのバランスを考慮する必要があるため、実際の調整作業は難航する場合が多い。また、上述のように、防振用板ばねの傾斜角度を調整する方法では搬送体の姿勢や高さをほぼ一定に保つことは可能であるが、ボルトやねじなどの取付、取り外しによって生ずる微妙な姿勢や高さのずれを回避することはできないため、近年の搬送物の微細化に伴って搬送体の姿勢や高さに対する要求精度の高度化に対応するには、上記と同様に姿勢や高さの再調整のための煩雑な作業を省略することはできない。   On the other hand, in the conventional method of changing the inclination angle of the vibration isolating leaf spring as in Patent Document 2, the spring constant in the vibration direction of the vibration isolating leaf spring is usually smaller than the spring constant of the driving leaf spring. The influence on the resonance frequency and amplitude of the drive vibration system composed of the conveyance path and the counterweight connected via the drive leaf spring is small. Further, if the lower end portion of the vibration isolating leaf spring is moved, the inclination angle can be changed without changing the posture and height of the transport body. However, this method does not directly change the vibration mode of the carrier, but only changes the inclination angle of the vibration-proof plate spring that supports the counterweight. That is, it is intended to indirectly control the vibration mode of the conveying body that is elastically supported via the driving leaf spring by changing the elastic support characteristic of the counterweight. Therefore, unless the inclination angle of the vibration-proof leaf spring is changed to a certain extent, the conveyance speed of the conveyed product cannot be adjusted sufficiently, and if the inclination angle is changed greatly, the vibration mode becomes unstable. There is a problem. Further, in this method, since the support mode along the transport direction of the drive vibration system composed of the transport body and the counterweight connected via the driving leaf spring is greatly changed, the balance of the transport state of the entire transport body, For example, if it is attempted to set a uniform transfer speed over the entire length of the transfer path or appropriately change the transfer speed change direction along the transfer direction, it is necessary to consider the balance between the front and rear vibration-proof leaf springs. Adjustment work is often difficult. In addition, as described above, the method of adjusting the inclination angle of the vibration-damping leaf spring can keep the posture and height of the transport body substantially constant, but there are subtleties caused by the attachment and removal of bolts and screws. In order to cope with the increasing precision of the posture and height of the transported body in recent years with the miniaturization of transported objects, the posture and The complicated work for readjustment of the height cannot be omitted.

そこで、本発明は上記問題点を解決するものであり、その課題は、搬送路に沿った搬送状態の態様を容易に調整することのできる振動式搬送装置を実現することにある。また、別の課題は、防振用板ばねの傾斜角度を調整しても搬送路の姿勢や高さの再調整を不要とすることのできる振動式搬送装置を実現することにある。   Therefore, the present invention solves the above-described problems, and an object of the present invention is to realize a vibrating transfer device that can easily adjust the state of the transfer state along the transfer path. Another object is to realize a vibration type conveying apparatus that can eliminate the need for readjustment of the posture and height of the conveying path even if the inclination angle of the vibration-proof plate spring is adjusted.

斯かる実情に鑑み、本発明の振動式搬送装置は、搬送路を備えた搬送体と、前記搬送体を前記搬送路の搬送方向の前後でそれぞれ支持する一対の駆動用板ばねと、前記一対の駆動用板ばねを介して前記搬送体とそれぞれ接続され前記搬送方向の前後に別々に配置される一対の接続体と、前記一対の接続体にそれぞれ一端が接続され前記搬送方向の前後に配置される一対の圧電駆動体と、前記一対の圧電駆動体の他端間を連結する連結部材と、設置面上において前記一対の接続体をそれぞれ前記搬送方向の前後において支持する一対の防振用板ばねと、前記搬送方向の前後のいずれか少なくとも一方の前記防振用板ばねの傾斜角度を調整可能に構成するばね角調整機構と、を具備することを特徴とする。   In view of such circumstances, the vibratory transfer device of the present invention includes a transfer body provided with a transfer path, a pair of driving leaf springs that respectively support the transfer body in the front and rear directions of the transfer path, and the pair of drive springs. A pair of connection bodies that are connected to the transport body via drive leaf springs and arranged separately in front and rear in the transport direction, and one end is connected to the pair of connection bodies in front and rear in the transport direction. A pair of piezoelectric driving bodies, a connecting member that connects the other ends of the pair of piezoelectric driving bodies, and a pair of vibration-proofing units that support the pair of connecting bodies on the installation surface before and after in the transport direction, respectively. A leaf spring and a spring angle adjusting mechanism configured to adjust an inclination angle of at least one of the anti-vibration leaf springs before and after the conveying direction.

この発明によれば、連結部材に対して共通に接続された一対の圧電駆動体によって生ずる振動がそれぞれ搬送方向の前後に別々に配置された接続体を介してそれぞれ対応する駆動用板ばねに伝達されることで、搬送体が一対の駆動用板ばねによって振動し、搬送路上の搬送物が搬送方向に搬送される。このとき、接続体を弾性支持する防振用板ばねは、基台などの装置の設置面側へ漏洩する振動エネルギーを低減する。   According to this invention, the vibration generated by the pair of piezoelectric driving bodies connected in common to the coupling member is transmitted to the corresponding driving leaf springs via the connecting bodies separately disposed before and after the conveying direction. As a result, the transport body is vibrated by the pair of drive leaf springs, and the transported material on the transport path is transported in the transport direction. At this time, the vibration-proof leaf spring that elastically supports the connection body reduces vibration energy that leaks to the installation surface side of the device such as the base.

また、ばね角調整機構によって接続体を弾性支持する防振用板ばねの傾斜角度を変更することにより、圧電駆動体により駆動される接続体が受ける弾性支持特性も変化するため、搬送体の振動方向及び振幅を変化させることができる。したがって、ばね角調整機構により搬送速度その他の搬送体による搬送態様を制御することが可能になる。   In addition, by changing the inclination angle of the anti-vibration leaf spring that elastically supports the connection body by the spring angle adjusting mechanism, the elastic support characteristic received by the connection body driven by the piezoelectric drive body also changes, so the vibration of the transport body Direction and amplitude can be varied. Therefore, it becomes possible to control the conveyance speed and other conveyance modes by the conveyance body by the spring angle adjusting mechanism.

特に、本発明では、搬送方向の前後に配置される一対の防振用板ばねが搬送方向の前後に別々に配置される接続体にそれぞれ接続されているため、一方の防振用板ばねの傾斜角度を変化させても、基本的には他方の防振用板ばねに支持される駆動振動系には影響をほとんど与えない。したがって、搬送方向の前後のいずれか一方で搬送速度を調整したとき、他方では搬送速度その他の搬送態様がほとんど変わらないために、調整作業を従来よりも大幅に容易に行うことができる。   In particular, in the present invention, since a pair of vibration isolating leaf springs arranged before and after the conveying direction are respectively connected to connecting bodies separately arranged before and after the conveying direction, Even if the tilt angle is changed, the drive vibration system supported by the other vibration-proof leaf spring is basically not affected. Therefore, when the conveyance speed is adjusted on one of the front and rear sides in the conveyance direction, the conveyance speed and other conveyance modes are hardly changed on the other side, so that the adjustment operation can be performed significantly more easily than in the past.

ここで、上記連結部材を、駆動用板ばねに接続される搬送体の質量に対応する慣性質量とすることにより、防振用板ばねを介して設置面側へ漏出する振動エネルギーをさらに低減できるとともに、搬送方向の前後の一対の駆動振動系の間の独立性をさらに高めることができるため、防振用板ばねの傾斜角度の調整による搬送体の振動態様の制御をさらに容易に行うことが可能になる。   Here, by using the inertial mass corresponding to the mass of the transport body connected to the driving leaf spring as the connecting member, vibration energy leaking to the installation surface side via the vibration damping leaf spring can be further reduced. In addition, since the independence between the pair of driving vibration systems before and after the conveying direction can be further increased, it is possible to more easily control the vibration mode of the conveying body by adjusting the inclination angle of the vibration-proof leaf spring. It becomes possible.

本発明において、前記ばね角調整機構は、前記接続体が固定された状態で前記防振用板ばねの傾斜角度を変更可能に構成されることが好ましい。これによれば、接続体は駆動用板ばねを介して搬送体を弾性支持しているため、接続体を固定した状態で調整作業を行うようにすれば、搬送体の姿勢や高さを変えずに防振用板ばねの傾斜角度を変えることができる。接続体の固定は、接続体自体を直接に固定する場合だけでなく、例えば、圧電駆動体、駆動用板ばね、搬送体、或いは、連結部材を基台に固定するなど、結果として間接的にではあっても接続体を固定することのできる種々の方法で行うことができる。この場合には後述する支持固定手段を用いることが望ましい。   In the present invention, it is preferable that the spring angle adjusting mechanism is configured to be able to change an inclination angle of the vibration-proof plate spring in a state where the connection body is fixed. According to this, since the connection body elastically supports the transport body via the driving leaf spring, if the adjustment work is performed with the connection body fixed, the posture and height of the transport body can be changed. Without changing the inclination angle of the vibration-proof leaf spring. The connection body is fixed not only when the connection body itself is directly fixed, but indirectly, for example, by fixing the piezoelectric drive body, the driving leaf spring, the transport body, or the coupling member to the base. However, it can be performed by various methods that can fix the connection body. In this case, it is desirable to use a support fixing means described later.

本発明において前記搬送方向の前後にそれぞれ配置される、前記駆動用板ばね、前記接続体及び前記圧電駆動体からなる一対の駆動振動系は、前記圧電駆動体内に配置される振動中心の周りに回動する態様でそれぞれ振動し、前記ばね角調整機構は、前記搬送方向の前後のいずれか少なくとも一方の前記防振用板ばねを、当該防振用板ばねに接続される前記接続体、当該接続体に接続される前記圧電駆動体及び前記駆動用板ばね、並びに、当該駆動用板ばねに接続される前記搬送体からなる前記駆動振動系の前記振動中心の側にある仮想中心点の周りの回転方向に回動可能に構成し、かつ、前記回動方向の複数の位置で保持固定可能に構成し、前記仮想中心点は、前記防振用板ばねよりも前記振動中心に近い位置に設定される。これによれば、少なくともいずれか一方の防振用板ばねが圧電駆動体の仮想中心点の周りに回動可能とされ、しかもその回動方向の複数の位置で保持固定可能に構成されるので、防振用板ばねの傾斜角度を変化させても、仮想中心点の周りの接続体の振動角度は変化するものの、仮想中心点から見た防振用板ばねの姿勢は変化しないため、当該駆動振動系の振動中心の位置ずれや圧電駆動体に対する負荷の変動を抑制することができ、共振周波数の変動や駆動振動系の振動態様の不安定化も抑制できる。この場合において、上記仮想中心点は、防振用板ばねよりも上記振動中心に近い位置に設定される特に、上記仮想中心点が前記駆動振動系の振動中心にほぼ一致することが望ましい。 In the present invention, the are respectively disposed before and after the transport direction, the drive plate spring, said connection member and a pair of driving vibration systems consisting of the piezoelectric driving body, the vibration center disposed on the piezoelectric driving body The connecting body is configured to vibrate in a manner of rotating around, and the spring angle adjusting mechanism is configured to connect at least one of the anti-vibration leaf springs before and after the conveying direction to the anti-vibration leaf spring. the piezoelectric driving body is connected to the connecting member and the driving plate spring, and the virtual center point on the side of the oscillation center of the driving vibration system consisting of the carrier which is connected to the driving plate spring The virtual center point is closer to the vibration center than the anti-vibration leaf spring is configured to be rotatable in a rotation direction around the rotation direction and to be held and fixed at a plurality of positions in the rotation direction. Set to position. According to this, at least one of the vibration-proof leaf springs can be rotated around the virtual center point of the piezoelectric driving body, and can be held and fixed at a plurality of positions in the rotation direction. Even if the inclination angle of the vibration isolating leaf spring is changed, the vibration angle of the connection body around the virtual center point changes, but the posture of the vibration isolating leaf spring viewed from the virtual center point does not change. The displacement of the vibration center of the drive vibration system and the fluctuation of the load on the piezoelectric drive body can be suppressed, and the fluctuation of the resonance frequency and the instability of the vibration mode of the drive vibration system can also be suppressed. In this case, the virtual center point is set at a position closer to the vibration center than the vibration-proof leaf spring . In particular, it is desirable that the virtual center point substantially coincides with the vibration center of the drive vibration system.

本発明において、前記ばね角調整機構は、前記仮想中心点の周りの回動方向に沿った第1の案内面により案内される前記防振用板ばねと前記接続体との間の第1の摺接部と、前記防振用板ばねを前記接続体に対して前記回動方向に位置決め保持する第1の保持構造と、前記回動方向に沿った第2の案内面により案内される前記防振用板ばねと前記設置面との間の第2の摺接部と、前記防振用板ばねを前記設置面に対して前記回動方向に位置決め保持する第2の保持構造と、を有することが好ましい。   In the present invention, the spring angle adjusting mechanism may include a first anti-vibration leaf spring guided by a first guide surface along a rotation direction around the virtual center point and a first connection between the connection body. The sliding contact portion, the first holding structure for positioning and holding the vibration-proof plate spring with respect to the connecting body in the rotation direction, and the second guide surface along the rotation direction guide the A second sliding contact portion between the vibration-proof plate spring and the installation surface; and a second holding structure for positioning and holding the vibration-proof plate spring in the rotation direction with respect to the installation surface. It is preferable to have.

この場合において、前記ばね角調整機構は、前記防振用板ばねを前記回動方向に回動させるための回動操作手段と、該回動操作手段によって設定された前記防振用板ばねの傾斜角度を表示するばね角表示手段とを備えた操作表示部をさらに有することが望ましい。   In this case, the spring angle adjusting mechanism includes a rotation operation means for rotating the vibration isolation plate spring in the rotation direction, and a vibration isolation plate spring set by the rotation operation means. It is desirable to further have an operation display part provided with a spring angle display means for displaying the inclination angle.

本発明において、前記一対の防振用板ばねの下端が接続される基台と、前記接続体の位置を直接若しくは間接的に前記基台に対し固定する支持固定手段さらに有することが好ましい。ばね角調整手段により防振用板ばねの傾斜角度を調整する際に支持固定手段を用いて接続体の位置を直接若しくは間接的に基台に対し固定することにより、接続体に駆動用板ばねを介して弾性支持された搬送体の搬送方向に沿った姿勢及び高さを維持することができるため、搬送体の姿勢及び高さの再設定のための作業を不要とすることができる。 In the present invention, a base on which the lower end of the pair of the vibration isolating plate spring is connected, preferably further has a supporting and fixing means for fixing the position of the connecting member to directly or indirectly the base . When adjusting the inclination angle of the anti-vibration leaf spring by the spring angle adjusting means, the position of the connection body is fixed directly or indirectly to the base using the support fixing means, so that the drive leaf spring is connected to the connection body. Since the posture and height along the conveyance direction of the conveyance body elastically supported via the can be maintained, the work for resetting the posture and height of the conveyance body can be made unnecessary.

本発明によれば、ばね角調整手段により、搬送路に沿った搬送状態の態様を容易に調整することのできる振動式搬送装置を実現することができる。また、支持固定手段により、板ばねの傾斜角度を調整しても搬送路の姿勢や高さの調整を不要とすることのできる振動式搬送装置を実現することができる。   According to the present invention, it is possible to realize a vibration type conveying apparatus that can easily adjust the state of the conveying state along the conveying path by the spring angle adjusting means. Further, it is possible to realize a vibration type conveying apparatus that can eliminate the need for adjusting the posture and height of the conveying path even if the inclination angle of the leaf spring is adjusted by the support fixing means.

本発明に係る振動式搬送装置の実施形態の全体を搬送方向の前方より示す斜視図である。It is a perspective view which shows the whole embodiment of the vibration type conveying apparatus concerning this invention from the front of a conveyance direction. 同実施形態を搬送方向の前方から見た様子を示す正面図である。It is a front view which shows a mode that the same embodiment was seen from the front of the conveyance direction. 同実施形態の側面被覆板を除去した状態を示す左側面図である。It is a left view which shows the state which removed the side surface coating plate of the embodiment. 同実施形態の搬送体固定部材をさらに除去した状態を示す左側面図である。It is a left view which shows the state which removed the conveyance body fixing member of the embodiment further. 同実施形態の異なる姿勢の斜視図である。It is a perspective view of a different posture of the embodiment. 同実施形態の側面被覆板を除去した状態を示す右側面図である。It is a right view which shows the state which removed the side surface coating plate of the embodiment. 同実施形態の側面被覆板を除去した状態を搬送方向の後方から見た様子を示す斜視図である。It is a perspective view which shows a mode that the state which removed the side surface coating plate of the embodiment was seen from the back of a conveyance direction. 同実施形態のばね角調整機構の操作表示部の拡大図である。It is an enlarged view of the operation display part of the spring angle adjustment mechanism of the embodiment. 同実施形態のばね角調整機構の内部構造を示す部分断面図である。It is a fragmentary sectional view which shows the internal structure of the spring angle adjustment mechanism of the embodiment. 防振用板ばねの基準状態におけるばね角調整機構の内部構造を拡大して示す拡大部分断面図である。It is an expanded fragmentary sectional view which expands and shows the internal structure of the spring angle adjustment mechanism in the reference | standard state of the vibration isolating leaf spring. 防振用板ばねの傾斜角度を変えた状態におけるばね角調整機構の内部構造を拡大して示す拡大部分断面図である。It is an expanded fragmentary sectional view which expands and shows the internal structure of the spring angle adjustment mechanism in the state which changed the inclination-angle of the vibration-proof leaf | plate spring. 図10に示す縦断面と直交する縦断面においてばね角調整機構の内部構造を拡大して示す拡大部分断面図である。It is an expanded partial sectional view which expands and shows the internal structure of a spring angle adjustment mechanism in the vertical cross section orthogonal to the vertical cross section shown in FIG. 同実施形態のばね角調整機構の動作を説明するための構造説明図である。It is structure explanatory drawing for demonstrating operation | movement of the spring angle adjustment mechanism of the embodiment. 異なる実施形態の全体構成を示す構成説明図である。It is composition explanatory drawing which shows the whole structure of different embodiment.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。図1は本実施形態の斜視図、図2は同正面図、図3は側面被覆板を除去した状態を示す左側面図、図4は搬送体固定部材をさらに除去した状態を示す左側面図、図5は別の斜視図、図6は側面被覆板を除去した状態を示す右側面図、図7は側面被覆板を除去した別の斜視図である。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a perspective view of the present embodiment, FIG. 2 is a front view thereof, FIG. 3 is a left side view showing a state in which a side cover plate is removed, and FIG. 4 is a left side view showing a state in which a carrier fixing member is further removed. 5 is another perspective view, FIG. 6 is a right side view showing a state in which the side cover plate is removed, and FIG. 7 is another perspective view in which the side cover plate is removed.

本実施形態は、搬送路を備えた図示しない搬送体を搭載することのできる振動式搬送装置10である。搬送体は搬送物(例えば電子部品)の形状寸法に応じて凹溝状の搬送路を備えている。図示例では、搬送方向Fに向けて直線状に伸びる搬送路を備えた第1の搬送体(後述する搬送体10F)を搭載する第1のトラフ1Fと、搬送方向Fとは反対向きの搬送方向Bに向けて直線状に伸びる搬送路を備えた第2の搬送体を搭載する第2のトラフ1Bとを有する。   The present embodiment is a vibration transfer device 10 that can be mounted with a transfer body (not shown) having a transfer path. The transport body includes a groove-shaped transport path according to the shape and size of the transported object (for example, an electronic component). In the illustrated example, a first trough 1F on which a first transport body (a transport body 10F described later) having a transport path extending linearly toward the transport direction F is mounted, and transport in the direction opposite to the transport direction F And a second trough 1B on which a second transport body having a transport path extending linearly in the direction B is mounted.

第1のトラフ1Fには、搬送方向Fの前後に離れた二箇所においてそれぞれ下方から駆動用板ばね11,12が接続される。また、第2のトラフ1Bには、搬送方向Bの前後に離れた二箇所においてそれぞれ下方から駆動用板ばね13,14が接続固定される。これらの駆動用板ばね11〜14は、図示例では平板状であり、図3に示すように、それぞれ搬送方向F,Rの前方斜め上方に向かう振動方向Fv、Bvとほぼ直交する姿勢で取り付けられている。すなわち、駆動用板ばね11,12の法線は振動方向Fvとほぼ平行であり、駆動用板ばね13,14の法線は振動方向Bvとほぼ平行である。図3では、駆動用板ばね11,12の上部取付法線Lfu及び下部取付法線Lfdはいずれも振動方向Fvと平行に設定され、駆動用板ばね13,14の上部取付法線Lbu及び下部取付法線Lbdはいずれも振動方向Bvと平行に設定される。   The leaf springs 11 and 12 for driving are connected to the first trough 1F from below at two locations separated in the front and rear in the transport direction F, respectively. In addition, the driving leaf springs 13 and 14 are connected and fixed to the second trough 1B from below at two locations separated in the front and rear in the transport direction B, respectively. These plate springs 11 to 14 are flat in the illustrated example, and are attached in a posture substantially orthogonal to the vibration directions Fv and Bv directed obliquely upward in front of the conveyance directions F and R, respectively, as shown in FIG. It has been. That is, the normal lines of the drive leaf springs 11 and 12 are substantially parallel to the vibration direction Fv, and the normal lines of the drive leaf springs 13 and 14 are substantially parallel to the vibration direction Bv. In FIG. 3, the upper mounting normal Lfu and the lower mounting normal Lfd of the driving leaf springs 11 and 12 are both set in parallel with the vibration direction Fv, and the upper mounting normal Lbu and lower portion of the driving leaf springs 13 and 14 are set. The attachment normal Lbd is set in parallel with the vibration direction Bv.

上記駆動用板ばね11〜14の下端は、それぞれ搬送方向F,Bの前後下方に配置される一対の接続体15,16の上端に接続固定される。接続体15は下方に伸びる防振用板ばね17に接続固定され、防振用板ばね17の下端は基台19に接続固定される。接続体16は下方に伸びる防振用板ばね18に接続固定され、防振用板ばね18の下端は基台19に接続固定される。防振用板ばね17,18も図示例では平板状に構成され、基本的には上記振動方向Fvとほぼ直交する姿勢で取り付けられている。防振用板ばね17は上部取付法線Ldu1で接続体15に接続固定され、下部取付法線Ldd1で後述するばね角調整機構20の防振ばね取付部材21に接続固定される。また、防振用板ばね18は上部取付法線Ldu2で接続体16に接続固定され、下部取付法線Ldd2で基台19に接続固定される。本実施形態では、防振用板ばね17の上記上部取付法線Ldu1と下部取付法線Ldd1が共に可変とされることで、後に詳述するばね角調整機構20によって傾斜角度θを調整可能に構成される。一方、防振用板ばね18の上部取付法線Ldu2と下部取付法線Ldd2は固定されている。   The lower ends of the drive leaf springs 11 to 14 are connected and fixed to the upper ends of a pair of connection bodies 15 and 16 disposed below the front and rear in the transport directions F and B, respectively. The connection body 15 is connected and fixed to a vibration-proof plate spring 17 extending downward, and the lower end of the vibration-proof plate spring 17 is connected and fixed to the base 19. The connection body 16 is connected and fixed to a vibration-proof plate spring 18 extending downward, and the lower end of the vibration-proof plate spring 18 is connected and fixed to a base 19. The anti-vibration leaf springs 17 and 18 are also formed in a flat plate shape in the illustrated example, and are basically attached in a posture substantially orthogonal to the vibration direction Fv. The anti-vibration leaf spring 17 is connected and fixed to the connecting body 15 at the upper mounting normal Ldu1, and is connected and fixed to the anti-vibration spring mounting member 21 of the spring angle adjusting mechanism 20 described later at the lower mounting normal Ldd1. Further, the vibration isolating leaf spring 18 is connected and fixed to the connection body 16 at the upper mounting normal Ldu2, and is connected and fixed to the base 19 at the lower mounting normal Ldd2. In the present embodiment, both the upper mounting normal line Ldu1 and the lower mounting normal line Ldd1 of the vibration isolating leaf spring 17 are made variable so that the inclination angle θ can be adjusted by the spring angle adjusting mechanism 20 described in detail later. Composed. On the other hand, the upper mounting normal line Ldu2 and the lower mounting normal line Ldd2 of the vibration isolating leaf spring 18 are fixed.

接続体15の下端には上方へ伸びる圧電駆動体D1の下端が接続固定され、圧電駆動体D1の上端は連結板Cnの前端に接続固定されている。また、接続体16の下端には上方へ伸びる圧電駆動体D2の下端が接続固定され、圧電駆動体D2の上端は連結板Cnの後端に接続固定されている。したがって、連結板Cnは搬送方向Fに沿って伸び、その前後の一対の圧電駆動体D1とD2の上端同士を連結する。連結板Cnの下部には錘ブロックCwが固定されている。連結板Cnと錘ブロックCwは上記の連結部材に相当するものであり、本実施形態では全体として一対の圧電駆動体D1、D2の搬送体とは反対端に接続された慣性質量体(カウンターウエイト)を構成する。この慣性質量体は、第1のトラフ1F及びこれに搭載される搬送体の合計質量とほぼ等しい質量を有し、防振用板ばね17,18を介して基台19側へ漏出する振動エネルギーを低減する。   The lower end of the piezoelectric driving body D1 extending upward is connected and fixed to the lower end of the connection body 15, and the upper end of the piezoelectric driving body D1 is connected and fixed to the front end of the connecting plate Cn. The lower end of the piezoelectric driving body D2 extending upward is connected and fixed to the lower end of the connection body 16, and the upper end of the piezoelectric driving body D2 is connected and fixed to the rear end of the connecting plate Cn. Therefore, the connecting plate Cn extends along the transport direction F, and connects the upper ends of the pair of piezoelectric driving bodies D1 and D2 before and after the connecting plate Cn. A weight block Cw is fixed to the lower part of the connecting plate Cn. The connection plate Cn and the weight block Cw correspond to the above-described connection members. In this embodiment, the inertia mass body (counterweight) connected to the opposite end of the pair of piezoelectric drive bodies D1 and D2 as a whole in this embodiment. ). This inertia mass body has a mass substantially equal to the total mass of the first trough 1F and the transport body mounted on the first trough 1F, and the vibration energy leaks to the base 19 side via the vibration isolating leaf springs 17 and 18. Reduce.

圧電駆動体D1、D2は、板ばね状の弾性基板と、この基板の表面に積層された圧電層とからなる圧電素子を含み、上記圧電層の表裏に交番電圧を印加することによって振動方向Fvにほぼ沿った方向に撓み変形する。図示例では圧電駆動体D1,D2は圧電素子のみで構成されるが、圧電素子に対して直列に板ばねを接続したものであってもよい。圧電駆動体D1、D2が圧電素子のみで構成されたものである場合と板ばねを直列に接続したものである場合のいずれにおいても、圧電駆動体D1,D2は上述の振動系内においては一つの板ばねとして機能する。また、図示例では、圧電駆動体D1,D2は弾性基板の両面に圧電体が積層されたバイモルフタイプとなっている。圧電駆動体D1、D2は全体として板状に構成され、搬送方向F,Bとほぼ直交する姿勢で取り付けられるが、特に、搬送方向Fが供給方向である場合には、当該搬送方向Fと振動方向Fvとの間の中間方位を向いた法線を有する姿勢で取り付けられることが好ましい。   The piezoelectric driving bodies D1 and D2 include a piezoelectric element composed of a leaf spring-like elastic substrate and a piezoelectric layer laminated on the surface of the substrate. By applying an alternating voltage to the front and back of the piezoelectric layer, the vibration direction Fv Deflection and deformation in a direction substantially along In the illustrated example, the piezoelectric driving bodies D1 and D2 are composed of only piezoelectric elements. However, a plate spring connected in series to the piezoelectric elements may be used. In both cases where the piezoelectric driving bodies D1 and D2 are composed only of piezoelectric elements and in which the leaf springs are connected in series, the piezoelectric driving bodies D1 and D2 are one in the above vibration system. Acts as two leaf springs. In the illustrated example, the piezoelectric driving bodies D1 and D2 are of a bimorph type in which piezoelectric bodies are laminated on both surfaces of an elastic substrate. The piezoelectric driving bodies D1 and D2 are formed in a plate shape as a whole, and are attached in a posture substantially orthogonal to the transport directions F and B. In particular, when the transport direction F is the supply direction, the vibration and the transport direction F are vibrated. It is preferable to attach with the attitude | position which has the normal line which faced the intermediate direction between the direction Fv.

基台19には左右両側に配置される側面被覆板Sx(図1には二点鎖線で示す。),Syが取り付けられる。側面被覆板Sx,Syはそれぞれ基台19から上方へ伸びて、連結板Cnの側方、好ましくは第1のトラフ1F及び第2のトラフ1Bの下部近傍までの範囲を左右の側方から覆っている。また、左右の側方の少なくともいずれか一方側、図示例では左側面側に支持固定部材30が取り付けられる。この支持固定部材30は、接続体15を固定する上記の支持固定手段を構成する。図示例では、支持固定部材30は側面被覆板Sxを跨ぐように外側から基台19の側部と連結板Cnの側部に取り付け固定される。このように取付固定された状態では、支持固定部材30は、結果として接続体15の位置を固定するように作用する。図示例では、連結板Cnの側部に中央のねじ穴Cna、前後両側の凹穴Cnbが設けられ、基台19の側部にも中央のねじ穴19a、前後両側の凹穴19bが設けられる。一方、支持固定部材30の内面上には上部及び下部のそれぞれに上記ねじ穴Cna,19aに対応するボルトを挿通可能な貫通孔と、上記凹穴Cnb、19bにそれぞれ対応する嵌合突起とが形成される。支持固定部材30は当該嵌合突起を上記凹穴Cnb、19bに嵌入した状態でボルト31を上下の貫通孔からそれぞれ上記ねじ穴Cna、10aにねじ込むことによって取り付けられる。この支持固定部材30の取り付けによって、防振用板ばね17が接続される接続体15の位置が固定されるので、防振用板ばね17を移動させたり取り外したりしても搬送体の姿勢や高さが不変となる。なお、支持固定部材30は最終的に搬送体の姿勢や高さを維持するためのものであるから、結果として接続体15の位置が固定される態様であればよく、例えば、接続体15そのものを基台19に対して固定する構造、第1のトラフ1Fや搬送体そのものを基台19に対して固定する構造であってもよい。   Side support plates Sx (shown by a two-dot chain line in FIG. 1) and Sy are attached to the base 19 on both the left and right sides. The side surface covering plates Sx and Sy extend upward from the base 19, respectively, and cover the side of the connecting plate Cn, preferably the vicinity of the lower portions of the first trough 1F and the second trough 1B from the left and right sides. ing. Further, the support fixing member 30 is attached to at least one of the left and right sides, that is, the left side in the illustrated example. The support fixing member 30 constitutes the support fixing means for fixing the connection body 15. In the illustrated example, the support fixing member 30 is attached and fixed to the side portion of the base 19 and the side portion of the connecting plate Cn from the outside so as to straddle the side surface covering plate Sx. In the state of being attached and fixed in this manner, the support fixing member 30 acts to fix the position of the connection body 15 as a result. In the illustrated example, a central screw hole Cna and front and rear concave holes Cnb are provided on the side of the connecting plate Cn, and a central screw hole 19a and front and rear concave holes 19b are also provided on the side of the base 19. . On the other hand, on the inner surface of the support fixing member 30, there are through holes through which bolts corresponding to the screw holes Cna and 19a can be inserted, and fitting protrusions corresponding to the concave holes Cnb and 19b, respectively. It is formed. The support fixing member 30 is attached by screwing the bolt 31 from the upper and lower through holes into the screw holes Cna and 10a in a state where the fitting protrusion is inserted into the concave holes Cnb and 19b. By attaching the support fixing member 30, the position of the connection body 15 to which the vibration isolating leaf spring 17 is connected is fixed. Therefore, even if the vibration isolating leaf spring 17 is moved or removed, the posture of the transport body or Height remains unchanged. In addition, since the support fixing member 30 is for maintaining the posture and height of the transport body in the end, it is sufficient that the position of the connection body 15 is fixed as a result, for example, the connection body 15 itself. May be fixed to the base 19, or the first trough 1 </ b> F or the transport body itself may be fixed to the base 19.

支持固定部材30が取り付けられる側面の前端下部には側枠22が基台19に取り付けられている。この側枠22の外面上には、図8に示すように、ダイヤル式の操作部22aと、この操作部22aに対応する目盛を有することによって防振用板ばね17の傾斜角度θを既定の方法で表示する表示部22bとが設けられている。図示例では、上記操作部22aは凸曲面状の回転軸頭部に形成された直線上の凹溝により構成される。また、上記表示部22bは操作部22aが形成された回転軸頭部の周囲に形成される目盛で構成され、操作部22aが指示する目盛位置が後述する防振用板ばねの傾斜角度に対応するようになっている。   A side frame 22 is attached to the base 19 at the lower part of the front end of the side surface to which the support fixing member 30 is attached. On the outer surface of the side frame 22, as shown in FIG. 8, a dial-type operation unit 22 a and a scale corresponding to the operation unit 22 a have a predetermined inclination angle θ of the anti-vibration leaf spring 17. A display unit 22b for displaying by a method is provided. In the illustrated example, the operation portion 22a is constituted by a straight groove formed on a convex curved rotary shaft head. The display portion 22b is composed of a scale formed around the rotary shaft head where the operation portion 22a is formed, and the scale position indicated by the operation portion 22a corresponds to the inclination angle of the vibration-proof leaf spring described later. It is supposed to be.

本実施形態の振動式搬送装置においては、図3に示すように、第1のトラフ1F,1Bと、駆動用板ばね11〜13と、接続体15,16と、圧電駆動体D1,D2と、連結部材Cn,Cwは、防振用板ばね17,18によって弾性支持された振動体構造を構成する。より具体的に述べると、本実施形態では、連結部材Cn,Cwが慣性質量体として作用することにより、搬送方向Fの前方において、駆動用板ばね11、接続体15、圧電駆動体D1からなる駆動振動系が構成され、搬送方向Fの後方において、駆動用板ばね12、接続体16、圧電駆動体D2からなる駆動振動系が構成される。本実施形態では、接続体15と16が別々に設けられることにより、両駆動振動系は搬送体(第1のトラフ1F)に対する作用としては実質的に独立した振動系とみなすことができる場合がある。   In the vibration type conveying apparatus of the present embodiment, as shown in FIG. 3, the first troughs 1F and 1B, the driving leaf springs 11 to 13, the connecting bodies 15 and 16, the piezoelectric driving bodies D1 and D2, The connecting members Cn and Cw constitute a vibrating body structure that is elastically supported by the vibration-proof plate springs 17 and 18. More specifically, in the present embodiment, the connecting members Cn and Cw act as an inertial mass body, so that the driving plate spring 11, the connection body 15, and the piezoelectric driving body D1 are formed in front of the conveyance direction F. A drive vibration system is configured, and behind the transport direction F, a drive vibration system including the drive leaf spring 12, the connection body 16, and the piezoelectric drive body D2 is formed. In the present embodiment, since the connecting bodies 15 and 16 are separately provided, the two drive vibration systems may be regarded as a vibration system that is substantially independent as an action on the transport body (first trough 1F). is there.

次に、図9乃至図12を参照してばね角調整機構20について説明する。上記の振動系は、通常は、圧電駆動体D1,D2によって起振力を与えられて圧電駆動体D1,D2内に配置される振動中心の周りに回動する態様で実質的に振動する。しかしながら、厳密な意味での振動中心は搬送方向Fの前後の一対の駆動振動系全体の構成や防振用板ばね17,18の弾性支持特性、さらには搬送方向Fの前後の駆動振動系のバランスや両振動系の間に配置される連結部材(慣性質量体)Cn,Cwの大きさや剛性などにも影響を受けるため、正確な場所を特定することは困難である。そこで、ばね角調整機構20では、図9に示すように、防振用板ばね17から見て実際の振動中心が存在する側にあると想定される仮想中心点O1を設定し、仮想中心点O1の周りに防振用板ばね17を回動可能に構成し、この回動によって防振用板ばね17の搬送方向Fに向けた傾斜角度θを調整できるように構成している。本実施形態では、仮想中心点O1は、防振用板ばね17の各部よりも実際の振動中心に近い位置(ほぼ振動中心と考えられる位置)に設定されている。   Next, the spring angle adjusting mechanism 20 will be described with reference to FIGS. Usually, the vibration system substantially vibrates in such a manner that it is rotated around a vibration center disposed in the piezoelectric driving bodies D1 and D2 by being given a vibration generating force by the piezoelectric driving bodies D1 and D2. However, in the strict sense, the vibration center includes the entire configuration of the pair of driving vibration systems before and after the conveyance direction F, the elastic support characteristics of the vibration damping leaf springs 17 and 18, and the driving vibration system before and after the conveyance direction F. It is difficult to specify an accurate location because it is affected by the size and rigidity of the connecting members (inertial mass bodies) Cn and Cw disposed between the balance and the two vibration systems. Therefore, as shown in FIG. 9, the spring angle adjusting mechanism 20 sets a virtual center point O1 that is assumed to be on the side where the actual vibration center exists as viewed from the vibration-proof leaf spring 17, and the virtual center point is set. An anti-vibration leaf spring 17 is configured to be rotatable around O1, and an inclination angle θ of the anti-vibration leaf spring 17 in the conveying direction F can be adjusted by this rotation. In the present embodiment, the virtual center point O <b> 1 is set at a position closer to the actual vibration center than the respective portions of the vibration-damping leaf spring 17 (position considered to be substantially the vibration center).

図9に示すように、接続体15は、接続部材15Aと、この接続部材15Aに対して上記駆動用板ばね11を取り付けるためのスペーサやボルト等よりなる上部取付構造15Bと、上記接続部材15Aに対して上記圧電駆動体D1を取り付けるためのスペーサやボルト等よりなる下部取付構造15Cと、上記接続部材15Aに対して上記防振用板ばね17を取り付けるためのスペーサやボルト等よりなる防振ばね取付構造15Dとを有する。この防振ばね取付構造15Dによる防振用板ばね17の接続部材15aに対する接続高さは、上部取付構造15Bによる駆動用板ばね11の取付位置と、下部取付構造15Cによる圧電駆動体D1の取付位置との間になるように構成される。このような構成は、圧電駆動体D1の配置空間の確保、防振用板ばね17の搬送方向F(振動方向)のばね定数の低減、装置全体の高さの低減などに関して有利な効果をもたらす。なお、接続体16に関しても上記構成は全く同様である。   As shown in FIG. 9, the connecting body 15 includes a connecting member 15A, an upper mounting structure 15B made of spacers, bolts, and the like for mounting the driving leaf spring 11 to the connecting member 15A, and the connecting member 15A. A lower mounting structure 15C composed of a spacer, a bolt or the like for mounting the piezoelectric driving body D1, and a vibration isolation composed of a spacer, a bolt, etc. for mounting the vibration isolating leaf spring 17 to the connecting member 15A. And a spring mounting structure 15D. The connection height of the anti-vibration leaf spring 17 to the connection member 15a by the anti-vibration spring attachment structure 15D is such that the drive leaf spring 11 is attached by the upper attachment structure 15B and the piezoelectric drive body D1 is attached by the lower attachment structure 15C. Configured to be between positions. Such a configuration brings about advantageous effects with respect to securing the arrangement space of the piezoelectric driving body D1, reducing the spring constant in the conveying direction F (vibration direction) of the vibration isolating plate spring 17, reducing the overall height of the apparatus, and the like. . The above-described configuration is the same for the connection body 16 as well.

図10は防振用板ばね17を駆動用板ばね11と平行な姿勢とした場合(傾斜角度θ=3.5度、操作部22aに対応する表示部22bの値が1)の防振用板ばね17の取付構造を示す部分断面図である。防振用板ばね17の上端は、ばね角調整機構20の一部を構成する接続体15の上記防振ばね取付構造15Dに接続固定される。防振ばね取付構造15Dは、接続部材15Aに設けられた上記仮想中心点O1と同軸に構成された円弧状部15aを含む。この円弧状部15aの内外両面には、それぞれ上記仮想中心点O1と同軸に形成された円弧状の摺接面が形成されている。また、防振ばね取付構造Dは、円弧状部15aの内外両面にそれぞれ摺接する摺接面を備えたスペーサである内側保持部材15b及び外側保持部材15cをボルト等によって解除可能に保持する構造を有する。ここで、防振ばね取付構造15Dには、円弧状部15aの円弧状の内外両側の摺接面と内側保持部材15bの外面上の摺接面及び外側保持部材15cの内面上の摺接面とによって構成される第1の摺接部と、円弧状部15a及び内側保持部材15bの貫通孔並びに外側保持部材15cのねじ穴とボルト等によって構成される第1の保持構造とが設けられる。ここで、第1の保持構造のボルト等を締め付けることによって防振用板ばね17が接続部材15Aに固定され、第1の保持構造のボルト等を緩めることによって防振用板ばね17を第1の摺接部に沿って仮想中心点O1の周りに回動させることができるように構成される。   FIG. 10 shows a vibration isolating plate spring 17 in a posture parallel to the driving leaf spring 11 (inclination angle θ = 3.5 degrees, the value of the display unit 22b corresponding to the operation unit 22a is 1). 3 is a partial cross-sectional view showing a mounting structure of a leaf spring 17. FIG. The upper end of the anti-vibration leaf spring 17 is connected and fixed to the anti-vibration spring mounting structure 15 </ b> D of the connection body 15 constituting a part of the spring angle adjustment mechanism 20. The anti-vibration spring mounting structure 15D includes an arcuate portion 15a configured coaxially with the virtual center point O1 provided on the connection member 15A. Arc-shaped sliding contact surfaces formed coaxially with the virtual center point O1 are formed on both the inner and outer surfaces of the arc-shaped portion 15a. The anti-vibration spring mounting structure D has a structure for releasably holding the inner holding member 15b and the outer holding member 15c, which are spacers having sliding contact surfaces that are in sliding contact with both the inner and outer surfaces of the arcuate portion 15a. Have. Here, the anti-vibration spring mounting structure 15D includes the sliding contact surfaces on both the inner and outer sides of the arc-shaped portion 15a, the sliding contact surface on the outer surface of the inner holding member 15b, and the sliding contact surface on the inner surface of the outer holding member 15c. And a first holding structure constituted by a circular hole 15a and a through hole of the inner holding member 15b, a screw hole of the outer holding member 15c, a bolt, and the like. Here, the vibration isolating plate spring 17 is fixed to the connecting member 15A by tightening the bolt or the like of the first holding structure, and the vibration isolating plate spring 17 is removed by loosening the bolt or the like of the first holding structure. It is comprised so that it can be rotated around the virtual center point O1 along the sliding contact part.

一方、防振用板ばね17の下端は、ばね角調整機構20の一部を構成する防振ばね取付部材21に対してスペーサやボルト等よりなる防振ばね取付構造21Dにより接続固定される。この防振ばね取付部材21には、左側面側(後述する側枠22の側)へ向けて突出し、上下両側に仮想中心点O1の周りに同軸に形成された円弧状の係合面を備えた係合部21aと、ボルト等を装着するための左右両側の側面に形成されたねじ穴21bと、左側面側に開口するカム溝21cとを備えている。 On the other hand, the lower end of the anti-vibration leaf spring 17 is connected and fixed to an anti-vibration spring attachment member 21 constituting a part of the spring angle adjustment mechanism 20 by an anti-vibration spring attachment structure 21D made of a spacer, a bolt, or the like. The vibration-proof spring attachment member 21 protrudes toward the left side (the side of the later-described side frame 22), the upper and lower sides, the arcuate engagement surface formed coaxially about the virtual center O1 The provided engaging portion 21a, screw holes 21b formed on the left and right side surfaces for mounting bolts and the like, and a cam groove 21c opened on the left side surface are provided.

防振ばね取付部材21の左右両側には、基台19に取付固定された側枠22及び23が配置される。側枠22及び23には図12に示すように貫通孔22c,23cが形成され、これらの貫通孔22c,23cに挿通したボルト24を防振ばね取付部材21のねじ穴21bにねじ込むことによって防振ばね取付部材21を基台19に対して固定できるようになっている。ここで、ボルト24を介した防振ばね取付部材21と側枠22,23との間の着脱可能な固定構造は、上記第2の保持構造に相当する。また、図10に示すように、側枠22の内面上には仮想中心点O1の周りの回動方向に沿った案内溝22dが形成され、この案内溝22dに上記係合部21aが嵌合し、その円弧状の係合面が案内溝22dの内面に摺接することにより防振ばね取付部材21が上記回動方向に案内されるようになっている。この案内構造は上記第2の摺接部を構成する。さらに、防振ばね取付部材21の上記カム溝21cには、側枠22の外面上に突設された操作部22aに対して偏心するように連結固定された円柱状のカム25が嵌入し、ダイヤル式の操作部22aを回転操作するとカム25が偏心回動し、これによって防振ばね取付部材21が案内溝22dに沿って移動するように構成されている。このように、防振用板ばね17の下端に取り付け固定された防振ばね取付部材21は、基台19に固定された側枠22の案内溝22dによって仮想中心点O1の周りに回動するように案内されるため、防振用板ばね17を回動させても駆動振動系の姿勢や高さは基本的に維持される。   Side frames 22 and 23 attached and fixed to the base 19 are arranged on both the left and right sides of the vibration-proof spring mounting member 21. As shown in FIG. 12, the side frames 22 and 23 are formed with through holes 22c and 23c, and the bolts 24 inserted into the through holes 22c and 23c are screwed into the screw holes 21b of the vibration-proof spring mounting member 21, thereby preventing the side frames 22 and 23. The vibration spring mounting member 21 can be fixed to the base 19. Here, the detachable fixing structure between the anti-vibration spring mounting member 21 and the side frames 22 and 23 via the bolts 24 corresponds to the second holding structure. Further, as shown in FIG. 10, a guide groove 22d is formed on the inner surface of the side frame 22 along the rotation direction around the virtual center point O1, and the engaging portion 21a is fitted into the guide groove 22d. The arcuate engagement surface is in sliding contact with the inner surface of the guide groove 22d, so that the anti-vibration spring mounting member 21 is guided in the rotational direction. This guide structure constitutes the second sliding contact portion. Furthermore, the cam groove 21c of the vibration-proof spring mounting member 21 is fitted with a columnar cam 25 that is connected and fixed so as to be eccentric with respect to the operation portion 22a protruding on the outer surface of the side frame 22. When the dial-type operation unit 22a is rotated, the cam 25 is eccentrically rotated, whereby the anti-vibration spring mounting member 21 is moved along the guide groove 22d. In this way, the vibration isolation spring mounting member 21 mounted and fixed to the lower end of the vibration isolation leaf spring 17 rotates around the virtual center point O1 by the guide groove 22d of the side frame 22 fixed to the base 19. Therefore, even if the vibration-proof plate spring 17 is rotated, the posture and height of the drive vibration system are basically maintained.

次に、上述のように構成されたばね角調整機構20を用いた防振用板ばね17の傾斜角度θの調整方法及び各部の動作について説明する。まず、防振用板ばね17の傾斜角度θの調整を開始するに先立ち、第1のトラフ1F(搬送体)の姿勢及び高さを維持するために、支持固定部材30を連結板Cnの側部と基台19の側部に取り付け固定する。これによって、防振用板ばね17の上記防振ばね取付構造15Dと防振ばね取付部材21及び側枠22,23による保持固定状態を解除しても、接続体15が固定されているためにその位置は不変となり、第1のトラフ1Fや第2のトラフ1Bに搭載する図示しない搬送体の姿勢や高さが変化することはなくなる。   Next, a method for adjusting the inclination angle θ of the vibration isolating leaf spring 17 using the spring angle adjusting mechanism 20 configured as described above and the operation of each part will be described. First, prior to starting the adjustment of the inclination angle θ of the vibration isolating plate spring 17, in order to maintain the posture and height of the first trough 1F (conveyance body), the support fixing member 30 is moved to the side of the connecting plate Cn. And fixed to the side of the base 19. As a result, the connection body 15 is fixed even when the holding and fixing state of the anti-vibration spring mounting structure 15D of the anti-vibration leaf spring 17, the anti-vibration spring mounting member 21 and the side frames 22 and 23 is released. The position does not change, and the posture and height of a carrier (not shown) mounted on the first trough 1F and the second trough 1B are not changed.

次に、ボルトを緩めること等によって上記防振ばね取付構造15Dを解放し、また、ボルト24を緩めることによって防振ばね取付部材21と側枠22,23との固定構造を解放することにより、上記第1の保持構造及び上記第2の保持構造を解除して防振用板ばね17を可動にする。このようにすると、防振用板ばね17の上端は、防振ばね取付構造15Dの円弧状部15aと内側保持部材15b及び外側保持部材15cにより構成される第1の摺接部によって仮想中心点O1の周りを回動可能に案内され、防振用板ばね17の下端は、防振ばね取付部材21の係合部21aと側枠22の案内溝22dにより構成される第2の摺接部によって仮想中心点O1の周りを回動可能に案内された状態となる。   Next, the anti-vibration spring mounting structure 15D is released by loosening a bolt or the like, and the fixing structure between the anti-vibration spring attachment member 21 and the side frames 22 and 23 is released by loosening the bolt 24. The first holding structure and the second holding structure are released to make the vibration-proof leaf spring 17 movable. In this way, the upper end of the anti-vibration leaf spring 17 has an imaginary center point by the first sliding contact portion constituted by the arcuate portion 15a of the anti-vibration spring mounting structure 15D, the inner holding member 15b, and the outer holding member 15c. A second sliding contact portion that is guided so as to be pivotable around O1 and that has a lower end of the vibration isolating leaf spring 17 constituted by an engaging portion 21a of the vibration isolating spring mounting member 21 and a guide groove 22d of the side frame 22. As a result, the center of the virtual center point O1 is guided to be rotatable.

この状態で、側枠22の外面上の操作部22aを回転操作すると、カム25の偏心回転によって第2の摺接部のカム溝21cを介して防振ばね取付部材21が上述のように案内されながら回動し、これに従って防振ばね取付構造15Dも第1の摺接部によって上述のように案内されながら回動するので、防振ばね取付部材21に固定された防振用板ばね17は仮想中心点O1の周りを回動する。したがって、図9に示す防振用板ばね17の傾斜角度θが操作部22aの回転操作に応じて変化する。例えば、図10に示す基準状態から、図9及び図11に示す状態に変化させることができる。ここで、防振用板ばね17の傾斜角度θは、少なくとも±1.5度の範囲内で調整可能であることが好ましく、特に、少なくとも±3.0度の範囲内で調整可能とすることが望ましい。また、傾斜角度θが2.5〜3.5度程度を標準値とし、これに対して増減いずれの方向にも調整可能とすることが好ましい。さらに、上記傾斜角度θと所定の対応関係となるように適宜に設定された目盛を設けることが望ましい。図示例の表示部22bでは、防振用板ばね17が駆動用板ばね11と平行な姿勢となる図10に示す基準状態を0とし、この基準状態から防振用板ばね17が図示のように水平方向に向けて傾斜角度θを増大させていく方向に正の値を取る、角度変化量(単位=度)を示す目盛1〜6が設けられている。なお、図1乃至図8は、操作部22aが表示部22bの目盛6を示す状態を表している。また、上記標準値を目盛0とし、この標準値からプラスマイナス両方向にそれぞれ目盛を表示するようにしてもよい。   In this state, when the operation portion 22a on the outer surface of the side frame 22 is rotated, the anti-vibration spring mounting member 21 is guided as described above through the cam groove 21c of the second sliding contact portion by the eccentric rotation of the cam 25. Accordingly, the anti-vibration spring mounting structure 15D also rotates while being guided by the first sliding contact portion as described above, so that the anti-vibration leaf spring 17 fixed to the anti-vibration spring attachment member 21 is rotated. Rotates around the virtual center point O1. Therefore, the inclination angle θ of the vibration isolating leaf spring 17 shown in FIG. 9 changes according to the rotation operation of the operation portion 22a. For example, the reference state shown in FIG. 10 can be changed to the state shown in FIGS. Here, the inclination angle θ of the vibration-proof leaf spring 17 is preferably adjustable within a range of at least ± 1.5 degrees, and in particular, adjustable within a range of at least ± 3.0 degrees. Is desirable. In addition, it is preferable that the inclination angle θ is about 2.5 to 3.5 degrees as a standard value, and can be adjusted in either direction of increase or decrease. Furthermore, it is desirable to provide a scale appropriately set so as to have a predetermined correspondence with the tilt angle θ. In the illustrated display portion 22b, the reference state shown in FIG. 10 in which the vibration isolating plate spring 17 is parallel to the driving plate spring 11 is set to 0. From this reference state, the vibration isolating plate spring 17 is shown in the drawing. Are provided with scales 1 to 6 indicating the amount of change in angle (unit = degree), which takes a positive value in the direction of increasing the inclination angle θ in the horizontal direction. 1 to 8 show a state in which the operation unit 22a indicates the scale 6 of the display unit 22b. Further, the standard value may be set to 0, and the scale may be displayed in both plus and minus directions from the standard value.

上記のようにして操作部22aに対する操作が行われ、防振用板ばね17の姿勢が所望の傾斜角度θとなるように変更されると、上記防振ばね取付構造15Dのボルトと側枠22の外面上のボルト24をそれぞれ締め付けて防振用板ばね17の上端と下端(防振ばね取付部材21)を固定する。そして、最後に上記支持固定部材30を連結板Cnと基台19から取り外す。   When the operation portion 22a is operated as described above and the posture of the vibration isolating leaf spring 17 is changed to the desired inclination angle θ, the bolt and the side frame 22 of the vibration isolating spring mounting structure 15D are arranged. The upper end and the lower end (anti-vibration spring mounting member 21) of the anti-vibration leaf spring 17 are fixed by tightening the bolts 24 on the outer surface of the anti-vibration plate 17 respectively. Finally, the support fixing member 30 is removed from the connecting plate Cn and the base 19.

以上のようにして、防振用板ばね17の傾斜角度θが調整されると、次のように搬送体の搬送方向に沿った搬送態様を変化させることができる。図13は、本実施形態の振動式搬送装置10の全体構成を模式的に示す説明図である。ここで、第1のトラフ1Fには搬送体10Fが搭載されているものとする。図13に示すように、本実施形態では、基準状態(傾斜角度θ=3.5度)の防振用板ばね17を調整して傾斜角度θを増大させた防振用板ばね17′とすることができる。ここで、基準状態の防振用板ばね17が接続体15に与える弾性支持特性は、駆動用板ばね11及び防振用板ばね17と直交する方向のばね定数Saが最小となり、駆動用板ばね11及び防振用板ばね17と平行な方向のばね定数Sbが最大となる。このため、圧電駆動体D1の起振力によって生ずる振動は最小のばね定数Saで実質的に弾性支持された接続体15を介して駆動用板ばね11に伝達されるので、搬送体10Fは駆動用板ばね11の傾斜角度と直交する振動方向Fvで効率的に振動する。   As described above, when the inclination angle θ of the vibration-proof plate spring 17 is adjusted, the conveyance mode along the conveyance direction of the conveyance body can be changed as follows. FIG. 13 is an explanatory diagram schematically showing the overall configuration of the vibratory transfer apparatus 10 of the present embodiment. Here, it is assumed that the transport body 10F is mounted on the first trough 1F. As shown in FIG. 13, in the present embodiment, the anti-vibration leaf spring 17 ′ having the inclination angle θ increased by adjusting the anti-vibration leaf spring 17 in the reference state (inclination angle θ = 3.5 degrees) can do. Here, the elastic support characteristic given to the connection body 15 by the vibration isolating plate spring 17 in the standard state has a minimum spring constant Sa in a direction orthogonal to the driving plate spring 11 and the anti-vibration leaf spring 17, and the driving plate. The spring constant Sb in the direction parallel to the spring 11 and the vibration isolating plate spring 17 is maximized. For this reason, the vibration generated by the vibration force of the piezoelectric driving body D1 is transmitted to the driving leaf spring 11 through the connection body 15 that is substantially elastically supported with the minimum spring constant Sa, so that the transport body 10F is driven. It vibrates efficiently in the vibration direction Fv perpendicular to the inclination angle of the plate spring 11.

これに対して、傾斜角度θが増大すると、防振用板ばね17が接続体15に与える弾性支持特性は、最小のばね定数Sa′を有する向きが基準状態のSaに比べて搬送方向Fの前方へ向けてより上向きにずれるため、圧電駆動体D1によって駆動される接続体15は基準状態に比べてやや上向きに振動し、その振幅もやや小さくなる。したがって、搬送体10Fの振動方向Fv′も基準状態の振動方向Fvに比べてやや上向きに変化し、振幅も小さくなるため、搬送物Wの搬送速度は低下する。また、一般的に言えば、防振用板ばね17の傾斜角度θを増減させることによって、当該防振用板ばね17に対応する圧電駆動体1D、接続体15及び駆動用板ばね11からなる駆動振動系によって与えられる振動方向Fv及びその振幅を変化させることができるため、搬送速度その他の搬送状態(搬送物Wの搬送時の姿勢安定性など)を調整することができる。   On the other hand, when the inclination angle θ increases, the elastic support characteristic that the vibration isolating leaf spring 17 gives to the connection body 15 is such that the direction having the minimum spring constant Sa ′ is in the transport direction F compared to Sa in the reference state. Since the displacement is further upwards toward the front, the connection body 15 driven by the piezoelectric driving body D1 vibrates slightly upward compared to the reference state, and its amplitude is also slightly smaller. Accordingly, the vibration direction Fv ′ of the transport body 10F also changes slightly upward as compared with the vibration direction Fv in the reference state, and the amplitude becomes small, so that the transport speed of the transport object W decreases. Further, generally speaking, by increasing or decreasing the inclination angle θ of the vibration isolating plate spring 17, the piezoelectric drive body 1 </ b> D, the connecting body 15, and the driving plate spring 11 corresponding to the vibration isolating plate spring 17 are formed. Since the vibration direction Fv given by the drive vibration system and the amplitude thereof can be changed, the conveyance speed and other conveyance states (such as posture stability during conveyance of the conveyance object W) can be adjusted.

本実施形態では、上述のように搬送方向Fの前方の駆動振動系においては振動方向Fvを防振用板ばね17の傾斜角度θによって調整することができる。一方、圧電駆動体D2、接続体16及び駆動用板ばね12からなる搬送方向Fの後方にある駆動振動系は上記前方の駆動振動系とは連結板Cn及び錘ブロックCwを介して接続されているため、振動の位相は同期しているものの、振動方向と振幅については実質的に独立して搬送体10Fに作用する。このため、接続体16を弾性支持する防振用板ばね18の傾斜角度θが変化しなければ、搬送体10Fの搬送方向Fの後方部分は依然として基準状態の振動方向Fv及び振幅によって振動することになる。したがって、上述のように搬送体10Fの後方部分上に配置される搬送物Wの搬送状態は、搬送体10Fの前方部分とは異なる搬送状態となる。例えば、上述の例では搬送体10Fの後方部分では搬送速度が速く、前方部分では搬送速度が遅くなる。なお、搬送方向Fの前後の駆動振動系の独立性は、連結板Cnで圧電駆動体D1とD2を接続しただけでも得られるが、図示例のように錘ブロックCwを接続するなどの方法で、圧電駆動体D1,D2の他端側の慣性質量を大きくするほど高められる。   In the present embodiment, the vibration direction Fv can be adjusted by the inclination angle θ of the vibration-proof leaf spring 17 in the drive vibration system in the front in the transport direction F as described above. On the other hand, the driving vibration system behind the conveyance direction F, which is composed of the piezoelectric driving body D2, the connection body 16, and the driving leaf spring 12, is connected to the front driving vibration system via the connecting plate Cn and the weight block Cw. Therefore, although the vibration phase is synchronized, the vibration direction and amplitude act on the carrier 10F substantially independently. For this reason, if the inclination angle θ of the vibration isolating leaf spring 18 that elastically supports the connection body 16 does not change, the rear portion of the transport body 10F in the transport direction F still vibrates according to the vibration direction Fv and amplitude in the reference state. become. Therefore, as described above, the transport state of the transport object W arranged on the rear portion of the transport body 10F is a transport state different from the front portion of the transport body 10F. For example, in the above example, the conveyance speed is high in the rear part of the conveyance body 10F, and the conveyance speed is low in the front part. The independence of the driving vibration system before and after the conveying direction F can be obtained only by connecting the piezoelectric driving bodies D1 and D2 with the connecting plate Cn, but by a method such as connecting the weight block Cw as in the illustrated example. The higher the inertial mass on the other end side of the piezoelectric driving bodies D1 and D2, the higher the value.

本実施形態では、防振用板ばね17の傾斜角度θは、通常は圧電駆動体D1の内部に設定される振動中心の側にある仮想中心点O1の周りに防振用板ばね17が回動されることで変更されるため、仮想中心点O1から見た防振用板ばね17の方位は変化するものの、仮想中心点O1から見た防振用板ばね17の姿勢そのものは変化しない。このため、防振用板ばね17の傾斜角度θの変化は、駆動用板ばね11と防振用板ばね17の接続角度の変化に起因する振動態様の変化をもたらし、仮想中心点O1の周りの接続体15の振動の角度範囲(振動の向き)を変化させるが、仮想中心点O1の周りの振動そのものに対しては影響を与えにくい。したがって、傾斜角度θを調整する場合でも、その角度範囲が小さければ、振動中心の位置ずれや圧電駆動体D1に対する負荷態様の変動を抑制することができる。また、同様の理由により、共振周波数の変動や駆動振動系の振動態様の不安定化を回避することが可能になる。なお、仮想中心点O1は実際の振動中心にほぼ一致することが望ましいが、完全に一致しなくても、仮想中心点O1が防振用板ばね17の各部よりも振動中心に近い位置にあれば同等の効果を得ることができる。   In this embodiment, the inclination angle θ of the vibration isolating leaf spring 17 is set so that the vibration isolating leaf spring 17 rotates around the virtual center point O1 on the vibration center side which is normally set inside the piezoelectric driving body D1. Since it is changed by being moved, the orientation of the vibration isolation leaf spring 17 viewed from the virtual center point O1 changes, but the posture of the vibration isolation leaf spring 17 viewed from the virtual center point O1 does not change. For this reason, the change in the inclination angle θ of the vibration isolating plate spring 17 brings about a change in the vibration mode caused by the change in the connection angle between the driving plate spring 11 and the vibration isolating plate spring 17, and the surroundings of the virtual center point O 1. The angle range (vibration direction) of the connection body 15 is changed, but the vibration around the virtual center point O1 is hardly affected. Therefore, even when the inclination angle θ is adjusted, if the angle range is small, it is possible to suppress the displacement of the vibration center and the variation of the load mode with respect to the piezoelectric driving body D1. For the same reason, it is possible to avoid fluctuations in the resonance frequency and instability of the vibration mode of the drive vibration system. Although it is desirable that the virtual center point O1 substantially coincides with the actual vibration center, the virtual center point O1 may be closer to the vibration center than each part of the vibration isolating leaf spring 17 even if it does not completely coincide. Equivalent effects can be obtained.

上記のように搬送体10Fの前後で搬送速度を変えることは以下のような場合に有効となる。例えば、図13に示すように搬送体10Fの下流側に検査装置などの他の供給先装置50が配置される場合において、当該供給先装置50の搬送物Wに対する処理能力を最大限に発揮させるためには搬送体10F上の搬送物Wの搬送速度を上記処理能力に対応する処理速度より大きく設定する必要がある。これは、搬送姿勢が不適切であったり構造上の不良があったりする搬送物Wを搬送路上から取り除くようになっている場合(本実施形態では搬送体10Fの供給用の搬送路から隣接する搬送体の回収用の搬送路に一部の搬送物Wを排出するように構成される。)は、上記処理能力にほぼ対応する搬送速度で搬送物Wを搬送していくと、一部の搬送物Wが排除されることにより実質的な供給量が不足して供給先装置50の処理能力を十分に活用できなくなるからである。しかしながら、このように搬送体10Fの搬送速度を上記処理速度より大きく設定すると、図13に示すように、搬送体10Fの装置50との間で受け渡しを行う搬送方向Fの前端(供給端)の付近では搬送物Wが滞留することになる。このような搬送物Wの滞留状態は或る程度必要であるものの、滞留状態が長引くと搬送物Wと搬送路との摩擦や搬送物W同士の接触による損傷、汚染などを招く可能性がある。そこで、上流側(搬送方向Fの後方部分)では搬送速度を高くし、下流側(搬送方向Fの前方部分)では搬送速度を低くすることによって、各搬送物Wの実質的な滞留時間が短縮されるとともに、供給端の近傍における搬送物Wに与える搬送エネルギー自体を軽減することで、搬送物Wの損傷や汚染の程度を低減することができる。   Changing the transport speed before and after the transport body 10F as described above is effective in the following cases. For example, when another supply destination device 50 such as an inspection device is disposed downstream of the transport body 10F as shown in FIG. 13, the processing capability of the supply destination device 50 for the transported object W is maximized. Therefore, it is necessary to set the transport speed of the transported object W on the transport body 10F to be larger than the processing speed corresponding to the processing capacity. This is because the transported object W with an inappropriate transport posture or structural defect is removed from the transport path (in this embodiment, adjacent to the transport path for supplying the transport body 10F). Configured to discharge a part of the transported object W to the transport path for collecting the transported body.) When the transported object W is transported at a transport speed substantially corresponding to the processing capability, This is because by eliminating the conveyed product W, a substantial supply amount is insufficient and the processing capability of the supply destination apparatus 50 cannot be fully utilized. However, when the transport speed of the transport body 10F is set to be higher than the processing speed in this way, as shown in FIG. 13, the front end (supply end) in the transport direction F in which transfer is performed with the apparatus 50 of the transport body 10F. In the vicinity, the conveyed product W stays. Although such a staying state of the transported object W is necessary to some extent, if the staying state is prolonged, there is a possibility that the friction between the transported object W and the transport path, the damage due to the contact between the transported objects W, contamination, etc. may be caused. . Therefore, by increasing the conveyance speed on the upstream side (the rear portion in the conveyance direction F) and decreasing the conveyance speed on the downstream side (the front portion in the conveyance direction F), the substantial residence time of each conveyance object W is shortened. In addition, by reducing the conveyance energy itself given to the conveyed product W in the vicinity of the supply end, the degree of damage and contamination of the conveyed product W can be reduced.

本実施形態では、上述とは逆に、搬送体10Fの搬送方向Fの後方部分から前方部分へ向けて搬送速度を増大させるようにばね角調整機構20によって制御することも可能であり、また、搬送体10Fの全長に亘って均一な搬送速度が得られるようにするために、ばね角調整機構20を用いることも可能である。   In the present embodiment, contrary to the above, it is also possible to control by the spring angle adjustment mechanism 20 so as to increase the conveyance speed from the rear part to the front part in the conveyance direction F of the conveyance body 10F. In order to obtain a uniform conveyance speed over the entire length of the conveyance body 10F, the spring angle adjusting mechanism 20 can be used.

なお、本実施形態の場合には第2のトラフ1Bも接続体15に対して駆動用板ばね13を介して接続されているため、ばね角調整機構20によって、第2のトラフ1Bに搭載される図示しない搬送体(例えば、搬送体10Fから排除される搬送物Wを受け取り、この搬送物Wを逆方向に搬送して上流側へ戻すための回収用搬送路を備えた搬送体)についても、搬送速度その他の搬送状態を制御することができる。ただし、この場合の搬送方向Bは上記搬送方向Fとは逆向きになるので、搬送方向に沿った搬送状態の制御態様は搬送体10Fとは逆向きの態様となる。   In the case of the present embodiment, the second trough 1B is also connected to the connection body 15 via the driving leaf spring 13, so that it is mounted on the second trough 1B by the spring angle adjusting mechanism 20. Concerning a transport body (not shown) (for example, a transport body having a recovery transport path for receiving the transport object W excluded from the transport body 10F, transporting the transport object W in the reverse direction, and returning it to the upstream side) The conveyance speed and other conveyance states can be controlled. However, since the conveyance direction B in this case is opposite to the conveyance direction F, the control state of the conveyance state along the conveyance direction is opposite to the conveyance body 10F.

図14には、防振用板ばね17の傾斜角度θを調整するためのばね角調整機構20に加えて、防振用板ばね18の傾斜角度を調整するためのばね角調整機構20′を設けた構成を示す。このように、本実施形態では、搬送方向Fの前方にある駆動振動系と、後方にある駆動振動系とが実質的に独立して搬送体10Fに作用するため、搬送方向Fの前後にそれぞればね角調整機構20、20′を設けることによって、搬送体10Fの搬送方向Fの前後にわたる搬送速度その他の搬送状態をより高精度かつ容易に制御することができる。   In FIG. 14, in addition to the spring angle adjusting mechanism 20 for adjusting the inclination angle θ of the vibration isolating plate spring 17, a spring angle adjusting mechanism 20 ′ for adjusting the inclination angle of the anti vibration isolating spring 18 is shown. The provided structure is shown. As described above, in this embodiment, the driving vibration system in front of the conveyance direction F and the driving vibration system in the rear act on the conveyance body 10F substantially independently. By providing the spring angle adjustment mechanisms 20 and 20 ', it is possible to more accurately and easily control the conveyance speed and other conveyance states across the conveyance direction F of the conveyance body 10F.

尚、本発明の振動式搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態の振動式搬送装置は供給用の搬送路を備えた搬送体と回収用の搬送路を備えた搬送体を平行に配置できる構造を有するが、供給用の搬送路を備えた搬送体のみを搭載可能な装置構成としてもよい。   Note that the vibratory conveyance device of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, the vibratory conveyance device of the above embodiment has a structure in which a conveyance body provided with a conveyance path for supply and a conveyance body equipped with a conveyance path for recovery can be arranged in parallel, but provided with a conveyance path for supply. It is good also as an apparatus structure which can mount only a conveyance body.

10…振動式搬送装置、10F…搬送体、1F…第1のトラフ、1B…第2のトラフ、11〜14…駆動用板ばね、15,16…接続体、15A…接続部材、15B…上部取付構造、15C…下部取付構造、15D…防振ばね取付構造、15a…円弧状部、15b…内側保持部材、15c…外側保持部材、17,18…防振用板ばね、19…基台、20,20′…ばね角調整機構、21…防振ばね取付部材、21D…防振ばね取付構造、21a…係合部、21b…ねじ穴、21c…カム溝、22,23…側枠、22a…操作部、22b…表示部、22c,23c…貫通孔、22d…案内溝、24…ボルト、25…カム軸、D1,D2…圧電駆動体、Cn…連結板、Cw…錘ブロック、F,B…搬送方向、Fv,Fb…振動方向、θ…傾斜角度、W…ワーク、50…供給先装置 DESCRIPTION OF SYMBOLS 10 ... Vibration type conveying apparatus, 10F ... Conveyance body, 1F ... 1st trough, 1B ... 2nd trough, 11-14 ... Leaf spring for driving, 15, 16 ... Connection body, 15A ... Connection member, 15B ... Upper part Mounting structure, 15C: Lower mounting structure, 15D: Anti-vibration spring mounting structure, 15a ... Arc-shaped portion, 15b ... Inner holding member, 15c ... Outer holding member, 17, 18 ... Anti-vibration leaf spring, 19 ... Base, 20, 20 '... Spring angle adjustment mechanism, 21 ... Anti-vibration spring attachment member, 21D ... Anti-vibration spring attachment structure, 21a ... Engagement part, 21b ... Screw hole, 21c ... Cam groove, 22, 23 ... Side frame, 22a ... operation part, 22b ... display part, 22c, 23c ... through hole, 22d ... guide groove, 24 ... bolt, 25 ... camshaft, D1, D2 ... piezoelectric drive, Cn ... connecting plate, Cw ... weight block, F, B: transport direction, Fv, Fb: vibration direction, θ: inclination angle W ... work, 50 ... supply target device

Claims (5)

搬送路を備えた搬送体と、
前記搬送体を前記搬送路の搬送方向の前後でそれぞれ支持する一対の駆動用板ばねと、
前記一対の駆動用板ばねを介して前記搬送体とそれぞれ接続され前記搬送方向の前後に配置される一対の接続体と、
前記一対の接続体にそれぞれ一端が接続され前記搬送方向の前後に配置される一対の圧電駆動体と、
前記一対の圧電駆動体の他端間を連結する連結部材と、
設置面上において前記一対の接続体をそれぞれ前記搬送方向の前後において支持する一対の防振用板ばねと、
前記搬送方向の前後のいずれか少なくとも一方の前記防振用板ばねの傾斜角度を調整可能とするばね角調整機構と、
を具備し、
前記搬送方向の前後にそれぞれ配置される、前記駆動用板ばね、前記接続体及び前記圧電駆動体からなる一対の駆動振動系は、前記圧電駆動体内に配置される振動中心の周りに回動する態様でそれぞれ振動し、
前記ばね角調整機構は、前記搬送方向の前後のいずれか少なくとも一方の前記防振用板ばねを、当該防振用板ばねに接続される前記接続体、当該接続体に接続される前記圧電駆動体及び前記駆動用板ばね、並びに、当該駆動用板ばねに接続される前記搬送体からなる前記駆動振動系の前記振動中心の側にある仮想中心点の周りの回転方向に回動可能に構成し、かつ、前記回動方向の複数の位置で保持固定可能に構成し、前記仮想中心点は、前記防振用板ばねよりも前記振動中心に近い位置に設定されることを特徴とする振動式搬送装置。
A transport body having a transport path;
A pair of drive leaf springs for supporting the transport body before and after the transport direction of the transport path;
A pair of connecting bodies respectively connected to the transport body via the pair of driving leaf springs and arranged in the front and back of the transport direction;
A pair of piezoelectric driving bodies each having one end connected to the pair of connecting bodies and arranged in front and rear in the transport direction;
A connecting member for connecting the other ends of the pair of piezoelectric driving members;
A pair of anti-vibration leaf springs for supporting the pair of connectors on the installation surface in the front-rear direction in the transport direction;
A spring angle adjustment mechanism capable of adjusting an inclination angle of at least one of the vibration-proof leaf springs before and after the conveying direction;
Equipped with,
A pair of drive vibration systems including the drive leaf spring, the connection body, and the piezoelectric drive body, which are respectively arranged before and after the conveyance direction, rotate around a vibration center disposed in the piezoelectric drive body. Each vibrate in a manner,
The spring angle adjusting mechanism is configured to connect at least one of the anti-vibration leaf springs before and after the conveying direction, the connection body connected to the anti-vibration leaf spring, and the piezoelectric drive connected to the connection body. body and the driving plate spring, and rotatably configured in the rotational direction about the imaginary center point on the side of the oscillation center of the driving vibration system consisting of the carrier which is connected to the driving plate spring vibration, and the holding fixably composed of a plurality of positions in the rotational direction, the virtual center point, characterized by Rukoto is set to a position closer to the vibration center than the vibration isolating plate spring Type conveyor.
前記ばね角調整機構は、前記接続体が固定された状態で前記防振用板ばねの傾斜角度を変更可能に構成されることを特徴とする請求項1に記載の振動式搬送装置。   The vibration type conveying apparatus according to claim 1, wherein the spring angle adjusting mechanism is configured to be able to change an inclination angle of the vibration-proof plate spring in a state where the connection body is fixed. 前記ばね角調整機構は、
前記回動方向に沿った第1の案内面により案内される前記防振用板ばねと前記接続体との間の第1の摺接部と、
前記防振用板ばねを前記接続体に対して前記回動方向に位置決め保持する第1の保持構造と、
前記回動方向に沿った第2の案内面により案内される前記防振用板ばねと前記設置面との間の第2の摺接部と、
前記防振用板ばねを前記設置面に対して前記回動方向に位置決め保持する第2の保持構造と、
を有することを特徴とする請求項1又は2に記載の振動式搬送装置。
The spring angle adjustment mechanism is
A first sliding contact portion between the anti-vibration leaf spring guided by the first guide surface along the rotation direction and the connection body;
A first holding structure for positioning and holding the anti-vibration leaf spring with respect to the connection body in the rotation direction;
A second sliding contact portion between the vibration isolating leaf spring guided by the second guide surface along the rotation direction and the installation surface;
A second holding structure for positioning and holding the vibration-proof plate spring in the rotation direction with respect to the installation surface;
The vibratory transfer device according to claim 1, wherein the vibration transfer device is provided.
前記ばね角調整機構は、前記防振用板ばねを前記回動方向に回動させるための回動操作手段と、該回動操作手段によって設定された前記防振用板ばねの傾斜角度を表示するばね角表示手段とを備えた操作表示部をさらに有することを特徴とする請求項2又は3に記載の振動式搬送装置。 The spring angle adjusting mechanism displays a rotation operation means for rotating the vibration isolation plate spring in the rotation direction, and an inclination angle of the vibration isolation plate spring set by the rotation operation means. The vibratory conveyance device according to claim 2 , further comprising an operation display unit provided with a spring angle display means. 前記一対の防振用板ばねの下端が接続される基台と、前記接続体の位置を直接若しくは間接的に前記基台に対し固定する支持固定手段さらに有することを特徴とする請求項1乃至のいずれか一項に記載の振動式搬送装置。 Claims, characterized in that it further comprises a base on which the lower end of the pair of the vibration isolating plate springs are connected, and a support fixing means for fixing the position of the connecting member to directly or indirectly the base 5. The vibratory transfer device according to any one of 1 to 4 .
JP2013040753A 2013-03-01 2013-03-01 Vibrating transfer device Active JP5739463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040753A JP5739463B2 (en) 2013-03-01 2013-03-01 Vibrating transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040753A JP5739463B2 (en) 2013-03-01 2013-03-01 Vibrating transfer device

Publications (2)

Publication Number Publication Date
JP2014169142A JP2014169142A (en) 2014-09-18
JP5739463B2 true JP5739463B2 (en) 2015-06-24

Family

ID=51691856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040753A Active JP5739463B2 (en) 2013-03-01 2013-03-01 Vibrating transfer device

Country Status (1)

Country Link
JP (1) JP5739463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009454A (en) * 2016-07-19 2018-01-29 (주) 피토 The apparatus of loading unit for electrical part and the method of controlling that
WO2022113132A1 (en) * 2020-11-30 2022-06-02 Brovind Vibratori S.P.A. System for the controlled spatial movement of a structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120575A (en) * 2013-12-24 2015-07-02 Ntn株式会社 Oscillation-type part transportation device
CA2993932C (en) * 2015-08-04 2019-02-26 Key Technology, Inc. Improved linear motion conveyor
JP7401101B2 (en) * 2020-10-28 2023-12-19 株式会社ダイシン Conveyed object alignment method and conveyed object alignment system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730210B2 (en) * 1989-09-20 1998-03-25 神鋼電機株式会社 Linear vibration feeder
JPH0977231A (en) * 1995-09-18 1997-03-25 Shinko Electric Co Ltd Oscillating straight carriage device
JP5168816B2 (en) * 2006-04-28 2013-03-27 シンフォニアテクノロジー株式会社 Parts supply device
JP4280293B2 (en) * 2007-05-01 2009-06-17 株式会社ダイシン Vibrating transfer device
JP5070651B2 (en) * 2007-12-04 2012-11-14 シンフォニアテクノロジー株式会社 Linear feeder
JP5445916B2 (en) * 2009-06-24 2014-03-19 Ntn株式会社 Vibrating parts feeder
JP2011105489A (en) * 2009-11-19 2011-06-02 Daishin:Kk Vibrating type article conveying device and parts supply system
JP5227449B2 (en) * 2011-11-02 2013-07-03 株式会社ダイシン Vibrating transfer device
JP5806203B2 (en) * 2012-12-27 2015-11-10 株式会社ダイシン Vibrating transfer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009454A (en) * 2016-07-19 2018-01-29 (주) 피토 The apparatus of loading unit for electrical part and the method of controlling that
KR101867273B1 (en) * 2016-07-19 2018-06-15 (주)피토 The apparatus of loading unit for electrical part and the method of controlling that
WO2022113132A1 (en) * 2020-11-30 2022-06-02 Brovind Vibratori S.P.A. System for the controlled spatial movement of a structure

Also Published As

Publication number Publication date
JP2014169142A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5739463B2 (en) Vibrating transfer device
KR100979318B1 (en) Vibratory transporting apparatus
JP5741993B2 (en) Parts supply device
JP2006248727A (en) Part carrying device
US20200003269A1 (en) Adjustable stiffness assembly
JP5460903B1 (en) Vibrating transfer device
KR101316490B1 (en) Parts feeder
TWI686340B (en) Linear feeder
JP5070651B2 (en) Linear feeder
TWI526378B (en) Vibrating conveyor
CN104760803A (en) Vibratory conveying apparatus
KR101498421B1 (en) Vibratory Conveying Apparatus
JP2013193813A (en) Vibration-type component transport device
TW202126559A (en) Vibration conveying device can easily adjust bumps without causing a significant increase in cost and complexity of the structure
CN105217248B (en) Vibrating type conveyer
JP5445916B2 (en) Vibrating parts feeder
TWI717495B (en) Item handling device
KR101498425B1 (en) Vibratory Conveying Apparatus
WO2015098492A1 (en) Vibration-type component-transporting device
JP2007168999A (en) Parts feeder
JPH11199026A (en) Vibrating equipment
JP6478501B2 (en) Vibrating parts conveyor
JP5864511B2 (en) Rotating vibrator and vibratory transfer device using the same
JP2021109721A (en) Vibration conveyance device
JP2015016965A (en) Vibration type part transport device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140912

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250