JP7401101B2 - Conveyed object alignment method and conveyed object alignment system - Google Patents

Conveyed object alignment method and conveyed object alignment system Download PDF

Info

Publication number
JP7401101B2
JP7401101B2 JP2020180198A JP2020180198A JP7401101B2 JP 7401101 B2 JP7401101 B2 JP 7401101B2 JP 2020180198 A JP2020180198 A JP 2020180198A JP 2020180198 A JP2020180198 A JP 2020180198A JP 7401101 B2 JP7401101 B2 JP 7401101B2
Authority
JP
Japan
Prior art keywords
conveyance
conveyed
posture
conveyance path
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020180198A
Other languages
Japanese (ja)
Other versions
JP2022071309A (en
Inventor
祐二 神戸
和紀 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2020180198A priority Critical patent/JP7401101B2/en
Priority to KR1020210115429A priority patent/KR20220056787A/en
Priority to CN202111107844.2A priority patent/CN114476597A/en
Priority to TW110135871A priority patent/TW202216566A/en
Publication of JP2022071309A publication Critical patent/JP2022071309A/en
Application granted granted Critical
Publication of JP7401101B2 publication Critical patent/JP7401101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • B65G47/28Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a single conveyor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/24Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/02Jigging conveyors comprising helical or spiral channels or conduits for elevation of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/04Load carriers other than helical or spiral channels or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • B65G47/1407Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl
    • B65G47/1414Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of at least the whole wall of the container
    • B65G47/1421Vibratory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は搬送物の整列方法及び搬送物整列システムに関する。 The present invention relates to a method for aligning conveyed objects and a conveyed object alignment system.

従来から、パーツフィーダなどの搬送装置としては、電子部品などの搬送物を既定の姿勢で整列させた状態で、検査装置、実装装置、移載装置、テーピング装置などの各種の供給先の装置に供給するように構成されたものが知られている。この種の搬送装置では、搬送路上における搬送物の姿勢を外観測定により判別し、その判別結果に応じて、搬送物に対して気流を吹き付けることなどによって、不適格な姿勢の搬送物を搬送路上から排除したり、搬送物を回転させてその姿勢を変更したりすることにより、搬送物の姿勢を揃えるようにしている。 Traditionally, transport devices such as parts feeders have been used to transport items such as electronic components in a predetermined posture and then deliver them to various destination equipment such as inspection equipment, mounting equipment, transfer equipment, and taping equipment. There are known devices configured to supply In this type of conveyor, the posture of the conveyed object on the conveyance path is determined by visual measurement, and according to the determination result, the conveyed object is removed from the conveyance path by blowing airflow toward the conveyed object. The posture of the conveyed objects is made uniform by removing them from the ground or by rotating the conveyed objects and changing their posture.

ところで、搬送物のなかには、積層セラミックコンデンサなどのように、磁性材料を備えたものがある。このような磁性材料を備える搬送物では、磁気によって姿勢を検出したり、磁力によって姿勢を変更したりすることができるため、電磁石や永久磁石を用いて、搬送物の姿勢検出を行う方法(以下の特許文献1参照)や姿勢変更を行う方法(以下の特許文献2-4参照)が種々提案されている。 By the way, some transported items include magnetic materials, such as multilayer ceramic capacitors. For transported objects that include such magnetic materials, it is possible to detect the orientation of the transported object using magnetism or to change the orientation using magnetic force. Various methods have been proposed (see Patent Document 1) and methods for changing posture (see Patent Documents 2 to 4 below).

特開2014-130912号公報Japanese Patent Application Publication No. 2014-130912 特開平5-229634号公報Japanese Patent Application Publication No. 5-229634 実公平5-43468号公報Publication number 5-43468 特開2011-18698号公報Japanese Patent Application Publication No. 2011-18698

ところで、前述のような磁気検出や磁力による姿勢変更が可能な搬送物としては、磁性体からなる外部電極を備えた電子部品や積層セラミックコンデンサのような磁性体からなる内部電極を備えた電子部品がある。これらの部品については、磁力によって搬送物を正規の姿勢に制御するように、磁石の向きを正規の姿勢に合わせて設定している。例えば、上記特許文献4では、電子部品1の内部電極3が全て第1の磁石21の磁束の向きに揃った姿勢とされる(図1(c)、図4、図8、図11参照)。また、この文献では、第2の磁石22の磁気吸引力により電子部品1が搬送面に吸着され、正規の姿勢が維持される。 By the way, as mentioned above, the conveyed objects that can detect magnetic fields or change their posture by magnetic force include electronic components with external electrodes made of magnetic material and electronic components with internal electrodes made of magnetic material, such as multilayer ceramic capacitors. There is. For these parts, the orientation of the magnets is set to match the normal attitude so that the conveyed object is controlled in the normal attitude by magnetic force. For example, in Patent Document 4, the internal electrodes 3 of the electronic component 1 are all aligned in the direction of the magnetic flux of the first magnet 21 (see FIG. 1(c), FIG. 4, FIG. 8, and FIG. 11). . Further, in this document, the electronic component 1 is attracted to the conveyance surface by the magnetic attraction force of the second magnet 22, and the normal posture is maintained.

しかしながら、近年の搬送装置では、微細な搬送物を大量に搬送することが要求されるため、高密度に搬送されてくる搬送物を確実に整列させる必要があるが、上記従来のような方法では、搬送物の姿勢を一つ一つ変更していくため、そのまま搬送を高速化すると、搬送物の姿勢を変更する際に、前後の搬送物が干渉して変更が正しく生じない場合や、対象となる搬送物の姿勢を変更する際に前後の搬送物を巻き込んでしまうことによって正規の姿勢にあった搬送物の姿勢を乱してしまう場合があるなど、搬送姿勢に支障が生じ、高速かつ効率的な整列ができないといった問題がある。 However, in recent years, transport devices are required to transport a large amount of fine objects, so it is necessary to reliably align the objects being transported at a high density, but the conventional methods described above cannot , since the posture of the conveyed objects is changed one by one, if the conveyance speed is increased as it is, when changing the posture of the conveyed objects, the change may not occur correctly due to interference between the conveyed objects before and after the object, or the change may not occur correctly. When changing the posture of a conveyed object, the objects before and after the conveyed object may get caught up in the conveyed object, which may disturb the normal posture of the conveyed object. There is a problem that efficient alignment is not possible.

そこで、本発明は上記問題を解決するものであり、その課題は、高速、高密度に搬送されてくる搬送物を磁力によって支障なく効率的かつ確実に整列させることのできる搬送物の整列方法を提供することにある。 Therefore, the present invention is intended to solve the above problem, and its object is to provide a method for arranging conveyed objects that can efficiently and reliably align conveyed objects that are conveyed at high speed and high density without any hindrance using magnetic force. It is about providing.

上記課題を解決するために、本発明に係る搬送物の整列方法は、磁性体を含む搬送物が搬送路に沿って搬送方向に搬送される過程で、前記搬送路の傍らに配置された磁石によって生ずる磁束の方向に応じて前記搬送物の姿勢が制御されるとともに、前記搬送路上の前記磁束の方向が前記搬送方向に変化するように構成し、これによって前記搬送物を磁力によって前記搬送路上で第1の搬送姿勢に整列させる方法であって、前記搬送物が前記搬送路上を搬送されていくことにより前記磁石に接近していく上流側搬送過程では、前記搬送路上において前記搬送物が、前記搬送物の前記第1の搬送姿勢において前記搬送方向に一致すべき整列方向が前記搬送方向と一致しない第2の搬送姿勢に揃えられるとともに前記搬送物の間の磁気反発力により前後の前記搬送物の前記搬送方向の間隔のばらつきが低減され、その後、前記搬送物が前記搬送路上を搬送されていくことにより前記磁石から離れていく下流側搬送過程では、前記搬送路上において前記搬送物が、前記搬送方向における前記搬送路上の前記磁束の方向の変化に応じて徐々に姿勢を変化させることにより、最終的に前記整列方向が前記搬送方向に一致する前記第1の搬送姿勢になるようにして、前記搬送物を整列させる。これによれば、一旦、強い磁界によって第2の搬送姿勢に揃えてから磁束方向が徐々に変化し、徐々に弱くなる磁界によって第1の搬送姿勢に徐々に導くことによって、搬送速度が高くても支障を生ずることなく、効率的かつ確実に整列させることができる。 In order to solve the above problems, a method for arranging conveyed objects according to the present invention includes a method in which a conveyed object including a magnetic material is conveyed along a conveying path in a conveying direction, and a magnet placed beside the conveying path is used. The attitude of the conveyed object is controlled according to the direction of the magnetic flux generated by the conveyance path, and the direction of the magnetic flux on the conveyance path changes in the conveyance direction. In this method, in the upstream conveyance process in which the conveyed object approaches the magnet as it is conveyed on the conveyance path, the conveyed object on the conveyance path is aligned in a first conveyance posture. The alignment direction that should coincide with the conveyance direction in the first conveyance posture of the conveyed objects is aligned to a second conveyance posture that does not coincide with the conveyance direction, and the magnetic repulsion between the conveyed objects causes the forward and backward conveyance. In the downstream conveyance process in which the dispersion of the intervals in the conveyance direction of the objects is reduced, and then the conveyed objects move away from the magnets by being conveyed on the conveyance path, the conveyed objects on the conveyance path: By gradually changing the posture according to a change in the direction of the magnetic flux on the conveyance path in the conveyance direction, the first conveyance posture is finally reached in which the alignment direction coincides with the conveyance direction. , align the conveyed objects. According to this, the direction of the magnetic flux gradually changes after the magnetic flux is aligned to the second transporting position using a strong magnetic field, and is gradually guided to the first transporting position using a gradually weakening magnetic field, thereby achieving a high transporting speed. can be efficiently and reliably aligned without causing any trouble.

本発明において、前記搬送物は長手方向を有し、前記長手方向が前記第1の搬送姿勢において前記搬送方向に一致する前記整列方向であることが好ましい。これによれば、前記搬送物が前記磁石に接近していく過程で、前記搬送路上で前記搬送物の前記長手方向が前記搬送方向と一致しない前記第2の搬送姿勢に揃えられることにより、前後の前記搬送物の間隔が広がり易くなることから、当該間隔のばらつきもさらに揃え易くなるため、最終的に搬送物を第1の搬送姿勢でより整然と整列させることが可能になる。この場合において、前記第2の搬送姿勢は、前記長手方向が前記搬送方向と直交する姿勢であることが望ましい。これによれば、第2の姿勢に揃えられたときに前記搬送物の間隔をさらに広げることができるため、当該間隔のばらつきもさらに揃え易くなり、最終的に搬送物をさらに整然と整列させることが可能になる。 In the present invention, it is preferable that the conveyance object has a longitudinal direction, and the longitudinal direction is the alignment direction that coincides with the conveyance direction in the first conveyance posture. According to this, in the process of the conveyance object approaching the magnet, the longitudinal direction of the conveyance object is aligned in the second conveyance posture which does not coincide with the conveyance direction on the conveyance path, so that the forward and backward movement of the conveyance object is performed. Since the distance between the objects to be transported becomes easier to widen, it becomes easier to even out the variations in the distance, and it becomes possible to finally align the objects to be transported in a more orderly manner in the first transport attitude. In this case, it is preferable that the second transport attitude is such that the longitudinal direction is perpendicular to the transport direction. According to this, the interval between the conveyed objects can be further widened when they are aligned in the second posture, so it becomes easier to even out the dispersion in the interval, and it is possible to finally align the conveyed objects more orderly. It becomes possible.

本発明において、前記搬送物は、前記整列方向が前記磁束の方向に沿う姿勢で安定する態様で前記磁性体を含むことが好ましい。これによれば、磁束の方向によって搬送物の整列方向を制御することができるため、第2の搬送姿勢に配列した後に所望の第1の搬送姿勢での整列状態が得られる態様の磁束分布を磁石の強さや位置の設定により容易に実現できるようになる。この場合において、前記整列方向は前記搬送物の長手方向であることが望ましい。また、前記第2の搬送姿勢は、前記整列方向が前記搬送方向と直交する姿勢であることが望ましい。さらに、この場合には、前記磁石は、前記搬送路に対して前記搬送方向と直交する方向に向いた磁極を備えることが好ましい。ただし、前記磁石は、前記搬送路に対して一対の磁極を結ぶ方向が前記搬送方向と並行するように配置してもよい。 In the present invention, it is preferable that the conveyed object includes the magnetic body in such a manner that the conveyed object is stabilized in a posture in which the alignment direction is along the direction of the magnetic flux. According to this, since the alignment direction of the conveyed objects can be controlled by the direction of the magnetic flux, the magnetic flux distribution can be adjusted in such a manner that the alignment state in the desired first conveyance posture can be obtained after the conveyed objects are arranged in the second conveyance posture. This can be easily achieved by adjusting the strength and position of the magnet. In this case, it is desirable that the alignment direction be the longitudinal direction of the conveyed objects. Further, it is preferable that the second transporting attitude is such that the alignment direction is perpendicular to the transporting direction. Further, in this case, it is preferable that the magnet includes a magnetic pole facing in a direction perpendicular to the conveyance direction with respect to the conveyance path. However, the magnet may be arranged so that the direction in which the pair of magnetic poles are connected to the conveyance path is parallel to the conveyance direction.

本発明において、前記下流側搬送過程において、前記搬送物が前記搬送方向に搬送されていくとともに前記搬送物の姿勢に与える前記磁石の磁気的影響が低下していくに従って、前記搬送路上における前記磁束の方向は、前記第2の搬送姿勢に対応する第2の方向から、前記第1の搬送姿勢に対応する第1の方向に漸近していくことが好ましい。これによれば、搬送物の姿勢が第2の搬送姿勢から第1の搬送姿勢へスムーズに変化していくことができるとともに、磁石の磁気的影響がなくなる前に、磁束の方向が第1の方向を越えてしまうといったことがなくなるため、搬送物の第1の搬送姿勢を乱すこともなくなる。 In the present invention, in the downstream conveyance process, as the conveyance object is conveyed in the conveyance direction and the magnetic influence of the magnets on the attitude of the conveyance object decreases, the magnetic flux on the conveyance path increases. It is preferable that the direction asymptotically approaches from a second direction corresponding to the second transport attitude to a first direction corresponding to the first transport attitude. According to this, the posture of the conveyed object can smoothly change from the second conveyance posture to the first conveyance posture, and the direction of the magnetic flux changes to the first conveyance posture before the magnetic influence of the magnet disappears. Since the object will not cross the direction, the first transport attitude of the object to be transported will not be disturbed.

本発明において、前記搬送路は、前記搬送方向の前方斜め上方へ向かう往復振動により、前記搬送物を搬送するように構成されることが好ましい。これによれば、搬送物は搬送路上を上記振動によって浮上した状態で搬送されていくことになるので、磁気による搬送物の姿勢制御を容易かつ高精度に行うことが可能になる。 In the present invention, it is preferable that the conveyance path is configured to convey the object by reciprocating vibrations directed forward and diagonally upward in the conveyance direction. According to this, the conveyed object is conveyed on the conveyance path in a floating state due to the vibrations, so that the posture of the conveyed object can be easily and highly accurately controlled by magnetism.

本発明において、前記搬送路は、凹曲面状の断面輪郭を有する搬送底面部を備えることが好ましい。この場合において、弧状やU字状などの丸溝、その他の凹曲面状の断面輪郭を有する搬送底面部は、平坦面よりも前記搬送物に対する接触面積が低下する形状であることが望ましい。具体的には、前記搬送底面部の曲率半径Rが前記搬送物の最大寸法Kの半分より大きいことが望ましい。また、前記搬送物が直方体状である場合には、上記最大寸法Kは、長さL、幅W、高さHの平方和の平方根、すなわち、K=(L+W+H1/2となる。ここで、L>W、L>Hのときには、特に、上記曲率半径Rが(1/2)Lより大きいことがさらに望ましい。なお、上記搬送底面部の曲率半径Rは場所によって異なる値を備えていても構わない。ただし、凹曲面状の部分の全体が全て上記の条件を充足する曲率半径Rを備えることが望ましい。 In the present invention, it is preferable that the conveyance path includes a conveyance bottom portion having a concavely curved cross-sectional profile. In this case, it is preferable that the conveyance bottom surface portion having a circular groove such as an arc shape or a U-shape, or another concave curved cross-sectional profile has a shape that reduces the contact area with the conveyed object compared to a flat surface. Specifically, it is desirable that the radius of curvature R of the conveyance bottom surface portion is larger than half of the maximum dimension K of the conveyed object. Further, when the conveyed object is in the shape of a rectangular parallelepiped, the maximum dimension K is the square root of the sum of squares of length L, width W, and height H, that is, K=(L 2 +W 2 +H 2 ) 1/ It becomes 2 . Here, when L>W and L>H, it is particularly desirable that the radius of curvature R is larger than (1/2)L. Note that the radius of curvature R of the conveyance bottom surface portion may have a different value depending on the location. However, it is desirable that the entire concave curved portion has a radius of curvature R that satisfies the above conditions.

次に、本発明に係る搬送物整列システムは、磁性体を含む搬送物と、前記搬送物が搬送方向に搬送される搬送路と、前記搬送路の傍らに配置され、前記搬送路の前記搬送方向の少なくとも所定の範囲にわたって前記搬送路上に前記搬送物の搬送姿勢に影響を与える磁束分布を形成する磁石と、を具備し、前記搬送物を第1の搬送姿勢で整列させる搬送物整列システムであって、前記磁束分布は、前記所定の範囲における、前記搬送物が前記搬送路上で前記搬送方向に搬送されていくことにより前記磁石に近づいていく上流側搬送路領域で、前記搬送物を前記第1の搬送姿勢とは異なる第2の搬送姿勢に徐々に導く態様で、前記搬送方向に徐々に磁束の方向が変化していくとともに、前記搬送物が前記搬送路上で前記搬送方向に搬送されていくことにより前記磁石から離れていく下流側搬送路領域で、前記搬送物を前記第2の搬送姿勢から前記第1の搬送姿勢へ向けて徐々に導く態様で、前記搬送方向に徐々に磁束の方向が変化していく。 Next, the conveyed object alignment system according to the present invention includes a conveyed object including a magnetic material, a conveyance path along which the conveyed object is conveyed in the conveyance direction, and a conveyance path arranged beside the conveyance path, a magnet that forms a magnetic flux distribution that affects the conveyance posture of the conveyed objects on the conveyance path over at least a predetermined range of directions, and a conveyed object alignment system that aligns the conveyed objects in a first conveyance posture. The magnetic flux distribution is configured such that the conveyance object is transported in the upstream conveyance path region in the predetermined range where the conveyance object approaches the magnet as it is conveyed in the conveyance direction on the conveyance path. The direction of the magnetic flux gradually changes in the conveying direction, and the object is conveyed in the conveying direction on the conveying path in a manner that gradually leads to a second conveying posture different from the first conveying posture. In the downstream conveyance path region where the object moves away from the magnet, the magnetic flux gradually increases in the conveyance direction in such a manner that the conveyed object is gradually guided from the second conveyance posture to the first conveyance posture. direction is changing.

本発明において、前記搬送物は長手方向を有し、前記長手方向が前記第1の搬送姿勢において前記搬送方向に一致することが好ましい。この場合において、前記第2の搬送姿勢は、前記長手方向が前記搬送方向と直交する姿勢であることが望ましい。 In the present invention, it is preferable that the conveyance object has a longitudinal direction, and the longitudinal direction coincides with the conveyance direction in the first conveyance posture. In this case, it is preferable that the second transport attitude is such that the longitudinal direction is perpendicular to the transport direction.

本発明において、前記搬送物は、前記第1の搬送姿勢における前記搬送方向と一致する方向が前記磁束の方向に沿う姿勢で安定する態様で前記磁性体を含むことが好ましい。この場合において、前記一致する方向は前記搬送物の長手方向であることが望ましい。また、前記第2の搬送姿勢は、前記一致する方向が前記搬送方向と直交する姿勢であることが望ましい。さらに、この場合には、前記磁石は、前記搬送路に対して前記搬送方向と直交する方向に向いた磁極を備えることが好ましい。 In the present invention, it is preferable that the conveyed object includes the magnetic body in such a manner that the conveyance object is stabilized in a posture in which a direction that coincides with the conveyance direction in the first conveyance posture is along the direction of the magnetic flux. In this case, it is desirable that the matching direction be the longitudinal direction of the conveyed object. Further, it is preferable that the second transporting attitude is such that the matching direction is perpendicular to the transporting direction. Further, in this case, it is preferable that the magnet includes a magnetic pole facing in a direction perpendicular to the conveyance direction with respect to the conveyance path.

本発明において、前記下流側搬送路領域において、前記搬送物が前記搬送方向に搬送されていくとともに前記搬送物の姿勢に与える前記磁石の磁気的影響が低下していくに従って、前記搬送路上における前記磁束の方向は、前記第2の搬送姿勢に対応する第2の方向から、前記第1の搬送姿勢に対応する第1の方向に漸近していくことが好ましい。 In the present invention, in the downstream conveyance path region, as the conveyance object is conveyed in the conveyance direction and the magnetic influence of the magnet on the posture of the conveyance object decreases, the It is preferable that the direction of the magnetic flux asymptotically approaches from a second direction corresponding to the second transport attitude to a first direction corresponding to the first transport attitude.

本発明において、前記下流側搬送路領域の下流側であって、前記搬送物が前記第1の搬送姿勢で整列して搬送されていく場所に、前記搬送物を判別し、その判別結果に応じて前記搬送物を制御する判別制御部をさらに有することが好ましい。この判別制御部としては、欠陥品や不良姿勢の搬送物を上記搬送路上から排除する判別排除部や、不良姿勢の搬送物を回転させて姿勢を変更する判別反転部などが挙げられる。 In the present invention, the conveyance object is determined at a location on the downstream side of the downstream conveyance path region where the conveyance objects are aligned and conveyed in the first conveyance posture, and the conveyance object is determined according to the determination result. It is preferable to further include a discrimination control section that controls the conveyed object. Examples of the discrimination control section include a discrimination and removal section that excludes defective products and objects with a bad posture from the conveyance path, and a discrimination reversal section that rotates and changes the posture of conveyed objects with a bad posture.

本発明によれば、高速、高密度に搬送されてくる搬送物を磁力によって支障なく効率的かつ確実に整列させることのできる搬送物の整列方法を提供することができる。 According to the present invention, it is possible to provide a method for arranging conveyed objects that can efficiently and reliably align conveyed objects that are conveyed at high speed and high density using magnetic force without any trouble.

本発明に係る搬送物の整列方法を実現するための搬送物整列システムの実施形態を構成した振動式搬送装置の一例の平面図である。1 is a plan view of an example of a vibrating conveyance device that constitutes an embodiment of a conveyance object alignment system for realizing a conveyance object alignment method according to the present invention; FIG. 同振動式搬送装置の側面図である。It is a side view of the same vibrating conveyance device. 同実施形態の搬送物の正面図及び側面図からなる外観説明図(a)及び正面断面図及び側面断面図からなる断面構成図(b)である。FIG. 2 is an explanatory external view (a) consisting of a front view and a side view of the conveyed object of the same embodiment, and a cross-sectional configuration diagram (b) consisting of a front sectional view and a side sectional view. 同実施形態の搬送物の磁界中における安定姿勢を示す説明図である。It is an explanatory view showing a stable posture in a magnetic field of a conveyed object of the same embodiment. 同実施形態の磁石と搬送路の位置関係を示す概略構成図である。It is a schematic block diagram which shows the positional relationship of the magnet and conveyance path of the same embodiment. 同実施形態の磁石による磁界が搬送物の搬送姿勢に影響する所定の範囲の搬送路上の様子を示す説明図である。FIG. 4 is an explanatory diagram showing a predetermined range of a conveyance path where a magnetic field generated by a magnet of the same embodiment affects the conveyance posture of a conveyed object. 同実施形態の搬送路のより広範な範囲の様子を示す説明図である。FIG. 3 is an explanatory diagram showing a wider range of the conveyance path in the same embodiment.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。最初に、図1及び図2を参照して本発明に係る搬送物整列システムを構成する振動式搬送装置を説明する。この振動式搬送装置100は、設置台101上に設置された搬送物供給部110と、この搬送物供給部110から供給された搬送物を搬送する第1搬送部120と、この第2搬送部120から供給された搬送物を搬送する第2搬送部130とを備える。第1搬送部120と第2搬送部130は加振器を備えるため、上記設置台101上に防振用の吸振材(コイルばねなど)を介して設置された支持台102上に取り付けられる。搬送物供給部110は、駆動部111と、この駆動部111上に取り付けられたホッパ112とを備え、ホッパ112上の搬送物を第1搬送部120へ放出する。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, with reference to FIGS. 1 and 2, a vibrating conveyance device that constitutes a conveyed object alignment system according to the present invention will be explained. This vibration type conveyance device 100 includes a conveyance object supply section 110 installed on an installation table 101, a first conveyance section 120 that conveys the conveyance objects supplied from the conveyance object supply section 110, and a second conveyance section. A second transport section 130 that transports the objects supplied from 120 is provided. Since the first conveyance section 120 and the second conveyance section 130 are equipped with a vibrator, they are mounted on a support base 102 installed on the installation base 101 via a vibration absorbing material (such as a coil spring) for vibration isolation. The conveyed object supply section 110 includes a drive section 111 and a hopper 112 attached to the drive section 111, and discharges the conveyed objects on the hopper 112 to the first conveyance section 120.

第1搬送部120は、回転加振機121と、この回転加振機121に搭載されたボウル型の振動体122とを備えている、いわゆるボウル型パーツフィーダである。振動体120は内底部から螺旋状に上昇する搬送路122tを備え、回転加振機121によって与えられた回転振動により、その内底部に供給された搬送物を搬送路122tに沿って徐々に上昇させながら、整列させる。 The first transport unit 120 is a so-called bowl-shaped parts feeder that includes a rotational vibration exciter 121 and a bowl-shaped vibrating body 122 mounted on the rotational vibration exciter 121. The vibrating body 120 is provided with a conveyance path 122t spirally rising from the inner bottom, and the object to be conveyed supplied to the inner bottom thereof is gradually raised along the conveyance path 122t by the rotational vibration given by the rotary vibrator 121. While doing so, line them up.

第2搬送部130は、直線加振機131と、この直線加振器131に搭載された直線状の振動体132、133とを備えている、いわゆるリニアフィーダである。ここで、振動体132は上記搬送路122tの出口端に接続された直線状の供給用の搬送路132tを備える。また、振動体133は、搬送路132tと並行して延在する搬送路133tを備え、この搬送路133tは、搬送路132tから排除された搬送物を受入れ、搬送路132tとは逆方向に搬送物を搬送し、当該搬送物を上記振動体122内に戻すための回収用の搬送路である。 The second transport unit 130 is a so-called linear feeder that includes a linear vibrator 131 and linear vibrators 132 and 133 mounted on the linear vibrator 131. Here, the vibrating body 132 includes a linear supply conveyance path 132t connected to the outlet end of the conveyance path 122t. Further, the vibrating body 133 includes a conveyance path 133t extending in parallel with the conveyance path 132t, and this conveyance path 133t receives the conveyed object removed from the conveyance path 132t and conveys it in the opposite direction to the conveyance path 132t. This is a recovery conveyance path for conveying objects and returning the conveyed objects into the vibrating body 122.

上記搬送路132tの傍らには、磁石137が配置される。この磁石137は、例えば、ネオジム磁石などの各種の永久磁石に限らず、電磁石であってもよい。磁石137は、上記支持台102上に取り付けられた支持部材134に取り付けられた支持アーム135を介して保持された取付部材136に取り付けられる。図示例では、振動体133の側に設置された支持部材134に対して、支持アーム135が上記振動体132と133の上方を通過することにより上記取付部材136が振動体132の側に配置されることで、磁石137は、支持部材134とは反対側の側方から振動体132に隣接する位置に配置される。なお、図示例において振動体132,133は、後述するように、SUS303や304等の(非磁性)ステンレス鋼、アルミニウム若しくはA5051やA5052等のアルミニウム合金などの非磁性体で構成される。 A magnet 137 is arranged beside the transport path 132t. The magnet 137 is not limited to various types of permanent magnets such as neodymium magnets, but may also be an electromagnet. The magnet 137 is attached to a mounting member 136 held via a support arm 135 attached to a support member 134 mounted on the support base 102. In the illustrated example, the support arm 135 passes above the vibrating bodies 132 and 133 with respect to the supporting member 134 installed on the vibrating body 133 side, so that the mounting member 136 is disposed on the vibrating body 132 side. By doing so, the magnet 137 is arranged at a position adjacent to the vibrating body 132 from the side opposite to the support member 134. In the illustrated example, the vibrating bodies 132 and 133 are made of a non-magnetic material such as (non-magnetic) stainless steel such as SUS303 or 304, aluminum, or an aluminum alloy such as A5051 or A5052, as will be described later.

次に、図3及び図4を参照して、本発明に係る搬送物について説明する。本実施形態で搬送される搬送物CAは、図3に示すように、直方体状に構成される。図示例の搬送物CAは、両端外部に外部電極OE1,OE2を備え、その内部にセラミック層等の誘電体DEに挟まれた複数の内部電極IE1,IE2を備えた積層セラミックコンデンサである。内部電極IE1,IE2はNiで構成され、外部電極OE1,OE2はCuで構成されることがある。このような例では、ここで、内部電極IE1,IE2はセラミック層などの誘電体DEである非磁性体に取り囲まれているため、その素材Niが強磁性体であることから、搬送物CAは、磁場の影響を強く受ける。図示例では、搬送物CAの整列方向(図示例では長手方向と一致する。)軸CAxの整列方向は、内部電極IE1,IE2の長手方向に一致している。上記整列方向(長手方向)軸CAxの整列方向は、搬送物CAの正規の姿勢である第1の搬送姿勢において搬送方向Fと一致する。 Next, referring to FIGS. 3 and 4, the conveyed object according to the present invention will be described. The conveyance object CA conveyed in this embodiment has a rectangular parallelepiped shape, as shown in FIG. The conveyed object CA in the illustrated example is a multilayer ceramic capacitor that is provided with external electrodes OE1 and OE2 on both ends thereof and a plurality of internal electrodes IE1 and IE2 that are sandwiched between dielectric materials DE such as ceramic layers. The internal electrodes IE1 and IE2 may be made of Ni, and the external electrodes OE1 and OE2 may be made of Cu. In such an example, since the internal electrodes IE1 and IE2 are surrounded by a non-magnetic material such as a ceramic layer which is a dielectric material DE, and the material Ni is a ferromagnetic material, the conveyed object CA is , strongly affected by magnetic fields. In the illustrated example, the alignment direction of the axis CAx (coinciding with the longitudinal direction in the illustrated example) of the conveyed objects CA coincides with the longitudinal direction of the internal electrodes IE1 and IE2. The alignment direction of the alignment direction (longitudinal direction) axis CAx coincides with the conveyance direction F in the first conveyance posture, which is the normal posture of the conveyed object CA.

図4に示すように、搬送物CAを磁石Mの一対の磁極Msの間に生ずる磁界(磁束分布)中に配置すると、強磁性体である内部電極IE1,IE2の長手方向(図3に示す長さLの方向)に磁気分極が発生し、安定となるため、搬送物CAは、その長さLの方向が磁束の方向に沿う姿勢に導かれる。また、内部電極IE1,IE2は幅Wの方向にも沿っているため、幅Wの方向と高さHの方向で比べると、幅Wの方向が磁束の方向に沿っている場合の方が、高さHの方向が磁束の方向に沿っている場合よりも安定である。 As shown in FIG. 4, when the conveyed object CA is placed in the magnetic field (magnetic flux distribution) generated between the pair of magnetic poles Ms of the magnet M, the longitudinal direction of the internal electrodes IE1 and IE2, which are ferromagnetic materials (as shown in FIG. Since magnetic polarization occurs in the direction of the length L) and becomes stable, the conveyed object CA is guided to a posture in which the direction of the length L is along the direction of the magnetic flux. In addition, since the internal electrodes IE1 and IE2 are also along the direction of the width W, when comparing the direction of the width W and the direction of the height H, it is better when the direction of the width W is along the direction of magnetic flux. This is more stable than when the direction of the height H is along the direction of magnetic flux.

図5に示すように、図示例では、磁石137の一方の磁極137aは、振動体132の搬送路132tに向くように設置されている。ここで、磁石137が対面する搬送路132tは、凹曲面状の断面輪郭を有する底面部132trbを備える丸溝状の搬送路部分132trとされている。上記断面輪郭は、弧状であってもU字状であってもよいが、搬送物CAの姿勢が変更しやすくなるスムースな曲面形状であることが好ましい。例えば、この搬送路部分132trの上記底面部132trbの凹曲面形状は、搬送物CAの長さLに対して曲率半径Rが、R>(1/2)・Lの式で示される条件を満たすように設定される。より一般的には、上記式において、長さLの代わりに、搬送物CAの最大寸法Kとして、長さL、幅W、高さHの平方和の平方根である( +W+H1/2を用いることもできる。図示例では、底面部132trbの搬送方向Fと直交する断面形状を一定の曲率半径Rを備えた円弧状としているが、曲率半径Rは底面部132trb内で変化していても構わない。この場合、底面部132trbの曲率半径Rの平均値が上記条件を満たせばよい。ただし、底面部132trbの全体にわたり曲率半径Rが上記条件を満たしていればさらに望ましい。なお、曲率半径Rの上限は上記LやKの5倍以下であることが好ましく、3倍以下であることが望ましい。 As shown in FIG. 5, in the illustrated example, one magnetic pole 137a of the magnet 137 is installed so as to face the conveyance path 132t of the vibrating body 132. Here, the conveyance path 132t facing the magnet 137 is a circular groove-shaped conveyance path portion 132tr including a bottom portion 132trb having a concave curved cross-sectional profile. The cross-sectional profile may be arc-shaped or U-shaped, but is preferably a smooth curved shape that allows the attitude of the conveyed object CA to be easily changed. For example, the concave curved shape of the bottom surface portion 132trb of the conveyance path portion 132tr has a radius of curvature R with respect to the length L of the conveyed object CA, which satisfies the condition expressed by the formula R>(1/2)·L. It is set as follows. More generally, in the above formula, instead of the length L, the maximum dimension K of the conveyed object CA is the square root of the sum of squares of the length L, width W, and height H ( L 2 + W 2 + H 2 ) 1/2 can also be used. In the illustrated example, the cross-sectional shape of the bottom portion 132trb perpendicular to the conveying direction F is an arc with a constant radius of curvature R, but the radius of curvature R may vary within the bottom portion 132trb. In this case, it is sufficient that the average value of the radius of curvature R of the bottom surface portion 132trb satisfies the above conditions. However, it is more desirable if the radius of curvature R satisfies the above conditions over the entire bottom surface portion 132trb. Note that the upper limit of the radius of curvature R is preferably 5 times or less, and preferably 3 times or less, the above-mentioned L and K.

また、図5に示すように、磁石137の磁極137aは、上記搬送路部分132trに対して水平方向に対向するように配置されている。しかし、磁石137の磁極137aは、上記搬送路部分132tr対して上下の斜め方向から対向するように配置されていても構わない。さらに、整列させるべき搬送方向が実施例とは異なる場合には、一対の磁極間を結ぶ方向が搬送路の搬送方向Fと平行であってもよく、上方や下方から対向するように配置されていても構わない。 Further, as shown in FIG. 5, the magnetic pole 137a of the magnet 137 is arranged to face the transport path portion 132tr in the horizontal direction. However, the magnetic pole 137a of the magnet 137 may be arranged to face the transport path portion 132tr from above and below diagonally. Furthermore, if the conveyance direction to be aligned is different from the example, the direction connecting the pair of magnetic poles may be parallel to the conveyance direction F of the conveyance path, and the magnetic poles may be arranged so as to face each other from above or below. I don't mind.

図5に示す振動体132は、実際には、当該振動体132の一部である、搬送路132tを備える搬送ブロックを示している。この搬送ブロックは、前述のように非磁性ステンレス鋼やアルミニウム若しくはアルミニウム合金などの非磁性体で構成されることが好ましい。これは、磁束Φmが搬送ブロックを通過するため、搬送路132t上の磁束の方向に影響を与えにくいからである。この点は、図示例のように、磁石137の磁極137aから磁束Φmの方向に見て、搬送路132t自体が搬送ブロックの陰になる場合には、なおさらである。 The vibrating body 132 shown in FIG. 5 is actually a transport block that is a part of the vibrating body 132 and includes a transport path 132t. As described above, this conveyance block is preferably made of a nonmagnetic material such as nonmagnetic stainless steel, aluminum, or an aluminum alloy. This is because the magnetic flux Φm passes through the transport block, so it is difficult to affect the direction of the magnetic flux on the transport path 132t. This is especially true when the transport path 132t itself is in the shadow of the transport block when viewed in the direction of the magnetic flux Φm from the magnetic pole 137a of the magnet 137, as in the illustrated example.

図6に示すように、磁石137が形成する磁界(磁束分布)は、図示二点鎖線で示すような磁束Φmを形成する。ここで、磁束Φmは、磁極137a(Ms)の表面積Smと、磁極137a(Ms)上の磁束密度Bmの積で表わされる。また、磁極137a(Ms)と搬送路部分137trの最近接位置132tr0との間の距離Dmは、磁束Φmの大きさに応じて設定される。なお、本実施形態では、磁石137が磁極137aを搬送路132tに向けて設置されているので、上記最近接位置132tr0は、磁極137aが正対する位置となっている。 As shown in FIG. 6, the magnetic field (magnetic flux distribution) formed by the magnet 137 forms a magnetic flux Φm as shown by the two-dot chain line in the figure. Here, the magnetic flux Φm is represented by the product of the surface area Sm of the magnetic pole 137a (Ms) and the magnetic flux density Bm on the magnetic pole 137a (Ms). Further, the distance Dm between the magnetic pole 137a (Ms) and the closest position 132tr0 of the transport path portion 137tr is set according to the magnitude of the magnetic flux Φm. In this embodiment, since the magnet 137 is installed with the magnetic pole 137a facing the conveyance path 132t, the closest position 132tr0 is a position directly facing the magnetic pole 137a.

搬送路132t上の上記最近接位置132tr0を基準とすると、搬送物CAが搬送方向Fに沿って搬送路132tr上を搬送されていく場合に、上記最近接位置132tr0より上流側の上流側搬送路領域132tr1では、搬送物CAが搬送されていくに従って徐々に磁石137に近づいていくことになるので、この上流側搬送過程では、搬送路132t上の磁束密度は徐々に強くなっていくとともに、搬送路132tr上の磁束Φmの方向は、搬送方向Fから徐々に搬送方向Fと直交する方向(幅方向)に向けて変化していく。一方、上記最近接位置132tr0よりも下流側の下流側搬送路領域132tr2では、搬送物CAが搬送されていくに従って徐々に磁石137から離れていく(遠ざかっていく)ことになるので、この下流側搬送過程では、搬送路132t上の磁束密度は徐々に弱くなっていくとともに、磁束Φmの方向は、搬送方向Fと直交する方向から徐々に搬送方向Fに向けて変化していく。 Based on the closest position 132tr0 on the conveyance path 132t, when the object CA is conveyed on the conveyance path 132tr along the conveyance direction F, the upstream conveyance path is upstream from the nearest position 132tr0. In the region 132tr1, as the conveyed object CA gradually approaches the magnet 137 as it is conveyed, in this upstream conveying process, the magnetic flux density on the conveying path 132t gradually increases, and the conveyed object CA gradually approaches the magnet 137. The direction of the magnetic flux Φm on the path 132tr gradually changes from the conveyance direction F toward the direction (width direction) orthogonal to the conveyance direction F. On the other hand, in the downstream conveyance path region 132tr2 downstream of the nearest position 132tr0, as the conveyance object CA is conveyed, it gradually moves away from the magnet 137 (goes away from it). During the conveyance process, the magnetic flux density on the conveyance path 132t gradually weakens, and the direction of the magnetic flux Φm gradually changes from a direction perpendicular to the conveyance direction F toward the conveyance direction F.

本実施形態では、上記搬送路部分132trのうち、磁石137の磁気的影響が搬送路132t上の搬送物CAに作用する搬送路の磁気的影響範囲132trs内の最上流部で磁束の方向は搬送方向Fと一致し、また、上記最近接位置132tr0で磁束の方向は搬送方向Fと直交し、さらに、最下流部で磁束の方向は再び搬送方向Fと一致する。なお、上記磁気的影響とは、磁石137による搬送路132t上の搬送物CAの姿勢変化への影響を言う。すなわち、上記搬送路の磁気的影響範囲132trsは、搬送物CAの姿勢が磁石137の磁束の方向によって影響を受ける搬送路132tの搬送方向Fに見た範囲である。本実施形態では、振動式搬送によって搬送物CAが搬送路132t上を多くの時間浮上した状態で搬送されていくとともに、搬送路部分132trでは底面部132trbが凹曲面状に形成されているために搬送物CAとの接触面積が小さくなっていることから、搬送物CAの姿勢は極めて容易に変化可能な状態にある。 In this embodiment, in the conveyance path portion 132tr, the direction of the magnetic flux is determined at the most upstream part within the magnetic influence range 132trs of the conveyance path where the magnetic influence of the magnet 137 acts on the conveyed object CA on the conveyance path 132t. The direction of the magnetic flux coincides with the direction F, and the direction of the magnetic flux is perpendicular to the conveyance direction F at the nearest position 132tr0, and furthermore, the direction of the magnetic flux coincides with the conveyance direction F again at the most downstream part. Note that the above-mentioned magnetic influence refers to the influence of the magnet 137 on the attitude change of the conveyed object CA on the conveyance path 132t. That is, the magnetically influenced range 132trs of the conveyance path is a range viewed in the conveyance direction F of the conveyance path 132t in which the attitude of the conveyed object CA is influenced by the direction of the magnetic flux of the magnet 137. In this embodiment, the conveyed object CA is conveyed in a floating state for a large period of time on the conveyance path 132t by vibration conveyance, and the bottom surface portion 132trb is formed in a concave curved shape in the conveyance path portion 132tr. Since the contact area with the conveyed object CA is small, the attitude of the conveyed object CA can be changed very easily.

通常、搬送路132t上では、搬送物CAは、様々な姿勢で搬送方向Fに搬送されていく。特に、振動式搬送装置では、振動体132の振動によって搬送物CAが浮上した状態で進行するため、搬送物CAの姿勢は変動しやすくなり、幅方向の規制などを受けない限り、搬送路の磁気的影響範囲132trsの上流部分に示すように、搬送物CAの搬送姿勢や搬送時の間隔もばらばらである。この状態で、搬送物CAが上流側搬送路領域132tr1を進んでいくと、図6に示す磁気吸引力Qに表れるように、磁気的影響が徐々に増加しながら、磁束の方向は搬送方向Fから徐々に傾斜していくので、搬送物CAの長さLの方向である整列方向(長手方向)軸CAxも徐々に傾斜していく。やがて、最近接位置132tr0の付近では、磁束の方向が搬送方向Fと直交しているのと対応して、搬送物CAの整列方向軸CAxも搬送方向Fと直交する。なお、この上流側搬送路領域132tr1では、磁束の搬送方向Fの成分により搬送物CAが磁気吸引力Qを僅かながら受けるので、搬送物CAの間の搬送速度や間隔はやや増大する。また、図示例では長手方向が当初は搬送方向Fに沿っていた搬送物CAが多く、その後、磁石137の磁気的影響により長手方向が搬送方向Fと直交するように搬送物CAが徐々に姿勢を変化させるので、搬送路132t上の搬送物CAの距離間隔も徐々に増大していく。 Normally, on the conveyance path 132t, the conveyance object CA is conveyed in the conveyance direction F in various postures. In particular, in a vibrating conveyance device, since the conveyed object CA moves in a floating state due to the vibration of the vibrating body 132, the attitude of the conveyed object CA tends to fluctuate, and unless it is subject to restrictions in the width direction, the conveyance path As shown in the upstream portion of the magnetic influence range 132trs, the conveyance postures and intervals during conveyance of the conveyed objects CA also vary. In this state, when the conveyed object CA advances through the upstream conveyance path region 132tr1, the magnetic influence gradually increases, as shown in the magnetic attraction force Q shown in FIG. Since the alignment direction (longitudinal direction) axis CAx, which is the direction of the length L of the conveyed objects CA, also gradually inclines. Eventually, in the vicinity of the closest position 132tr0, the direction of the magnetic flux is perpendicular to the transport direction F, and the alignment direction axis CAx of the transported objects CA is also perpendicular to the transport direction F. Note that in this upstream conveyance path region 132tr1, the conveyed objects CA receive a slight magnetic attraction force Q due to the component of the magnetic flux in the conveying direction F, so the conveyance speed and interval between the conveyed objects CA slightly increase. In addition, in the illustrated example, there are many conveyed objects CA whose longitudinal directions are initially along the conveying direction F, and then, due to the magnetic influence of the magnet 137, the conveyed objects CA gradually become oriented so that their longitudinal directions are perpendicular to the conveying direction F. , the distance between the conveyed objects CA on the conveyance path 132t gradually increases.

最近接位置132tr0付近における整列方向(長手方向)軸CAxが搬送方向Fと直交する姿勢(第2の搬送姿勢)にある搬送物CAは、主として内部電極IE1、IE2がその長手方向に磁気分極(磁化)する。このとき、相互に同じ上記姿勢で同じ方向に磁化した前後の搬送物CAの間では、相互に反発力を生じるので、相互距離が増大するように作用し、その結果、相互間隔のばらつきが低減される。理想的な状況であれば、最近接位置132tr0に近い場所の複数の搬送物CAの間隔は前後でほぼ均等になる。 The conveyance object CA in the vicinity of the nearest position 132tr0 is in a posture (second conveyance posture) in which the alignment direction (longitudinal direction) axis CAx is perpendicular to the conveyance direction F (second conveyance posture). magnetize). At this time, a repulsive force is generated between the front and rear conveyed objects CA, which are magnetized in the same direction and in the same posture, so that the mutual distance increases, and as a result, the variation in mutual spacing is reduced. be done. In an ideal situation, the intervals between the plurality of conveyed objects CA at a location close to the closest position 132tr0 are approximately equal in the front and back.

搬送物CAが最近接位置132tr0を通過すると、今度は、搬送方向Fに進むに従って磁石137から離れていくため、下流側搬送路領域132tr2では、上記上流側搬送路領域132tr1とは逆に、搬送方向Fに進むに従って磁気的影響が徐々に低下していくとともに、磁束の方向が搬送方向Fと直交する方向から徐々に傾斜し、搬送方向Fに向けて徐々に変化していく。そして、磁束の方向が搬送方向Fに近い方向となり、搬送物CAの整列方向(長手方向)軸CAxが磁束に対応して搬送方向Fに近づくと、図6に示す磁気吸引力Qに表れるように、磁気的影響も徐々に小さくなっていき、それ以上の姿勢の変化も生じなくなるため、搬送物CAは、その整列方向(長手方向)軸CAxを搬送方向Fに一致させた搬送姿勢(第1の搬送姿勢)となり、そのまま下流側へ進んでいく。このとき、搬送物CAの列は、上記上流側搬送路領域132tr1から最近接位置132tr0を経ることによって第2の搬送姿勢において姿勢のばらつきと間隔のばらつきが低減されることから、上記下流側搬送路領域132tr2によって第1の搬送姿勢に規制されたときには、整然とした整列状態が得られる。ただし、この整列状態では、搬送物CAの整列方向軸CAxが搬送方向Fと一致する第1の搬送姿勢で整列しているものの、図示例の場合、当該第1の搬送姿勢には、内部電極IE1,IE2の幅方向に対応する幅Wの面が底面部132trbに向く姿勢と、高さHの面が底面部132trbに向く姿勢との双方が含まれ得る。 When the conveyance object CA passes through the closest position 132tr0, it moves away from the magnet 137 as it advances in the conveyance direction F. Therefore, in the downstream conveyance path region 132tr2, contrary to the upstream conveyance path region 132tr1, the conveyance As the direction F progresses, the magnetic influence gradually decreases, and the direction of the magnetic flux gradually inclines from the direction perpendicular to the transport direction F, and gradually changes toward the transport direction F. Then, when the direction of the magnetic flux becomes close to the conveyance direction F and the alignment direction (longitudinal direction) axis CAx of the conveyed objects CA approaches the conveyance direction F in accordance with the magnetic flux, as shown in the magnetic attraction force Q shown in FIG. Then, the magnetic influence gradually decreases and no further change in posture occurs, so the conveyed objects CA are placed in a conveying posture (first position) in which the alignment direction (longitudinal direction) axis CAx coincides with the conveying direction F. 1) and continues downstream. At this time, the column of conveyed objects CA passes from the upstream conveyance path region 132tr1 to the nearest position 132tr0, so that the variation in posture and the dispersion in interval are reduced in the second conveyance posture. When the transporting position is restricted to the first transporting position by the path area 132tr2, an orderly alignment state can be obtained. However, in this alignment state, although the objects CA are aligned in the first conveyance posture in which the alignment direction axis CAx coincides with the conveyance direction F, in the case of the illustrated example, the internal electrode This may include both a posture in which a surface with a width W corresponding to the width direction of IE1 and IE2 faces the bottom portion 132trb, and a posture in which a surface with a height H faces the bottom portion 132trb.

本実施形態では、下流側搬送路領域132tr2において、搬送物CAが搬送方向Fに搬送されていくとともに搬送物CAの姿勢に与える磁石137の磁気的影響が低下していくに従って、搬送路132t上における前記磁束Φmの方向は、第2の搬送姿勢に対応する第2の方向から、第1の搬送姿勢に対応する第1の方向に漸近していく。これにより、搬送物CAは、第2の搬送姿勢から徐々に第1の搬送姿勢に導かれていくこととなり、それに反する磁力(例えば、第2の搬送姿勢に戻すような磁力)を受けることもないため、高速、高密度に搬送される場合であっても、搬送物CAを効率的かつ確実に第1の搬送姿勢に整列させることができる。このような磁束分布を形成するためには、磁石137の磁力の調整や上記距離Dmの調整などを行うことが好ましい。本実施形態では取付部材136の位置が調整可能となっているため、上記距離Dmを調整可能となっている。しかし、例えば、磁石137を交換したり、電磁石を用いる場合には電流値などの電力値を調整することによって磁束分布を調整したりすることも可能である。この場合、カメラ等の撮像手段により取得した画像を処理することにより、搬送物に対する磁気的影響、特に、上記最近接位置132tr0及びその周辺や下流側搬送領域132tr1における搬送物の搬送姿勢、或いは、その変化態様を解析して、上記距離Dmや上記電力値を自動的に制御するようにすることがさらに望ましい。この場合の画像処理は、パターンマッチング処理や学習済みのニューラルネットワークなどのAIを利用することができる。上記手動による距離Dmや電力値の調整手段や自動的な距離Dmや電力値の調整手段は、搬送システムのコントローラに装備されることが好ましい。 In this embodiment, in the downstream conveyance path region 132tr2, as the conveyance object CA is conveyed in the conveyance direction F and the magnetic influence of the magnet 137 on the attitude of the conveyance object CA decreases, the conveyance path 132t is The direction of the magnetic flux Φm gradually approaches from the second direction corresponding to the second conveyance posture to the first direction corresponding to the first conveyance posture. As a result, the conveyed object CA is gradually guided from the second conveyance posture to the first conveyance posture, and may be subjected to a magnetic force that opposes this (for example, a magnetic force that returns it to the second conveyance posture). Therefore, even when the objects CA are transported at high speed and with high density, the objects CA can be efficiently and reliably aligned in the first transport posture. In order to form such a magnetic flux distribution, it is preferable to adjust the magnetic force of the magnet 137 and the distance Dm. In this embodiment, the position of the mounting member 136 is adjustable, so the distance Dm can be adjusted. However, for example, it is also possible to adjust the magnetic flux distribution by replacing the magnet 137, or by adjusting the electric power value such as the current value when using an electromagnet. In this case, by processing an image acquired by an imaging means such as a camera, the magnetic influence on the conveyed object, particularly the conveyance posture of the conveyed object in the nearest position 132tr0 and its surroundings and downstream conveyance area 132tr1, or It is further desirable to analyze the change mode and automatically control the distance Dm and the power value. For image processing in this case, AI such as pattern matching processing or a trained neural network can be used. It is preferable that the manual distance Dm and power value adjustment means and the automatic distance Dm and power value adjustment means are provided in the controller of the transport system.

図7には、搬送路132tのより広い範囲を示す。搬送路132tには、上記搬送路部分132trの上流側に搬送路部分132tpが設けられ、この搬送路部分132tpには、平坦な底面部132tpbを備えた搬送路形状が形成されている。この平坦な底面部132tpbは、搬送物CAの搬送姿勢の安定性が比較的高いという特性を持つ。このとき、図示例では、搬送路部分132tpにおいて比較的広い幅の底面部132tpbが設けられていることにより、整列方向(長手方向)軸CAxを幅方向に向けた搬送物CAも含まれる状態で搬送される。その後、上記搬送路部分132trでは、凹曲面状の底面部132trbにより、搬送物CAの搬送姿勢の変化が容易化されるため、搬送路の磁気的影響範囲132trsにおける磁石137の磁気的作用による姿勢変化が生じやすくなる。 FIG. 7 shows a wider range of the transport path 132t. The transport path 132t is provided with a transport path portion 132tp on the upstream side of the transport path portion 132tr, and the transport path portion 132tp has a transport path shape including a flat bottom portion 132tpb. This flat bottom surface portion 132tpb has a characteristic that the stability of the conveying posture of the conveyed object CA is relatively high. At this time, in the illustrated example, since the bottom surface portion 132tpb having a relatively wide width is provided in the conveyance path portion 132tp, the conveyed objects CA whose alignment direction (longitudinal direction) axis CAx is oriented in the width direction are also included. transported. Thereafter, in the conveyance path portion 132tr, the concave curved bottom surface portion 132trb facilitates changes in the conveyance posture of the conveyed object CA, so that the posture is caused by the magnetic action of the magnet 137 in the magnetic influence range 132trs of the conveyance path. Change is more likely to occur.

一方、搬送路部分132trの下流側には、搬送路部分132tsが接続される。この搬送路部分132tsでは、平坦な底面部132tsbを備えた搬送路形状を持つことにより、搬送物CAの搬送姿勢の安定性が比較的高くなっている。ここで、搬送路部分132tsの幅寸法は、第1の搬送姿勢に対応した値となっていることが好ましい。図示例の場合、第1の搬送姿勢は整列方向(長手方向)が搬送方向Fと一致することから、上流側の搬送路部分132tpや132trよりも、底面部132tsbの幅が狭く構成される。 On the other hand, a transport path portion 132ts is connected to the downstream side of the transport path portion 132tr. In this conveyance path portion 132ts, the stability of the conveyance posture of the conveyed object CA is relatively high due to the conveyance path shape having the flat bottom surface portion 132tsb. Here, it is preferable that the width dimension of the conveyance path portion 132ts has a value corresponding to the first conveyance posture. In the illustrated example, since the alignment direction (longitudinal direction) of the first conveyance posture coincides with the conveyance direction F, the width of the bottom surface portion 132tsb is configured to be narrower than that of the upstream conveyance path portions 132tp and 132tr.

この搬送路部分132tsでは、搬送路132t上に判別制御部132Sが設定される。この判別制御部132Sには、搬送されてくる搬送物CAの外観、姿勢、その他の特性を判別するための領域である計測領域MEが設定され、この計測領域MEにおいて搬送物CAの各種の計測を行うことにより、搬送物CAを判別し、この判別結果に応じて、搬送物CAを搬送路132t上から排除したり、搬送姿勢を反転させたりする。図示例の場合には、カメラCMで撮影した画像に基づいてその画像処理により搬送物CAを判別し、当該搬送物CAがそのまま下流側へ搬送することに適しないものであるとの判別結果が出た場合には、噴気口OPから吹き付けられる気流によって搬送物CAが搬送路132t上から排除されるか、或いは、搬送物CAの姿勢が反転その他の回転作用によって変更される。判別制御部132Sの一例としては、搬送物CAの整列方向(長手方向)軸CAxの周りの回転姿勢の適否の判別を行う場合が挙げられる。 In this transport path portion 132ts, a determination control section 132S is set on the transport path 132t. This determination control unit 132S is set with a measurement area ME that is an area for determining the appearance, posture, and other characteristics of the conveyed object CA, and various measurements of the conveyed object CA are performed in this measurement area ME. By doing this, the conveyance object CA is determined, and depending on the determination result, the conveyance object CA is removed from the conveyance path 132t or the conveyance posture is reversed. In the case of the illustrated example, the conveyed object CA is determined by image processing based on the image taken by the camera CM, and the determination result is that the conveyed object CA is not suitable for being conveyed directly to the downstream side. If it comes out, the conveyed object CA is removed from the conveyance path 132t by the airflow blown from the blowhole OP, or the attitude of the conveyed object CA is changed by inversion or other rotational action. An example of the determination control unit 132S is a case where determination is made as to whether or not the rotational posture of the conveyed object CA around the alignment direction (longitudinal direction) axis CAx is appropriate.

なお、本発明の方法及び装置は、上述の図示例のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、磁石137の一方の磁極137aを搬送路132tの最近接位置132tr0に向けた姿勢とし、搬送路の磁気的影響範囲132trsにおいて、磁石137により生ずる磁束の方向が、上流側搬送路領域132tr1の上流端と下流側搬送路領域132tr2の下流端で搬送方向Fにほぼ一致し、最近接位置132trの付近では搬送方向Fと直交するといった磁束分布が形成されている。しかしながら、本発明はこのような磁束分布に限らず、例えば、一対の磁極の配列の向きが搬送路132tと平行になるように磁石を配置し、その磁束の向きが、上流側と下流側では搬送方向Fと直交する方向に近くなり、最近接位置132tr0の付近では搬送方向Fとほぼ一致するといった磁束分布が形成されていても構わない。この場合には、搬送物は、磁束の向きが搬送方向Fと直交するときに第1の搬送姿勢となり、磁束の向きが搬送方向Fと一致するときに第2の搬送姿勢となるように構成されていればよい。また、上記実施形態では、搬送物CAの整列方向軸CAxが長手方向であり、また、整列方向軸CAxが磁束Φmの方向に沿うように磁力によって搬送物CAの姿勢が定められる場合について説明したが、本発明はこのような場合に限らず、整列方向軸CAxが長手方向以外の方向であってもよく、また、整列方向軸CAxが磁束Φmの方向に沿うことがなく、例えば、磁束Φmと直交する方向に沿って安定するような搬送物CAであっても構わない。 Note that the method and apparatus of the present invention are not limited to the illustrated examples described above, and it goes without saying that various changes can be made without departing from the gist of the present invention. For example, in the embodiment described above, one magnetic pole 137a of the magnet 137 is oriented toward the closest position 132tr0 of the transport path 132t, and the direction of the magnetic flux generated by the magnet 137 is on the upstream side in the magnetic influence range 132trs of the transport path. A magnetic flux distribution is formed that substantially coincides with the transport direction F at the upstream end of the transport path region 132tr1 and the downstream end of the downstream transport path region 132tr2, and is orthogonal to the transport direction F near the closest position 132tr. However, the present invention is not limited to such a magnetic flux distribution. For example, the magnets are arranged so that the direction of arrangement of a pair of magnetic poles is parallel to the conveyance path 132t, and the direction of the magnetic flux is different between the upstream side and the downstream side. A magnetic flux distribution may be formed that is close to the direction perpendicular to the transport direction F and almost coincides with the transport direction F in the vicinity of the closest position 132tr0. In this case, the conveyed object is configured such that when the direction of the magnetic flux is perpendicular to the conveying direction F, the object is in the first conveying posture, and when the direction of the magnetic flux is coincident with the conveying direction F, it is in the second conveying posture. It would be fine if it had been done. Furthermore, in the above embodiment, a case has been described in which the alignment direction axis CAx of the carried objects CA is the longitudinal direction, and the attitude of the carried objects CA is determined by magnetic force so that the alignment direction axis CAx is along the direction of the magnetic flux Φm. However, the present invention is not limited to such a case, and the alignment direction axis CAx may be in a direction other than the longitudinal direction, and the alignment direction axis CAx may not be along the direction of the magnetic flux Φm, for example, the alignment direction axis CAx may be in a direction other than the longitudinal direction. The conveyed object CA may be stable along the direction orthogonal to the conveyed object CA.

100…振動式搬送装置、101…設置台、102…支持台、110…搬送物供給部、112…ホッパ、120…第1搬送部、130…第2搬送部、132…振動体、132t…搬送路、132tr、132tp、132ts…搬送路部分、132trs…搬送路の磁気的影響範囲、132tr0…最近接位置、132tr1…上流側搬送路領域、132tr2…下流側搬送路領域、132trb,132tpb,132tsb…底面部、137(M)…磁石 137a(Ms)…磁極、Φm…磁束、Sm…磁極面積、Bm…磁束密度、CA…搬送物、CAx…整列方向軸、L…長さ、W…幅、H…高さ、K…最大寸法、Q…磁気吸引力 DESCRIPTION OF SYMBOLS 100... Vibratory conveyance device, 101... Installation stand, 102... Support stand, 110... Conveyed object supply part, 112... Hopper, 120... First conveyance part, 130... Second conveyance part, 132... Vibrating body, 132t... Conveyance path, 132tr, 132tp, 132ts...transportation path portion, 132trs...magnetic influence range of the transport path, 132tr0...nearest position, 132tr1...upstream transport path region, 132tr2...downstream transport path region, 132trb, 132tpb, 132tsb... Bottom part, 137(M)...Magnet 137a(Ms)...Magnetic pole, Φm...Magnetic flux, Sm...Magnetic pole area, Bm...Magnetic flux density, CA...Carried object, CAx...Alignment direction axis, L...Length, W...Width, H...height, K...maximum dimension, Q...magnetic attraction force

Claims (13)

磁性体を含む搬送物が搬送路に沿って搬送方向に搬送される過程で、前記搬送路の傍らに配置された磁石によって生ずる磁束の方向に応じて前記搬送物の姿勢が制御されるとともに、前記搬送路上の前記磁束の方向が前記搬送方向に変化するように構成し、これによって前記搬送物を磁力によって前記搬送路上で第1の搬送姿勢に整列させる方法であって、
前記搬送物が前記搬送路上を搬送されていくことにより前記磁石に接近していく上流側搬送過程では、前記搬送路上において前記搬送物が、前記搬送物の前記第1の搬送姿勢において前記搬送方向に一致すべき整列方向が前記搬送方向と一致しない第2の搬送姿勢に揃えられるとともに前記搬送物の間の磁気反発力により前後の前記搬送物の前記搬送方向の間隔のばらつきが低減され、
その後、前記搬送物が前記搬送路上を搬送されていくことにより前記磁石から離れていく下流側搬送過程では、前記搬送路上において前記搬送物が、前記搬送方向における前記搬送路上の前記磁束の方向の変化に応じて徐々に姿勢を変化させることにより、最終的に前記整列方向が前記搬送方向に一致する前記第1の搬送姿勢になるようにして、前記搬送物を整列させ、
前記搬送路は、非磁性体により構成されるとともに、前記搬送方向と直交する幅方向に沿って凹曲面状の断面輪郭を有する搬送底面部を備え、当該搬送底面部は、前記幅方向の最低部に対して前記幅方向の両側にわたり、前記搬送物の長手方向の長さLに関してR>L/2、或いは、前記搬送物の最大寸法Kに関してR>K/2となる範囲の曲率半径Rの断面輪郭を有する
搬送物の整列方法。
In the process of transporting an object containing a magnetic material in a transport direction along a transport path, the posture of the transport object is controlled according to the direction of magnetic flux generated by a magnet placed beside the transport path, and A method in which the direction of the magnetic flux on the conveyance path is configured to change in the conveyance direction, thereby aligning the conveyed objects in a first conveyance posture on the conveyance path by magnetic force, the method comprising:
In the upstream conveyance process in which the conveyance object approaches the magnet as it is conveyed along the conveyance path, the conveyance object moves in the conveyance direction in the first conveyance attitude of the conveyance object on the conveyance path. The alignment direction that should coincide with the conveyance direction is aligned to a second conveyance posture that does not coincide with the conveyance direction, and the magnetic repulsion between the conveyance objects reduces the variation in the distance between the front and rear conveyance objects in the conveyance direction,
Thereafter, in a downstream conveyance process in which the conveyance object moves away from the magnet by being conveyed along the conveyance path, the conveyance object on the conveyance path moves in the direction of the magnetic flux on the conveyance path in the conveyance direction. By gradually changing the posture according to the change, the conveyed objects are aligned so that the alignment direction finally becomes the first conveying posture that coincides with the conveying direction ,
The conveyance path is made of a non-magnetic material and includes a conveyance bottom part having a concave cross-sectional profile along the width direction perpendicular to the conveyance direction, and the conveyance bottom part is formed of a non-magnetic material. A radius of curvature R in a range where R>L/2 with respect to the length L in the longitudinal direction of the conveyed object, or R>K/2 with respect to the maximum dimension K of the conveyed object, over both sides in the width direction with respect to the section. having a cross-sectional profile of
How to align conveyed items.
前記搬送物は長手方向を有し、
前記長手方向が前記第1の搬送姿勢において前記搬送方向に一致する前記整列方向である、
請求項1に記載の搬送物の整列方法。
The conveyed object has a longitudinal direction,
the longitudinal direction is the alignment direction that coincides with the conveyance direction in the first conveyance posture;
The method for aligning conveyed objects according to claim 1.
前記第2の搬送姿勢は、前記長手方向が前記搬送方向と直交する姿勢である、
請求項2に記載の搬送物の整列方法。
The second conveyance posture is a posture in which the longitudinal direction is perpendicular to the conveyance direction.
The method for aligning conveyed objects according to claim 2.
前記下流側搬送過程において、前記搬送物が前記搬送方向に搬送されていくとともに前記搬送物の姿勢に与える前記磁石の磁気的影響が低下していくに従って、前記搬送路上における前記磁束の方向は、前記第2の搬送姿勢に対応する第2の方向から、前記第1の搬送姿勢に対応する第1の方向に漸近していく、
請求項1-3のいずれか一項に記載の搬送物の整列方法。
In the downstream conveyance process, as the conveyance object is conveyed in the conveyance direction and the magnetic influence of the magnets on the posture of the conveyance object decreases, the direction of the magnetic flux on the conveyance path is as follows: asymptotic from a second direction corresponding to the second transport attitude to a first direction corresponding to the first transport attitude;
The method for aligning conveyed objects according to any one of claims 1 to 3.
前記搬送物は、前記整列方向が前記磁束の方向に沿う姿勢で安定する態様で前記磁性体を含む、
請求項1-4のいずれか一項に記載の搬送物の整列方法。
The conveyed object includes the magnetic body in a manner in which the alignment direction is stabilized in a posture along the direction of the magnetic flux.
The method for aligning conveyed objects according to any one of claims 1 to 4.
前記搬送路は、前記搬送方向の前方斜め上方へ向かう往復振動により、前記搬送物を搬送するように構成される、
請求項1-5のいずれか一項に記載の搬送物の整列方法。
The conveyance path is configured to convey the conveyed object by reciprocating vibrations directed forward and diagonally upward in the conveyance direction.
The method for aligning conveyed objects according to any one of claims 1 to 5.
前記搬送路は、前記搬送底面部を備える第1の搬送路部分の上流側に設けられた、平坦な底面部を備える第2の搬送路部分と、前記第1の搬送路部分の下流側に設けられた、平坦な底面部を備える第3の搬送路部分と、を有し、
前記第2の搬送路部分の前記底面部の前記幅方向の寸法は、長手方向を前記幅方向に向けた前記搬送物が含まれる状態で搬送可能となるように設定され、
前記第3の搬送路部分の前記底面部の前記幅方向の寸法は、前記第1の搬送姿勢の前記搬送物を搬送可能な値であるとともに、前記第1の搬送路部分の前記搬送底面部及び前記第2の搬送路部分の前記底面部よりも狭く構成される
請求項1-6のいずれか一項に記載の搬送物の整列方法。
The conveyance path includes a second conveyance path portion provided with a flat bottom portion provided upstream of the first conveyance path portion provided with the conveyance bottom portion, and a second conveyance path portion provided downstream of the first conveyance path portion. a third conveying path portion provided with a flat bottom surface;
The dimension in the width direction of the bottom portion of the second conveyance path portion is set such that the object can be conveyed in a state in which the conveyed object with the longitudinal direction facing the width direction is included,
The dimension in the width direction of the bottom surface portion of the third conveyance path portion is a value that allows the conveyance object in the first conveyance posture to be conveyed, and the width direction dimension of the bottom surface portion of the first conveyance path portion and configured to be narrower than the bottom surface portion of the second conveyance path portion .
The method for aligning conveyed objects according to any one of claims 1 to 6.
磁性体を含む搬送物と、前記搬送物が搬送方向に搬送される搬送路と、前記搬送路の傍らに配置され、前記搬送路の前記搬送方向の少なくとも所定の範囲にわたって前記搬送路上に前記搬送物の搬送姿勢に影響を与える磁束分布を形成する磁石と、を具備し、前記搬送物を第1の搬送姿勢で整列させる搬送物整列システムであって、
前記磁束分布は、前記所定の範囲における、前記搬送物が前記搬送路上で前記搬送方向に搬送されていくことにより前記磁石に近づいていく上流側搬送路領域で、前記搬送物を前記第1の搬送姿勢とは異なる第2の搬送姿勢に徐々に導く態様で、前記搬送方向に徐々に磁束の方向が変化していくとともに、
前記搬送物が前記搬送路上で前記搬送方向に搬送されていくことにより前記磁石から離れていく下流側搬送路領域で、前記搬送物を前記第2の搬送姿勢から前記第1の搬送姿勢へ向けて徐々に導く態様で、前記搬送方向に徐々に磁束の方向が変化してい
前記搬送路は、非磁性体により構成されるとともに、前記搬送方向と直交する幅方向に沿って凹曲面状の断面輪郭を有する搬送底面部を備え、当該搬送底面部は、前記幅方向の最低部に対して前記幅方向の両側にわたり、前記搬送物の長手方向の長さLに関してR>L/2、或いは、前記搬送物の最大寸法Kに関してR>K/2となる範囲の曲率半径Rの断面輪郭を有する、
搬送物整列システム。
a conveyance path along which the conveyance object is conveyed in the conveyance direction; and a conveyance path arranged beside the conveyance path and conveyed on the conveyance path over at least a predetermined range of the conveyance direction in the conveyance direction. A conveyance object alignment system comprising: a magnet that forms a magnetic flux distribution that affects the conveyance posture of objects, and aligns the conveyance objects in a first conveyance posture;
The magnetic flux distribution is configured to cause the conveyed object to move toward the first magnet in the upstream conveyance path region in the predetermined range where the conveyed object approaches the magnet as it is conveyed in the conveyance direction on the conveyance path. The direction of the magnetic flux gradually changes in the conveying direction in a manner that gradually leads to a second conveying posture different from the conveying posture, and
Directing the conveyed object from the second conveyance posture to the first conveyance posture in a downstream conveyance path region where the conveyance object moves away from the magnet as it is conveyed in the conveyance direction on the conveyance path. The direction of the magnetic flux gradually changes in the conveying direction in a manner that the magnetic flux is gradually guided,
The conveyance path is made of a non-magnetic material and includes a conveyance bottom part having a concave cross-sectional profile along the width direction perpendicular to the conveyance direction, and the conveyance bottom part is formed of a non-magnetic material. A radius of curvature R in a range where R>L/2 with respect to the length L in the longitudinal direction of the conveyed object, or R>K/2 with respect to the maximum dimension K of the conveyed object, over both sides in the width direction with respect to the section. having a cross-sectional profile of
Conveyed object alignment system.
前記搬送物は長手方向を有し、
前記長手方向が前記第1の搬送姿勢において前記搬送方向に一致する、
請求項8に記載の搬送物搬送システム。
The conveyed object has a longitudinal direction,
the longitudinal direction matches the conveyance direction in the first conveyance posture;
The conveyed object conveyance system according to claim 8.
前記搬送物は、前記第1の搬送姿勢における前記搬送方向と一致する方向が前記磁束の方向に沿う姿勢で安定する態様で前記磁性体を含む、
請求項8又は9に記載の搬送物搬送システム。
The conveyed object includes the magnetic body in such a manner that the conveyance object is stabilized in a posture in which a direction coinciding with the conveyance direction in the first conveyance posture is along the direction of the magnetic flux.
The conveyance system according to claim 8 or 9.
前記下流側搬送路領域において、前記搬送物が前記搬送方向に搬送されていくとともに前記搬送物の姿勢に与える前記磁石の磁気的影響が低下していくに従って、前記搬送路上における前記磁束の方向は、前記第2の搬送姿勢に対応する第2の方向から、前記第1の搬送姿勢に対応する第1の方向に漸近していく、
請求項8-10のいずれか一項に記載の搬送物搬送システム。
In the downstream conveyance path region, as the conveyance object is conveyed in the conveyance direction and the magnetic influence of the magnets on the posture of the conveyance object decreases, the direction of the magnetic flux on the conveyance path changes. , asymptotic from a second direction corresponding to the second conveyance posture to a first direction corresponding to the first conveyance posture;
The conveyed object conveyance system according to any one of claims 8 to 10.
前記下流側搬送路領域の下流側であって、前記搬送物が前記第1の搬送姿勢で整列して搬送されていく場所に、前記搬送物を判別し、その判別結果に応じて前記搬送物を制御する判別制御部をさらに有する、
請求項8-11のいずれか一項に記載の搬送物搬送システム。
The conveyed objects are determined, and the conveyed objects are placed in a location downstream of the downstream conveyance path region where the conveyed objects are aligned and conveyed in the first conveyance posture. further comprising a discrimination control section that controls the
The conveyed object conveyance system according to any one of claims 8 to 11.
前記搬送路は、前記搬送方向の前方斜め上方へ向かう往復振動により、前記搬送物を搬送するように構成される、
請求項8-12のいずれか一項に記載の搬送物搬送システム。
The conveyance path is configured to convey the conveyed object by reciprocating vibrations directed forward and diagonally upward in the conveyance direction.
The conveyance system for conveyed objects according to any one of claims 8 to 12.
JP2020180198A 2020-10-28 2020-10-28 Conveyed object alignment method and conveyed object alignment system Active JP7401101B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020180198A JP7401101B2 (en) 2020-10-28 2020-10-28 Conveyed object alignment method and conveyed object alignment system
KR1020210115429A KR20220056787A (en) 2020-10-28 2021-08-31 Sorting method for conveying objects and sorting system for conveying objects
CN202111107844.2A CN114476597A (en) 2020-10-28 2021-09-22 Method and system for aligning conveyed articles
TW110135871A TW202216566A (en) 2020-10-28 2021-09-27 Conveyed object alignment method and conveyed object alignment system capable of efficiently and reliably aligning conveyed objects conveyed at high speed and high density without any hindrance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180198A JP7401101B2 (en) 2020-10-28 2020-10-28 Conveyed object alignment method and conveyed object alignment system

Publications (2)

Publication Number Publication Date
JP2022071309A JP2022071309A (en) 2022-05-16
JP7401101B2 true JP7401101B2 (en) 2023-12-19

Family

ID=81491524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180198A Active JP7401101B2 (en) 2020-10-28 2020-10-28 Conveyed object alignment method and conveyed object alignment system

Country Status (4)

Country Link
JP (1) JP7401101B2 (en)
KR (1) KR20220056787A (en)
CN (1) CN114476597A (en)
TW (1) TW202216566A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205283A1 (en) * 2022-05-25 2023-11-30 OPTIMA pharma GmbH Feeding device and method for feeding small parts
CN117465753A (en) * 2023-12-08 2024-01-30 广东微容电子科技有限公司 Vibration feed mechanism and braiding machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318830A (en) 1999-05-10 2000-11-21 Ntn Corp Part attitude arranging method, and part attitude arranging device
JP2002240922A (en) 2000-12-12 2002-08-28 Shinko Electric Co Ltd Vibration parts carrying machine
JP2003069285A (en) 2001-08-24 2003-03-07 Rohm Co Ltd Method of aligning chip type electronic component and apparatus therefor
JP2014169142A (en) 2013-03-01 2014-09-18 Daishin:Kk Vibration type conveyance device
US20170022011A1 (en) 2014-05-05 2017-01-26 Soudronic Ag Magnetic lifting device for can bodies

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229634A (en) 1992-02-17 1993-09-07 Sony Corp Directional parts and alignment device therefor
JP4951796B2 (en) 2009-07-07 2012-06-13 株式会社村田製作所 Electronic component conveyor
JP5725010B2 (en) 2012-12-28 2015-05-27 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318830A (en) 1999-05-10 2000-11-21 Ntn Corp Part attitude arranging method, and part attitude arranging device
JP2002240922A (en) 2000-12-12 2002-08-28 Shinko Electric Co Ltd Vibration parts carrying machine
JP2003069285A (en) 2001-08-24 2003-03-07 Rohm Co Ltd Method of aligning chip type electronic component and apparatus therefor
JP2014169142A (en) 2013-03-01 2014-09-18 Daishin:Kk Vibration type conveyance device
US20170022011A1 (en) 2014-05-05 2017-01-26 Soudronic Ag Magnetic lifting device for can bodies

Also Published As

Publication number Publication date
CN114476597A (en) 2022-05-13
JP2022071309A (en) 2022-05-16
KR20220056787A (en) 2022-05-06
TW202216566A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP7401101B2 (en) Conveyed object alignment method and conveyed object alignment system
TWI410370B (en) Electronic parts transfer device
US5180048A (en) Magnetic levitating transportation system
JP3430854B2 (en) Electronic component alignment device and alignment method
CA2628276A1 (en) A self-fastening cage surrounding a magnetic resonance device and methods thereof
JP2009166952A (en) Sheet carrying device
JPH0616239A (en) Magnetically levitated conveyor device
CN110031475B (en) Conveying device, conveying method and appearance inspection device
JP6610605B2 (en) Electronic component demagnetizing device, taping electronic component series manufacturing device, electronic component demagnetizing method
JP2553453B2 (en) Metal removal equipment
CN116461947A (en) Conveying device and conveying method
JPH0867329A (en) Electronic part carrying device
JP2020158260A (en) Arrangement method and arrangement device
JP2020158259A (en) Arrangement method and arrangement device
JPH0891548A (en) Aligning feeding device for electronic part
KR20200115093A (en) Parts feeder and air jet device for parts feeder
JP2531220Y2 (en) Article transfer equipment
TWI836010B (en) Parts feeder and air blowing device for parts feeder
KR102529706B1 (en) MLCC arraying apparatus
JPH0543468Y2 (en)
CN1933717B (en) Feeding apparatus for electrical components and assembling system with the feeding apparatus
JPH0585620A (en) Magnetically operable conveyor device for article
WO2006064562A1 (en) Parts feeder
JPH0812076A (en) Work sensing method and device of magnetic levitation conveying device
JP2023072844A (en) Vibratory part feeder, part aligning-supplying device using the same, and supply method of part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7401101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150