JP2020158259A - Arrangement method and arrangement device - Google Patents

Arrangement method and arrangement device Download PDF

Info

Publication number
JP2020158259A
JP2020158259A JP2019059771A JP2019059771A JP2020158259A JP 2020158259 A JP2020158259 A JP 2020158259A JP 2019059771 A JP2019059771 A JP 2019059771A JP 2019059771 A JP2019059771 A JP 2019059771A JP 2020158259 A JP2020158259 A JP 2020158259A
Authority
JP
Japan
Prior art keywords
work
magnetic force
transport member
magnetic
attitude control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019059771A
Other languages
Japanese (ja)
Inventor
植田 征典
Yukinori Ueda
征典 植田
正嗣 上原
Masatsugu Uehara
正嗣 上原
涼介 森口
Ryosuke Moriguchi
涼介 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Precision Co Ltd
Original Assignee
Toray Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Precision Co Ltd filed Critical Toray Precision Co Ltd
Priority to JP2019059771A priority Critical patent/JP2020158259A/en
Publication of JP2020158259A publication Critical patent/JP2020158259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding Of Articles To Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Abstract

To provide new techniques for making orientations of workpieces uniform.SOLUTION: Orientations of workpieces are made uniform by rotation by floating the workpieces from a conveying member using magnetic force.SELECTED DRAWING: Figure 5

Description

本発明は、部品等の微細なワークの向きを揃えて整列させる方法および装置に関する。 The present invention relates to a method and an apparatus for aligning and aligning the directions of fine workpieces such as parts.

ワークの向きを揃えるための手段はこれまでにいくつか提案されている。
例えば特許文献1には、振動式パーツフィーダが開示されており、この振動式パーツフィーダは、強磁性体である積層セラミックチップコンデンサを搬送するものである。振動式パーツフィーダは非磁性材のボウルを有し、ボウルの中央部は、被搬送部品としての積層セラミックチップコンデンサをバラ状態で収容する皿部である。ボウル内周には、皿部からスパイラル状に周回して伸びる部品搬送路が形成されている。振動により積層セラミックチップコンデンサは皿部から部品搬送路に入り、これをスパイラル状に昇っていく。部品搬送路の部品送出口にはリニアフィーダが接続され、整列した積層セラミックチップコンデンサを直線的に搬送するようになっている。
Several means for aligning the work orientation have been proposed so far.
For example, Patent Document 1 discloses a vibrating parts feeder, and the vibrating parts feeder carries a multilayer ceramic chip capacitor which is a ferromagnet. The vibrating parts feeder has a bowl made of a non-magnetic material, and the central portion of the bowl is a dish portion that houses the monolithic ceramic chip capacitor as a part to be conveyed in a loose state. On the inner circumference of the bowl, a parts transport path extending from the dish portion in a spiral shape is formed. Due to vibration, the monolithic ceramic chip capacitor enters the component transport path from the dish and rises in a spiral shape. A linear feeder is connected to the component delivery port of the component transport path to linearly transport the aligned multilayer ceramic chip capacitors.

この振動式パーツフィーダでは、磁界発生手段が、ボウル外側側面に所定距離だけ離して配置され、移動している積層セラミックチップコンデンサに磁界が加えられる。ここで、磁界発生手段磁極からの磁力線は点線のように積層セラミックチップコンデンサに水平方向に印加されるから、コンデンサ内部に積層状態で多層に形成された平面状内部電極は水平状態となった姿勢で安定する。つまり、移動している積層セラミックチップコンデンサの内部電極面が水平であれば、そのまま通過するが、内部電極面が鉛直のものがあれば、内部電極面が水平となるように姿勢変換されて搬送されることになる。 In this vibrating parts feeder, the magnetic field generating means are arranged on the outer side surface of the bowl by a predetermined distance, and the magnetic field is applied to the moving multilayer ceramic chip capacitor. Here, since the magnetic field lines from the magnetic field generating means magnetic poles are applied in the horizontal direction to the laminated ceramic chip capacitor as shown by the dotted lines, the planar internal electrodes formed in multiple layers inside the capacitor are in a horizontal state. Stable with. In other words, if the internal electrode surface of the moving multilayer ceramic chip capacitor is horizontal, it will pass as it is, but if the internal electrode surface is vertical, the posture is changed so that the internal electrode surface is horizontal and transported. Will be done.

特開2005‐217136号公報Japanese Unexamined Patent Publication No. 2005-217136

ワークは、必ずしも特許文献1のように電極の方向によって姿勢を揃えられるものだけではなく、新たな技術が求められている。 The work is not necessarily a work whose posture can be aligned depending on the direction of the electrodes as in Patent Document 1, but a new technique is required.

課題を解決する手段として、以下の技術が挙げられる。 The following technologies can be mentioned as means for solving the problems.

(1)磁性を有するフランジ部を備えるワークを整列させる方法であって、
前記ワークを乗せた状態で移動することで前記ワークを搬送する搬送部材と、
前記搬送部材の上方から磁力によって前記ワークを前記搬送部材から浮かせることで回転させて前記ワークの向きを揃える姿勢制御工程と、
前記姿勢制御工程後に、磁力を弱めることで前記ワークを前記搬送部材に戻す解放工程と、
を備えるワークの整列方法。
(1) A method of aligning workpieces having a magnetic flange portion.
A transport member that transports the work by moving with the work on it,
An attitude control step of aligning the orientation of the work by causing the work to float from the transport member by magnetic force from above the transport member and rotating the work.
After the attitude control step, a release step of returning the work to the transport member by weakening the magnetic force,
How to align workpieces with.

(2)前記姿勢制御工程は、前記搬送部材の上方の磁力発生部と、前記磁力発生部と前記搬送部材との間に配置した非磁性体とを用い、
前記姿勢制御工程を、前記磁力発生部の磁力により前記ワークを前記非磁性体に吸着させることで行い、
前記解放工程において、前記磁力発生部からワークに作用する磁力を弱めることで前記非磁性体から離間させる、
上記(1)に記載のワークの整列方法。
(2) In the attitude control step, a magnetic force generating portion above the transport member and a non-magnetic material arranged between the magnetic force generating portion and the transport member are used.
The attitude control step is performed by attracting the work to the non-magnetic material by the magnetic force of the magnetic force generating portion.
In the release step, the magnetic force acting on the work from the magnetic force generating portion is weakened to separate the non-magnetic material.
The work alignment method according to (1) above.

(3)前記磁力発生部は永久磁石であり、
前記永久磁石を前記非磁性体に近づけることで前記ワークを非磁性体に吸着させ、
前記永久磁石を前記非磁性体から離すことで前記ワークを解放する、
上記(2)に記載のワークの整列方法。
(3) The magnetic force generating portion is a permanent magnet.
By bringing the permanent magnet closer to the non-magnetic material, the work is attracted to the non-magnetic material.
The work is released by separating the permanent magnet from the non-magnetic material.
The work alignment method according to (2) above.

(4)前記非磁性体と前記搬送部材との距離G1が、ワークの最大長Lの1.1〜2倍である、
上記(2)または(3)に記載のワークの整列方法。
(4) The distance G1 between the non-magnetic material and the transport member is 1.1 to 2 times the maximum length L of the work.
The work alignment method according to (2) or (3) above.

(5)前記ワークの上方に位置する電磁石である磁力発生部を用い、
前記電磁石に供給する電流によって磁力の強弱を制御することで、姿勢制御工程および解放工程を行う、
上記(1)〜(4)のいずれかに記載のワークの整列方法。
(5) Using a magnetic force generating portion that is an electromagnet located above the work,
By controlling the strength of the magnetic force by the current supplied to the electromagnet, the attitude control step and the release step are performed.
The work alignment method according to any one of (1) to (4) above.

(6)ワーク高さHの3倍以上の距離をおいて配置された複数の磁力発生部を用いる、
上記(2)〜(5)のいずれかに記載の整列方法。
(6) Use a plurality of magnetic force generating parts arranged at a distance of 3 times or more the work height H.
The alignment method according to any one of (2) to (5) above.

(7)磁性を有するフランジ部を備えるワークを整列させる整列装置であって、
前記ワークを乗せた状態で移動することで前記ワークを搬送する搬送部材と、
前記搬送部材の上方に配置され、磁力によって前記ワークを前記搬送部材から浮かせることで回転させて前記ワークの向きを揃え、磁力を弱めることで前記ワークを前記搬送部材に戻す姿勢制御部と
を備える整列装置。
(7) An aligning device for aligning workpieces having a magnetic flange portion.
A transport member that transports the work by moving with the work on it,
It is provided above the transport member and includes an attitude control unit which is arranged above the transport member and is rotated by floating the work from the transport member to align the directions of the work, and returns the work to the transport member by weakening the magnetic force. Aligner.

本発明の整列方法および装置は、磁性を有するフランジ部を備えるワークを対象とし、ワークを乗せた状態でそれ自身が移動(テーブルによる回転移動、ベルトによる移動等を含む)する搬送部材によってワークを搬送し、かつそのワークを磁力によって浮かせることで、ワークの向きを揃えることができる。 The alignment method and apparatus of the present invention targets a work having a magnetic flange portion, and the work is moved by a transport member that itself moves (including rotary movement by a table, movement by a belt, etc.) with the work placed on the work. By transporting and floating the work by magnetic force, the orientation of the work can be aligned.

ワークの一例を示す側面図および上面図である。It is a side view and the top view which show an example of a work. 搬送装置の一例を示す上面図である。It is a top view which shows an example of a transport device. (a)および(b)は、規制天井による姿勢制御を示す図である。(A) and (b) are diagrams showing the attitude control by the regulated ceiling. (a)は磁力を利用した姿勢制御部の上面図、(b)は断面図である。(A) is a top view of the attitude control unit using magnetic force, and (b) is a cross-sectional view. (a)〜(c)は姿勢制御部による姿勢転換工程を表す図であり、(d)は姿勢転換後にワークが解放された状態を表す図である。(A) to (c) are diagrams showing the posture change process by the attitude control unit, and (d) is a diagram showing a state in which the work is released after the attitude change.

[ワーク]
ワークの例を図1に示す。図1のワークWは、円形であり、互いに平行になるように配置された2つのフランジ部10とその間の軸部12とを備える。適切な姿勢においては、軸部12が鉛直方向(後述の回転テーブルの面方向に垂直な方向)に平行になる。つまり、フランジ部10の面(フランジ面10a)が水平方向(回転テーブルの面方向)に平行になる。以下、この姿勢を「縦向き」と呼び、軸部12が水平方向を向く姿勢を「横向き」と呼ぶ。
[work]
An example of the work is shown in FIG. The work W in FIG. 1 is circular and includes two flange portions 10 arranged so as to be parallel to each other and a shaft portion 12 between them. In an appropriate posture, the shaft portion 12 is parallel to the vertical direction (the direction perpendicular to the surface direction of the rotary table described later). That is, the surface of the flange portion 10 (flange surface 10a) is parallel to the horizontal direction (plane direction of the rotary table). Hereinafter, this posture is referred to as "vertical orientation", and the posture in which the shaft portion 12 faces the horizontal direction is referred to as "horizontal orientation".

縦向きのワークにおける高さ、つまり一方のフランジ部の面から、他方のフランジ部の面までの距離(言い換えると軸部の長手方向におけるワークの長さ)Hよりも、幅、つまりフランジ部の直径(言い換えると水平方向におけるワークの長さ)Rの方が大きい。フランジ部10の直径Rは軸部12の直径およびフランジ部10の厚みよりも大きい。 The height of the work in the vertical direction, that is, the distance from the surface of one flange to the surface of the other flange (in other words, the length of the work in the longitudinal direction of the shaft) H, the width, that is, the width of the flange. The diameter (in other words, the length of the work in the horizontal direction) R is larger. The diameter R of the flange portion 10 is larger than the diameter of the shaft portion 12 and the thickness of the flange portion 10.

ワークWにおいて、少なくともフランジ部10は磁性を有するが、軸部12は非磁性であってもよい。またフランジ面を有すれば円柱状体であっても良い。 In the work W, at least the flange portion 10 is magnetic, but the shaft portion 12 may be non-magnetic. Further, it may be a columnar body as long as it has a flange surface.

[整列装置]
図2に、整列装置2の平面図を示す。図2の整列装置2は、搬送部材である回転テーブル20を備え、回転テーブルの回転方向に沿って、ホッパ21、規制天井22、外寄せガイド23、天井ガイド24、姿勢制御部25、合流ガイド26、整列ガイド27、リニアフィーダ28を備える。図示の便宜上、回転テーブル20表面が表れている領域にドットのハッチングを付した。また、縦向きのワークの進行方向を白矢印、横向きのワークの進行方向を格子ハッチングの矢印、いずれの場合もあり得る進行方向を斜線ハッチングの矢印で示す。
[Aligning device]
FIG. 2 shows a plan view of the alignment device 2. The alignment device 2 of FIG. 2 includes a rotary table 20 which is a transport member, and is a hopper 21, a regulated ceiling 22, an outside guide 23, a ceiling guide 24, an attitude control unit 25, and a merging guide along the rotation direction of the rotary table. 26, an alignment guide 27, and a linear feeder 28 are provided. For convenience of illustration, dot hatching is added to the area where the surface of the rotary table 20 appears. Further, the traveling direction of the vertically oriented work is indicated by a white arrow, the traveling direction of the horizontally oriented work is indicated by a lattice hatching arrow, and the traveling direction in any case is indicated by a diagonal hatching arrow.

回転テーブル20は平たい円盤状の部材であり、ワークを載せた状態で、図示しないモータ等の駆動部によって、回転軸を中心に黒矢印方向(図2では反時計回り)に回転する。ワークはこの回転によって移動する。なお、回転テーブル以外に、ベルト等の部材を搬送部材として適用することができる。 The rotary table 20 is a flat disk-shaped member, and is rotated in the direction of the black arrow (counterclockwise in FIG. 2) around the rotation axis by a drive unit such as a motor (not shown) with the workpiece mounted on the rotary table 20. The work moves by this rotation. In addition to the rotary table, a member such as a belt can be applied as a transport member.

ホッパ21は回転テーブル20上にワークを供給する。このとき供給されるワークの姿勢は統一されていない。 The hopper 21 supplies the work on the rotary table 20. The posture of the work supplied at this time is not unified.

規制天井22は、回転テーブル20の上方に、回転テーブル20から、ワーク高さHより大きく、ワーク幅Rよりは小さい間隔をおいて配置される。ワークは、回転テーブル20の回転によって、規制天井22を横切るように移動する。この移動よって、縦向きワークは規制天井22の下を通って天井ガイド24に向かう。また、図3に示すように、横向きワークは、そのフランジ部が規制天井22に当たることで90°回転し、その結果縦向きになる。縦向きワークは天井ガイド24に向かう。一方、規制天井22でも姿勢が変わらなかった横向きワークは、規制天井22の下を通過できずに、外寄せガイド23へ移動する。 The regulation ceiling 22 is arranged above the rotary table 20 at intervals larger than the work height H and smaller than the work width R from the rotary table 20. The work moves so as to cross the regulated ceiling 22 by the rotation of the rotary table 20. Due to this movement, the vertical workpiece passes under the regulated ceiling 22 toward the ceiling guide 24. Further, as shown in FIG. 3, the horizontally oriented work is rotated by 90 ° when its flange portion hits the regulated ceiling 22, and as a result, it is oriented vertically. The vertical work faces the ceiling guide 24. On the other hand, the sideways work whose posture has not changed even on the regulated ceiling 22 cannot pass under the regulated ceiling 22 and moves to the outside guide 23.

外寄せガイド23は、横向きワークを天井ガイド24に導く。 The outside guide 23 guides the sideways work to the ceiling guide 24.

天井ガイド24は、規制天井22と同様に、回転テーブル20の上方に、回転テーブル20から、ワーク高さHより大きく、ワーク幅Rよりは小さい間隔をおいて配置される。天井ガイド24は縦向きワークを通過させ、横向きワークを姿勢制御部25に導く。言い換えると、天井ガイド24は、縦向きワークに姿勢制御部25を迂回させる。 Similar to the regulated ceiling 22, the ceiling guide 24 is arranged above the rotary table 20 at intervals larger than the work height H and smaller than the work width R from the rotary table 20. The ceiling guide 24 passes the vertical work and guides the horizontal work to the attitude control unit 25. In other words, the ceiling guide 24 causes the vertical work to bypass the attitude control unit 25.

姿勢制御部25は、ワークのフランジ部に磁力発生部の磁力を作用させることで、ワークを吸着する。この吸着によってワークが回転してフランジ面の向き、つまりワークの姿勢が揃えられる(姿勢制御工程)。その後、磁力を弱めることでワークを吸着から解放し、ワークを再び回転テーブルによる移動に戻すことができる(解放工程)。 The attitude control unit 25 attracts the work by applying the magnetic force of the magnetic force generating portion to the flange portion of the work. By this suction, the work rotates and the orientation of the flange surface, that is, the posture of the work is aligned (attitude control process). After that, the work can be released from the suction by weakening the magnetic force, and the work can be returned to the movement by the rotary table (release step).

姿勢制御部25の具体例の平面図を図4(a)に、断面図を図4(b)に示す。本例では、姿勢制御部25は、回転テーブル20の上方に配置された磁力発生部M1〜M3と、磁力発生部と回転テーブル20との間に配置された非磁性シート251と、を備える。 A plan view of a specific example of the attitude control unit 25 is shown in FIG. 4A, and a cross-sectional view is shown in FIG. 4B. In this example, the attitude control unit 25 includes magnetic force generating units M1 to M3 arranged above the rotary table 20, and a non-magnetic sheet 251 arranged between the magnetic force generating unit and the rotary table 20.

磁力発生部が永久磁石である場合は、姿勢制御部は、永久磁石を非磁性シート251に近づけたり、非磁性シート251から遠ざけたりする磁石移動機構(図示せず)を有する。非磁性シート251に近づいたときには、永久磁石の磁界がワークに作用し、ワークが非磁性シート251に吸着される。また、永久磁石が非磁性シート251から離れることで、ワークに作用する磁力が弱められ、ワークも非磁性シート251から離間する。 When the magnetic force generating unit is a permanent magnet, the attitude control unit has a magnet moving mechanism (not shown) that moves the permanent magnet closer to or away from the non-magnetic sheet 251. When approaching the non-magnetic sheet 251 the magnetic field of the permanent magnet acts on the work, and the work is attracted to the non-magnetic sheet 251. Further, when the permanent magnet is separated from the non-magnetic sheet 251, the magnetic force acting on the work is weakened, and the work is also separated from the non-magnetic sheet 251.

磁力発生部が電磁石である場合には、電流によって磁力の強弱を切り替えればよい。電磁石を用いる場合は非磁性シート251を省略できるが、ワークが磁力発生部に吸着されるときの衝撃を和らげる緩衝材も兼ねて、永久磁石と同様に磁力発生部の下方に非磁性シートを設けてもよい。 When the magnetic force generating portion is an electromagnet, the strength of the magnetic force may be switched by an electric current. When an electromagnet is used, the non-magnetic sheet 251 can be omitted, but a non-magnetic sheet is provided below the magnetic force generating portion as in the case of a permanent magnet, which also serves as a cushioning material for cushioning the impact when the work is attracted to the magnetic force generating portion. You may.

磁力が作用してワークが磁力発生部に引きつけられたとき、ワークが到達する最高点と、回転テーブル20との距離G1は、ワークの最大長Lよりも大きく設定される。これによってワークの回転が可能となる。距離G1は好ましくはワークの最大長Lの1.1〜2倍である。図4では姿勢制御部25が非磁性シート251を有するので、回転テーブル20上面と非磁性シート251の下面との距離が距離G1となる。非磁性シート251が無い構成では、回転テーブル20と磁力発生部の下面との距離が距離G1となる。 When the magnetic force acts and the work is attracted to the magnetic force generating portion, the distance G1 between the highest point reached by the work and the rotary table 20 is set to be larger than the maximum length L of the work. This allows the work to rotate. The distance G1 is preferably 1.1 to 2 times the maximum length L of the work. In FIG. 4, since the attitude control unit 25 has the non-magnetic sheet 251, the distance between the upper surface of the rotary table 20 and the lower surface of the non-magnetic sheet 251 is the distance G1. In the configuration without the non-magnetic sheet 251, the distance between the rotary table 20 and the lower surface of the magnetic force generating portion is the distance G1.

磁力発生部は、永久磁石および電磁石のいずれの場合も、水平方向の形状が円形であることが好ましい。 In both the permanent magnet and the electromagnet, the magnetic force generating portion preferably has a circular shape in the horizontal direction.

磁力発生部の水平方向の寸法は、ワーク幅Rよりも小さいことが好ましい。 The horizontal dimension of the magnetic force generating portion is preferably smaller than the work width R.

磁力発生部は、本例では3つだが、その数は変更可能である。磁力発生部を複数設ける場合は、ワークの移動方向に沿って並べることが好ましい。このように配置することで、姿勢制御を横向きのまま通過するワークの数を減らすことができる。 The number of magnetic force generating parts is three in this example, but the number can be changed. When a plurality of magnetic force generating portions are provided, it is preferable to arrange them along the moving direction of the work. By arranging in this way, it is possible to reduce the number of workpieces that pass the attitude control sideways.

磁力発生部M1とM2,M2とM3との中心間距離G2は、ワーク高さHの3倍以上であることが好ましい。距離G2がこの範囲であることで、吸着時に、横向きワークが横向きのまま持ち上がるのではなく、回転しやすい。 The distance G2 between the centers of the magnetic force generating portions M1 and M2 and M2 and M3 is preferably 3 times or more the work height H. When the distance G2 is in this range, the sideways work is not lifted sideways at the time of suction, but is easily rotated.

例えば、ワーク幅Rが7.4mm、ワーク高さHが5.8mm、対角寸法(ワークの最大長L)が9.0mmである場合、距離G1を10mm、距離G2を23mmとすることができる。
図5は、ワークが回転する様子を示す模式図である。図5では磁力発生部M1を上下させることで磁力の強弱を切り替えているが、上述したように、電磁石に供給する電流によって磁力の強弱を切り替えてもよい。図5に示すように、搬送されてきたワークのフランジ部に磁力が作用し、ワークが持ち上げられる(図5(a)、(b))。ワークの上昇は、ワークの姿勢が最も安定する状態、つまりフランジ部の上面(フランジ面)が非磁性シート251に接触した状態で止まる(図5(c))。言い換えると、ワークはフランジ面が水平方向を向いた状態で、磁力発生部M1によって非磁性シート251に吸着される。よって、吸着前は横向きだったワークは90°回転して縦向きになる。その後、磁力発生部が非磁性シート251から離れることで磁力が弱まり、ワークは開放されて、吸着されていたときの縦向き姿勢のままで回転テーブル20に戻される(図5(d))。
For example, when the work width R is 7.4 mm, the work height H is 5.8 mm, and the diagonal dimension (maximum length L of the work) is 9.0 mm, the distance G1 can be 10 mm and the distance G2 can be 23 mm.
FIG. 5 is a schematic view showing how the work rotates. In FIG. 5, the strength of the magnetic force is switched by moving the magnetic force generating unit M1 up and down, but as described above, the strength of the magnetic force may be switched by the current supplied to the electromagnet. As shown in FIG. 5, a magnetic force acts on the flange portion of the conveyed work, and the work is lifted (FIGS. 5A and 5B). The lifting of the work stops when the posture of the work is most stable, that is, when the upper surface (flange surface) of the flange portion is in contact with the non-magnetic sheet 251 (FIG. 5 (c)). In other words, the work is attracted to the non-magnetic sheet 251 by the magnetic force generating portion M1 with the flange surface facing the horizontal direction. Therefore, the work that was horizontally oriented before suction is rotated by 90 ° and becomes vertically oriented. After that, the magnetic force is weakened as the magnetic force generating portion separates from the non-magnetic sheet 251 and the work is released and returned to the rotary table 20 in the vertical posture when it was attracted (FIG. 5 (d)).

磁力発生部の磁束密度は、横向きワークの上端(つまりフランジの横端)に作用して吸着できる程度に設定される。また、縦向きワークは横向きワークよりも高さが小さいので、磁力発生部からの距離が大きくなり、作用する磁力も小さくなる。そこで、磁束密度は、縦向きワークは持ち上げられない程度に設定されてもよい。ただし、磁束密度は、縦向きワークも持ち上げられる程度に大きくてもよい。磁束密度が縦向きワークも吸着できる程度に大きくても、フランジ面がフランジ部の厚みよりも大きいので、フランジ面が磁力発生部を向く姿勢が最も安定するからである。 The magnetic flux density of the magnetic force generating portion is set to such that it can act on the upper end of the lateral work (that is, the lateral end of the flange) and be attracted. Further, since the height of the vertical work is smaller than that of the horizontal work, the distance from the magnetic force generating portion is increased and the acting magnetic force is also reduced. Therefore, the magnetic flux density may be set so that the vertical work cannot be lifted. However, the magnetic flux density may be large enough to lift the vertical work. This is because even if the magnetic flux density is large enough to attract the vertically oriented work, the flange surface is larger than the thickness of the flange portion, so that the posture in which the flange surface faces the magnetic force generating portion is the most stable.

ワークを回転させやすいように、ワーク重量当たりの個々の磁力発生部の磁束密度は、横向きワークの上端(つまりフランジの横端)が磁力発生部の真下にあるときに、10mT/g以上であることが好ましく、50mT/g以下であることが好ましい。 The magnetic flux density of each magnetic force generating part per work weight is 10 mT / g or more when the upper end of the lateral work (that is, the lateral end of the flange) is directly below the magnetic force generating part so that the work can be easily rotated. It is preferably 50 mT / g or less.

姿勢制御部25の上流に設けられた規制天井22と天井ガイド24によって、ある程度ワークの姿勢が縦向きに揃えられ、それでも横向きになっているワークのみが姿勢制御部25に送られる。つまり、磁力を用いる姿勢制御の前に、予め姿勢制御(規制天井22)と、姿勢による振り分け(規制天井22,天井ガイド24)を行うことによって、間引かれた状態で、姿勢制御部25にワークが送られる。よって、ワーク間の距離は、あるワークが磁力による吸着、解放を経ても、その後ろのワークに衝突しない程度に開いている可能性が高い。 The regulated ceiling 22 and the ceiling guide 24 provided upstream of the attitude control unit 25 align the postures of the workpieces in the vertical direction to some extent, and only the workpieces in the horizontal orientation are sent to the attitude control unit 25. That is, before the attitude control using the magnetic force, the attitude control (regulated ceiling 22) and the attitude distribution (regulated ceiling 22, ceiling guide 24) are performed in advance, so that the attitude control unit 25 is thinned out. Work is sent. Therefore, there is a high possibility that the distance between the works is wide enough not to collide with the work behind the work even if the work is attracted and released by the magnetic force.

また、ワークの寸法、搬送速度(つまりテーブルの回転速度)およびワークの間隔に応じて、吸着されたワークがその次のワークに衝突しないように、磁力発生部の磁力のON/OFF(以下、「ON/OFF」とは、磁力の強弱の切り替えおよび一定磁力の磁石の非磁性体への距離の変更を含む)の速度を変更してもよい。特に、ONになっている時間の長さを調整することで、次のワークとの衝突を避けることができる。姿勢制御部25の前に姿勢に応じた間引きが行われない場合、ワークの間隔は、ホッパによるワーク供給速度および搬送速度の影響を受ける。 In addition, depending on the size of the work, the transport speed (that is, the rotation speed of the table), and the interval between the works, the magnetic force of the magnetic force generating part is turned ON / OFF (hereinafter, so that the attracted work does not collide with the next work). "ON / OFF" may change the speed of (including switching the strength of the magnetic force and changing the distance of the magnet having a constant magnetic force to a non-magnetic material). In particular, by adjusting the length of the ON time, it is possible to avoid a collision with the next work. When thinning according to the posture is not performed in front of the posture control unit 25, the work interval is affected by the work supply speed and the transport speed by the hopper.

また、複数の磁力発生部を搬送方向に沿って配置する場合は、1つのワークが、少なくとも2つの磁力発生部による姿勢制御工程を経ることが好ましい。ここで、「姿勢制御工程を経る」とは、それが成功した場合にかぎらず、横向きのままである場合も含む。つまり、磁力発生部M1〜M3のON/OFFを一斉に切り替える場合は、1つのワークが姿勢制御部25の下を通過する間に、少なくとも2回ON/OFFの切り替えが行われればよい。こうすることで、1つ目の磁力発生部M1で姿勢を制御できなかった場合も、2つ目以降の磁力発生部によって姿勢制御を試みることができる。 Further, when a plurality of magnetic force generating portions are arranged along the transport direction, it is preferable that one work undergoes an attitude control step by at least two magnetic force generating portions. Here, "going through the attitude control process" includes not only the case where it succeeds but also the case where it remains sideways. That is, when switching ON / OFF of the magnetic force generating units M1 to M3 all at once, ON / OFF may be switched at least twice while one work passes under the attitude control unit 25. By doing so, even if the attitude cannot be controlled by the first magnetic force generating unit M1, the attitude control can be attempted by the second and subsequent magnetic force generating units.

合流ガイド24は、姿勢制御部25を通ったワークを、天井ガイド24によって分岐した搬送経路を通ってきたワークと合流するように導く。 The merging guide 24 guides the work that has passed through the attitude control unit 25 to merge with the work that has passed through the transport path branched by the ceiling guide 24.

本例では、その後、縦向きワークは規制天井22の下を通り、整列ガイド27によって一列に整列し、リニアフィーダ28によって回転テーブル20外に導かれる。 In this example, the vertical workpieces then pass under the regulated ceiling 22, aligned in a row by the alignment guide 27, and guided out of the turntable 20 by the linear feeder 28.

姿勢制御部でも縦向きにならなかったワークは、規制天井22によって、再び外寄せガイド23に導かれる。導かれたワークに対しては、縦向きへの姿勢制御が再び試みられる。 The work that has not been turned vertically even in the attitude control unit is guided to the outside guide 23 again by the regulation ceiling 22. Vertical attitude control is attempted again for the guided work.

本発明は、部品等の微細なワークの向きを揃えて整列させることができるので、ワークの検査およびワークを用いた他の作業を効率良く進めることに利用可能である。 Since the present invention can align and align fine workpieces such as parts in the same direction, it can be used for inspecting workpieces and efficiently advancing other operations using workpieces.

W ワーク
10 ワークのフランジ部
10a フランジ面
12 ワークの軸部
H ワーク高さ
R ワーク幅
L ワークの最大長
2 整列装置
20 回転テーブル
21 ホッパ
22 規制天井
23 外寄せガイド
24 天井ガイド
25 姿勢制御部
26 合流ガイド
27 整列ガイド
28 リニアフィーダ
M1〜M3 磁力発生部
251 非磁性シート
W Work 10 Work flange 10a Flange surface 12 Work shaft H Work height R Work width L Maximum work length 2 Alignment device 20 Rotating table 21 Hopper 22 Restricted ceiling 23 External guide 24 Ceiling guide 25 Attitude control unit 26 Merge guide 27 Alignment guide 28 Linear feeders M1 to M3 Magnetic force generator 251 Non-magnetic sheet

Claims (7)

磁性を有するフランジ部を備えるワークを整列させる方法であって、
前記ワークを乗せた状態で移動することで前記ワークを搬送する搬送部材と、
前記搬送部材の上方から磁力によって前記ワークを前記搬送部材から浮かせることで回転させて前記ワークの向きを揃える姿勢制御工程と、
前記姿勢制御工程後に、磁力を弱めることで前記ワークを前記搬送部材に戻す解放工程と、
を備えるワークの整列方法。
A method of aligning workpieces with magnetic flanges.
A transport member that transports the work by moving with the work on it,
An attitude control step of aligning the orientation of the work by causing the work to float from the transport member by magnetic force from above the transport member and rotating the work.
After the attitude control step, a release step of returning the work to the transport member by weakening the magnetic force,
How to align workpieces with.
前記姿勢制御工程は、前記搬送部材の上方の磁力発生部と、前記磁力発生部と前記搬送部材との間に配置した非磁性体とを用い、
前記姿勢制御工程を、前記磁力発生部の磁力により前記ワークを前記非磁性体に吸着させることで行い、
前記解放工程において、前記磁力発生部からワークに作用する磁力を弱めることで前記非磁性体から離間させる、
請求項1に記載のワークの整列方法。
In the attitude control step, a magnetic force generating portion above the transport member and a non-magnetic material arranged between the magnetic force generating portion and the transport member are used.
The attitude control step is performed by attracting the work to the non-magnetic material by the magnetic force of the magnetic force generating portion.
In the release step, the magnetic force acting on the work from the magnetic force generating portion is weakened to separate the non-magnetic material.
The method for arranging works according to claim 1.
前記磁力発生部は永久磁石であり、
前記永久磁石を前記非磁性体に近づけることで前記ワークを非磁性体に吸着させ、
前記永久磁石を前記非磁性体から離すことで前記ワークを解放する、
請求項2に記載のワークの整列方法。
The magnetic force generating portion is a permanent magnet.
By bringing the permanent magnet closer to the non-magnetic material, the work is attracted to the non-magnetic material.
The work is released by separating the permanent magnet from the non-magnetic material.
The method for arranging works according to claim 2.
前記非磁性体と前記搬送部材との距離G1が、ワークの最大長Lの1.1〜2倍である、
請求項2または3に記載のワークの整列方法。
The distance G1 between the non-magnetic material and the transport member is 1.1 to 2 times the maximum length L of the work.
The method for arranging works according to claim 2 or 3.
前記ワークの上方に位置する電磁石である磁力発生部を用い、
前記電磁石に供給する電流によって磁力の強弱を制御することで、姿勢制御工程および解放工程を行う、
請求項1〜4のいずれかに記載のワークの整列方法。
Using a magnetic force generating part that is an electromagnet located above the work,
By controlling the strength of the magnetic force by the current supplied to the electromagnet, the attitude control step and the release step are performed.
The method for arranging works according to any one of claims 1 to 4.
ワーク高さHの3倍以上の距離をおいて配置された複数の磁力発生部を用いる
請求項2〜5のいずれかに記載の整列方法。
The alignment method according to any one of claims 2 to 5, wherein a plurality of magnetic force generating portions arranged at a distance of 3 times or more the work height H are used.
磁性を有するフランジ部を備えるワークを整列させる整列装置であって、
前記ワークを乗せた状態で移動することで前記ワークを搬送する搬送部材と、
前記搬送部材の上方に配置され、磁力によって前記ワークを前記搬送部材から浮かせることで回転させて前記ワークの向きを揃え、磁力を弱めることで前記ワークを前記搬送部材に戻す姿勢制御部と
を備える整列装置。

An alignment device that aligns workpieces with magnetic flanges.
A transport member that transports the work by moving with the work on it,
It is provided above the transport member and includes an attitude control unit which is arranged above the transport member and is rotated by floating the work from the transport member to align the directions of the work, and returns the work to the transport member by weakening the magnetic force. Aligner.

JP2019059771A 2019-03-27 2019-03-27 Arrangement method and arrangement device Pending JP2020158259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019059771A JP2020158259A (en) 2019-03-27 2019-03-27 Arrangement method and arrangement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059771A JP2020158259A (en) 2019-03-27 2019-03-27 Arrangement method and arrangement device

Publications (1)

Publication Number Publication Date
JP2020158259A true JP2020158259A (en) 2020-10-01

Family

ID=72641644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059771A Pending JP2020158259A (en) 2019-03-27 2019-03-27 Arrangement method and arrangement device

Country Status (1)

Country Link
JP (1) JP2020158259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230013854A (en) * 2021-07-20 2023-01-27 계명대학교 산학협력단 Automatic arranging system using magnetic substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230013854A (en) * 2021-07-20 2023-01-27 계명대학교 산학협력단 Automatic arranging system using magnetic substance
KR102584598B1 (en) 2021-07-20 2023-10-04 계명대학교 산학협력단 Automatic arranging system using magnetic substance

Similar Documents

Publication Publication Date Title
KR100636871B1 (en) Method for aligning laminated electronic parts in desired orientation and alignment device therefor
TWI490154B (en) Electronic parts conveyor
JP2019215977A (en) Battery material lamination apparatus
CN108778967B (en) Sheet separating device, sheet separating method, and method for manufacturing sheet-like secondary battery
JP5463585B2 (en) Parts supply device
JP2020158259A (en) Arrangement method and arrangement device
JP7401101B2 (en) Conveyed object alignment method and conveyed object alignment system
JP2018098413A (en) Transport arrangement device of electronic component and transport arrangement method of electronic component
JP2020158260A (en) Arrangement method and arrangement device
CN110031475B (en) Conveying device, conveying method and appearance inspection device
JP5999796B1 (en) Relay device
KR20020040414A (en) Surface mounting device and method thereof
TW202337299A (en) Conveying device and conveying method capable of stabilizing the posture of an electronic component when the electronic component is conveyed
CN106865168B (en) Method for supplying rollable disc-shaped components
KR102529706B1 (en) MLCC arraying apparatus
JPH02239042A (en) Electromagnetic magnet floater
JPS63218421A (en) Aligning device for front and rear of part
JPS6382214A (en) Transport device for for parts
JP2015101441A (en) Device for transporting annular member
JPH1077115A (en) Straightening feeder for bar-shaped part
JP2006021928A (en) Parts feeder
JPH07171784A (en) Chuck device
JPH0457564B2 (en)
JP2000315494A (en) Feeder of battery electrode plate
JP5019278B2 (en) Work suction device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190425