JP5739409B2 - 第1の画像デバイスおよび第2の画像デバイスの相対位置を決定する方法及びこれらデバイス - Google Patents

第1の画像デバイスおよび第2の画像デバイスの相対位置を決定する方法及びこれらデバイス Download PDF

Info

Publication number
JP5739409B2
JP5739409B2 JP2012502553A JP2012502553A JP5739409B2 JP 5739409 B2 JP5739409 B2 JP 5739409B2 JP 2012502553 A JP2012502553 A JP 2012502553A JP 2012502553 A JP2012502553 A JP 2012502553A JP 5739409 B2 JP5739409 B2 JP 5739409B2
Authority
JP
Japan
Prior art keywords
image
reference point
orientation
determining
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502553A
Other languages
English (en)
Other versions
JP2012522231A (ja
Inventor
テイテガ,ドニー
Original Assignee
アルカテル−ルーセント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルカテル−ルーセント filed Critical アルカテル−ルーセント
Publication of JP2012522231A publication Critical patent/JP2012522231A/ja
Application granted granted Critical
Publication of JP5739409B2 publication Critical patent/JP5739409B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Multimedia (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Description

本発明は、カメラ較正技法ひいてはカメラ較正デバイスの分野に関する。本発明は、第1の画像デバイスおよび第2の画像デバイスの相対的な位置および方向を決定するための方法および装置、ならびにその用途に関する。
2つまたは複数のカメラでシーンを取り込む場合、たとえばシーン内のオブジェクトの3D情報を導き出すなど、取り込まれたデータまたは情報を効果的に使用するために、それらのカメラの特性が必要になることも多い。それらの特性は通常、カメラの位置、カメラの方向、および、たとえば解像度、視界、傾斜などのような内部カメラ・パラメータ(固有パラメータとも呼ばれる)を含む。たとえばシーンの3次元モデルを作成する場合、この情報は通常極めて重要である。カメラ情報の回復は、従来技術において「カメラ較正」と呼ばれることが多い。
現在の解決策では、較正を行なうために、カメラによって取り込まれたカラー情報を使用する。しかし、多くの場合、較正ステップが必要とされるが、このステップでは較正オブジェクトが現実のシーンに物理的に組み入れられるか、または挿入されることが求められる。次いで、較正オブジェクトの既知の特性が、カメラ・パラメータを回復するために使用される。
そのような較正オブジェクトを必要としない解決策も他にあるが、そうした解決策は時間を要するおよび/または信頼性が高くない。それらの解決策は、初期化が困難であるか、特定のタイプの特徴を持つシーンでしか機能しないか、またはシーンに関する追加の知識もしくは情報を必要とするといった問題を抱えていることが多い。それらの解決策は、エンド・ユーザに透過的なカメラの較正を行なえるようにはしない。さらに、カメラの較正を保持しながら、移動中のカメラをサポートすることは困難である。従来技術の方法では、その上さらに、相当な処理機能が必要になる。
また従来技術の多くは、リアルタイム3D情報を抽出できるようになっていない。
従来技術において、たとえば仮想世界のような仮想環境において、たとえばオブジェクトを表すためにオブジェクトのこの3D情報を使用するなど、実オブジェクトの3D情報を導き出すための技法が存在する。実オブジェクトを3Dデジタル情報で変換するための既存の技法の1つの例は、1つまたは複数のレーザーを用いてオブジェクトをスキャンするステップを備える。
「第1」、「第2」、「第3」などのような用語が使用される場合、それは必ずしも、順次または時系列順が想定されることを意味するものではない。
「備える」という用語は、その他の要素またはステップを除外することのないように解釈されるべきである。
本発明の第1の態様によれば、それぞれ第1および第2の画像デバイスの第1および第2の画像において共通に示されるオブジェクトの画像を比較することにより、第1および第2の画像デバイスの相対的な位置および方向を決定するための方法であって、第1および第2の画像デバイスは、それぞれの画像の第1および第2の深度情報をそれぞれ提供するように適合され、少なくとも第1および第2の深度情報が決定に使用される方法が開示される。
本発明の実施形態は、カメラ較正プロセスを最適化するために場合によってはカラーデータに加えて、深度情報およびデータを採用する。深度値は通常、この技術により使用可能なカメラの場合、ピクセルごとのカラー値に加えて使用可能である。深度値は、深さの相対的な概念を示す特定の範囲内の値である。画像のすべての深度値のセットは深度マップを表し、深度マップは従来技術において知られているさまざまな手段により取得することができる。これはたとえば、(たとえば、飛行時間測定法を用いて)カラーデータと併せて深度データを直接取り込むことにより得られる。深度データを導き出すためのもう1つの、より一般的な方法は、そのような深度マップをシーンの2つの(またはそれ以上の)隣接する画像から生成することである。隣接する画像は、十分に重複する画像として定義されてもよい。一般に使用されるのは、同じ平面内の画像平面に配置されるカメラであり、カメラ中心間の距離は3cmから100cmである。この深度情報を採用することにより、較正オブジェクトを物理的に処理してシーンに組み入れる必要なく、迅速にカメラ較正(位置および方向)を行なうことができ、動的なカメラ構成が実現する。
本発明の実施形態によれば、方法は、
a.少なくとも4つの基準点のセットを決定するステップを含み、基準点は、投影された基準点として第1の画像および第2の画像において認識可能であり、さらに、
b.第1の画像における基準点の画像の第1の深度情報を使用することにより、第1の画像デバイスに関して基準点の仮想位置を導き出すステップと、
c.第1の画像デバイスのあらかじめ定められた方向を設定するステップと、
d.第2の画像における基準点の画像の第2の深度情報を使用することにより、仮想基準点に関して第2の画像デバイスの位置を導き出すステップと、
e.第2の画像の基準点の画像と仮想基準点との間の位置合わせを最適化することにより、第2の画像デバイスの方向を決定するステップとを含む。
第1の画像デバイスの方向は、すべての回復された位置および方向がこのあらかじめ定められた方向(およびこの第1の画像デバイスの位置)と相対的になるので、自由に決定することができる。
「基準点」という用語は3D表現に対して使用され、「(特定の画像デバイスの)投影基準点」という用語は、画像デバイスによるそれらの関連付けられている2D表現に対して使用される。さらに、「実」基準点と「仮想」基準点の間に区別をつけることができるが、第1の基準点は現実世界における実際の点であり、第2の基準点は、画像デバイスから仮想3D空間に逆投影される基準点である(実および仮想は「完全な」システム、すなわちエラーを取り込むことのないシステムにおいて等価でなければならない)。少なくとも4つの実基準点は、実点と見なすことができ、第1および第2の画像デバイスのいずれによっても表示可能な現実世界の点である。少なくとも4つの仮想基準点は、画像デバイスからの投影基準点から導き出される点と見なすことができる。
少なくとも4つの(投影された)基準点は、たとえば自動画像認識またはその他の従来技術の認識技法によって自動的に決定されてもよい。
好ましくは、少なくとも4つの仮想基準点は、同じ平面内にはない。
本発明の実施形態によれば、第2の画像の基準点の画像と基準点との位置合わせを最適化するステップは、
a.第2の画像の仮想基準点の画像のうちの少なくとも1つをその対応する投影基準点と位置合わせするステップと、
b.位置合わせされた投影基準点を画像デバイス中心と接続する直線によって定義される、基準点の画像のもう一方をそれらの各々の仮想基準点に最大限に対応させるために必要な、回転軸周囲の回転の角度を決定するステップとを含む。
理想的な事例において、仮想基準点の画像のもう一方は、その他のそれぞれの投影基準点で正確にマップされてもよい。実際には、対応は完全ではないこともあり、対応の最適化または最大化が実行されてもよい。最適化の方法は、位置および方向のいずれの取得にも使用することができ、それらの方法の選択は、画像の予測されるノイズと(2Dおよび深度)、結果に要求される精度により異なる。位置取得を最適化する1つの手段は、エネルギー関数で従来技術のエネルギー最小化法を使用することである。
Figure 0005739409
ここで、Rは2つの画像デバイスの投影基準点のセットであり、lは画像デバイス2の中心の位置であり、dist(x,Y)は(3D)点xおよび球体Yとの間の距離を返す関数であり、proj(x,C)は、カメラ・パラメータCを使用する投影された(2D)点xの投影を返す関数であり、sphere(x,d)は、中心xおよび半径dの球体を返す関数であり、depth(x)は、投影基準点xの深度を返す関数である。方向の最適化はまた、類似するエネルギー最小化法を使用することもできる。この場合、最小化されるべきエネルギー関数は以下のとおりである。
Figure 0005739409
ここで、Rは2つの画像デバイスの投影基準点のセットであり、rは第2の画像デバイスの方向であり、dist(x,y)は(2D)点xと(2D)点yの間の距離を返す関数であり、proj(x,C)は、カメラ・パラメータCを使用する投影された(2D)点xの投影を返す関数であり、proj−1(x,C)は、カメラ・パラメータCを使用する(3D)点xの逆投影を返す関数であり、cam(i,l,r)は、固有パラメータi、および外部パラメータl(位置)ならびにr(方向)から成るカメラ・パラメータを返す関数であり、C、i、およびlはこの操作中に静的であると見なされる。
単一カメラ最適化の代替は、マルチカメラ最適化である。上記で説明された単一カメラ最適化において、誤差は非基準のカメラにある。マルチカメラ最適化において、それらの誤差は、すべての画像デバイスにわたり分散されてもよい。この場合、依然として結果の第1の概算のために基準カメラを使用し、次いで、(画像デバイスの予測されるノイズ・マージン内の)仮想基準点の位置および他の画像デバイスを十分な結果に収束するように適合することにより、結果を最適化する。上記で説明されるように、この場合、類似する方法が使用されてもよいが(エネルギー最小化と比較)、可変パラメータは、すべての関与する画像デバイス(基準画像デバイスを除く)および仮想基準点に拡張されてもよい。このマルチカメラ最適化を使用する選択は、入力データの予想されるノイズ、および較正結果の必要な精度に依存する。特定のビューにおいて、基準カメラがその初期の位置および方向を保持するが、このカメラからもたらされる仮想基準点は「唯一の正しい解決策」としては見なされない。これらの仮想基準点の座標はまた、変数として見なされ、(カメラ・ノイズに応じて)特定のしきい値内を移動されてもよい。この場合の最適化には、非基準カメラのカメラ位置/方向、ならびに仮想基準点を決定することが求められる。そのようなものとして、誤差はまた、(移動する仮想基準点により)基準カメラにも存在し、最小化の目標は、すべての画像デバイスに可能な限り少ない誤差を同等に分散することであってもよい。
最大化の問題を解決するためのその他の方法は、当業者に知られている。
2つ以上の画像デバイスの相対位置の相対的位置付けの取得プロセスを、それらの相対的位置付けを導き出すサブプロセスと、それらの相対的方向を決定するサブプロセスという2つのサブプロセスに分解することで、相互に関する画像デバイスの相対的位置付けを、効率的に、しかも消費処理力を抑えて、比較的迅速に決定することができるようになる。
本発明の実施形態によれば、方法は、2つ以上の画像デバイスの位置および方向を決定する際に固有カメラ・パラメータを考慮に入れるステップをさらに備える。
本発明のさらなる態様によれば、2つ以上の画像デバイスの相対的な位置および方向を決定するための方法は、たとえば、あらかじめ定められた第1の画像デバイスに関してさらなる画像デバイスの相対位置を反復的に決定することによってなど、相互に関してさらなる画像デバイスの相対的な位置および方向を反復的に決定することにより実行されてもよい。前述のマルチカメラ較正は、基準画像の概念を曖昧にして、異なる画像デバイスを、予測されるノイズに関して同等に処理することができるようにする。
本発明の態様によれば、シーン内の少なくとも1つのオブジェクトの3D情報(位置、方向、大きさなど)を導き出す方法が開示され、方法は、
a.シーンの少なくとも2つの画像を提供するステップを含み、いずれの画像もオブジェクトを備え、画像はオブジェクトに関して異なる位置および方向で撮影され、さらに、
b.本発明の第1の態様の実施形態による方法を用いて、相互に関して画像デバイスの相対位置を導き出すステップと、
c.少なくとも2つの画像デバイスの相対的な位置および方向を考慮に入れることにより、少なくとも1つのオブジェクトの3D情報を導き出すステップとを含む。
3D情報は、2D入力で表示された点の3D位置を備える(ただし、これに限定されることはない)。3D情報の一部を成すその他の情報は、3D点における面の方向(「法線(normal)」と呼ばれることが多い)の方向、(テクスチャーのような)カラー情報などである。
本発明の実施形態によれば、少なくとも1つのオブジェクトの3D情報は時間依存である。言い換えれば、3D情報はリアルタイムで決定されうるので、特定の実施形態により画像デバイス自体が位置および/または方向を変化させている場合であっても、少なくとも2つの画像デバイスによって画像処理されるオブジェクトの形態の動きおよび場合によっては変化を識別することが可能になる。
その他の実施形態において、画像デバイスの相対的な位置および方向は、最初に決定されてもよく、その後一定または不変に保持されてもよい。これらの実施形態はさらに、リアルタイム3Dオブジェクト情報を決定するために必要な処理力を低減する。
方法は、仮想環境において使用できるように実オブジェクトを3Dオブジェクト情報に変換する(取り込む)ために使用することができる。
本発明の実施形態による方法は、あらかじめ定められた数の画像デバイスの固定された位置および方向を取得するために使用されてもよく、その画像はさらに3Dテレビ会議に使用される。
3Dテレビ会議は、(2つのビデオ・ストリームを取り込むために入力に2つのカメラ、およびたとえばシーンを立体で表示するために出力側にステレオ・グラス(立体メガネ)を使用する)簡単な立体ビデオを備えることができる。3Dテレビ会議は、さまざまな出席者を3Dで表現している会議室(必ずしも実際の会議室の純粋な仮想表現でなくてもよい)である仮想環境を提供するステップを備えることができる。この3D情報により、これらの出席者の1つの特定の視野角によって制約を受けることはない。
本発明の第2の態様によれば、それぞれ第1および第2の画像デバイスの第1および第2の画像において共通に示されるオブジェクトの画像を比較することにより、第1および第2の画像デバイスの相対的な位置および方向を決定するために適合されるデバイスであって、第1および第2の画像デバイスは、それぞれの画像の第1および第2の深度情報をそれぞれ提供するように適合され、少なくとも第1および第2の深度情報が決定に使用されるデバイスが開示される。
デバイスは、
a.少なくとも4つの基準点のセットを決定する手段を備え、基準点は、第1の画像および第2の画像において認識可能であり、さらに、
b.第1の画像の基準点の画像の第1の深度情報を使用することにより、第1の画像デバイスに関して基準点の位置を導き出す手段と、
c.第1の画像デバイスの妥当と思われる方向を決定する手段と、
d.第2の画像の基準点の画像の第2の深度情報を使用することにより、仮想基準点に関して第2の画像デバイスの位置を導き出す手段と、
e.第2の画像の基準点の画像と基準点との間の位置合わせを最適化することにより、第2の画像デバイスの方向を決定する手段とを備えることができる。
デバイスは、決定の際に固有カメラ・パラメータを考慮に入れる手段をさらに備えることができる。
本発明の実施形態によれば、デバイスは、たとえば、第1のあらかじめ定められた画像デバイスに関してさらなる画像デバイスの相対位置を反復的に決定することによってなど、相互に関してさらなる画像デバイスの相対的な位置および方向を反復的に決定することにより、2つ以上の画像デバイスの相対的な位置および方向を決定する手段を備える。
本発明のさらなる態様は、従属クレームによって説明される。従属クレームからの特徴、独立クレームのいずれかの特徴、およびその他の独立クレームのいずれかの特徴は、当業者に適切と見なされるように組み合わされてもよく、特許請求の範囲によって定義される特定の組み合わせに限定されることはない。
添付の図面は、本発明の実施形態を説明するために使用される。
本発明による実施形態を説明する図である。 本発明による実施形態を説明する図である。 本発明による実施形態を説明する図である。 本発明による実施形態を説明する図である。 本発明による実施形態を説明する図である。 3Dジオメトリが、さまざまな位置および方向からの共通オブジェクトから撮影されたさまざまな2D画像から導き出される、3Dジオメトリ合成のコンテキストの範囲内の本発明の実施形態を説明する図である。 現実世界のシーンの3Dジオメトリ合成のためのワークフローを説明する図である。本発明の実施形態による「深度マップを使用したカメラ較正」は、そのような方法に完璧な役割を果たす。本発明による実施形態の出力は、使用される画像デバイス(たとえばカメラ)の位置および方向である。 本発明による実施形態に基づいて可能な用途の可能な内部ワークフローを示す図である。
参照符号は、異なる図表または図面において類似または等価の要素または特徴に対して同じ符号となるように選択されている。
以下の詳細な説明をそれぞれの図面と合わせて読むことにより、本発明の上記およびその他の有利な特徴および目的はより明らかとなり、本発明はさらに深く理解されるであろう。
本発明の態様の説明は、特定の実施形態を用い、特定の図面を参照して行なわれるが、本発明はそれらに限定されることはない。示される図面は、概略図であり、限定的なものと見なすべきではない。たとえば、特定の要素または特徴は、その他の要素に関して、不釣り合いであるか、または不均衡に示されることもある。
本発明による特定の実施形態の説明において、さまざまな特徴は場合により、さまざまな発明の態様の1つまたは複数の理解を補助する目的で、単一の実施形態、図面、またはその説明にグループ化されている。これは、特定の問題を解決するためにグループのすべての特徴が必ずしも存在するかのように解釈されるべきではない。発明の態様は、特定の実施形態の説明の中にあるような特徴のグループのすべての特徴にあるわけではない。
本発明の実施形態(図1に示される)は、既知の固有パラメータを持つ複数の深度対応のカメラ(1,2)(カラー(11、21)および深度データ(12、22)を共に提供するカメラ)を使用してシーン(オブジェクト(3)を備える)が取り込まれるとき、これらの複数のカメラを較正できるようにする。較正プロセスは、たとえば、2つのカメラを同時に処理することができる(前述のようなマルチカメラ最適化を使用する場合、これは2つのカメラに限定されないことに留意されたい)。カメラ(画像デバイス)の相対位置は、多数(少なくとも2つ)のカメラのカメラのペアごとに決定されてもよい。
最初に、多数の特徴対応が必要とされ、それらの特徴対応は、同じ3Dシーン点を表すシーンの2Dカメラビュー内の点である。これは、図2に示される。少なくとも4つのそのような特徴対応(A、B、C、D)が必要とされ、そのうち多くとも3つは同じ3D平面内にあってもよい(たとえば、これは深度マップを検査することにより決定されうる)。リアルタイム要件と組み合わされたシステムの計算能力に基づいて、より多い特徴対応、またはより少ない特徴対応が選択されてもよい。最も信頼性の高い対応が、好ましく選択されてもよい(最も確実であるもの)。当業者には、そのような対応を識別するための方法が知られている。
カメラのうちの2つの対応が使用可能になると、較正プロセスを続行することができる。最初に、第1のカメラ(1)は、空間内の特定の位置に配置されてもよく、あらかじめ定められた回転を与えられる。これは、空間内のその他の(1つまたは複数の)カメラを位置付けるための基準をもたらす。第2のカメラ(2)の取得された位置および方向(たとえば、回転)特性は、好ましくは、第1のカメラ(1)の位置および回転と相対的であってもよい。
第1のカメラ(1)の位置および方向を固定することにより、このカメラの画像平面の基準点(A、B、C、D)を3D空間に逆投影することができる。これは、最初にカメラ情報(位置、方向、および固有パラメータ)および基準点の2D位置(A)を使用して、3D空間に直線(L1)を指定することによって行なわれる。次いで、関連特徴点(A)の深度情報(Z )が使用され、前述の直線(L1)上に点(A’)を指定する。これは図3に説明されており、L1は3D空間における直線を示し、A’は深度情報Z によって定義されたこの直線上の点を示す(深度は全体を通じてZで示される)。
これは、すべての基準点A、B、C、Dについて繰り返すことができ、その結果Z 、Z 、Z 、Z を介する3D基準点A’、B’、C’、D’が得られる。
第2のカメラ(2)の位置(たとえば、既知のピンホール・カメラ・モデルのピンホールの位置)を取得することは、カメラ(2)の視点から、第2のカメラから見たときのすべての対応する基準点(A’、B’、C’、D’)の深度に最もよく対応する3D空間内の位置を決定することによって達成されうる(第2のカメラ(2)の深度マップはすべての基準点の深度Z 、Z 、Z 、Z を定義する)。これは図4に説明され、4つの特徴点は(カメラ2の深度マップを使用して)それらの深度と共に使用可能である。
4つの基準(または特徴)点を使用する場合、このカメラ位置を取得する手段は、4つの球体を明示的に交差することによって行なわれ、すべての球体はその中心として3D空間に基準点(A’、B’、C’、D’)を有し、その半径は第2のカメラ(2)の深度マップによって指定される深度(Z 、Z 、Z 、Z )と等しい。最初の2つの球体は交差され、その結果円を形成する。この円を第3の球体と交差すると、その結果2つの点が得られる。球体4との交差は、2つの点のうちの1つをカメラ位置として選択する。完全な入力データが与えられない場合、さらに複雑な決定技法が適用されてもよい。
カメラの位置(CC)を取得した後、方向が計算される。必要とされる情報は、カメラ2の画像平面(PA2、PB2、PC2、PD2)に投射される基準点(A、B、C、D)を備える。方向は、基準点(A’、B’、C’、D’)をできる限り一致させるために決定されてもよい(たとえば、カメラをそのピンホールを中心に回転させて、基準点投影(PA2、PB2、PC2、PD2)を所定のカメラ画像平面(A、B、C、D)上の特徴点位置と一致させる)。
これを解決するための1つの手段は、1つの特徴点投影(たとえば、PB2)を選択することから開始する。カメラは、この特徴点を画像平面(B)の正しい位置に投影するために方向付けられている。ここで、カメラ中心(CC)および選択された特徴点の投影(PB2)によって定義された軸を中心とする回転Rは、カメラの画像平面上の他の投影点と適合させるために必要である。これは、図5に示される。左の画像は、1つの基準点投影PB2が、画像平面(B)上の特徴点の位置と適合されている。右の画像において、残りの基準点投影と適合するために、カメラの回転が、前述の軸または直線を中心に実行される。たとえばあらかじめ定められたメトリックによる最適な適合は、カメラの方向を回復するために使用される。
本発明の実施形態は、さまざまな用途に使用されてもよい。一部の例を以下に説明する。
本発明の実施形態は、家庭用3D通信ソリューションの一部であってもよい(図6を参照)。ユーザは、自身の周囲の複数の深度対応のカメラによって記録される(たとえば、深度マップ抽出に2つずつ使用されるウェブカム)。次いで、これらのカメラの位置および方向は、本発明の実施形態を使用して取得されてもよく、これによりユーザによって実行される明示的較正ステップを必要とせずに較正を行なうことができ、1つ、複数、またはすべてのカメラの移動が可能になる。
較正情報が計算された後、複数のカメラのカラーおよび深度情報は、さまざまなユース・ケースに使用することができるが、その1つはシーンの3次元モデルの作成である。これは、たとえば、ボクセル空間で複数の深度マップを刻むことによって行なわれてもよい。次いで、そのようなモデルは、仮想世界で統合されてもよく、リアル・アクター(ユーザのモデル)との仮想環境における3D通信を可能にする。
図7は、現実世界シーンの3Dジオメトリ合成のためのワークフローを説明する。本発明の実施形態による「深度マップを使用したカメラ較正」は、そのような方法に完璧な役割を果たす。本発明による実施形態の出力は、使用される画像デバイス(たとえばカメラ)の位置および方向であってもよい。次いで、この出力は、複数のカメラの深度マップを3D空間に逆投影するために使用されてもよい。次いで、これらの測定は、たとえば多角形モデル抽出のような、より高レベルの3Dモデルをそれらに適合させるために使用されてもよい。
図8は、本発明による実施形態に基づく可能な用途の可能な内部ワークフローを示す。最初に、2つ以上の2次元および深度情報の画像2D+Zが生成されるか、または提供される。次いで、特徴対応は、画像の(少なくとも1つの)ペアの間で抽出される(91)。次いで、カメラの位置は、3D空間の推定された基準点と、カメラビューの深度値との差を最小化することにより取得される(92)。次いで、カメラの方向は、3D空間からの投影された基準点と、既知の画像座標との差を最小化することにより取得される(93)。プロセスは、オプションで、複数の反復を可能にするようにループ(94)を備えることができる。これらの反復は、最終結果の精度を高めることができる。必要とされる反復の量は、入力データの予想されるノイズ、および出力に要求される精度に応じて異なる。
本明細書において説明される一部の実施形態は、他の実施形態に含まれる他の特徴を一部含むことも含まないこともあるが、当業者には理解されるように、さまざまな実施形態の特徴の組み合わせは、本発明の範囲内であり、さまざまな実施形態を形成することが意図される。
本発明の原理は、特定の実施形態に関連して上記で説明されてきたが、この説明が例示のために過ぎず、添付の特許請求の範囲によって決定される保護の範囲を限定するものではないことを明確に理解されたい。
当業者であれば、本発明の実施形態が、少なくとも以下の利点を提供できることを理解するであろう。
− 現実の較正オブジェクトを物理的に処理してシーンに再現することにより、カメラ較正の必要がなくなる。
− さまざまなカメラの相対的位置付けを相対位置および相対方向に分割することで、必要な処理力の大幅な低減が可能になるので、必要な処理力を比較的低く抑える。
− 特定の実施形態によれば、実際のカメラは、たとえばレーザー・スキャニングに基づくようなさらに複雑および/または高価なソリューションを必要とすることなく、3Dオブジェクト情報を導き出すために使用することができる。
− 少なくとも部分的には、必要とされる処理力が比較的低く抑えられることによってもたらされる、本発明の実施形態は、移動するオブジェクトのリアルタイム3D情報を抽出できるようにする。

Claims (15)

  1. それぞれ第1の画像デバイス及び第2の画像デバイスの第1の画像及び第2の画像において共通に示されるオブジェクトの画像を比較することにより、該第1の画像デバイス及び該第2の画像デバイスの相対的な位置及び方向を決定する較正方法であって、該第1の画像デバイス及び該第2の画像デバイスは、該それぞれの画像の第1の深度情報及び第2の深度情報をそれぞれ提供するように適合され、少なくとも該第1の深度情報及び該第2の深度情報が該決定に使用され、該第1の画像デバイス及び該第2の画像デバイスによって取り込まれた2又はそれ以上の新しい画像により、該第1の画像デバイス及び該第2の画像デバイスにおいてそれぞれ深度データが得られる、較正方法。
  2. 請求項1に記載の方法において、
    a.少なくとも4つの基準点のセットを決定するステップを含み、該基準点は、投影された基準点として該第1の画像及び該第2の画像において認識可能であり、さらに、
    b.該第1の画像における該基準点の該画像の該第1の深度情報を使用することにより、該第1の画像デバイスに関して該基準点の仮想位置を導き出すステップと、
    c.該第1の画像デバイスの予め定められた方向を設定するステップと、
    d.該第2の画像における該基準点の該画像の該第2の深度情報を使用することにより、該仮想基準点に関して該第2の画像デバイスの位置を導き出すステップと、
    e.該第2の画像の該基準点の該画像と該仮想基準点との間の位置合わせを最適化することにより、該第2の画像デバイスの方向を決定するステップとを備える、請求項1に記載の方法。
  3. 請求項2に記載の方法において、
    該少なくとも4つの基準点は自動的に決定される、方法。
  4. 請求項2乃至3のいずれか1項に記載の方法において、
    該第2の画像の該基準点の該画像と該基準点との位置合わせを最適化する該ステップは、
    a.該第2の画像の該仮想基準点の該画像のうちの少なくとも1つをその対応する投影基準点と位置合わせするステップと、
    b.該位置合わせされた投影基準点を該画像デバイス中心と接続する直線によって定義される、該基準点の該画像のもう一方をそれらの各々の仮想基準点に最大限に対応させるために必要な、回転軸周囲の回転の角度を決定するステップとを備える、方法。
  5. 請求項1乃至4のいずれか1項に記載の方法において、
    該相対的な位置及び方向の決定において固有カメラ・パラメータを考慮に入れるステップをさらに備える、方法。
  6. 請求項1乃至5に記載の方法のいずれかにより、予め定められた第1の画像デバイスに関してさらなる画像デバイスの相対的な位置及び方向を反復的に決定することにより、2つ以上の画像デバイスの相対的な位置及び方向を決定する方法。
  7. シーン内の少なくとも1つのオブジェクトの3D情報を導き出す方法であって、
    a.該シーンの少なくとも2つの画像を提供するステップを含み、いずれの画像も該オブジェクトを備え、該画像は該オブジェクトに関して異なる位置及び方向で撮影され、さらに、
    b.請求項1乃至5のいずれか1項に記載の方法を用いて、相互に関して該画像デバイスの相対位置を導き出すステップと、
    c.該少なくとも2つの画像デバイスの相対的な位置及び方向を考慮に入れることにより、該少なくとも1つのオブジェクトの3D情報を導き出すステップとを備える、方法。
  8. 請求項7に記載の方法において、
    該少なくとも1つのオブジェクトの該3D情報は時間依存である、方法。
  9. 請求項7又は8のいずれか1項に記載の方法において、
    該画像デバイスの該相対的な位置及び方向は初期化後に一定に保持される、方法。
  10. 仮想環境において使用できるように実オブジェクトを3Dオブジェクト情報に変換するための、請求項7に記載の方法の使用。
  11. 予め定められた数の画像デバイスの固定された位置及び方向を取得するための、請求項1乃至6のいずれか1項に記載の方法の使用であって、該画像デバイスの画像は3Dテレビ会議にさらに使用される、方法。
  12. それぞれ第1の画像デバイス及び第2の画像デバイスの第1の画像及び第2の画像において共通に示されるオブジェクトの画像を比較することにより、該第1の画像デバイス及び該第2の画像デバイスの相対的な位置及び方向を決定するように適合された較正デバイスであって、該第1の画像デバイス及び該第2の画像デバイスは、該それぞれの画像の第1の深度情報及び第2の深度情報をそれぞれ提供するように適合され、少なくとも該第1深度情報及び該第2の深度情報が該決定に使用され、該第1の画像デバイス及び該第2の画像デバイスによって取り込まれた2又はそれ以上の新しい画像により、該第1の画像デバイス及び該第2の画像デバイスにおいてそれぞれ深度データが得られる、較正デバイス。
  13. 請求項12に記載のデバイスにおいて、
    a.少なくとも4つの基準点のセットを決定する手段を備え、該基準点は、投影基準点として該第1の画像及び該第2の画像において認識可能であり、さらに、
    b.該第1の画像の該基準点の該画像の該第1の深度情報を使用することにより、該第1の画像デバイスに関して該基準点の仮想位置を導き出す手段と、
    c.該第1の画像デバイスの予め定められた方向を決定する手段と、
    d.該第2の画像の該基準点の該画像の該第2の深度情報を使用することにより、該仮想基準点に関して該第2の画像デバイスの位置を導き出す手段と、
    e. 該第2の画像の該基準点の該画像と該仮想基準点との間の位置合わせを最適化することにより、該第2の画像デバイスの方向を決定する手段とを備える、デバイス。
  14. 請求項12又は13のいずれか1項に記載のデバイスにおいて、
    該相対的な位置及び方向の決定において固有カメラ・パラメータを考慮に入れる手段をさらに備える、デバイス。
  15. 請求項12乃至14のいずれか1項に記載のデバイスにおいて、
    第1の予め定められた画像デバイスに関してさらなる画像デバイスの相対的な位置及び方向を反復的に決定することにより、2つ以上の画像デバイスの相対的な位置及び方向を決定する手段を備える、デバイス。
JP2012502553A 2009-03-31 2010-03-12 第1の画像デバイスおよび第2の画像デバイスの相対位置を決定する方法及びこれらデバイス Expired - Fee Related JP5739409B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09305274.4A EP2236980B1 (en) 2009-03-31 2009-03-31 A method for determining the relative position of a first and a second imaging device and devices therefore
EP09305274.4 2009-03-31
PCT/EP2010/053217 WO2010112320A1 (en) 2009-03-31 2010-03-12 A method for determining the relative position of a first and a second imaging device and devices therefore

Publications (2)

Publication Number Publication Date
JP2012522231A JP2012522231A (ja) 2012-09-20
JP5739409B2 true JP5739409B2 (ja) 2015-06-24

Family

ID=40751254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502553A Expired - Fee Related JP5739409B2 (ja) 2009-03-31 2010-03-12 第1の画像デバイスおよび第2の画像デバイスの相対位置を決定する方法及びこれらデバイス

Country Status (6)

Country Link
US (1) US8977075B2 (ja)
EP (1) EP2236980B1 (ja)
JP (1) JP5739409B2 (ja)
KR (1) KR101364874B1 (ja)
CN (1) CN102369413B (ja)
WO (1) WO2010112320A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570358B2 (en) 2009-11-06 2013-10-29 Sony Corporation Automated wireless three-dimensional (3D) video conferencing via a tunerless television device
US8687046B2 (en) * 2009-11-06 2014-04-01 Sony Corporation Three-dimensional (3D) video for two-dimensional (2D) video messenger applications
EP2375376B1 (en) * 2010-03-26 2013-09-11 Alcatel Lucent Method and arrangement for multi-camera calibration
TWI462569B (zh) * 2011-04-22 2014-11-21 Mstar Semiconductor Inc 三維影像攝相機及其相關控制方法
EP2538388B1 (en) * 2011-06-20 2015-04-01 Alcatel Lucent Method and arrangement for image model construction
US20130057655A1 (en) * 2011-09-02 2013-03-07 Wen-Yueh Su Image processing system and automatic focusing method
EP2764420A4 (en) * 2011-10-03 2015-04-15 Blackberry Ltd PROVIDING A COMMON INTERFACE MODE BASED ON IMAGE ANALYSIS
US20130113782A1 (en) * 2011-11-09 2013-05-09 Amadeus Burger Method for determining characteristics of a unique location of a selected situs and determining the position of an environmental condition at situs
US11321772B2 (en) 2012-01-12 2022-05-03 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US9514357B2 (en) 2012-01-12 2016-12-06 Kofax, Inc. Systems and methods for mobile image capture and processing
US10146795B2 (en) 2012-01-12 2018-12-04 Kofax, Inc. Systems and methods for mobile image capture and processing
CN103512557B (zh) * 2012-06-29 2016-12-21 联想(北京)有限公司 电子设备间相对位置确定方法及电子设备
US20140002615A1 (en) * 2012-07-02 2014-01-02 Sony Pictures Technologies Inc. System and method for correcting binocular photography with homographic transformations
US9305514B1 (en) * 2012-07-31 2016-04-05 Trend Micro Inc. Detection of relative positions of tablet computers
US9373302B2 (en) 2012-08-10 2016-06-21 Blackberry Limited Stacked device position identification
US8633970B1 (en) * 2012-08-30 2014-01-21 Google Inc. Augmented reality with earth data
DE102013107597A1 (de) 2013-01-11 2014-08-14 Stephan Hörmann Vermessungsverfahren für gebäudeöffnungen und gebäudeabschlussherstellverfahren sowie vorrichtungen zur durchführung derselben
DE102013016486A1 (de) 2013-09-13 2015-04-02 Stephan Hörmann Vermessungsverfahren für Gebäudeöffnungen und Gebäudeabschlussherstellverfahren sowie Vorrichtungen zur Durchführung derselben
US10783615B2 (en) * 2013-03-13 2020-09-22 Kofax, Inc. Content-based object detection, 3D reconstruction, and data extraction from digital images
US10127636B2 (en) 2013-09-27 2018-11-13 Kofax, Inc. Content-based detection and three dimensional geometric reconstruction of objects in image and video data
DE102013009288B4 (de) * 2013-06-04 2016-02-04 Testo Ag 3D-Aufnahmevorrichtung, Verfahren zur Erstellung eines 3D-Bildes und Verfahren zur Einrichtung einer 3D-Aufnahmevorrichtung
JP6102648B2 (ja) * 2013-09-13 2017-03-29 ソニー株式会社 情報処理装置及び情報処理方法
WO2015134795A2 (en) 2014-03-05 2015-09-11 Smart Picture Technologies, Inc. Method and system for 3d capture based on structure from motion with pose detection tool
US20160044301A1 (en) * 2014-08-06 2016-02-11 Dejan JOVANOVICH 3d modeling of imaged objects using camera position and pose to obtain accuracy with reduced processing requirements
US9760788B2 (en) 2014-10-30 2017-09-12 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US20160134860A1 (en) * 2014-11-12 2016-05-12 Dejan Jovanovic Multiple template improved 3d modeling of imaged objects using camera position and pose to obtain accuracy
CN104539926B (zh) * 2014-12-19 2016-10-26 北京智谷睿拓技术服务有限公司 距离确定方法和设备
US10083522B2 (en) 2015-06-19 2018-09-25 Smart Picture Technologies, Inc. Image based measurement system
WO2017008246A1 (en) * 2015-07-14 2017-01-19 SZ DJI Technology Co., Ltd. Method, apparatus, and system for determining a movement of a mobile platform
US10467465B2 (en) 2015-07-20 2019-11-05 Kofax, Inc. Range and/or polarity-based thresholding for improved data extraction
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
JP6944441B2 (ja) 2015-09-25 2021-10-06 マジック リープ, インコーポレイテッドMagic Leap,Inc. 3次元再構成において構造特徴を検出し、組み合わせるための方法およびシステム
JP2018067115A (ja) * 2016-10-19 2018-04-26 セイコーエプソン株式会社 プログラム、追跡方法、追跡装置
WO2019032736A1 (en) 2017-08-08 2019-02-14 Smart Picture Technologies, Inc. METHOD OF MEASURING AND MODELING SPACES USING AUGMENTED REALITY WITHOUT MARKER
CN111183456A (zh) 2017-10-03 2020-05-19 富士通株式会社 识别程序、识别方法以及识别装置
US11062176B2 (en) 2017-11-30 2021-07-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach
CN108332662B (zh) * 2018-02-06 2020-02-11 新石器龙码(北京)科技有限公司 一种物体测量方法和装置
US12022197B2 (en) * 2018-02-14 2024-06-25 University Of Massachusetts Image capturing system, method, and analysis of objects of interest
US20190328465A1 (en) * 2018-04-30 2019-10-31 Aih Llc System and method for real image view and tracking guided positioning for a mobile radiology or medical device
CN109029443B (zh) * 2018-06-08 2021-01-15 北京奇艺世纪科技有限公司 一种虚拟环境中的位置确定方法及装置
US10832444B2 (en) * 2019-02-18 2020-11-10 Nec Corporation Of America System and method for estimating device pose in a space
WO2020231872A1 (en) 2019-05-10 2020-11-19 Smart Picture Technologies, Inc. Methods and systems for measuring and modeling spaces using markerless photo-based augmented reality process
CN111093181B (zh) * 2019-11-19 2023-06-02 深圳优克云联科技有限公司 设备匹配的方法、电子设备及存储介质
US11113871B1 (en) * 2020-02-25 2021-09-07 Autodesk, Inc. Scene crop via adaptive view-depth discontinuity

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237414B2 (ja) * 1994-09-19 2001-12-10 株式会社明電舎 ステレオカメラ校正装置
US5699444A (en) * 1995-03-31 1997-12-16 Synthonics Incorporated Methods and apparatus for using image data to determine camera location and orientation
AU6135996A (en) * 1995-06-22 1997-01-22 3Dv Systems Ltd. Improved optical ranging camera
DE69823116D1 (de) * 1997-08-05 2004-05-19 Canon Kk Bildverarbeitungsverfahren und -gerät
AUPO865797A0 (en) * 1997-08-19 1997-09-11 Australian National University, The Range finding
US6442293B1 (en) 1998-06-11 2002-08-27 Kabushiki Kaisha Topcon Image forming apparatus, image forming method and computer-readable storage medium having an image forming program
JP4112077B2 (ja) * 1998-06-11 2008-07-02 株式会社トプコン 画像計測処理方法並びに装置及び画像計測処理プログラムを記録した記録媒体
JP2003514305A (ja) * 1999-11-12 2003-04-15 ゴー・センサーズ・エルエルシー マシン・ビジョンのための堅牢なランドマークと前記ランドマークを検出するための方法
WO2001071280A2 (en) * 2000-03-23 2001-09-27 Snap-On Technologies, Inc. Self-calibrating, multi-camera machine vision measuring system
US6789039B1 (en) * 2000-04-05 2004-09-07 Microsoft Corporation Relative range camera calibration
US7227526B2 (en) * 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US7151562B1 (en) * 2000-08-03 2006-12-19 Koninklijke Philips Electronics N.V. Method and apparatus for external calibration of a camera via a graphical user interface
JP2003279315A (ja) * 2002-01-16 2003-10-02 Advanced Telecommunication Research Institute International カメラの自動校正方法
JP4166988B2 (ja) * 2002-02-20 2008-10-15 株式会社トプコン ステレオ画像用処理装置及び方法
US6690451B1 (en) * 2003-02-06 2004-02-10 Gerald S. Schubert Locating object using stereo vision
JP2006090756A (ja) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd カメラキャリブレーション装置
WO2006084385A1 (en) * 2005-02-11 2006-08-17 Macdonald Dettwiler & Associates Inc. 3d imaging system
TW200810814A (en) * 2006-08-17 2008-03-01 Pixart Imaging Inc Object-based 3-dimensional stereo information generation apparatus and method, and an interactive system using the same
KR100891549B1 (ko) * 2007-05-22 2009-04-03 광주과학기술원 깊이 카메라를 이용하여 보완한 깊이 정보 생성 방법 및장치, 그리고 그 방법을 수행하는 프로그램이 기록된 기록매체
JP2009047497A (ja) * 2007-08-17 2009-03-05 Fujifilm Corp 立体撮像装置および立体撮像装置の制御方法並びにプログラム
JP4956452B2 (ja) * 2008-01-25 2012-06-20 富士重工業株式会社 車両用環境認識装置
US8107677B2 (en) * 2008-02-20 2012-01-31 International Business Machines Corporation Measuring a cohort'S velocity, acceleration and direction using digital video

Also Published As

Publication number Publication date
CN102369413A (zh) 2012-03-07
CN102369413B (zh) 2014-04-16
EP2236980A1 (en) 2010-10-06
KR101364874B1 (ko) 2014-02-19
EP2236980B1 (en) 2018-05-02
KR20110133587A (ko) 2011-12-13
JP2012522231A (ja) 2012-09-20
US8977075B2 (en) 2015-03-10
WO2010112320A1 (en) 2010-10-07
US20120007943A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5739409B2 (ja) 第1の画像デバイスおよび第2の画像デバイスの相対位置を決定する方法及びこれらデバイス
CN109658365B (zh) 图像处理方法、装置、系统和存储介质
CN107705333B (zh) 基于双目相机的空间定位方法及装置
Scharstein View synthesis using stereo vision
Huang et al. Panoramic stereo imaging system with automatic disparity warping and seaming
Schöning et al. Evaluation of multi-view 3D reconstruction software
WO2019049421A1 (ja) キャリブレーション装置、キャリブレーションシステム、およびキャリブレーション方法
KR20180111798A (ko) 파노라마 프레임 생성 프로세스에서 프레임의 적응적 스티칭
JP2018515825A (ja) Lidarステレオ融合実写3dモデルバーチャルリアリティビデオ
Thatte et al. Depth augmented stereo panorama for cinematic virtual reality with head-motion parallax
TWI587241B (zh) Method, device and system for generating two - dimensional floor plan
CN110490967A (zh) 图像处理和对象建模方法与设备、图像处理装置及介质
Vu et al. Efficient hybrid tree-based stereo matching with applications to postcapture image refocusing
Slabaugh et al. Image-based photo hulls
CN109902675B (zh) 物体的位姿获取方法、场景重构的方法和装置
WO2018056802A1 (en) A method for estimating three-dimensional depth value from two-dimensional images
Pathak et al. Dense 3D reconstruction from two spherical images via optical flow-based equirectangular epipolar rectification
KR20190044439A (ko) 스테레오 이미지들에 관한 깊이 맵 스티칭 방법
Lin et al. A low-cost portable polycamera for stereoscopic 360 imaging
Nyland et al. Capturing, processing, and rendering real-world scenes
KR100944293B1 (ko) 단일 축 회전 영상들로부터의 효율적인 전 방향 3차원모델의 재구성 방법
CN113034345B (zh) 一种基于sfm重建的人脸识别方法及系统
Shabanov et al. Self-supervised depth denoising using lower-and higher-quality RGB-d sensors
KR102146839B1 (ko) 실시간 가상현실 구축을 위한 시스템 및 방법
Chuang et al. A new technique of camera calibration: A geometric approach based on principal lines

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees