JP5739087B2 - Positive electrode for lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP5739087B2
JP5739087B2 JP2008305718A JP2008305718A JP5739087B2 JP 5739087 B2 JP5739087 B2 JP 5739087B2 JP 2008305718 A JP2008305718 A JP 2008305718A JP 2008305718 A JP2008305718 A JP 2008305718A JP 5739087 B2 JP5739087 B2 JP 5739087B2
Authority
JP
Japan
Prior art keywords
positive electrode
ion secondary
lithium ion
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008305718A
Other languages
Japanese (ja)
Other versions
JP2010129494A (en
Inventor
高椋 輝
輝 高椋
前田 英明
英明 前田
直哉 小林
直哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2008305718A priority Critical patent/JP5739087B2/en
Priority to KR1020090112855A priority patent/KR101155914B1/en
Priority to US12/625,677 priority patent/US8440351B2/en
Publication of JP2010129494A publication Critical patent/JP2010129494A/en
Application granted granted Critical
Publication of JP5739087B2 publication Critical patent/JP5739087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、高電圧、高温下で充放電を行っても、正極活物質を安定な状態に維持することができ、優れたサイクル特性を発現することができるリチウムイオン二次電池用正極及びそれを用いてなるリチウムイオン二次電池に関するものである。   The present invention provides a positive electrode for a lithium ion secondary battery that can maintain a positive electrode active material in a stable state even when charging / discharging at high voltage and high temperature, and can exhibit excellent cycle characteristics, and The present invention relates to a lithium ion secondary battery using

近時、携帯電話やノート型パソコン等に用いられるリチウムイオン二次電池に対してより一層の高容量が求められており、このような高容量、高エネルギー密度を実現するために、充電電圧を高く設定することによって、正極の利用率を向上して、高容量化を実現する試みがなされている。   Recently, there has been a demand for higher capacity for lithium ion secondary batteries used in mobile phones, notebook computers, etc. In order to achieve such high capacity and high energy density, the charging voltage must be Attempts have been made to improve the utilization rate of the positive electrode by setting it higher and to achieve higher capacity.

例えば、正極活物質としてLiCoO等のLi−Co系酸化物が使用されると、充放電に伴うリチウムイオンのインサーション反応に伴い、3価のコバルトイオン(Co3+)が不安定な4価のコバルトイオン(Co4+)に変わり、この4価のコバルトイオンは電解液と反応して電解液を酸化、分解するとともに自らは還元して2価のコバルトイオン(Co2+)に変わる。生じた2価のコバルトイオンは電解液中に溶け出して負極側に移行し負極で還元されて金属コバルトとして析出する。このように金属コバルトが負極に堆積し蓄積すると、セパレータが破損したり負極が劣化したりして、このことによってもリチウムイオン二次電池のサイクル特性の低下が引き起こされる。 For example, when a Li—Co-based oxide such as LiCoO 2 is used as the positive electrode active material, a trivalent cobalt ion (Co 3+ ) is unstable due to an insertion reaction of lithium ions accompanying charge / discharge. the changes to the cobalt ion (Co 4+), the tetravalent cobalt ions oxidize electrolyte reacts with the electrolyte, himself with decomposed turn into reduced to divalent cobalt ions (Co 2+). The generated divalent cobalt ions are dissolved in the electrolytic solution, transferred to the negative electrode side, reduced at the negative electrode, and precipitated as metallic cobalt. When metallic cobalt is deposited and accumulated on the negative electrode in this way, the separator is damaged or the negative electrode is deteriorated, and this also causes a decrease in cycle characteristics of the lithium ion secondary battery.

また、4価のコバルトイオンが還元して2価のコバルトイオンに変わる際に、セパレータも酸化され、例えば、セパレータがポリエチレンからなる場合は、ポリエチレン分子から酸化反応により水素原子が除去されて炭素骨格だけが残存する。このような炭化したセパレータは機械的強度が弱く破損しやすい。   In addition, when the tetravalent cobalt ions are reduced to divalent cobalt ions, the separator is also oxidized. For example, when the separator is made of polyethylene, hydrogen atoms are removed from the polyethylene molecules by an oxidation reaction to form a carbon skeleton. Only remains. Such carbonized separators are weak in mechanical strength and easily broken.

このように、正極活物質から金属が溶出すると、当該金属が負極へ堆積したり、セパレータが酸化したりすることによっても、リチウムイオン二次電池が劣化してしまうという問題がある。   Thus, when a metal elutes from a positive electrode active material, there exists a problem that a lithium ion secondary battery will deteriorate also when the said metal deposits on a negative electrode or a separator oxidizes.

かような遷移金属の溶出は高電圧、高温ほど顕著であり、これに伴う劣化も顕著となる。これらの劣化によりリチウムイオン二次電池のインピーダンス(抵抗)が増加しサイクル特性の低下につながる。   Such elution of transition metals becomes more noticeable at higher voltages and higher temperatures, and the accompanying deterioration becomes more noticeable. These deteriorations increase the impedance (resistance) of the lithium ion secondary battery, leading to deterioration of cycle characteristics.

このため、正極とセパレータとの間にアラミド樹脂層を設けることによって、電解液や、負極、セパレータの劣化を抑制することが試みられている(特許文献1)。しかしながら、このような方法によっては、アラミド樹脂層と接していない正極内部の正極活物質からの金属溶出を抑制することはできない。
特開2008−204788
For this reason, attempts have been made to suppress degradation of the electrolyte solution, the negative electrode, and the separator by providing an aramid resin layer between the positive electrode and the separator (Patent Document 1). However, such a method cannot suppress metal elution from the positive electrode active material inside the positive electrode that is not in contact with the aramid resin layer.
JP2008-204788

そこで本発明は、上記現状に鑑み、高電圧、高温下で充放電を行っても、正極活物質を安定な状態に維持することができ、優れたサイクル特性を発現することができるリチウムイオン二次電池用正極及びそれを用いてなるリチウムイオン二次電池を提供することを課題とする。   Therefore, in view of the above situation, the present invention can maintain a positive electrode active material in a stable state even when charging / discharging at a high voltage and high temperature, and can exhibit excellent cycle characteristics. It is an object of the present invention to provide a positive electrode for a secondary battery and a lithium ion secondary battery using the same.

すなわち本発明に係るリチウムイオン二次電池用正極は、正極活物質が含まれてなる正極電極と、負極活物質が含まれてなる負極電極とが少なくとも備えられてなるリチウムイオン二次電池に用いるものであって、正極活物質の粒子がポリアミド樹脂によって被覆されていることを特徴とする。なお、本発明において「被覆されている」とは、必ずしも正極活物質の粒子の表面全体がポリアミド樹脂によって覆われていなくともよく、正極活物質の粒子表面の一部がポリアミド樹脂によって覆われていてもよい。   That is, the positive electrode for a lithium ion secondary battery according to the present invention is used for a lithium ion secondary battery including at least a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material. The positive electrode active material particles are coated with a polyamide resin. In the present invention, “coated” does not necessarily mean that the entire surface of the positive electrode active material particles is covered with the polyamide resin, and a part of the positive electrode active material particle surface is covered with the polyamide resin. May be.

このようなものであれば、正極活物質の粒子自体がポリアミド樹脂によって被覆されていることによって、正極板表面に存在する正極活物質だけでなく正極板内部に存在する正極活物質についても遷移金属の溶出が抑えられる。これにより電解液の分解反応が緩和され、その結果、遷移金属溶出、析出に伴う劣化、ガス発生等が抑制され、高電圧、高温下で充放電を行っても、優れたサイクル特性を発現することができる。   In such a case, since the positive electrode active material particles themselves are coated with a polyamide resin, not only the positive electrode active material existing on the positive electrode plate surface but also the positive electrode active material existing inside the positive electrode plate is a transition metal. Elution is suppressed. As a result, the decomposition reaction of the electrolyte is relaxed, and as a result, transition metal elution, deterioration due to deposition, gas generation, etc. are suppressed, and excellent cycle characteristics are exhibited even when charging / discharging at high voltage and high temperature. be able to.

前記正極活物質の粒子は、ポリアミド樹脂に加えて更に無機金属化合物を併用して被覆されていることが好ましい。   The positive electrode active material particles are preferably coated with an inorganic metal compound in addition to the polyamide resin.

前記ポリアミド樹脂としては、全芳香族ポリアミド系樹脂が挙げられる。   Examples of the polyamide resin include wholly aromatic polyamide resins.

前記無機金属化合物としては、例えば、酸化物、水酸化物、窒化物、ハロゲン化物、及び、硫化物からなる群より選ばれる少なくとも1種の化合物や、Al、Ti、Zr、Mg、及び、Siからなる群より選ばれる少なくとも1種の金属元素を含有する化合物が挙げられる。   Examples of the inorganic metal compound include at least one compound selected from the group consisting of oxides, hydroxides, nitrides, halides, and sulfides, Al, Ti, Zr, Mg, and Si. And compounds containing at least one metal element selected from the group consisting of:

前記リチウムイオンを可逆的に吸蔵放出することが可能な正極活物質としては、例えば、リチウム含有遷移金属酸化物が挙げられる。   Examples of the positive electrode active material capable of reversibly occluding and releasing lithium ions include lithium-containing transition metal oxides.

前記リチウム含有遷移金属酸化物の粒子が、前記全芳香族ポリアミド系樹脂によって被覆されると、遷移金属の溶出が抑制され、その結果、正極の劣化が抑制されるとともに、セパレータ、負極の劣化も緩和される。このため、高電圧、高温下におけるサイクル特性を向上することができる。   When the lithium-containing transition metal oxide particles are coated with the wholly aromatic polyamide resin, the elution of the transition metal is suppressed. As a result, the deterioration of the positive electrode is suppressed, and the deterioration of the separator and the negative electrode is also suppressed. Alleviated. For this reason, cycle characteristics under high voltage and high temperature can be improved.

このような本発明に係る正極を備えているリチウムイオン二次電池もまた、本発明の一つである。   Such a lithium ion secondary battery including the positive electrode according to the present invention is also one aspect of the present invention.

このような構成を有する本発明によれば、高電圧、高温下で充放電を行っても、正極活物質を安定な状態に維持することができ、正極の劣化を抑制して優れたサイクル特性を発現することができる。特に、本発明で用いられる正極活物質がリチウム含有遷移金属酸化物である場合は、遷移金属の溶出が抑制されて、正極に加えて、セパレータ、負極の劣化も抑制することができる。   According to the present invention having such a configuration, the positive electrode active material can be maintained in a stable state even when charging and discharging are performed at a high voltage and a high temperature, and excellent cycle characteristics are obtained by suppressing deterioration of the positive electrode. Can be expressed. In particular, when the positive electrode active material used in the present invention is a lithium-containing transition metal oxide, elution of the transition metal is suppressed, and deterioration of the separator and the negative electrode can be suppressed in addition to the positive electrode.

以下に本発明の一実施形態に係るリチウムイオン二次電池について説明する。   A lithium ion secondary battery according to an embodiment of the present invention will be described below.

本実施形態に係るリチウムイオン二次電池は、例えば、コイン、ボタン、シート、シリンダー、偏平、角形等の形態をとり、正極、負極、電解質、セパレータ等から構成されている。   The lithium ion secondary battery according to the present embodiment takes, for example, a coin, a button, a sheet, a cylinder, a flat shape, a square shape, and the like, and includes a positive electrode, a negative electrode, an electrolyte, a separator, and the like.

前記正極活物質としては、リチウムイオンを可逆的に吸蔵放出する若しくは、放出のみすることが可能なものであれば特に限定されず、例えば、Liを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属の複合酸化物や複合硫化物、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等が挙げられる。   The positive electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions or can only release lithium ions. For example, Ti, Mo, W, Nb, V, which contains Li, Examples thereof include composite oxides and composite sulfides of transition metals such as Mn, Fe, Cr, Ni, and Co, organic conductive materials such as vanadium oxide and conjugated polymers, and chevrel phase compounds.

本実施形態において前記正極活物質の粒子は、ポリアミド樹脂によって被覆されて複合粒子を形成している。前記ポリアミド樹脂としては、例えば、ポリ(フェニレンテレフタルアミド)、ポリ(ベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(フェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(フェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−フェニレンテレフタルアミド)、フェニレンテレフタルアミド/2,6−ジクロロフェニレンテレフタルアミド共重合体等の全芳香族ポリアミド系樹脂(以下アラミド樹脂という。)が挙げられる。これらのアラミド樹脂は融点が180℃以上であり、耐熱性に優れている。これらのアラミド樹脂の光学特性はメタであっても、パラであってもよく、単独で用いられても、2種以上が併用されてもよい。   In this embodiment, the positive electrode active material particles are coated with a polyamide resin to form composite particles. Examples of the polyamide resin include poly (phenylene terephthalamide), poly (benzamide), poly (4,4′-benzanilide terephthalamide), poly (phenylene-4,4′-biphenylenedicarboxylic amide), poly ( Wholly aromatic polyamide resins such as phenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-phenylene terephthalamide), phenylene terephthalamide / 2,6-dichlorophenylene terephthalamide copolymer (hereinafter aramid resin) Said). These aramid resins have a melting point of 180 ° C. or higher and are excellent in heat resistance. The optical properties of these aramid resins may be meta or para, and may be used alone or in combination of two or more.

このようなアラミド樹脂を含有する被覆層が前記正極活物質粒子表面に形成されることにより、例えば、正極活物質がLiCoO等のリチウム含有遷移金属酸化物である場合、Co等の金属の溶出が抑制されて、正極の劣化が抑制されるとともに、溶出した金属により惹起されるセパレータ、負極の劣化も緩和される。このため、高電圧、高温下におけるサイクル特性を向上することができる。 By forming a coating layer containing such an aramid resin on the surface of the positive electrode active material particles, for example, when the positive electrode active material is a lithium-containing transition metal oxide such as LiCoO 2 , elution of a metal such as Co Is suppressed, and the deterioration of the positive electrode is suppressed, and the deterioration of the separator and the negative electrode caused by the eluted metal is also alleviated. For this reason, cycle characteristics under high voltage and high temperature can be improved.

前記被覆層は、多孔質からなるものが好ましい。多数の空隙を有する多孔質からなるものであれば、空隙において電解質と正極との接触が確保されるので、正極における電極反応が妨げられない。   The coating layer is preferably made of a porous material. If it is made of a porous material having a large number of voids, contact between the electrolyte and the positive electrode is ensured in the voids, so that electrode reaction at the positive electrode is not hindered.

前記正極活物質粒子の表面に形成される被覆層は、前記ポリアミド樹脂に加えて無機金属化合物を含有していることが好ましい。   The coating layer formed on the surface of the positive electrode active material particles preferably contains an inorganic metal compound in addition to the polyamide resin.

前記無機金属化合物としては、リチウムイオンが挿入脱離しない無機金属化合物のうち、酸化物、水酸化物、窒化物、ハロゲン化物、硫化物等が好ましく、また、Al、Ti、Zr、Mg、Si等の金属元素を含有するものが好ましい。このような無機金属化合物としては、例えば、Al、TiO、SiO、ZrO、MgO、Al(OH)・nHO、Al(OH)、Ti(OH)、Si(OH)、Mg(OH)、AlN、Ti、Si、Mg、AlF3、TiF、MgF、Al(SO、Ti(SO、Si(SO、MgSO等が挙げられる。更に好ましくは、Al、Ti、Zr、Mg、Siの酸化物が挙げられる。これらの無機金属化合物は、単独で用いられてもよく、2種以上が併用されてもよい。これらの化合物は電池使用環境で化学的に安定である点で好ましい。 The inorganic metal compound is preferably an oxide, hydroxide, nitride, halide, sulfide, etc., among the inorganic metal compounds into which lithium ions do not insert and desorb, and Al, Ti, Zr, Mg, Si, etc. Those containing metal elements such as are preferred. Examples of such inorganic metal compounds include Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , MgO, Al (OH) · nH 2 O, Al (OH) 3 , Ti (OH) 4 , Si ( OH) 4 , Mg (OH) 2 , AlN, Ti 3 N 4 , Si 3 N 4 , Mg 3 N 2 , AlF 3 , TiF 3 , MgF 2 , Al 2 (SO 4 ) 3 , Ti (SO 4 ) 2 , Si (SO 4 ) 2 , MgSO 4 and the like. More preferably, oxides of Al, Ti, Zr, Mg, and Si are used. These inorganic metal compounds may be used independently and 2 or more types may be used together. These compounds are preferable in that they are chemically stable in a battery usage environment.

このような無機金属化合物が前記被覆層に含まれていることより、正極表面が安定化し電解液と反応しにくくなり、その結果、金属溶出を防ぐことができる。特に前記無機金属化合物は性能が良好に得られる添加範囲においては、被覆面積が緻密になりにくく、前記無機金属化合物のみでは被覆部分が少なくなりがちなことから、ポリアミド被覆を併用することで、被覆しつつ、程よい空孔が得られることにより、より効果が高まると考えられる。   Since such an inorganic metal compound is contained in the coating layer, the surface of the positive electrode is stabilized and hardly reacts with the electrolytic solution, and as a result, metal elution can be prevented. In particular, in the addition range in which the performance of the inorganic metal compound is excellent, the coating area is difficult to be dense, and the coating portion tends to decrease with the inorganic metal compound alone. However, it is considered that the effect is further enhanced by obtaining appropriate pores.

前記ポリアミド樹脂と前記無機金属化合物との混合比は、ポリアミド樹脂5〜50重量部に対して無機金属化合物95〜50重量部であることが好ましく、より好ましくはポリアミド樹脂10〜30重量部に対して無機金属化合物90〜70重量部であり、更に好ましくはポリアミド樹脂15〜25重量部に対して無機金属化合物85〜75重量部である。無機金属化合物が50重量部未満であると、無機金属化合物の配合量が少なく多孔質の形成が不充分であり、95重量部を超えると、ポリアミド樹脂による多孔質の形成が無機金属化合物によって阻害される。   The mixing ratio of the polyamide resin and the inorganic metal compound is preferably 95-50 parts by weight, more preferably 10-30 parts by weight of the polyamide resin with respect to 5-50 parts by weight of the polyamide resin. The inorganic metal compound is 90 to 70 parts by weight, more preferably 85 to 75 parts by weight with respect to 15 to 25 parts by weight of the polyamide resin. When the amount of the inorganic metal compound is less than 50 parts by weight, the amount of the inorganic metal compound is small and the porous formation is insufficient. When the amount exceeds 95 parts by weight, the formation of the porous material by the polyamide resin is inhibited by the inorganic metal compound. Is done.

前記正極活物質粒子を、前記ポリアミド樹脂、更に前記無機金属化合物を併用して被覆する方法としては特に限定されず、正極活物質粒子とポリアミド樹脂や無機金属化合物とを機械的にシェアをかけることで結合させるメカニカルアロイング、正極活物質粒子とポリアミド樹脂や無機金属化合物とを混合したのち加熱する乾式法、正極活物質粒子をポリアミド樹脂や無機金属化合物を含有するコーティング液に浸漬する湿式法のいずれであってもよい。また、前記正極活物質粒子から正極板を作製したのちに、当該正極板をポリアミド樹脂や無機金属化合物を含有するコーティング液に浸漬して、正極板に含まれる正極活物質粒子を被覆してもよい。   The method of coating the positive electrode active material particles with the polyamide resin and the inorganic metal compound is not particularly limited, and mechanically sharing the positive electrode active material particles with the polyamide resin or the inorganic metal compound. Mechanical alloying to be bonded with, a dry method in which positive electrode active material particles are mixed with a polyamide resin or an inorganic metal compound and then heated, and a wet method in which positive electrode active material particles are immersed in a coating solution containing a polyamide resin or an inorganic metal compound Either may be sufficient. Alternatively, after preparing the positive electrode plate from the positive electrode active material particles, the positive electrode plate may be immersed in a coating solution containing a polyamide resin or an inorganic metal compound to cover the positive electrode active material particles contained in the positive electrode plate. Good.

前記正極活物質粒子を前記ポリアミド樹脂、更に前記無機金属化合物を併用して被覆する際、被覆層が厚くなりすぎると、正極と電解液との反応が阻害され容量の低下を招くことがある。このため、ポリアミドの被覆層の厚みは、0.5μm以下が好ましく、更に好ましくは0.2μm以下であることが好ましい。また、前記正極活物質からなる正極板の上に更にポリアミド樹脂を含む層を形成してもよく、無機金属化合物を含む層を形成してもよい。   When the positive electrode active material particles are coated with the polyamide resin and the inorganic metal compound in combination, if the coating layer becomes too thick, the reaction between the positive electrode and the electrolytic solution may be inhibited, leading to a decrease in capacity. For this reason, the thickness of the polyamide coating layer is preferably 0.5 μm or less, more preferably 0.2 μm or less. Further, a layer containing a polyamide resin may be further formed on the positive electrode plate made of the positive electrode active material, or a layer containing an inorganic metal compound may be formed.

前記負極としては、例えば、黒鉛系炭素材料、シリコン、錫、シリコン合金、錫合金、酸化ケイ素、リチウムバナジウム酸化物等を活物質とするものが挙げられるが、なかでも、シリコン、錫、シリコン合金、錫合金等のリチウムと合金化可能な化合物や、酸化ケイ素、リチウムバナジウム酸化物等を活物質とするものが好ましい。黒鉛系炭素材料の容量密度が560〜630mAh/cmであるのに対して、シリコン、錫、シリコン合金、錫合金、酸化ケイ素、リチウムバナジウム酸化物等の容量密度は850mAh/cm以上であり、これらを用いることにより電池の小型化及び高容量化を図ることができる。なお、これらの負極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the negative electrode include graphite-based carbon materials, silicon, tin, silicon alloys, tin alloys, silicon oxides, lithium vanadium oxides, and the like, among others, silicon, tin, and silicon alloys. In addition, a compound that can be alloyed with lithium, such as a tin alloy, silicon oxide, lithium vanadium oxide, or the like as an active material is preferable. While the capacity density of the graphite-based carbon material is 560 to 630 mAh / cm 3 , the capacity density of silicon, tin, silicon alloy, tin alloy, silicon oxide, lithium vanadium oxide, etc. is 850 mAh / cm 3 or more. By using these, the battery can be reduced in size and capacity. In addition, these negative electrode active materials may be used independently and 2 or more types may be used together.

前記正極及び負極は、上述の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。   For the positive electrode and the negative electrode, additives such as, for example, a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the above-described active material.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned.

前記正極又は負極を製造するには、例えば、前記の活物質と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて電極支持基板に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする。   In order to produce the positive electrode or the negative electrode, for example, a mixture of the active material and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade. It is applied to the electrode support substrate using a method or the like, dried, and consolidated with a rolling roll or the like to obtain a positive electrode or a negative electrode.

前記電極支持基板としては、例えば、銅、ニッケル、ステンレス鋼等からなる箔、シートやネット:炭素繊維からなるシートやネット等から構成されたものが挙げられる。なお、電極支持基板を用いずに、ペレット状に圧密化成形して負極としてもよい。   Examples of the electrode support substrate include a foil, a sheet or a net made of copper, nickel, stainless steel, or the like: a sheet or a net made of carbon fiber. Instead of using the electrode support substrate, the negative electrode may be formed by compacting into a pellet.

前記電解質としては、例えば、有機溶媒にリチウム塩を溶解させた非水電解液、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との複合材等が挙げられる。   Examples of the electrolyte include a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a composite material of a polymer electrolyte and an inorganic solid electrolyte, and the like.

前記非水電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート:γ−ブチルラクトン等のγ−ラクトン類:1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類:テトラヒドロフラン類の環状エーテル類:アセトニトリル等のニトリル類等が挙げられる。これらの溶媒は単独で用いてもよく、2種類以上混合して用いてもよい。   Examples of the solvent for the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate: γ-lactones such as γ-butyl lactone : Chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane and ethoxymethoxyethane: Cyclic ethers of tetrahydrofuran: Nitriles such as acetonitrile. These solvents may be used alone or in combination of two or more.

前記非水電解液の溶質であるリチウム塩としては、例えば、LiAsF、LiBF、LiPF、LiAlCl、LiClO、LiCFSO、LiSbF、LiSCN、LiCl、LiCSO、LiN(CFSO、LiC(CFSO、LiCSO等が挙げられる。 Examples of the lithium salt that is a solute of the non-aqueous electrolyte include LiAsF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H 5 SO 3 , Examples thereof include LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 P 9 SO 3 .

前記セパレータとしては、例えば、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜が使用できる。また、前記多孔質膜の上にポリアミド層を設けてもよく、無機金属化合物が含まれたポリアミド層があってもよい。   As the separator, for example, a porous film made of polyolefin such as polypropylene or polyethylene can be used. Further, a polyamide layer may be provided on the porous film, or a polyamide layer containing an inorganic metal compound may be present.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
アラミド樹脂(ポリ(フェニレンテレフタルアミド))0.1〜3wt%をN−メチル−2−ピロリドン(NMP)に溶解させた溶液中に、LiCoOを加えて撹拌装置で攪拌した。その後、ろ過をして溶液と固形物を分離し、LiCoOを主成分とする固形物を160℃で真空乾燥した。これらをアセチレンブラック5wt%とポリテトラフルオロエチレン(PTFE)5wt%と共に混合して正極を得た。
(Example 1)
LiCoO 2 was added to a solution in which 0.1 to 3 wt% of aramid resin (poly (phenylene terephthalamide)) was dissolved in N-methyl-2-pyrrolidone (NMP), and the mixture was stirred with a stirrer. Then filtered to separate the solution and the solid was a solid composed mainly of LiCoO 2 was vacuum dried at 160 ° C.. These were mixed with 5% by weight of acetylene black and 5% by weight of polytetrafluoroethylene (PTFE) to obtain a positive electrode.

負極は黒鉛粉末を活物質とし、ポリフッ化ビニリデン(PVDF)5wt%をN−メチル−2−ピロリドンを加えてペースト状とし、これら負極合材を銅箔に塗布して負極を作製した。   The negative electrode was made of graphite powder as an active material, 5 wt% of polyvinylidene fluoride (PVDF) was added to N-methyl-2-pyrrolidone to make a paste, and the negative electrode mixture was applied to a copper foil to prepare a negative electrode.

得られた正極及び負極にポリプロピレン製セパレータを介在させ、非水電解質を注液してコイン型のリチウムイオン二次電池を作製した。非水電解質としては、エチレンカーボネートとジエチルカーボネートとが3:7の割合で混合されてなる混合溶媒に、LiPFが1.50モル/Lの濃度で溶解されてなる非水電解液を用いた。 A polypropylene separator was interposed between the obtained positive electrode and negative electrode, and a non-aqueous electrolyte was injected to produce a coin-type lithium ion secondary battery. As the non-aqueous electrolyte, a non-aqueous electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.50 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 3: 7 was used. .

得られたリチウムイオン二次電池について、60℃で、定電流(1C)−定電圧(4.35V)で充電し、初期容量を測定した後、放電終始電圧2.75Vまで1C放電し、同様にして充放電を繰り返して、寿命特性を評価した。電池の寿命判定は初期容量の80%を割ったサイクル数とした。結果を表1に示した。なお、表1において、寿命及び容量は、比較例1の値を100とした相対値で表した。   The obtained lithium ion secondary battery was charged at 60 ° C. with a constant current (1C) -constant voltage (4.35 V), measured for initial capacity, and then discharged with 1 C to a discharge starting voltage of 2.75 V. The life characteristics were evaluated by repeating charging and discharging. The battery life was determined by the number of cycles divided by 80% of the initial capacity. The results are shown in Table 1. In Table 1, the life and capacity are expressed as relative values with the value of Comparative Example 1 being 100.

(実施例2)
0.5wt%アラミド樹脂−NMP溶液にAl粒子を1.5wt%分散させたこと以外は実施例1と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that 1.5 wt% of Al 2 O 3 particles were dispersed in a 0.5 wt% aramid resin-NMP solution, and the life characteristics were evaluated.

(実施例3)
0.5wt%アラミド樹脂−NMP溶液にTiO粒子を1.5wt%分散させたこと以外は実施例1と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 3)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that 1.5 wt% of TiO 2 particles were dispersed in a 0.5 wt% aramid resin-NMP solution, and the life characteristics were evaluated.

(実施例4)
0.5wt%アラミド樹脂−NMP溶液にAl濃度が1.5wt%になるように添加して撹拌装置で均一分散させた。この溶液中に比較例1で作成した正極を1分間浸漬させて、取り出した後に160℃で真空乾燥した。この正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
Example 4
The concentration of Al 2 O 3 was dispersed uniformly in a stirrer was added to a 1.5 wt% to 0.5 wt% aramid resin -NMP solution. The positive electrode prepared in Comparative Example 1 was immersed in this solution for 1 minute, taken out, and then vacuum dried at 160 ° C. Using this positive electrode, a lithium ion secondary battery was produced in the same manner as in Example 1, and the life characteristics were evaluated.

(実施例5)
ポリテトラフルオロエチレン5wt%の代わりに、スチレン-ブタジエンゴム(SBR)3wt%、カルボキシメチルセルロース1wt%を水と混合してペースト状とし、これら正極合材をアルミ箔に塗布したこと以外は実施例2と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 5)
Example 2 except that 3% by weight of styrene-butadiene rubber (SBR) and 1% by weight of carboxymethylcellulose were mixed with water in place of 5% by weight of polytetrafluoroethylene to form a paste, and these positive electrode mixtures were applied to aluminum foil. A lithium ion secondary battery was produced in the same manner as described above, and the life characteristics were evaluated.

(実施例6)
ポリテトラフルオロエチレン5wt%の代わりに、エチレンプロピレンジエンモノマー(EPDM)粉末3wt%とトルエンを加えて、これら正極合材をアルミ箔に塗布したこと以外は実施例2と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 6)
Lithium ion secondary as in Example 2 except that 3 wt% of ethylene propylene diene monomer (EPDM) powder and toluene were added instead of 5 wt% of polytetrafluoroethylene and these positive electrode mixtures were applied to aluminum foil. Batteries were prepared and their life characteristics were evaluated.

(実施例7)
負極を黒鉛粉末のかわりにガスアトマイズ法で作製したSi合金粉末(Si 55wt%、Ni 33wt%、Ag 10wt%)を使用して作製したこと以外は実施例2と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 7)
A lithium ion secondary battery was fabricated in the same manner as in Example 2 except that the negative electrode was made using a Si alloy powder (Si 55 wt%, Ni 33 wt%, Ag 10 wt%) produced by a gas atomizing method instead of graphite powder. Fabricated and evaluated for life characteristics.

(実施例8)
負極を黒鉛粉末のかわりにSiOx(x=1.48)を使用して作製したこと以外は実施例2と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Example 8)
A lithium ion secondary battery was fabricated in the same manner as in Example 2 except that the negative electrode was fabricated using SiOx (x = 1.48) instead of graphite powder, and the life characteristics were evaluated.

(実施例9)
LiCoOが90wt%、LiNiOが10wt%として混合し、正極活物質としたこと以外は実施例2と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
Example 9
A lithium ion secondary battery was produced in the same manner as in Example 2 except that LiCoO 2 was mixed at 90 wt% and Li 2 NiO 2 was mixed at 10 wt% to obtain a positive electrode active material, and the life characteristics were evaluated.

(比較例1)
アラミド樹脂を使用しないこと以外は実施例1と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an aramid resin was not used, and the life characteristics were evaluated.

(比較例2)
アラミド樹脂を使用しないこと以外は実施例5と同様にしてリチウムイオン二次電池を作成し、寿命特性を評価した。
(Comparative Example 2)
A lithium ion secondary battery was prepared in the same manner as in Example 5 except that an aramid resin was not used, and the life characteristics were evaluated.

(比較例3)
アラミド樹脂を使用しないこと以外は実施例6と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Comparative Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 6 except that an aramid resin was not used, and the life characteristics were evaluated.

(比較例4)
アラミド樹脂を使用しないこと以外は実施例7と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Comparative Example 4)
A lithium ion secondary battery was produced in the same manner as in Example 7 except that an aramid resin was not used, and the life characteristics were evaluated.

(比較例5)
アラミド樹脂を使用しないこと以外は実施例8と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Comparative Example 5)
A lithium ion secondary battery was produced in the same manner as in Example 8 except that an aramid resin was not used, and the life characteristics were evaluated.

(比較例6)
アラミド樹脂を使用しないこと以外は実施例9と同様にしてリチウムイオン二次電池を作製し、寿命特性を評価した。
(Comparative Example 6)
A lithium ion secondary battery was produced in the same manner as in Example 9 except that an aramid resin was not used, and the life characteristics were evaluated.

実施例2〜9で得られたリチウムイオン二次電池の仕様を表2に示し、寿命特性の評価結果を表3に示した。   The specifications of the lithium ion secondary batteries obtained in Examples 2 to 9 are shown in Table 2, and the evaluation results of the life characteristics are shown in Table 3.

※比較例1を100として規格化 * Standardized with Comparative Example 1 as 100

表1に記載の結果より、正極活物質粒子をアラミド樹脂で被覆することにより、電池の寿命が延長され、アラミド樹脂からなる被覆層が適度な厚さであれば充放電も阻害されず高容量を維持できることが明らかにされた。また、表3に記載の結果より、アラミド樹脂だけでなく無機金属化合物を加えて正極活物質粒子を被覆した方が、電池の寿命が延長されることが明らかにされた。また、バインダーの種類、各種正極、負極に効果があることは明らかにされ、上記効果は正極、負極、バインダー等構成材料は上記に限定されるものではない。   From the results shown in Table 1, by covering the positive electrode active material particles with an aramid resin, the life of the battery is extended, and if the coating layer made of an aramid resin has an appropriate thickness, charging and discharging are not hindered and the capacity is high. It was revealed that it can be maintained. Further, from the results shown in Table 3, it was clarified that the battery life was extended when the positive electrode active material particles were coated by adding not only an aramid resin but also an inorganic metal compound. Moreover, it is clarified that the kind of binder, various positive electrodes and negative electrodes are effective, and the above-mentioned effects are not limited to the above-mentioned constituent materials such as positive electrodes, negative electrodes and binders.

Claims (5)

正極活物質の粒子が全芳香族ポリアミド系樹脂及び無機金属化合物によって被覆されていることを特徴とするリチウムイオン二次電池用正極。 A positive electrode for a lithium ion secondary battery, characterized by the particles of the positive electrode active material is covered by the wholly aromatic polyamide resin and an inorganic metal compound. 前記無機金属化合物は、酸化物、水酸化物、窒化物、ハロゲン化物、及び、硫化物からなる群より選ばれる少なくとも1種の化合物である請求項1記載のリチウムイオン二次電池用正極。 2. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the inorganic metal compound is at least one compound selected from the group consisting of oxides, hydroxides, nitrides, halides, and sulfides. 前記無機金属化合物の金属は、Al、Ti、Zr、Mg、及び、Siからなる群より選ばれる少なくとも1種の金属である請求項1又は2記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the metal of the inorganic metal compound is at least one metal selected from the group consisting of Al, Ti, Zr, Mg, and Si. 前記正極活物質は、リチウム含有遷移金属酸化物である請求項1、2又は3記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to claim 1 , wherein the positive electrode active material is a lithium-containing transition metal oxide. 請求項1、2、3又は4記載の正極を備えていることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising the positive electrode according to claim 1, 2, 3 or 4 .
JP2008305718A 2008-11-28 2008-11-28 Positive electrode for lithium ion secondary battery Expired - Fee Related JP5739087B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008305718A JP5739087B2 (en) 2008-11-28 2008-11-28 Positive electrode for lithium ion secondary battery
KR1020090112855A KR101155914B1 (en) 2008-11-28 2009-11-20 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same
US12/625,677 US8440351B2 (en) 2008-11-28 2009-11-25 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305718A JP5739087B2 (en) 2008-11-28 2008-11-28 Positive electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010129494A JP2010129494A (en) 2010-06-10
JP5739087B2 true JP5739087B2 (en) 2015-06-24

Family

ID=42329738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305718A Expired - Fee Related JP5739087B2 (en) 2008-11-28 2008-11-28 Positive electrode for lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5739087B2 (en)
KR (1) KR101155914B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101670200B1 (en) * 2010-08-02 2016-10-27 셀가드 엘엘씨 High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
JP5717461B2 (en) 2011-02-17 2015-05-13 株式会社東芝 Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
JP2014149989A (en) * 2013-02-01 2014-08-21 Toyota Industries Corp Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
KR101994878B1 (en) * 2015-07-30 2019-07-01 주식회사 엘지화학 Positive electrode for solid lithium ion secondary battery, and solid lithium ion secondary battery comprising the same
JP6728716B2 (en) 2016-01-28 2020-07-22 住友金属鉱山株式会社 Method for producing coated nickel-based lithium-nickel composite oxide particles
KR102067786B1 (en) * 2016-03-21 2020-01-17 주식회사 엘지화학 Surface coated positive electrode active particle and secondary batterty comprising the same
CN109286013A (en) * 2018-11-16 2019-01-29 华南师范大学 A kind of lithium ion battery high pressure lithium-rich manganese-based anode material and its coating modification methods and applications coating polyamide organic matter layer
CN111200128B (en) * 2020-03-12 2022-09-13 河南电池研究院有限公司 Preparation method of positive electrode material for inhibiting transition metal ions in positive electrode material of lithium ion battery from dissolving out

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645063B2 (en) * 1997-03-14 2005-05-11 日本カーボン株式会社 Method for producing graphite material for battery and battery
JP3770351B2 (en) * 1997-03-18 2006-04-26 東洋紡績株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2000048807A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2000200605A (en) * 1998-10-30 2000-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacture
DE19946066A1 (en) * 1999-09-25 2001-03-29 Merck Patent Gmbh Coated lithium mixed oxide particles and their use II
JP3503697B2 (en) * 1999-11-12 2004-03-08 日本電池株式会社 Non-aqueous electrolyte battery
JP2003051305A (en) * 2001-08-06 2003-02-21 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, its manufacturing method and nonaqueous electrolyte battery using the same
US7087348B2 (en) 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
JP4887671B2 (en) * 2004-06-17 2012-02-29 トヨタ自動車株式会社 Lithium secondary battery, positive electrode provided in the battery, and manufacturing method thereof
KR20070016431A (en) * 2005-08-03 2007-02-08 삼성에스디아이 주식회사 Active material for lithium secondary battery, preparing method for the same and secondary battery with the same
JP5223166B2 (en) 2006-02-07 2013-06-26 日産自動車株式会社 Battery active material and secondary battery
JP5168989B2 (en) * 2006-04-12 2013-03-27 東レ株式会社 Lithium ion secondary battery
US20090194747A1 (en) * 2008-02-04 2009-08-06 Vale Inco Limited Method for improving environmental stability of cathode materials for lithium batteries

Also Published As

Publication number Publication date
KR20100061349A (en) 2010-06-07
JP2010129494A (en) 2010-06-10
KR101155914B1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP6652125B2 (en) Non-aqueous electrolyte secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
US9263733B2 (en) Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
JP5315665B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5072242B2 (en) Non-aqueous electrolyte secondary battery
JP5739087B2 (en) Positive electrode for lithium ion secondary battery
JP4740753B2 (en) Lithium battery for charging / discharging, and method for producing negative electrode active material contained in negative electrode of lithium battery for charging / discharging
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP5503858B2 (en) Negative electrode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery
US20170117535A1 (en) Composite anode active material, anode including the same, and lithium secondary battery including the anode
JP5662132B2 (en) Lithium ion secondary battery
JP6112858B2 (en) Nonaqueous electrolyte secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
WO2016136227A1 (en) Nonaqueous electrolyte secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2015083262A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
WO2014109366A1 (en) Nonaqueous electrolyte secondary battery
US20100151326A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same
CN114930577A (en) Negative electrode active material, and negative electrode and secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees