WO2014109366A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2014109366A1
WO2014109366A1 PCT/JP2014/050241 JP2014050241W WO2014109366A1 WO 2014109366 A1 WO2014109366 A1 WO 2014109366A1 JP 2014050241 W JP2014050241 W JP 2014050241W WO 2014109366 A1 WO2014109366 A1 WO 2014109366A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
mass
sio
Prior art date
Application number
PCT/JP2014/050241
Other languages
French (fr)
Japanese (ja)
Inventor
植苗圭一郎
巨勢丈裕
Original Assignee
日立マクセル株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社, 旭硝子株式会社 filed Critical 日立マクセル株式会社
Publication of WO2014109366A1 publication Critical patent/WO2014109366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery having good load characteristics and charge / discharge cycle characteristics.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are widely used as power sources for portable devices such as personal computers and mobile phones. There are great expectations.
  • As a negative electrode material (negative electrode active material) of such a non-aqueous electrolyte secondary battery in addition to lithium (Li) and Li alloy, graphite such as natural graphite and artificial graphite that can insert and desorb Li ions Carbon materials are used.
  • the Li content during charging / discharging is large, so that the material expands and contracts very much. This is presumably because the charge / discharge cycle characteristics, that is, the capacity retention rate with respect to the initial capacity, is worse than that of the graphitic carbon material.
  • Patent Document 1 describes that high capacity can be achieved by using a mixture of graphitic carbon material and Si oxide as a negative electrode active material.
  • the mixing ratio of the graphitic carbon material is lowered, as described above, it is considered that the mechanical strength and the electronic conductivity of the electrode are lowered and the charge / discharge cycle characteristics are lowered.
  • Patent Document 4 it is generally used as a negative electrode binder in a non-aqueous electrolyte secondary battery including a negative electrode including a graphite material and a material containing Si as a constituent element as a negative electrode active material.
  • a method for improving the mechanical strength of the electrode and improving the charge / discharge cycle characteristics by using polyacrylic acid instead of polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR).
  • Patent Document 5 proposes a method for improving charge / discharge cycle characteristics by using a copolymer of tetrafluoroethylene and propylene as a binder and needle coke as a negative electrode active material.
  • Patent Document 4 proposes that polyacrylic acid is used as a negative electrode binder in a nonaqueous electrolyte secondary battery including a negative electrode including a graphitic carbon material and a material containing Si as a constituent element as a negative electrode active material.
  • Patent Document 4 can improve the charge / discharge cycle characteristics as compared with a case where a material containing Si as a constituent element is used alone as a negative electrode active material, a graphitic carbon material as a negative electrode active material Compared with the case where is used alone, the charge / discharge cycle characteristics and load characteristics are not satisfactory. Also in Patent Document 5, there is still room for examination in terms of characteristics regarding application to a material having a high capacity, such as the above-described new negative electrode material, but having large expansion / contraction due to charge / discharge.
  • the present invention has been made in view of the above circumstances, and provides a non-aqueous electrolyte secondary battery having high capacity and excellent load characteristics and charge / discharge cycle characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein the positive electrode is a positive electrode composite including a lithium-containing transition metal composite oxide.
  • the negative electrode includes a negative electrode mixture layer including a graphitic carbon material, a material including an element alloying with lithium, and a binder.
  • the binder includes tetrafluoroethylene, hexafluoropropylene, and fluorine.
  • a negative electrode mixture comprising a fluorinated elastic copolymer having a constitutional unit based on two or more monomers including at least one monomer selected from the group consisting of vinylidene fluoride, and a water-soluble adhesive resin.
  • the mass of the water-soluble adhesive resin contained in the layer is M 1 and the mass of the fluorinated elastic copolymer contained in the negative electrode mixture layer is M 2 , the mass ratio M 2 / M 1 is 0.1 or more. 2 or less It is a sign.
  • non-aqueous electrolyte secondary battery having a high capacity and excellent load characteristics and charge / discharge cycle characteristics.
  • FIG. 1 is a plan view schematically showing an example of the nonaqueous electrolyte secondary battery of the present invention.
  • 2 is a cross-sectional view taken along line II of the nonaqueous electrolyte secondary battery of FIG.
  • organic solvent-based polyvinylidene fluoride (PVDF) or water-dispersed styrene-butadiene rubber (SBR) is used as the binder for the negative electrode of the non-aqueous electrolyte secondary battery.
  • PVDF polyvinylidene fluoride
  • SBR water-dispersed styrene-butadiene rubber
  • Organic solvent-based PVDF is a negative electrode using both a graphitic carbon material and a material containing an element that forms an alloy with lithium, because the adhesiveness with a metal foil as a current collector varies greatly depending on the type of the graphitic carbon material. Then, the range of use is limited. In particular, when natural graphite having a scale shape is used as the graphitic carbon material, the adhesiveness is extremely poor.
  • water-dispersed SBR requires the use of a water-soluble adhesive resin such as carboxymethylcellulose (CMC) as a thickener, but has a problem that sufficient characteristics cannot be realized in load
  • a non-aqueous electrolyte secondary battery including a negative electrode having a negative electrode mixture layer containing a graphite carbon material and a material containing an element alloying with lithium as a negative electrode active material
  • the binder of the negative electrode mixture layer has a structural unit based on two or more monomers including at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride
  • An elastic copolymer also referred to as fluorine-containing rubber
  • a water-soluble adhesive resin are used, and the mass of the water-soluble adhesive resin contained in the negative electrode mixture layer is M 1 and contained in the negative electrode mixture layer.
  • the negative electrode according to the non-aqueous electrolyte secondary battery of the present invention has a negative electrode mixture layer containing a negative electrode active material and a binder, for example, on one side or both sides of a current collector.
  • the negative electrode according to the present invention can be obtained by, for example, adding a suitable solvent [N-methyl-2-pyrrolidone (NMP), etc.] to a mixture (negative electrode mixture) containing a negative electrode active material, a binder and the like and kneading the mixture sufficiently.
  • NMP N-methyl-2-pyrrolidone
  • the paste-like or slurry-like negative electrode mixture-containing composition is applied to one or both sides of the negative electrode current collector, and the solvent is removed by drying or the like to form a negative electrode mixture layer having a predetermined thickness and density.
  • the manufacturing method of the negative electrode according to the present invention is not limited to the above manufacturing method.
  • the binder for the negative electrode mixture layer is selected from the group consisting of tetrafluoroethylene (hereinafter also referred to as TFE), hexafluoropropylene (hereinafter also referred to as HFP), and vinylidene fluoride (hereinafter also referred to as VdF).
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • VdF vinylidene fluoride
  • a fluorinated elastic copolymer having a structural unit based on two or more monomers including at least one monomer is used.
  • the fluorinated elastic copolymer has a greater adhesive force than, for example, PVDF, and can improve the adhesion between the negative electrode mixture layer and the current collector, so the load characteristics of the non-aqueous electrolyte secondary battery and Charge / discharge cycle characteristics can be improved.
  • the structural unit based on two or more monomers in the fluorinated elastic copolymer is, for example, a structural unit based on two or three monomers selected from the group consisting of TFE, HFP and VdF.
  • a constitutional unit based on one or more monomers selected from the group consisting of TFE, HFP and VdF, and a constitution based on one or more other monomers copolymerizable with the monomer It may be a structural unit including a unit.
  • the fluorine content of the fluorinated elastic copolymer is preferably 50% by mass or more, more preferably 53% by mass or more, and preferably 74% by mass or less, and 70% by mass or less. It is more preferable that When the fluorine content of the fluorinated elastic copolymer is too low, the electrolytic solution resistance and the voltage resistance tend to be insufficient.
  • the fluorine content of the fluorine-containing elastic copolymer is obtained by fluorine content analysis, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing elastic copolymer.
  • the fluorinated elastic copolymer has a structural unit based on another monomer in addition to a structural unit based on TFE, a structural unit based on HFP, or a structural unit based on VdF, Is preferably propylene (hereinafter also referred to as P), ethylene (hereinafter also referred to as E), or perfluoro (alkyl vinyl ether) (hereinafter also referred to as PAVE), and more preferably propylene.
  • P propylene
  • E ethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • PAVE examples include perfluoro (methyl vinyl ether) (hereinafter also referred to as PMVE), perfluoro (propyl vinyl ether) (hereinafter also referred to as PPVE), and these may be used alone or in combination of two or more kinds. Can be used in combination.
  • PMVE perfluoro (methyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • the fluorinated elastic copolymer examples include a TFE / P copolymer (meaning a copolymer comprising a structural unit based on TFE and a structural unit based on P. The same applies hereinafter), TFE / P / VdF copolymer, VdF / HFP copolymer, VdF / TFE copolymer, TFE / VdF / HFP copolymer, TFE / PAVE copolymer, E / HFP copolymer, TFE / P / E copolymer , TFE / P / PAVE copolymer, TFE / P / VdF / PAVE copolymer, VdF / PAVE copolymer, VdF / TFE / PAVE copolymer, VdF / TFE / HFP / PAVE copolymer, etc. It is done.
  • a more preferred composition of the fluorinated elastic copolymer is described below.
  • the composition is in the following range, excellent adhesion to the current collector, excellent electrolytic solution resistance and voltage resistance can be obtained, and the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery can be further improved. Can do.
  • the ratio of the structural unit based on TFE / the structural unit based on P is preferably 30 to 80/70 to 20 (mol%, provided that the total is 100 mol%; the same applies hereinafter), and 40 to 70/60. It is more preferably from 30 to 30 (mol%), most preferably from 60 to 50/40 to 50 (mol%).
  • the ratio of the structural unit based on TFE / the structural unit based on P / the structural unit based on VdF is preferably in the range of 30 to 85/15 to 70 / 0.01 to 50 (mol%), more preferably 30 70/20 to 60/1 to 40 (mol%).
  • the Mooney viscosity of the fluorinated elastic copolymer in the present invention is preferably 10 or more, more preferably 50 or more, further preferably 80 or more, and preferably 200 or less, More preferably, it is 180 or less, and further preferably 150 or less.
  • Mooney viscosity is based on Japanese Industrial Standard (JIS) K6300, using an L-shaped rotor with a diameter of 38.1 mm and a thickness of 5.54 mm, preheating time of 1 minute, and rotor rotation time of 10 minutes at 100 ° C. It is a measure of the molecular weight of polymer materials such as rubber. Moreover, it shows that it is a high molecular weight indirectly, so that the value is large. When the Mooney viscosity is in the above range, the mechanical strength of the negative electrode mixture layer can be increased to further improve the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery.
  • the method for producing the fluorinated elastic copolymer is not particularly limited, and for example, it can be produced by using the production method described in Patent Document 5 (International Publication No. 2011/055760). Especially, it is preferable that a fluorine-containing elastic copolymer is manufactured by emulsion polymerization.
  • a water-soluble adhesive resin is used in combination with the fluorinated elastic copolymer as a binder for the negative electrode mixture layer.
  • the water-soluble adhesive resin include, for example, at least one selected from the group consisting of celluloses, acrylic acid polymers, and alginic acid polymers. More specifically, carboxymethyl cellulose (CMC) and its salts, hydroxypropyl cellulose (HPC) and its salts, alginic acid and its salts, polyacrylic acid and its salts, and the like can be mentioned.
  • CMC carboxymethyl cellulose
  • HPC hydroxypropyl cellulose
  • alginic acid and its salts polyacrylic acid and its salts, and the like can be mentioned.
  • the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin in the negative electrode mixture layer is too small, non-aqueous electrolysis by using both of the above binders in combination. Since the effect of improving the load characteristics of the liquid secondary battery tends to be small, it needs to be 0.1 or more, preferably 0.2 or more, and more preferably 0.3 or more.
  • the mass ratio M 2 / M 1 is too large, the effect of improving the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery by using both the binders tends to be less than 2 or less. And is preferably 1.5 or less, more preferably 1 or less.
  • the negative electrode active material used for the negative electrode mixture layer of the negative electrode according to the present invention is a material containing a graphitic carbon material and an element alloying with lithium.
  • Examples of the graphitic carbon material include natural graphite such as flaky graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB) and carbon fibers at 2800 ° C. or higher; Etc.
  • natural graphite such as flaky graphite
  • artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB) and carbon fibers at 2800 ° C. or higher
  • Etc Etc.
  • Examples of the element relating to a material containing an element that forms an alloy with lithium include Si, Sn, Ga, Ge, In, and Al.
  • a material containing the element to be a negative electrode active material in addition to the element alone or an alloy of the elements, an alloy of the element and Co, Ni, Fe, Mn, Ti, Zr, etc., an oxide of the element, Compounds such as nitrides and carbides can be exemplified.
  • Si or Sn is preferable as an element to be alloyed with lithium, and simple elements of these elements, alloys containing these elements, and oxides of these elements are preferably used as the active material.
  • the general formula SiO x (however, the atomic ratio x of O to Si is 0. It is preferable to use a material represented by 5 ⁇ x ⁇ 1.5 (hereinafter, the material is simply referred to as “SiO x ”).
  • SiO x is not limited to the Si oxide, and may contain a Si microcrystalline or amorphous phase.
  • the atomic ratio of Si and O is determined by the Si microcrystalline or amorphous phase.
  • the ratio includes Si. That is, the SiO x to SiO 2 matrix of amorphous Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 of the amorphous, dispersed therein It is sufficient that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5 in combination with Si.
  • x 1.
  • a laser diffraction scattering type particle size distribution measuring device for example, “MICRO
  • the number average particle diameter measured by “Track HRA” or the like is preferably about 0.5 to 10 ⁇ m.
  • the particle form of SiO x may be primary particles or composite particles in which a plurality of primary particles are combined.
  • SiO x is preferably a composite that is combined with a carbon material.
  • SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of ensuring good battery characteristics, a conductive material (conductive aid) is used, and SiO x and the conductive material in the negative electrode are used. Therefore, it is necessary to form a good conductive network by mixing and dispersing with each other. If it is a composite in which SiO x is combined with a carbon material, for example, a conductive network in the negative electrode is better than when using a material obtained by simply mixing SiO x and a conductive material such as a carbon material. Formed.
  • the composite in which the surface of SiO x is coated with a carbon material is used in combination with a conductive material (such as a carbon material), a better conductive network can be formed in the negative electrode.
  • a lithium secondary battery with higher capacity and better battery characteristics (for example, charge / discharge cycle characteristics) can be realized.
  • the complex of the SiO x and the carbon material coated with a carbon material for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
  • SiO x whose surface is coated with a carbon material
  • the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material.
  • a carbon material for example, a granulated body
  • Those can also be preferably used.
  • a better conductive network can be formed when SiO x and a carbon material are dispersed inside the granule.
  • battery characteristics such as heavy load discharge characteristics can be further improved.
  • Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
  • the carbon material include at least selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon.
  • One material is preferred.
  • Fibrous or coil-like carbon materials are preferable in that they easily form a conductive network and have a large surface area.
  • Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and the SiO x particles expand and contract. However, it is preferable in that it has a property of easily maintaining contact with the particles.
  • the graphitic carbon material used as a negative electrode active material can also be used as a carbon material related to a composite of SiO x and a carbon material.
  • Graphite carbon materials like carbon black, have high electrical conductivity and high liquid retention, and even when SiO x particles expand and contract, they can easily maintain contact with the particles. Since it has properties, it can be preferably used for forming a complex with SiO x .
  • a fibrous carbon material is particularly preferable as a material used when the composite with SiO x is a granulated body. Fibrous carbon material is due to the high shape is thin threadlike flexibility can follow the expansion and contraction of SiO x with the charging and discharging of the battery, and in order bulk density is large, SiO x particles and many It is because it can have the following junction point.
  • the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.
  • the fibrous carbon material can also be formed on the surface of the SiO x particles by, for example, a gas phase method.
  • the specific resistance value of SiO x is usually 10 3 to 10 7 k ⁇ cm, while the specific resistance value of the carbon material exemplified above is usually 10 ⁇ 5 to 10 k ⁇ cm.
  • the ratio of SiO x and carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material.
  • the carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, which may reduce the effect of increasing the capacity.
  • SiO x The carbon material is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and most preferably 40 parts by mass or less with respect to 100 parts by mass of SiO x .
  • the primary particles of SiO x can be obtained by, for example, a method in which a mixture of Si and SiO 2 is heated and the generated silicon oxide gas is cooled and precipitated. Furthermore, a fine Si phase can be formed inside the particles by heat-treating the obtained SiO x under an inert gas atmosphere. By adjusting the heat treatment temperature and time at this time, the half width of the (111) diffraction peak of the formed Si phase can be controlled.
  • the heat treatment temperature is set in a range of about 900 to 1400 ° C.
  • the heat treatment time is set in a range of about 0.1 to 10 hours.
  • the composite of SiO x and carbon material can be obtained by the following method, for example.
  • a dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles.
  • a dispersion medium for example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
  • the carbon material is added to a dispersion in which SiO x is dispersed in a dispersion medium.
  • the composite particles (granulated material) may be obtained by the same method as that used when combining SiO x . Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material for example, the SiO x particles and the hydrocarbon system
  • the gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles.
  • the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
  • the processing temperature (atmosphere temperature) of the vapor phase growth (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.
  • toluene As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable.
  • a hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas).
  • methane gas, acetylene gas, etc. can also be used.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material by a vapor deposition (CVD) method, petroleum pitch, coal pitch
  • At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to the carbon material coating layer of SiO x particles, and then the organic compound is attached.
  • the obtained particles may be fired.
  • a dispersion liquid in which SiO x particles coated with a carbon material (SiO x composite particles or a granulated body of SiO x and a carbon material) and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed onto the SiO x particles and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
  • Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • condensate of naphthalene sulfonate and aldehydes naphthalene sulfonic acid formaldehyde condensate can be used.
  • a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • the firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
  • a material containing an element that forms an alloy with lithium such as SiO x
  • SiO x has a higher capacity than a carbon material that is widely used as a negative electrode active material of a non-aqueous electrolyte secondary battery, but it accompanies charging / discharging of the battery. Since the volume change is large, in a non-aqueous electrolyte secondary battery using a negative electrode having a negative electrode mixture layer with a high content of a material containing an element alloyed with lithium, the negative electrode (negative electrode mixture) is obtained by repeated charge and discharge. There is a risk that the layer) will deteriorate due to a large volume change and the capacity will decrease. That is, the charge / discharge cycle characteristics may be deteriorated.
  • Graphite carbon materials are widely used as negative electrode active materials for non-aqueous electrolyte secondary batteries, and have a relatively large capacity, but are associated with charging and discharging of batteries as compared with materials containing elements that alloy with lithium. Volume change is small. Therefore, the combined use of a graphite carbon material and a material containing an element alloying with lithium in the negative electrode active material has an effect of improving the capacity of the battery as the amount of the material containing the element alloying with lithium is reduced. While suppressing the reduction as much as possible, the deterioration of the charge / discharge cycle characteristics of the battery can be satisfactorily suppressed.
  • the content of the material containing an element that forms an alloy with lithium (for example, SiO x ) in the entire negative electrode active material is 0.01 mass from the viewpoint of favorably securing the effect of increasing the capacity by using the material. % Or more, preferably 1% by mass or more, more preferably 3% by mass or more. Further, from the viewpoint of better avoiding the problem due to the volume change of the material containing the element alloying with lithium due to charge / discharge, in the entire negative electrode active material of the material containing the element alloying with lithium (for example, SiO x )
  • the content in is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • a conductive material may be further added as a conductive auxiliary.
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the nonaqueous electrolyte secondary battery.
  • conductive metal oxides such as titanium oxide
  • organic conductive materials such as polyphenylene derivatives (described in JP-A-59-20971), and these may be used alone.
  • More than one species may be used in combination. Among these, carbon black excellent in liquid absorbency is preferable, and ketjen black and acetylene black are more preferable.
  • the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
  • the particle size of the carbon material used as the conductive additive related to the negative electrode mixture layer is, for example, a number average particle size measured using the laser diffraction / scattering particle size distribution analyzer, and is 0.01 ⁇ m or more. Is preferably 0.02 ⁇ m or more, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the thickness of the negative electrode mixture layer is preferably 10 to 100 ⁇ m per side of the negative electrode current collector.
  • the density of the negative electrode mixture layer (calculated from the mass and thickness of the negative electrode mixture layer per unit area laminated on the negative electrode current collector) is 1.0 g / cm 3 or more and 1.9 g / cm 3 or less. Preferably there is.
  • the amount of the negative electrode active material is preferably 80 to 99% by mass.
  • the amount is preferably 1 to 20% by mass.
  • the conductive assistant when the conductive additive is contained in the negative electrode mixture layer, it is preferable to use the conductive assistant within a range in which the amount of the negative electrode active material and the amount of the binder satisfy the above-described preferable values.
  • the current collector for the negative electrode copper or nickel foil, punching metal, mesh, expanded metal, or the like can be used, but copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit of the thickness is 5 ⁇ m in order to ensure mechanical strength. It is desirable to be.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention has a positive electrode mixture layer containing a positive electrode active material or the like, for example, on one side or both sides of a current collector.
  • the positive electrode according to the present invention is, for example, a paste or slurry obtained by adding a solvent (NMP or the like) to a mixture (positive electrode mixture) containing a positive electrode active material, a binder, a conductive additive, etc., and sufficiently kneading.
  • the positive electrode mixture-containing composition is applied to one or both sides of the positive electrode current collector, and a positive electrode mixture layer having a predetermined thickness and density can be formed.
  • the manufacturing method of the positive electrode according to the present invention is not limited to the above manufacturing method.
  • a lithium-containing transition metal composite oxide capable of inserting and extracting lithium ions.
  • the lithium-containing transition metal composite oxide include those conventionally used in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, specifically Li y CoO 2 (however, 0 ⁇ y ⁇ 1.1.), Li z NiO 2 (where 0 ⁇ z ⁇ 1.1), Li e MnO 2 (where 0 ⁇ e ⁇ 1.1), Li a Co b M 1 1-b O 2 (where M 1 is at least one metal element selected from the group consisting of Mg, Mn, Fe, Ni, Cu, Zn, Al, Ti, Ge and Cr) Yes, 0 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 1.0), Li c Ni 1-d M 2 d O 2 (where M 2 is Mg, Mn, Fe, Co, Cu, At least one metal element selected from the group consisting of Zn, Al, Ti, Ge and Cr, and
  • binder for the positive electrode material mixture layer examples include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, CMC, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, and modified products thereof; polyvinyl chloride, polyvinyl pyrrolidone, polytetra Thermoplastic resins such as fluoroethylene (PTFE), PVDF, polyethylene, polypropylene, polyamideimide, polyamide and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, SBR, butadiene rubber, polybutadiene , Fluororubber, polyethylene oxide and other polymers having rubbery elasticity and their modified products, etc., and only one of them may be used or two or more may be used in combination. There.
  • polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, CMC, hydroxypropyl cellulose, regenerated
  • the conductive auxiliary agent related to the positive electrode mixture layer As the conductive auxiliary agent related to the positive electrode mixture layer, the conductive auxiliary agents exemplified above as the conductive auxiliary agent related to the negative electrode mixture layer can be used.
  • the positive electrode current collector the same as those used for the positive electrode of the conventionally known non-aqueous electrolyte secondary battery can be used, and the material of the positive electrode current collector is the non-aqueous electrolysis that is configured. If it is a chemically stable electronic conductor in a liquid secondary battery, it will not be specifically limited.
  • a composite material in which a carbon layer or a titanium layer is formed on the surface of aluminum, aluminum alloy, or stainless steel can be used. .
  • aluminum or an aluminum alloy is particularly preferable. This is because they are lightweight and have high electron conductivity.
  • the positive electrode current collector for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like made of the above materials is used. Further, the surface of the positive electrode current collector can be roughened by surface treatment.
  • the thickness of the positive electrode current collector is not particularly limited, but is usually 1 to 500 ⁇ m.
  • the thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per side of the positive electrode current collector.
  • the density of the positive electrode mixture layer is calculated from the mass and thickness of the positive electrode mixture layer per unit area laminated on the positive electrode current collector, and is preferably 3.0 to 4.5 g / cm 3 .
  • the amount of the positive electrode active material is preferably 60 to 98% by mass
  • the amount of the binder is preferably 1 to 15% by mass
  • the amount of the conductive auxiliary agent is 1 It is preferably from 25% by mass.
  • an electrolyte solution prepared by dissolving a lithium salt (inorganic lithium salt or organic lithium salt or both) in an organic solvent may be used. it can.
  • organic solvent related to the non-aqueous electrolyte examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl.
  • aprotic organic solvents such as 1,3-propane sultone
  • amine imide organic solvents sulfur-containing or fluorine-containing organic solvents, and the like can be used.
  • a mixed solvent of EC, MEC, and DEC is preferable.
  • Examples of the inorganic lithium salt for constituting the non-aqueous electrolyte LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acid
  • Examples thereof include Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, and lithium tetraphenylborate, and one or more of these can be used.
  • Examples of the organic lithium salt for constituting the non-aqueous electrolyte include LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [wherein Rf represents a fluoroalkyl group. Etc., and one or more of these can be used.
  • a solvent containing at least one chain carbonate selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and at least one cyclic carbonate selected from ethylene carbonate and propylene carbonate is preferable.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, suitably 0.2 to 3.0 mol / L, preferably 0.8 to 2.0 mol / L, preferably 0.9 to More preferably, it is 1.6 mol / L.
  • the non-aqueous electrolyte includes, for example, acid anhydride, sulfonate ester, dinitrile, 1,3-propane.
  • cyclic fluorinated carbonate [trifluoropropyl carbonate (TFPC), fluoroethylene carbonate (FEC), etc.], or chain Fluorinated carbonate (such as trifluorodimethyl carbonate (TFDMC), trifluorodiethyl carbonate (TFDEC), trifluoroethylmethyl carbonate (TFEMC)), etc. (including derivatives of the above-mentioned compounds) as appropriate.
  • Rukoto can also.
  • the cyclic fluorinated carbonate and the chain fluorinated carbonate can also be used as a solvent, such as ethylene carbonate.
  • the separator has sufficient strength and can hold a large amount of the nonaqueous electrolyte.
  • the separator has a thickness of 5 to 50 ⁇ m and an aperture ratio of 30 to 70%.
  • a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous membrane constituting the separator may be, for example, one using only PE or one using PP only, may contain an ethylene-propylene copolymer, and may be made of PE.
  • a laminate of a membrane and a PP microporous membrane may be used.
  • the separator is composed of a porous layer mainly composed of a resin having a melting point of 140 ° C. or lower and a porous layer mainly including a resin having a melting point of 150 ° C. or higher or an inorganic filler having a heat resistant temperature of 150 ° C. or higher.
  • a laminated separator can be used.
  • melting point means a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121, and “the heat resistant temperature is 150 ° C. or higher”. This means that deformation such as softening is not observed at least at 150 ° C.
  • the thickness of the separator is more preferably 10 to 30 ⁇ m.
  • ⁇ Battery configuration> There is no restriction
  • any of a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. may be used.
  • a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are stacked via the separator It can be used as a wound electrode body obtained by laminating a negative electrode with a separator and winding it in a spiral shape.
  • non-aqueous electrolyte secondary battery of the present invention has a high capacity and excellent battery characteristics, taking advantage of these characteristics, including power supplies for small and multifunctional portable devices, It can be preferably used for various applications to which conventionally known nonaqueous electrolyte secondary batteries are applied.
  • Example 1 ⁇ Preparation of positive electrode> LiCoO 2 as a positive electrode active material: 93 parts by mass, carbon black as a conductive additive: 3 parts by mass, and PVDF as a binder: 4 parts by mass are mixed uniformly using NMP as a solvent.
  • a positive electrode mixture-containing slurry was prepared. The positive electrode mixture-containing slurry is applied to one side of a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and then subjected to pressure molding with a roller press, whereby the thickness of one side of the positive electrode current collector is increased. A 70 ⁇ m positive electrode mixture layer was formed. Then, this was cut
  • a negative electrode active material As a negative electrode active material, the mass ratio of SiO (a material in which Si is dispersed in an amorphous SiO 2 matrix and the molar ratio of SiO 2 and Si is 1: 1) and graphite is 1: 4. A mixture containing was prepared.
  • This negative electrode active material, carbon black as a conductive additive, and a fluorinated elastic copolymer of TFE / P 56/44 (molar ratio) obtained by emulsion polymerization (fluorine content 57 mass%, Mooney viscosity 90 ) And an aqueous dispersion of CMC that is a water-soluble adhesive resin (CMC concentration is 2% by mass) to prepare a negative electrode mixture-containing slurry.
  • the ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC is 94: 1.5: 1.5: 3. I made it.
  • the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin (CMC) was 0.5.
  • the negative electrode mixture-containing slurry is applied to one side of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried, and then press-molded with a roller press to obtain a thickness on one side of the negative electrode current collector. Formed a negative electrode mixture layer having a thickness of 50 ⁇ m. Then, this was cut
  • ⁇ Battery assembly> The positive electrode and the negative electrode were overlapped with a PE microporous membrane separator (thickness 25 ⁇ m, porosity 45%) to form a laminated electrode body.
  • This laminated electrode body was inserted into an exterior body made of a 10 cm ⁇ 20 cm aluminum laminate film.
  • VC is further dissolved in an amount of 1% by mass.
  • the prepared nonaqueous electrolyte solution: 1 g was injected into the exterior body. Then, the opening part of the exterior body was sealed and the nonaqueous electrolyte secondary battery of the cross-sectional structure shown in FIG. 2 was produced with the external appearance shown in FIG.
  • FIG. 1 is a plan view schematically showing the nonaqueous electrolyte secondary battery of this example
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. It is.
  • a nonaqueous electrolyte secondary battery 1 includes a laminated electrode body constituted by laminating a positive electrode 5 and a negative electrode 6 with a separator 7 in an exterior body 2 constituted by two laminated films, A non-aqueous electrolyte solution (not shown) is accommodated, and the outer package 2 is sealed at its outer peripheral portion by thermally fusing upper and lower laminate films.
  • T the thickness of the nonaqueous electrolyte secondary battery 1 is indicated as T.
  • the layers of the laminate film constituting the exterior body 2 and the electrode mixture layer and the current collector constituting the positive electrode 5 and the negative electrode 6 are distinguished. Not shown.
  • the positive electrode 5 is connected to the positive electrode external terminal 3 through a lead body in the non-aqueous electrolyte secondary battery 1, and the negative electrode 6 is also connected to the non-aqueous electrolyte secondary battery 1, although not shown. And connected to the negative external terminal 4 (FIG. 1) through the lead body. As shown in FIG. 1, the positive electrode external terminal 3 and the negative electrode external terminal 4 are drawn out to the outside of the exterior body 2 so that they can be connected to an external device or the like.
  • Example 2 In a boiling bed reactor, SiO gas (average particle diameter 5 ⁇ m) heated to about 1000 ° C. is brought into contact with a mixed gas of 25 ° C. composed of methane and nitrogen gas, and low crystalline carbon is formed on the surface by vapor phase growth. SiOC particles (composite of SiO and carbon material) on which a coating layer was formed were prepared. The ratio of the carbon material in this composite was 20 parts by mass with respect to 100 parts by mass of SiO. The composite of SiO and carbon material and graphite were mixed at a mass ratio of 1: 4, and a negative electrode was produced in the same manner as in Example 1 except that this mixture was used as a negative electrode active material. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that.
  • a negative electrode was prepared in the same manner as in Example 1 except that an aqueous dispersion containing a Mooney viscosity of 130) at a content of 32% by mass was used. An electrolyte secondary battery was produced.
  • Example 4 The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 2: 2.5, and the mass M 1 of the water-soluble adhesive resin.
  • a negative electrode was prepared in the same manner as in Example 1 except that the mass ratio M 2 / M 1 of the mass M 2 of the fluorine-containing elastic copolymer to 0.8 was changed to 0.8, and Example 1 except that this negative electrode was used. Similarly, a non-aqueous electrolyte secondary battery was produced.
  • Example 5 The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 94: 1.5: 2.5: 2, and the content of the water-soluble adhesive resin with respect to the mass M 1 was included.
  • a negative electrode was prepared in the same manner as in Example 1 except that the mass ratio M 2 / M 1 of the mass M 2 of the fluoroelastic copolymer was changed to 1.25, and in the same manner as in Example 1 except that this negative electrode was used. Thus, a non-aqueous electrolyte secondary battery was produced.
  • Example 6 The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 1.05: 3.45, and the mass of the water-soluble adhesive resin except that the mass ratio M 2 / M 1 0.3 mass M 2 of the fluorinated elastic copolymer for the M 1 in the same manner as in example 1 to prepare a negative electrode, the embodiment except for the use of this negative electrode In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
  • Example 7 A negative electrode was produced in the same manner as in Example 1 except that polyacrylic acid (PAA) was used in place of CMC, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. did.
  • PAA polyacrylic acid
  • Example 1 A negative electrode was produced in the same manner as in Example 1 except that SBR was used instead of the aqueous dispersion of the fluorinated elastic copolymer of Example 1, and the same procedure as in Example 1 was conducted except that this negative electrode was used. A non-aqueous electrolyte secondary battery was produced.
  • Example 2 A negative electrode was produced in the same manner as in Example 1 except that an aqueous dispersion of PTFE (fluorine content: 76%) was used instead of the aqueous dispersion of the fluorinated elastic copolymer of Example 1.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that it was used.
  • Table 1 shows the main configurations of the batteries of the examples and comparative examples.
  • Table 2 shows the evaluation results.
  • the binder according to the negative electrode mixture layer contains at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride.
  • a fluorine-containing elastic copolymer having a structural unit based on a body and a water-soluble adhesive resin, and a mass ratio M 2 of a mass M 2 of the fluorine-containing elastic copolymer to a mass M 1 of the water-soluble adhesive resin.
  • the non-aqueous electrolyte secondary batteries of Examples 1 to 7 with / M 1 being an appropriate value have good load characteristics at the initial stage and after 100 cycles, and the capacity retention ratio after 100 cycles and after 500 cycles is good.
  • the charge / discharge cycle characteristics were high and the battery thickness increase ⁇ t after storage at 85 ° C. was all 0.1 mm or less.
  • the batteries of Comparative Examples 1 and 2 using SBR or PTFE as the binder for the negative electrode mixture layer have good initial load characteristics as in the batteries of Examples 1 to 7, but after 100 cycles.
  • the load characteristics are deteriorated and the charge / discharge cycle characteristics are also inferior.
  • the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin was too small, the load characteristics were significantly reduced.
  • the battery of Comparative Example 4 in which the mass ratio M 2 / M 1 is too large the initial load characteristics are as high as those of the batteries of Examples 1 to 7, but the capacity retention rate decreases after 100 cycles and the load characteristics are reduced. Also declined.
  • the battery thickness increase ⁇ t after storage at 85 ° C. was 0.2 mm or more in the batteries of Comparative Examples 1 and 3.
  • SEM scanning electron microscope
  • TFE / P and PTFE surely covered the surface of the negative electrode active material without being obstructed by CMC, and as a result, Li in the active material and the electrolyte solution It is considered that the generation of gas is reduced by suppressing the reaction with and the increase amount ⁇ t of the battery thickness is reduced.

Abstract

This nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, a nonaqueous electrolyte solution and a separator, and is characterized in that: the positive electrode is provided with a positive electrode mixture layer that contains a lithium-containing transition metal composite oxide; the negative electrode is provided with a negative electrode mixture layer that contains a graphite carbon material, a material containing an element that forms an alloy with lithium, and a binder; the binder contains a water-soluble adhesive resin and a fluorine-containing elastic copolymer that has a constituent unit based on two or more monomers including at least one monomer that is selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride; and if M1 is the mass of the water-soluble adhesive resin contained in the negative electrode mixture layer and M2 is the mass of the fluorine-containing elastic copolymer contained in the negative electrode mixture layer, the mass ratio M2/M1 is from 0.1 to 2 (inclusive).

Description

非水電解液二次電池Non-aqueous electrolyte secondary battery
 本発明は、負荷特性および充放電サイクル特性が良好な非水電解液二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery having good load characteristics and charge / discharge cycle characteristics.
 リチウムイオン二次電池をはじめとする非水電解液二次電池は、パーソナルコンピュータや携帯電話などのポータブル機器の電源として広く用いられているが、高電圧・高容量であることから、その発展に大きな期待が寄せられている。このような非水電解液二次電池の負極材料(負極活物質)には、リチウム(Li)やLi合金の他、Liイオンを挿入・脱離可能な、天然黒鉛や人造黒鉛などの黒鉛質炭素材料などが用いられている。 Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are widely used as power sources for portable devices such as personal computers and mobile phones. There are great expectations. As a negative electrode material (negative electrode active material) of such a non-aqueous electrolyte secondary battery, in addition to lithium (Li) and Li alloy, graphite such as natural graphite and artificial graphite that can insert and desorb Li ions Carbon materials are used.
 ところが、最近では、小型化および多機能化した携帯機器に用いられる電池について更なる高容量化が望まれており、これを受けて、負極活物質として広く用いられている黒鉛質炭素材料に代わる新規負極材料が検討されている。新規負極材料としては、錫(Sn)合金、シリコン(Si)合金、Si酸化物、Li窒化物、Li金属などが注目されているが、現時点ではこれらの新規負極材料の何れもが、充放電サイクル特性に関して黒鉛質炭素材料よりも劣っている。この原因は、黒鉛質炭素材料は層状構造を有しており、充放電時にLiがこの層間にドープまたはアンドープされる際の材料の膨張・収縮が、層間距離にして10%程度であるのに対して、前記の新規負極材料では、充放電時のLi含有量が多いために材料の膨張・収縮が非常に大きくなり、結果として膨張・収縮を繰り返す充放電サイクルでは電極強度や電子伝導性が低下し、充放電サイクル特性、すなわち初期容量に対する容量維持率が、黒鉛質炭素材料に比して悪くなるためと考えられる。 However, recently, there has been a demand for higher capacity for batteries used in miniaturized and multifunctional portable devices, and in response to this, the graphite carbon material widely used as a negative electrode active material is replaced. New negative electrode materials are being studied. As a new negative electrode material, tin (Sn) alloy, silicon (Si) alloy, Si oxide, Li nitride, Li metal, etc. are attracting attention, but at present, any of these new negative electrode materials is charge / discharge. It is inferior to the graphitic carbon material in terms of cycle characteristics. This is because the graphitic carbon material has a layered structure, and the expansion / contraction of the material when Li is doped or undoped between the layers during charge / discharge is about 10% in terms of the interlayer distance. On the other hand, in the above-described new negative electrode material, the Li content during charging / discharging is large, so that the material expands and contracts very much. This is presumably because the charge / discharge cycle characteristics, that is, the capacity retention rate with respect to the initial capacity, is worse than that of the graphitic carbon material.
 例えば、特許文献1には、黒鉛質炭素材料およびSi酸化物を混合したものを負極活物質として用いることにより、高容量化を達成できることが記載されている。しかし、黒鉛質炭素材料の混合比率を下げると、上述したように、電極の機械的強度や電子伝導性が低下して、充放電サイクル特性の低下を引き起こすものと考えられる。 For example, Patent Document 1 describes that high capacity can be achieved by using a mixture of graphitic carbon material and Si oxide as a negative electrode active material. However, when the mixing ratio of the graphitic carbon material is lowered, as described above, it is considered that the mechanical strength and the electronic conductivity of the electrode are lowered and the charge / discharge cycle characteristics are lowered.
 このような問題を解決する方法として、例えば、アセチレンブラック、カーボンブラック、ケッチェンブラックなどの導電助剤を添加することにより、電子伝導性の低下を抑制し、充放電サイクル特性を向上させる方法が提案されている。最近では、特許文献2に示される気相成長炭素繊維や、特許文献3に示されるカーボンナノファイバーなどの新たな導電助剤も提案されている。 As a method of solving such a problem, for example, there is a method of suppressing charge reduction and improving charge / discharge cycle characteristics by adding a conductive auxiliary such as acetylene black, carbon black, ketjen black and the like. Proposed. Recently, new conductive assistants such as vapor-grown carbon fibers disclosed in Patent Document 2 and carbon nanofibers disclosed in Patent Document 3 have also been proposed.
 また、例えば、特許文献4では、黒鉛質材料およびSiを構成元素に含む材料を負極活物質として含む負極を備えた非水電解液二次電池において、負極用バインダとして、一般的に用いられているポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)ではなく、ポリアクリル酸を使用することにより、電極の機械的強度を向上させ、充放電サイクル特性を向上させる方法が提案されている。更に、特許文献5では、バインダとして、テトラフルオロエチレンとプロピレンとの共重合体と、負極活物質としてニードルコークスを使用することにより、充放電サイクル特性を向上させる方法が提案されている。 Further, for example, in Patent Document 4, it is generally used as a negative electrode binder in a non-aqueous electrolyte secondary battery including a negative electrode including a graphite material and a material containing Si as a constituent element as a negative electrode active material. There has been proposed a method for improving the mechanical strength of the electrode and improving the charge / discharge cycle characteristics by using polyacrylic acid instead of polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR). Furthermore, Patent Document 5 proposes a method for improving charge / discharge cycle characteristics by using a copolymer of tetrafluoroethylene and propylene as a binder and needle coke as a negative electrode active material.
特開平9-289011号公報Japanese Patent Laid-Open No. 9-289011 特開2004-103435号公報JP 2004-103435 A 特開2004-186067号公報JP 2004-186067 A 特開2007-95670号公報JP 2007-95670 A 国際公開第2011/055760号International Publication No. 2011/055760
 前記の新規負極材料を負極活物質として用いた場合、黒鉛質炭素材料よりも高容量化を実現できる半面、充放電に伴い負極活物質の膨張・収縮も大きくなり、十分な充放電サイクル特性が得られない。特許文献4には、黒鉛質炭素材料およびSiを構成元素に含む材料を負極活物質として含む負極を備えた非水電解液二次電池において、負極用バインダとしてポリアクリル酸を用いることが提案されているが、特許文献4に記載の技術は、負極活物質としてSiを構成元素に含む材料を単独で用いた場合に比べれば充放電サイクル特性を改善できるものの、負極活物質として黒鉛質炭素材料を単独で用いた場合に比べると、充放電サイクル特性および負荷特性について満足するものは得られていない。また、特許文献5においても、前記の新規負極材料のように高容量であるが充放電に伴う膨張・収縮の大きな材料への適用については、特性面で検討の余地が残されている。 When the above-mentioned new negative electrode material is used as the negative electrode active material, the capacity can be increased as compared with the graphitic carbon material. On the other hand, the expansion / contraction of the negative electrode active material increases with charge / discharge, and sufficient charge / discharge cycle characteristics are obtained. I can't get it. Patent Document 4 proposes that polyacrylic acid is used as a negative electrode binder in a nonaqueous electrolyte secondary battery including a negative electrode including a graphitic carbon material and a material containing Si as a constituent element as a negative electrode active material. However, although the technique described in Patent Document 4 can improve the charge / discharge cycle characteristics as compared with a case where a material containing Si as a constituent element is used alone as a negative electrode active material, a graphitic carbon material as a negative electrode active material Compared with the case where is used alone, the charge / discharge cycle characteristics and load characteristics are not satisfactory. Also in Patent Document 5, there is still room for examination in terms of characteristics regarding application to a material having a high capacity, such as the above-described new negative electrode material, but having large expansion / contraction due to charge / discharge.
 本発明は、前記事情に鑑みてなされたものであり、高容量で、負荷特性および充放電サイクル特性に優れた非水電解液二次電池を提供するものである。 The present invention has been made in view of the above circumstances, and provides a non-aqueous electrolyte secondary battery having high capacity and excellent load characteristics and charge / discharge cycle characteristics.
 本発明の非水電解液二次電池は、正極、負極、非水電解液およびセパレータを含む非水電解液二次電池であって、前記正極は、リチウム含有遷移金属複合酸化物を含む正極合剤層を備え、前記負極は、黒鉛質炭素材料と、リチウムと合金化する元素を含む材料と、バインダとを含む負極合剤層を備え、前記バインダは、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体を含む2種以上の単量体に基づく構成単位を有する含フッ素弾性共重合体と、水溶性接着樹脂とを含み、前記負極合剤層に含まれる前記水溶性接着樹脂の質量をM1、前記負極合剤層に含まれる前記含フッ素弾性共重合体の質量をM2とすると、質量比M2/M1が0.1以上2以下であることを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein the positive electrode is a positive electrode composite including a lithium-containing transition metal composite oxide. The negative electrode includes a negative electrode mixture layer including a graphitic carbon material, a material including an element alloying with lithium, and a binder. The binder includes tetrafluoroethylene, hexafluoropropylene, and fluorine. A negative electrode mixture comprising a fluorinated elastic copolymer having a constitutional unit based on two or more monomers including at least one monomer selected from the group consisting of vinylidene fluoride, and a water-soluble adhesive resin. When the mass of the water-soluble adhesive resin contained in the layer is M 1 and the mass of the fluorinated elastic copolymer contained in the negative electrode mixture layer is M 2 , the mass ratio M 2 / M 1 is 0.1 or more. 2 or less It is a sign.
 本発明によれば、高容量で、負荷特性および充放電サイクル特性に優れた非水電解液二次電池を提供することができる。 According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent load characteristics and charge / discharge cycle characteristics.
図1は、本発明の非水電解液二次電池の一例を模式的に表す平面図である。FIG. 1 is a plan view schematically showing an example of the nonaqueous electrolyte secondary battery of the present invention. 図2は、図1の非水電解液二次電池のI-I線断面図である。2 is a cross-sectional view taken along line II of the nonaqueous electrolyte secondary battery of FIG.
 非水電解液二次電池の負極に係るバインダとしては、一般的には、有機溶剤系のポリフッ化ビニリデン(PVDF)や、水分散系のスチレンブタジエンゴム(SBR)が使用されている。有機溶剤系のPVDFは、集電体である金属箔との接着性が黒鉛質炭素材料の種類によって大きく変化するため、黒鉛質炭素材料と、リチウムと合金化する元素含む材料とを併用した負極では使用範囲が限定される。特に、黒鉛質炭素材料として鱗片形状を有する天然黒鉛を用いた場合には、極めて接着性が劣る。一方、水分散系のSBRは、増粘剤としてカルボキシメチルセルロース(CMC)などの水溶性接着樹脂を併用する必要があるが、負荷特性などにおいて十分な特性が実現できないなどの問題がある。 Generally, organic solvent-based polyvinylidene fluoride (PVDF) or water-dispersed styrene-butadiene rubber (SBR) is used as the binder for the negative electrode of the non-aqueous electrolyte secondary battery. Organic solvent-based PVDF is a negative electrode using both a graphitic carbon material and a material containing an element that forms an alloy with lithium, because the adhesiveness with a metal foil as a current collector varies greatly depending on the type of the graphitic carbon material. Then, the range of use is limited. In particular, when natural graphite having a scale shape is used as the graphitic carbon material, the adhesiveness is extremely poor. On the other hand, water-dispersed SBR requires the use of a water-soluble adhesive resin such as carboxymethylcellulose (CMC) as a thickener, but has a problem that sufficient characteristics cannot be realized in load characteristics.
 これに対し、本発明者が鋭意検討した結果、黒鉛質炭素材料およびリチウムと合金化する元素を含む材料を負極活物質として含む負極合剤層を有する負極を備えた非水電解液二次電池において、負極合剤層のバインダにテトラフルオロエチレン、ヘキサフルオロプロピレンおよびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体を含む2種以上の単量体に基づく構成単位を有する含フッ素弾性共重合体(含フッ素ゴムともいう。)と、水溶性接着樹脂とを使用し、前記負極合剤層に含まれる前記水溶性接着樹脂の質量をM1、前記負極合剤層に含まれる前記含フッ素弾性共重合体の質量をM2とすると、質量比M2/M1を0.1以上2以下とした場合には、負荷特性および充放電サイクル特性を改善させ得ることを見出し、本発明を完成させるに至った。 In contrast, as a result of intensive studies by the present inventors, a non-aqueous electrolyte secondary battery including a negative electrode having a negative electrode mixture layer containing a graphite carbon material and a material containing an element alloying with lithium as a negative electrode active material In which the binder of the negative electrode mixture layer has a structural unit based on two or more monomers including at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride An elastic copolymer (also referred to as fluorine-containing rubber) and a water-soluble adhesive resin are used, and the mass of the water-soluble adhesive resin contained in the negative electrode mixture layer is M 1 and contained in the negative electrode mixture layer. When the mass of the fluorinated elastic copolymer is M 2 , when the mass ratio M 2 / M 1 is 0.1 or more and 2 or less, it is found that load characteristics and charge / discharge cycle characteristics can be improved. The present invention has been completed.
 以下に、本発明の非水電解液二次電池の各構成要素について説明する。 Hereinafter, each component of the non-aqueous electrolyte secondary battery of the present invention will be described.
 <負極>
 本発明の非水電解液二次電池に係る負極は、負極活物質およびバインダを含有する負極合剤層を、例えば集電体の片面または両面に有するものである。
<Negative electrode>
The negative electrode according to the non-aqueous electrolyte secondary battery of the present invention has a negative electrode mixture layer containing a negative electrode active material and a binder, for example, on one side or both sides of a current collector.
 本発明に係る負極は、例えば、負極活物質、バインダなどを含む混合物(負極合剤)に、適当な溶媒〔N-メチル-2-ピロリドン(NMP)など〕を加えて十分に混練して得たペースト状やスラリー状の負極合剤含有組成物を、負極集電体の片面または両面に塗布し、乾燥などにより溶媒を除去して、所定の厚みおよび密度を有する負極合剤層を形成することによって製造することができる。ただし、本発明に係る負極の製造方法は、前記の製造方法に限られない。 The negative electrode according to the present invention can be obtained by, for example, adding a suitable solvent [N-methyl-2-pyrrolidone (NMP), etc.] to a mixture (negative electrode mixture) containing a negative electrode active material, a binder and the like and kneading the mixture sufficiently. The paste-like or slurry-like negative electrode mixture-containing composition is applied to one or both sides of the negative electrode current collector, and the solvent is removed by drying or the like to form a negative electrode mixture layer having a predetermined thickness and density. Can be manufactured. However, the manufacturing method of the negative electrode according to the present invention is not limited to the above manufacturing method.
 負極合剤層に係るバインダには、テトラフルオロエチレン(以下、TFEともいう。)、ヘキサフルオロプロピレン(以下、HFPともいう。)およびフッ化ビニリデン(以下、VdFともいう。)からなる群より選ばれる少なくとも1種の単量体を含む2種以上の単量体に基づく構成単位を有する含フッ素弾性共重合体を使用する。前記含フッ素弾性共重合体は、例えばPVDFに比べて接着力が大きく、負極合剤層と集電体との密着性をより良好にし得ることから、非水電解液二次電池の負荷特性や充放電サイクル特性を高めることができる。 The binder for the negative electrode mixture layer is selected from the group consisting of tetrafluoroethylene (hereinafter also referred to as TFE), hexafluoropropylene (hereinafter also referred to as HFP), and vinylidene fluoride (hereinafter also referred to as VdF). A fluorinated elastic copolymer having a structural unit based on two or more monomers including at least one monomer is used. The fluorinated elastic copolymer has a greater adhesive force than, for example, PVDF, and can improve the adhesion between the negative electrode mixture layer and the current collector, so the load characteristics of the non-aqueous electrolyte secondary battery and Charge / discharge cycle characteristics can be improved.
 また、前記含フッ素弾性共重合体における2種以上の単量体に基づく構成単位は、例えば、TFE、HFPおよびVdFからなる群より選ばれる2種または3種の単量体に基づく構成単位であってもよく、TFE、HFPおよびVdFからなる群より選ばれる1種以上の単量体に基づく構成単位と、該単量体と共重合可能な他の単量体の1種以上に基づく構成単位とを含む構成単位であってもよい。 The structural unit based on two or more monomers in the fluorinated elastic copolymer is, for example, a structural unit based on two or three monomers selected from the group consisting of TFE, HFP and VdF. A constitutional unit based on one or more monomers selected from the group consisting of TFE, HFP and VdF, and a constitution based on one or more other monomers copolymerizable with the monomer It may be a structural unit including a unit.
 前記含フッ素弾性共重合体のフッ素含有量は、50質量%以上であることが好ましく、53質量%以上であることがより好ましく、また、74質量%以下であることが好ましく、70質量%以下であることがより好ましい。含フッ素弾性共重合体のフッ素含有量が低すぎると、耐電解液性や耐電圧性が不十分となりやすい。 The fluorine content of the fluorinated elastic copolymer is preferably 50% by mass or more, more preferably 53% by mass or more, and preferably 74% by mass or less, and 70% by mass or less. It is more preferable that When the fluorine content of the fluorinated elastic copolymer is too low, the electrolytic solution resistance and the voltage resistance tend to be insufficient.
 含フッ素弾性共重合体のフッ素含有量は、フッ素含有量分析により得られ、含フッ素弾性共重合体を構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。 The fluorine content of the fluorine-containing elastic copolymer is obtained by fluorine content analysis, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing elastic copolymer.
 前記含フッ素弾性共重合体が、TFEに基づく構成単位、HFPに基づく構成単位、VdFに基づく構成単位以外に、その他の単量体に基づく構成単位を有する場合には、その他の単量体としては、プロピレン(以下、Pともいう。)、エチレン(以下、Eともいう。)、またはペルフルオロ(アルキルビニルエーテル)(以下、PAVEともいう。)が好ましく、プロピレンがより好ましい。 When the fluorinated elastic copolymer has a structural unit based on another monomer in addition to a structural unit based on TFE, a structural unit based on HFP, or a structural unit based on VdF, Is preferably propylene (hereinafter also referred to as P), ethylene (hereinafter also referred to as E), or perfluoro (alkyl vinyl ether) (hereinafter also referred to as PAVE), and more preferably propylene.
 PAVEとしては、例えばペルフルオロ(メチルビニルエーテル)(以下、PMVEともいう。)、ペルフルオロ(プロピルビニルエーテル)(以下、PPVEともいう。)などが挙げられ、これらをそれぞれ単独で、または2種以上の任意の組み合わせで用いることができる。 Examples of PAVE include perfluoro (methyl vinyl ether) (hereinafter also referred to as PMVE), perfluoro (propyl vinyl ether) (hereinafter also referred to as PPVE), and these may be used alone or in combination of two or more kinds. Can be used in combination.
 前記含フッ素弾性共重合体の具体例としては、TFE/P共重合体(TFEに基づく構成単位とPに基づく構成単位とからなる共重合体を意味する。以下同様。)、TFE/P/VdF共重合体、VdF/HFP共重合体、VdF/TFE共重合体、TFE/VdF/HFP共重合体、TFE/PAVE共重合体、E/HFP共重合体、TFE/P/E共重合体、TFE/P/PAVE共重合体、TFE/P/VdF/PAVE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/TFE/HFP/PAVE共重合体などが挙げられる。 Specific examples of the fluorinated elastic copolymer include a TFE / P copolymer (meaning a copolymer comprising a structural unit based on TFE and a structural unit based on P. The same applies hereinafter), TFE / P / VdF copolymer, VdF / HFP copolymer, VdF / TFE copolymer, TFE / VdF / HFP copolymer, TFE / PAVE copolymer, E / HFP copolymer, TFE / P / E copolymer , TFE / P / PAVE copolymer, TFE / P / VdF / PAVE copolymer, VdF / PAVE copolymer, VdF / TFE / PAVE copolymer, VdF / TFE / HFP / PAVE copolymer, etc. It is done.
 これらのうち、TFE/P共重合体、TFE/P/VdF共重合体、VdF/HFP共重合体、VdF/TFE共重合体、TFE/VdF/HFP共重合体、TFE/PAVE共重合体、TFE/P/PAVE共重合体、またはTFE/P/VdF/PAVE共重合体が好ましく、TFE/P共重合体、またはTFE/P/VdF共重合体が特に好ましい。 Among these, TFE / P copolymer, TFE / P / VdF copolymer, VdF / HFP copolymer, VdF / TFE copolymer, TFE / VdF / HFP copolymer, TFE / PAVE copolymer, A TFE / P / PAVE copolymer or TFE / P / VdF / PAVE copolymer is preferred, and a TFE / P copolymer or TFE / P / VdF copolymer is particularly preferred.
 前記含フッ素弾性共重合体のより好ましい組成を以下に述べる。組成が以下の範囲であると、集電体との密着性に優れ、優れた耐電解液性および耐電圧性が得られ、非水電解液二次電池の充放電サイクル特性を更に向上させることができる。 A more preferred composition of the fluorinated elastic copolymer is described below. When the composition is in the following range, excellent adhesion to the current collector, excellent electrolytic solution resistance and voltage resistance can be obtained, and the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery can be further improved. Can do.
 (TFE/P共重合体)
 TFEに基づく構成単位/Pに基づく構成単位の比率が、30~80/70~20(mol%、ただし、合計で100mol%である。以下同じ。)であることが好ましく、40~70/60~30(mol%)であることがより好ましく、60~50/40~50(mol%)であることが最も好ましい。
(TFE / P copolymer)
The ratio of the structural unit based on TFE / the structural unit based on P is preferably 30 to 80/70 to 20 (mol%, provided that the total is 100 mol%; the same applies hereinafter), and 40 to 70/60. It is more preferably from 30 to 30 (mol%), most preferably from 60 to 50/40 to 50 (mol%).
 (TFE/P/VdF共重合体)
 TFEに基づく構成単位/Pに基づく構成単位/VdFに基づく構成単位の比率が、30~85/15~70/0.01~50(mol%)の範囲であることが好ましく、より好ましくは30~70/20~60/1~40(mol%)である。
(TFE / P / VdF copolymer)
The ratio of the structural unit based on TFE / the structural unit based on P / the structural unit based on VdF is preferably in the range of 30 to 85/15 to 70 / 0.01 to 50 (mol%), more preferably 30 70/20 to 60/1 to 40 (mol%).
 本発明における含フッ素弾性共重合体のムーニー粘度は、10以上であることが好ましく、50以上であることがより好ましく、80以上であることが更に好ましく、また、200以下であることが好ましく、180以下であることがより好ましく、150以下であることが更に好ましい。 The Mooney viscosity of the fluorinated elastic copolymer in the present invention is preferably 10 or more, more preferably 50 or more, further preferably 80 or more, and preferably 200 or less, More preferably, it is 180 or less, and further preferably 150 or less.
 ムーニー粘度は、日本工業規格(JIS)K6300に準じ、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を10分間に設定して測定され、主にゴムなどの高分子材料の分子量の目安である。また、その値が大きいほど、間接的に高分子量であることを示す。ムーニー粘度が上記の範囲にあると、負極合剤層の機械的強度を高めて非水電解液二次電池の充放電サイクル特性を更に向上させることができる。 Mooney viscosity is based on Japanese Industrial Standard (JIS) K6300, using an L-shaped rotor with a diameter of 38.1 mm and a thickness of 5.54 mm, preheating time of 1 minute, and rotor rotation time of 10 minutes at 100 ° C. It is a measure of the molecular weight of polymer materials such as rubber. Moreover, it shows that it is a high molecular weight indirectly, so that the value is large. When the Mooney viscosity is in the above range, the mechanical strength of the negative electrode mixture layer can be increased to further improve the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery.
 前記含フッ素弾性共重合体の製造方法は、特に限定されるものではないが、例えば、特許文献5(国際公開第2011/055760号)に記載の製造方法を用いることで製造することができる。なかでも、含フッ素弾性共重合体は、乳化重合によって製造されることが好ましい。 The method for producing the fluorinated elastic copolymer is not particularly limited, and for example, it can be produced by using the production method described in Patent Document 5 (International Publication No. 2011/055760). Especially, it is preferable that a fluorine-containing elastic copolymer is manufactured by emulsion polymerization.
 本発明では、負極合剤層に係るバインダとして、水溶性接着樹脂を前記含フッ素弾性共重合体と併用する。これにより、負極のイオン伝導性を高めて非水電解液二次電池の負荷特性を更に向上させ得ると共に、負極合剤層の機械的強度を高めて非水電解液二次電池の充放電サイクル特性を更に向上させることができる。 In the present invention, a water-soluble adhesive resin is used in combination with the fluorinated elastic copolymer as a binder for the negative electrode mixture layer. Thereby, the ionic conductivity of the negative electrode can be increased to further improve the load characteristics of the non-aqueous electrolyte secondary battery, and the mechanical strength of the negative electrode mixture layer can be increased to increase the charge / discharge cycle of the non-aqueous electrolyte secondary battery. The characteristics can be further improved.
 水溶性接着樹脂の具体例としては、例えば、セルロース類、アクリル酸系ポリマーおよびアルギン酸系ポリマーよりなる群から選択される少なくとも1種が挙げられる。より具体的には、カルボキシメチルセルロース(CMC)およびその塩類、ヒドロキシプロピルセルロース(HPC)およびその塩類、アルギン酸およびその塩類、ポリアクリル酸およびその塩類などが挙げられる。 Specific examples of the water-soluble adhesive resin include, for example, at least one selected from the group consisting of celluloses, acrylic acid polymers, and alginic acid polymers. More specifically, carboxymethyl cellulose (CMC) and its salts, hydroxypropyl cellulose (HPC) and its salts, alginic acid and its salts, polyacrylic acid and its salts, and the like can be mentioned.
 負極合剤層における水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1は、小さすぎると、前記の両バインダを併用することによる非水電解液二次電池の負荷特性向上効果が小さくなる傾向にあることから、0.1以上とする必要があり、0.2以上であることが好ましく、0.3以上であることがより好ましい。 If the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin in the negative electrode mixture layer is too small, non-aqueous electrolysis by using both of the above binders in combination. Since the effect of improving the load characteristics of the liquid secondary battery tends to be small, it needs to be 0.1 or more, preferably 0.2 or more, and more preferably 0.3 or more.
 一方、前記質量比M2/M1は、大きすぎると、前記の両バインダを併用することによる非水電解液二次電池の充放電サイクル特性向上効果が小さくなる傾向にあることから、2以下とする必要があり、1.5以下であることが好ましく、1以下であることがより好ましい。 On the other hand, if the mass ratio M 2 / M 1 is too large, the effect of improving the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery by using both the binders tends to be less than 2 or less. And is preferably 1.5 or less, more preferably 1 or less.
 本発明に係る負極の負極合剤層に用いられる負極活物質は、黒鉛質炭素材料およびリチウムと合金化する元素を含む材料である。 The negative electrode active material used for the negative electrode mixture layer of the negative electrode according to the present invention is a material containing a graphitic carbon material and an element alloying with lithium.
 黒鉛質炭素材料としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。 Examples of the graphitic carbon material include natural graphite such as flaky graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB) and carbon fibers at 2800 ° C. or higher; Etc.
 リチウムと合金化する元素を含む材料に係る前記元素としては、Si、Sn、Ga、Ge、In、Alなどが挙げられる。負極活物質となる前記元素を含む材料としては、前記元素単体または前記元素同士の合金のほか、前記元素とCo、Ni、Fe、Mn、Ti、Zrなどとの合金、前記元素の酸化物、窒化物、炭化物などの化合物を例示することができる。なかでも、リチウムと合金化する元素としては、SiまたはSnが好ましく、これら元素の単体、これら元素を含む合金、これら元素の酸化物が活物質として好ましく用いられる。 Examples of the element relating to a material containing an element that forms an alloy with lithium include Si, Sn, Ga, Ge, In, and Al. As a material containing the element to be a negative electrode active material, in addition to the element alone or an alloy of the elements, an alloy of the element and Co, Ni, Fe, Mn, Ti, Zr, etc., an oxide of the element, Compounds such as nitrides and carbides can be exemplified. Among these, Si or Sn is preferable as an element to be alloyed with lithium, and simple elements of these elements, alloys containing these elements, and oxides of these elements are preferably used as the active material.
 前記例示のリチウムと合金化する元素を含む材料の中でも、特に非水電解液二次電池の高容量化を図るには、一般式SiOx(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。)で表される材料(以下、当該材料を単に「SiOx」と記載する。)を用いることが好ましい。 Among the materials containing an element that forms an alloy with lithium as exemplified above, in particular, in order to increase the capacity of the non-aqueous electrolyte secondary battery, the general formula SiO x (however, the atomic ratio x of O to Si is 0. It is preferable to use a material represented by 5 ≦ x ≦ 1.5 (hereinafter, the material is simply referred to as “SiO x ”).
 SiOxは、Siの酸化物のみに限定されず、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOxには、非晶質のSiO2マトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiO2と、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiO2マトリックス中に、Siが分散した構造で、SiO2とSiのモル比が1:1の材料の場合、x=1であるので、本発明においてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 SiO x is not limited to the Si oxide, and may contain a Si microcrystalline or amorphous phase. In this case, the atomic ratio of Si and O is determined by the Si microcrystalline or amorphous phase. The ratio includes Si. That is, the SiO x to SiO 2 matrix of amorphous Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 of the amorphous, dispersed therein It is sufficient that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 in combination with Si. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, x = 1. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
 SiOxの粒径としては、後述する炭素材料との複合化の効果を高め、また、充放電での微細化を防ぐため、レーザー回折散乱式粒度分布測定装置、例えば、日機装社製の「マイクロトラックHRA」などにより測定される数平均粒子径として、およそ0.5~10μmのものが好ましく用いられる。 As the particle size of SiO x , in order to enhance the effect of compounding with the carbon material described later, and to prevent miniaturization during charging and discharging, a laser diffraction scattering type particle size distribution measuring device, for example, “MICRO The number average particle diameter measured by “Track HRA” or the like is preferably about 0.5 to 10 μm.
 SiOxの粒子形態は、一次粒子であってもよいし、複数の一次粒子が複合した複合粒子であってもよい。 The particle form of SiO x may be primary particles or composite particles in which a plurality of primary particles are combined.
 SiOxは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOxの表面が炭素材料で被覆されていることが望ましい。SiOxは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOxと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOxを炭素材料と複合化した複合体であれば、例えば、単にSiOxと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 SiO x is preferably a composite that is combined with a carbon material. For example, it is desirable that the surface of SiO x be coated with the carbon material. Since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of ensuring good battery characteristics, a conductive material (conductive aid) is used, and SiO x and the conductive material in the negative electrode are used. Therefore, it is necessary to form a good conductive network by mixing and dispersing with each other. If it is a composite in which SiO x is combined with a carbon material, for example, a conductive network in the negative electrode is better than when using a material obtained by simply mixing SiO x and a conductive material such as a carbon material. Formed.
 SiOxと炭素材料との複合体としては、前記のように、SiOxの表面を炭素材料で被覆したものの他、SiOxと炭素材料との造粒体などが挙げられる。 The complex of the SiO x and the carbon material, as described above, other although the surface of the SiO x coated with carbon material, such as granules of SiO x and the carbon material can be cited.
 また、前記のSiOxの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOxと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOxと炭素材料との混合物を更に造粒した造粒体などが挙げられる。 In addition, since the composite in which the surface of SiO x is coated with a carbon material is used in combination with a conductive material (such as a carbon material), a better conductive network can be formed in the negative electrode. A lithium secondary battery with higher capacity and better battery characteristics (for example, charge / discharge cycle characteristics) can be realized. The complex of the SiO x and the carbon material coated with a carbon material, for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
 また、表面が炭素材料で被覆されたSiOxとしては、SiOxとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOxと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOxを負極活物質として含有する負極を有する非水電解液二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。 Further, as SiO x whose surface is coated with a carbon material, the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material. Those can also be preferably used. In a non-aqueous electrolyte secondary battery having a negative electrode containing SiO x as a negative electrode active material, a better conductive network can be formed when SiO x and a carbon material are dispersed inside the granule. In addition, battery characteristics such as heavy load discharge characteristics can be further improved.
 SiOxとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
 前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む。)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック、ケッチェンブラックを含む。)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、更に、SiOx粒子が膨張・収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。 Details of the carbon material include at least selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon. One material is preferred. Fibrous or coil-like carbon materials are preferable in that they easily form a conductive network and have a large surface area. Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and the SiO x particles expand and contract. However, it is preferable in that it has a property of easily maintaining contact with the particles.
 また、負極活物質として使用される黒鉛質炭素材料を、SiOxと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛質炭素材料も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、更に、SiOx粒子が膨張・収縮しても、その粒子との接触を保持しやすい性質を有しているため、SiOxとの複合体形成に好ましく使用することができる。 Moreover, the graphitic carbon material used as a negative electrode active material can also be used as a carbon material related to a composite of SiO x and a carbon material. Graphite carbon materials, like carbon black, have high electrical conductivity and high liquid retention, and even when SiO x particles expand and contract, they can easily maintain contact with the particles. Since it has properties, it can be preferably used for forming a complex with SiO x .
 前記例示の炭素材料の中でも、SiOxとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOxの膨張・収縮に追従でき、また、嵩密度が大きいために、SiOx粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。繊維状の炭素材料は、例えば、気相法にてSiOx粒子の表面に形成することもできる。SiOxの比抵抗値が、通常、103~107kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10-5~10kΩcmである。 Among the carbon materials exemplified above, a fibrous carbon material is particularly preferable as a material used when the composite with SiO x is a granulated body. Fibrous carbon material is due to the high shape is thin threadlike flexibility can follow the expansion and contraction of SiO x with the charging and discharging of the battery, and in order bulk density is large, SiO x particles and many It is because it can have the following junction point. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used. The fibrous carbon material can also be formed on the surface of the SiO x particles by, for example, a gas phase method. The specific resistance value of SiO x is usually 10 3 to 10 7 kΩcm, while the specific resistance value of the carbon material exemplified above is usually 10 −5 to 10 kΩcm.
 負極にSiOxと炭素材料との複合体を使用する場合、SiOxと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiOx:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOxと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiOx量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiOx:100質量部に対して、炭素材料は、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることが最も好ましい。 When a composite of SiO x and carbon material is used for the negative electrode, the ratio of SiO x and carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material. The carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, which may reduce the effect of increasing the capacity. SiO x : The carbon material is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and most preferably 40 parts by mass or less with respect to 100 parts by mass of SiO x .
 SiOxの一次粒子は、例えば、SiとSiO2との混合物を加熱し、生成した酸化ケイ素のガスを冷却して析出させるなどの方法によって得ることができる。更に、得られたSiOxを不活性ガス雰囲気下で熱処理することにより、粒子内部に微小なSi相を形成させることができる。このときの熱処理温度および時間を調整することにより、形成されるSi相の(111)回折ピークの半値幅を制御できる。通常、熱処理温度は、約900~1400℃の範囲内に設定され、熱処理時間は、約0.1~10時間の範囲内に設定される。 The primary particles of SiO x can be obtained by, for example, a method in which a mixture of Si and SiO 2 is heated and the generated silicon oxide gas is cooled and precipitated. Furthermore, a fine Si phase can be formed inside the particles by heat-treating the obtained SiO x under an inert gas atmosphere. By adjusting the heat treatment temperature and time at this time, the half width of the (111) diffraction peak of the formed Si phase can be controlled. Usually, the heat treatment temperature is set in a range of about 900 to 1400 ° C., and the heat treatment time is set in a range of about 0.1 to 10 hours.
 また、前記のSiOxと炭素材料との複合体は、例えば下記の方法によって得ることができる。 The composite of SiO x and carbon material can be obtained by the following method, for example.
 まず、SiOxを複合化する場合の作製方法について説明する。SiOxが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 First, a manufacturing method in the case of combining SiO x will be described. A dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
 SiOxと、SiOxよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOxが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOxを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOxと炭素材料との造粒体を作製することができる。 In the case of producing a granulated body of SiO x and a carbon material having a specific resistance value smaller than that of SiO x , the carbon material is added to a dispersion in which SiO x is dispersed in a dispersion medium. The composite particles (granulated material) may be obtained by the same method as that used when combining SiO x . Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
 次に、SiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiOx粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiOx粒子に均一性よく導電性を付与できる。 Next, when the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) is coated with a carbon material to form a composite, for example, the SiO x particles and the hydrocarbon system The gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
 炭素材料で被覆されたSiOxの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600~1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。 In the production of SiO x coated with a carbon material, the processing temperature (atmosphere temperature) of the vapor phase growth (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.
 炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする。)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。 As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, acetylene gas, etc. can also be used.
 また、気相成長(CVD)法にてSiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系ピッチ、熱硬化性樹脂およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、SiOx粒子の炭素材料被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。 In addition, after covering the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) with a carbon material by a vapor deposition (CVD) method, petroleum pitch, coal pitch, At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to the carbon material coating layer of SiO x particles, and then the organic compound is attached. The obtained particles may be fired.
 具体的には、炭素材料で被覆されたSiOx粒子(SiOx複合粒子、またはSiOxと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液をSiOx粒子に噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion liquid in which SiO x particles coated with a carbon material (SiO x composite particles or a granulated body of SiO x and a carbon material) and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed onto the SiO x particles and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
 前記ピッチとしては等方性ピッチを、前記熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。前記ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。 Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.
 炭素材料で被覆されたSiOx粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600~1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOxの融点以下であることを要する。 As a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound, for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
 SiOxなどの、リチウムと合金化する元素を含む材料は、非水電解液二次電池の負極活物質として汎用されている炭素材料に比べて高容量である一方で、電池の充放電に伴う体積変化量が大きいため、リチウムと合金化する元素を含む材料の含有量の高い負極合剤層を有する負極を用いた非水電解液二次電池では、充放電の繰り返しによって負極(負極合剤層)が大きく体積変化して劣化し、容量が低下する虞がある。すなわち、充放電サイクル特性が低下する虞がある。黒鉛質炭素材料は、非水電解液二次電池の負極活物質として汎用されており、比較的容量が大きい一方で、リチウムと合金化する元素を含む材料に比べて、電池の充放電に伴う体積変化量が小さい。よって、負極活物質に黒鉛質炭素材料とリチウムと合金化する元素を含む材料とを併用することで、リチウムと合金化する元素を含む材料の使用量の低減に伴って電池の容量向上効果が小さくなることを可及的に抑制しつつ、電池の充放電サイクル特性の低下を良好に抑えることができる。 A material containing an element that forms an alloy with lithium, such as SiO x , has a higher capacity than a carbon material that is widely used as a negative electrode active material of a non-aqueous electrolyte secondary battery, but it accompanies charging / discharging of the battery. Since the volume change is large, in a non-aqueous electrolyte secondary battery using a negative electrode having a negative electrode mixture layer with a high content of a material containing an element alloyed with lithium, the negative electrode (negative electrode mixture) is obtained by repeated charge and discharge. There is a risk that the layer) will deteriorate due to a large volume change and the capacity will decrease. That is, the charge / discharge cycle characteristics may be deteriorated. Graphite carbon materials are widely used as negative electrode active materials for non-aqueous electrolyte secondary batteries, and have a relatively large capacity, but are associated with charging and discharging of batteries as compared with materials containing elements that alloy with lithium. Volume change is small. Therefore, the combined use of a graphite carbon material and a material containing an element alloying with lithium in the negative electrode active material has an effect of improving the capacity of the battery as the amount of the material containing the element alloying with lithium is reduced. While suppressing the reduction as much as possible, the deterioration of the charge / discharge cycle characteristics of the battery can be satisfactorily suppressed.
 リチウムと合金化する元素を含む材料(例えば、SiOx)の全負極活物質中における含有量は、前記材料を使用することによる高容量化の効果を良好に確保する観点から、0.01質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがより好ましい。また、充放電に伴うリチウムと合金化する元素を含む材料の体積変化による問題をより良好に回避する観点から、リチウムと合金化する元素を含む材料(例えば、SiOx)の全負極活物質中における含有量は、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。 The content of the material containing an element that forms an alloy with lithium (for example, SiO x ) in the entire negative electrode active material is 0.01 mass from the viewpoint of favorably securing the effect of increasing the capacity by using the material. % Or more, preferably 1% by mass or more, more preferably 3% by mass or more. Further, from the viewpoint of better avoiding the problem due to the volume change of the material containing the element alloying with lithium due to charge / discharge, in the entire negative electrode active material of the material containing the element alloying with lithium (for example, SiO x ) The content in is preferably 20% by mass or less, and more preferably 15% by mass or less.
 本発明に係る負極の負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、非水電解液二次電池内において化学変化を起こさないものであれば特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉、ニッケル粉、銅粉、銀粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体(特開昭59-20971号公報に記載のもの)などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、吸液性に優れたカーボンブラックが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。 In the negative electrode mixture layer of the negative electrode according to the present invention, a conductive material may be further added as a conductive auxiliary. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the nonaqueous electrolyte secondary battery. For example, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon black such as thermal black; conductive fiber such as carbon fiber and metal fiber; metal powder such as aluminum powder, nickel powder, copper powder and silver powder; conductive whisker composed of carbon fluoride; zinc oxide; potassium titanate; Examples thereof include conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives (described in JP-A-59-20971), and these may be used alone. More than one species may be used in combination. Among these, carbon black excellent in liquid absorbency is preferable, and ketjen black and acetylene black are more preferable. Further, the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
 負極合剤層に係る導電助剤として使用する炭素材料の粒径は、例えば、前記のレーザー回折散乱式粒度分布測定装置を用いて測定される数平均粒子径で、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。 The particle size of the carbon material used as the conductive additive related to the negative electrode mixture layer is, for example, a number average particle size measured using the laser diffraction / scattering particle size distribution analyzer, and is 0.01 μm or more. Is preferably 0.02 μm or more, more preferably 10 μm or less, and even more preferably 5 μm or less.
 負極合剤層の厚みは、負極集電体の片面あたり、10~100μmであることが好ましい。負極合剤層の密度(負極集電体に積層した単位面積あたりの負極合剤層の質量と、厚みから算出される。)は、1.0g/cm3以上1.9g/cm3以下であることが好ましい。 The thickness of the negative electrode mixture layer is preferably 10 to 100 μm per side of the negative electrode current collector. The density of the negative electrode mixture layer (calculated from the mass and thickness of the negative electrode mixture layer per unit area laminated on the negative electrode current collector) is 1.0 g / cm 3 or more and 1.9 g / cm 3 or less. Preferably there is.
 負極合剤層の組成としては、例えば、負極活物質の量(黒鉛質炭素材料と、リチウムと合金化する元素を含む材料との総量)が80~99質量%であることが好ましく、バインダの量が1~20質量%であることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、導電助剤は、負極活物質の量およびバインダの量が、前記の好適値を満足する範囲内で使用することが好ましい。 As the composition of the negative electrode mixture layer, for example, the amount of the negative electrode active material (the total amount of the graphitic carbon material and the material containing an element alloying with lithium) is preferably 80 to 99% by mass. The amount is preferably 1 to 20% by mass. In addition, when the conductive additive is contained in the negative electrode mixture layer, it is preferable to use the conductive assistant within a range in which the amount of the negative electrode active material and the amount of the binder satisfy the above-described preferable values.
 負極に係る集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために厚みの下限は5μmであることが望ましい。 As the current collector for the negative electrode, copper or nickel foil, punching metal, mesh, expanded metal, or the like can be used, but copper foil is usually used. In the negative electrode current collector, when the thickness of the whole negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit of the thickness is 5 μm in order to ensure mechanical strength. It is desirable to be.
 <正極>
 本発明の非水電解液二次電池に係る正極は、正極活物質などを含有する正極合剤層を、例えば集電体の片面または両面に有するものである。
<Positive electrode>
The positive electrode according to the nonaqueous electrolyte secondary battery of the present invention has a positive electrode mixture layer containing a positive electrode active material or the like, for example, on one side or both sides of a current collector.
 本発明に係る正極は、例えば、正極活物質や、バインダ、導電助剤などを含む混合物(正極合剤)に、溶剤(NMPなど)を加えて十分に混練して得たペースト状やスラリー状の正極合剤含有組成物を、正極集電体の片面または両面に塗布し、所定の厚みおよび密度を有する正極合剤層を形成することによって製造することができる。ただし、本発明に係る正極の製造方法は、前記の製造方法に限られない。 The positive electrode according to the present invention is, for example, a paste or slurry obtained by adding a solvent (NMP or the like) to a mixture (positive electrode mixture) containing a positive electrode active material, a binder, a conductive additive, etc., and sufficiently kneading. The positive electrode mixture-containing composition is applied to one or both sides of the positive electrode current collector, and a positive electrode mixture layer having a predetermined thickness and density can be formed. However, the manufacturing method of the positive electrode according to the present invention is not limited to the above manufacturing method.
 正極活物質としては、リチウムイオンを吸蔵・放出可能なリチウム含有遷移金属複合酸化物が使用される。リチウム含有遷移金属複合酸化物としては、従来から知られているリチウムイオン二次電池などの非水電解液二次電池に使用されているもの、具体的には、LiyCoO2(ただし、0≦y≦1.1である。)、LizNiO2(ただし、0≦z≦1.1である。)、LieMnO2(ただし、0≦e≦1.1である。)、LiaCob1 1-b2(ただし、M1は、Mg、Mn、Fe、Ni、Cu、Zn、Al、Ti、GeおよびCrよりなる群から選択される少なくとも1種の金属元素であり、0≦a≦1.1、0<b<1.0である。)、LicNi1-d2 d2(ただし、M2は、Mg、Mn、Fe、Co、Cu、Zn、Al、Ti、GeおよびCrよりなる群から選択される少なくとも1種の金属元素であり、0≦c≦1.1、0<d<1.0である。)、LifMngNihCo1-g-h2(ただし、0≦f≦1.1、0<g<1.0、0<h<1.0である。)などの層状構造を有するリチウム含有遷移金属複合酸化物などが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。 As the positive electrode active material, a lithium-containing transition metal composite oxide capable of inserting and extracting lithium ions is used. Examples of the lithium-containing transition metal composite oxide include those conventionally used in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, specifically Li y CoO 2 (however, 0 ≦ y ≦ 1.1.), Li z NiO 2 (where 0 ≦ z ≦ 1.1), Li e MnO 2 (where 0 ≦ e ≦ 1.1), Li a Co b M 1 1-b O 2 (where M 1 is at least one metal element selected from the group consisting of Mg, Mn, Fe, Ni, Cu, Zn, Al, Ti, Ge and Cr) Yes, 0 ≦ a ≦ 1.1, 0 <b <1.0), Li c Ni 1-d M 2 d O 2 (where M 2 is Mg, Mn, Fe, Co, Cu, At least one metal element selected from the group consisting of Zn, Al, Ti, Ge and Cr, and 0 ≦ c ≦ 1.1, 0 d <a 1.0.), Li f Mn g Ni h Co 1-gh O 2 ( where is 0 ≦ f ≦ 1.1,0 <g < 1.0,0 <h <1.0 And lithium-containing transition metal composite oxides having a layered structure, etc., and only one of these may be used, or two or more may be used in combination.
 正極合剤層に係るバインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、CMC、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン(PTFE)、PVDF、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、SBR、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。 Examples of the binder for the positive electrode material mixture layer include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, CMC, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, and modified products thereof; polyvinyl chloride, polyvinyl pyrrolidone, polytetra Thermoplastic resins such as fluoroethylene (PTFE), PVDF, polyethylene, polypropylene, polyamideimide, polyamide and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, SBR, butadiene rubber, polybutadiene , Fluororubber, polyethylene oxide and other polymers having rubbery elasticity and their modified products, etc., and only one of them may be used or two or more may be used in combination. There.
 正極合剤層に係る導電助剤には、負極合剤層に係る導電助剤として先に例示した各導電助剤を使用できる。 As the conductive auxiliary agent related to the positive electrode mixture layer, the conductive auxiliary agents exemplified above as the conductive auxiliary agent related to the negative electrode mixture layer can be used.
 正極集電体としては、従来から知られている非水電解液二次電池の正極に使用されているものと同様のものが使用でき、正極集電体の材質は、構成された非水電解液二次電池において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウムまたはアルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、アルミニウム、アルミニウム合金またはステンレス鋼の表面に炭素層またはチタン層を形成した複合材などを用いることができる。これらの中でも、アルミニウムまたはアルミニウム合金が特に好ましい。これらは、軽量で電子伝導性が高いからである。正極集電体には、例えば、前記材質からなるフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群の成形体などが使用される。また、正極集電体の表面に、表面処理を施して凹凸を付けることもできる。正極集電体の厚みは特に限定されないが、通常1~500μmである。 As the positive electrode current collector, the same as those used for the positive electrode of the conventionally known non-aqueous electrolyte secondary battery can be used, and the material of the positive electrode current collector is the non-aqueous electrolysis that is configured. If it is a chemically stable electronic conductor in a liquid secondary battery, it will not be specifically limited. For example, in addition to aluminum or aluminum alloy, stainless steel, nickel, titanium, carbon, conductive resin, etc., a composite material in which a carbon layer or a titanium layer is formed on the surface of aluminum, aluminum alloy, or stainless steel can be used. . Among these, aluminum or an aluminum alloy is particularly preferable. This is because they are lightweight and have high electron conductivity. For the positive electrode current collector, for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like made of the above materials is used. Further, the surface of the positive electrode current collector can be roughened by surface treatment. The thickness of the positive electrode current collector is not particularly limited, but is usually 1 to 500 μm.
 正極合剤層の厚みは、例えば、正極集電体の片面あたり10~100μmであることが好ましい。正極合剤層の密度は、正極集電体に積層した単位面積あたりの正極合剤層の質量と厚みとから算出され、3.0~4.5g/cm3であることが好ましい。 The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per side of the positive electrode current collector. The density of the positive electrode mixture layer is calculated from the mass and thickness of the positive electrode mixture layer per unit area laminated on the positive electrode current collector, and is preferably 3.0 to 4.5 g / cm 3 .
 正極合剤層の組成としては、例えば、正極活物質の量が60~98質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が1~25質量%であることが好ましい。 As the composition of the positive electrode mixture layer, for example, the amount of the positive electrode active material is preferably 60 to 98% by mass, the amount of the binder is preferably 1 to 15% by mass, and the amount of the conductive auxiliary agent is 1 It is preferably from 25% by mass.
 <非水電解液>
 本発明の非水電解液二次電池に係る非水電解液には、有機溶媒にリチウム塩(無機リチウム塩もしくは有機リチウム塩またはその両者)を溶解させることによって調製した電解液を使用することができる。
<Non-aqueous electrolyte>
In the nonaqueous electrolyte solution according to the nonaqueous electrolyte secondary battery of the present invention, an electrolyte solution prepared by dissolving a lithium salt (inorganic lithium salt or organic lithium salt or both) in an organic solvent may be used. it can.
 非水電解液に係る有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC),ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトンなどの非プロトン性有機溶媒が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。また、アミンイミド系有機溶媒や、含イオウまたは含フッ素系有機溶媒なども用いることができる。これらの中でも、ECとMECとDECとの混合溶媒が好ましく、この場合、混合溶媒の全容量に対して、DECを15容量%以上80容量%以下の量で含むことがより好ましい。このような混合溶媒であれば、電池の低温特性や充放電サイクル特性を高く維持しつつ、高電圧充電時における溶媒の安定性を高めることができるからである。 Examples of the organic solvent related to the non-aqueous electrolyte include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl. Ethyl carbonate (MEC), γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, acetic acid Methyl, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative Body, diethyl ether, include aprotic organic solvents such as 1,3-propane sultone, may be used those either alone, or in combination of two or more. Also, amine imide organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can be used. Among these, a mixed solvent of EC, MEC, and DEC is preferable. In this case, it is more preferable to include DEC in an amount of 15% by volume to 80% by volume with respect to the total volume of the mixed solvent. This is because such a mixed solvent can enhance the stability of the solvent during high-voltage charging while maintaining the low temperature characteristics and charge / discharge cycle characteristics of the battery high.
 非水電解液を構成するための無機リチウム塩としては、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl4、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Liなどが挙げられ、これらのうちの1種または2種以上を用いることができる。 Examples of the inorganic lithium salt for constituting the non-aqueous electrolyte, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acid Examples thereof include Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, and lithium tetraphenylborate, and one or more of these can be used.
 非水電解液を構成するための有機リチウム塩としては、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦7)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基を示す。〕などが挙げられ、これらのうちの1種または2種以上を用いることができる。 Examples of the organic lithium salt for constituting the non-aqueous electrolyte include LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7), LiN (RfOSO 2 ) 2 [wherein Rf represents a fluoroalkyl group. Etc., and one or more of these can be used.
 これらの非水電解液の中でも、ジメチルカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートより選ばれる少なくとも1種の鎖状カーボネートと、エチレンカーボネートおよびプロピレンカーボネートより選ばれる少なくとも1種の環状カーボネートとを含む溶媒に、LiPF6を溶解した電解液が好ましい。 Among these non-aqueous electrolytes, a solvent containing at least one chain carbonate selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and at least one cyclic carbonate selected from ethylene carbonate and propylene carbonate, An electrolytic solution in which LiPF 6 is dissolved is preferable.
 非水電解液中のリチウム塩の濃度は、例えば、0.2~3.0mol/Lであることが適当であり、0.8~2.0mol/Lであることが好ましく、0.9~1.6mol/Lであることがより好ましい。 The concentration of the lithium salt in the non-aqueous electrolyte is, for example, suitably 0.2 to 3.0 mol / L, preferably 0.8 to 2.0 mol / L, preferably 0.9 to More preferably, it is 1.6 mol / L.
 また、充放電サイクル特性の改善、高温貯蔵性や過充電防止などの安全性を向上させる目的で、前記の非水電解液に、例えば、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビニレンカーボネート(VC)、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、環状フッ素化カーボネート〔トリフルオロプロピレンカーボネート(TFPC)、フルオロエチレンカーボネート(FEC)など〕、または、鎖状フッ素化カーボネート〔トリフルオロジメチルカーボネート(TFDMC)、トリフルオロジエチルカーボネート(TFDEC)、トリフルオロエチルメチルカーボネート(TFEMC)など〕など(前記の各化合物の誘導体も含む。)を適宜含有させることもできる。前記環状フッ素化カーボネートおよび鎖状フッ素化カーボネートは、エチレンカーボネートなどのように、溶媒として用いることもできる。 In addition, for the purpose of improving charge / discharge cycle characteristics, safety such as high-temperature storage and overcharge prevention, the non-aqueous electrolyte includes, for example, acid anhydride, sulfonate ester, dinitrile, 1,3-propane. Sultone, diphenyl disulfide, cyclohexylbenzene, vinylene carbonate (VC), biphenyl, fluorobenzene, t-butylbenzene, cyclic fluorinated carbonate [trifluoropropyl carbonate (TFPC), fluoroethylene carbonate (FEC), etc.], or chain Fluorinated carbonate (such as trifluorodimethyl carbonate (TFDMC), trifluorodiethyl carbonate (TFDEC), trifluoroethylmethyl carbonate (TFEMC)), etc. (including derivatives of the above-mentioned compounds) as appropriate. Rukoto can also. The cyclic fluorinated carbonate and the chain fluorinated carbonate can also be used as a solvent, such as ethylene carbonate.
 <セパレータ>
 本発明の非水電解液二次電池に係るセパレータとしては、強度が十分で、かつ非水電解液を多く保持できるものがよく、例えば、厚みが5~50μmで開口率が30~70%の、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、エチレン-プロピレン共重合体を含んでいてもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
<Separator>
As the separator according to the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the separator has sufficient strength and can hold a large amount of the nonaqueous electrolyte. For example, the separator has a thickness of 5 to 50 μm and an aperture ratio of 30 to 70%. A microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous membrane constituting the separator may be, for example, one using only PE or one using PP only, may contain an ethylene-propylene copolymer, and may be made of PE. A laminate of a membrane and a PP microporous membrane may be used.
 更に、セパレータには、融点が140℃以下の樹脂を主体とした多孔質層と、融点が150℃以上の樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層とから構成された積層型のセパレータを使用することができる。ここで、「融点」とは日本工業規格(JIS)K7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味し、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。 Furthermore, the separator is composed of a porous layer mainly composed of a resin having a melting point of 140 ° C. or lower and a porous layer mainly including a resin having a melting point of 150 ° C. or higher or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. A laminated separator can be used. Here, “melting point” means a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121, and “the heat resistant temperature is 150 ° C. or higher”. This means that deformation such as softening is not observed at least at 150 ° C.
 セパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、10~30μmであることがより好ましい。 The thickness of the separator (a separator made of a microporous membrane made of polyolefin or the laminated separator) is more preferably 10 to 30 μm.
 <電池の形態>
 本発明の非水電解液二次電池の形態としては、特に制限はない。例えば、コイン形、ボタン形、シート形、積層形、円筒形、扁平形、角形、電気自動車などに用いる大型のものなど、いずれであってもよい。
<Battery configuration>
There is no restriction | limiting in particular as a form of the nonaqueous electrolyte secondary battery of this invention. For example, any of a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. may be used.
 また、非水電解液二次電池に正極、負極およびセパレータを導入するにあたっては、電池の形態に応じて、複数の正極と複数の負極とをセパレータを介して積層した積層電極体や、正極と負極とをセパレータを介して積層し、更にこれを渦巻状に巻回した巻回電極体として使用することができる。 Further, when introducing the positive electrode, the negative electrode, and the separator into the non-aqueous electrolyte secondary battery, depending on the form of the battery, a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are stacked via the separator, It can be used as a wound electrode body obtained by laminating a negative electrode with a separator and winding it in a spiral shape.
 本発明の非水電解液二次電池は、高容量であり、かつ優れた電池特性を有していることから、これらの特性を生かして、小型で多機能な携帯機器の電源を始めとして、従来から知られている非水電解液二次電池が適用されている各種用途に好ましく用いることができる。 Since the non-aqueous electrolyte secondary battery of the present invention has a high capacity and excellent battery characteristics, taking advantage of these characteristics, including power supplies for small and multifunctional portable devices, It can be preferably used for various applications to which conventionally known nonaqueous electrolyte secondary batteries are applied.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
 (実施例1)
 <正極の作製>
 正極活物質であるLiCoO2:93質量部、導電助剤であるカーボンブラック:3質量部、およびバインダであるPVDF:4質量部を、溶媒であるNMPを用いて均一になるように混合して正極合剤含有スラリーを調製した。この正極合剤含有スラリーを、厚みが15μmのアルミニウム箔からなる正極集電体の片面に塗布し、乾燥した後、ローラープレス機により加圧成形することにより、正極集電体の片面に厚みが70μmの正極合剤層を形成した。その後、これを25mm×35mmに切断して短冊状の正極を得た。
(Example 1)
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 93 parts by mass, carbon black as a conductive additive: 3 parts by mass, and PVDF as a binder: 4 parts by mass are mixed uniformly using NMP as a solvent. A positive electrode mixture-containing slurry was prepared. The positive electrode mixture-containing slurry is applied to one side of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and then subjected to pressure molding with a roller press, whereby the thickness of one side of the positive electrode current collector is increased. A 70 μm positive electrode mixture layer was formed. Then, this was cut | disconnected to 25 mm x 35 mm, and the strip-shaped positive electrode was obtained.
 <負極の作製>
 負極活物質として、SiO(非晶質のSiO2マトリックス中にSiが分散した構造で、SiO2とSiとのモル比が1:1である材料)と黒鉛とを、1:4の質量比で含む混合物を用意した。この負極活物質と、導電助剤であるカーボンブラックと、乳化重合により得られたTFE/P=56/44(モル比)の含フッ素弾性共重合体(フッ素含有量57質量%、ムーニー粘度90)を32質量%の含有量で含む水分散体と、水溶性接着樹脂であるCMCの水溶液(CMC濃度が2質量%)とを混合して負極合剤含有スラリーを調製した。この負極合剤含有スラリーにおいては、負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)が、94:1.5:1.5:3となるようにした。ここで、水溶性接着樹脂(CMC)の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1は0.5であった。
<Production of negative electrode>
As a negative electrode active material, the mass ratio of SiO (a material in which Si is dispersed in an amorphous SiO 2 matrix and the molar ratio of SiO 2 and Si is 1: 1) and graphite is 1: 4. A mixture containing was prepared. This negative electrode active material, carbon black as a conductive additive, and a fluorinated elastic copolymer of TFE / P = 56/44 (molar ratio) obtained by emulsion polymerization (fluorine content 57 mass%, Mooney viscosity 90 ) And an aqueous dispersion of CMC that is a water-soluble adhesive resin (CMC concentration is 2% by mass) to prepare a negative electrode mixture-containing slurry. In this negative electrode mixture-containing slurry, the ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC is 94: 1.5: 1.5: 3. I made it. Here, the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin (CMC) was 0.5.
 前記の負極合剤含有スラリーを、厚みが10μmの銅箔からなる負極集電体の片面に塗布し、乾燥した後、ローラープレス機により加圧成形することにより、負極集電体の片面に厚みが50μmの負極合剤層を形成した。その後、これを30mm×35mmに切断して短冊状の負極を得た。 The negative electrode mixture-containing slurry is applied to one side of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and then press-molded with a roller press to obtain a thickness on one side of the negative electrode current collector. Formed a negative electrode mixture layer having a thickness of 50 μm. Then, this was cut | disconnected to 30 mm x 35 mm, and the strip-shaped negative electrode was obtained.
 <電池の組み立て>
 前記の正極と前記の負極とを、PE製微多孔膜セパレータ(厚み25μm、空孔率45%)を介在させつつ重ね合わせて積層電極体とした。この積層電極体を10cm×20cmのアルミニウムラミネートフィルムからなる外装体内に挿入した。次に、ECとDECとMECとを1:1:1の体積比で混合した溶液にLiPF6を1mol/Lの濃度で溶解させた後、更にVCを1質量%となる量で溶解させて調製した非水電解液:1gを外装体内に注入した。その後、外装体の開口部を封口して、図1に示す外観で、図2に示す断面構造の非水電解液二次電池を作製した。
<Battery assembly>
The positive electrode and the negative electrode were overlapped with a PE microporous membrane separator (thickness 25 μm, porosity 45%) to form a laminated electrode body. This laminated electrode body was inserted into an exterior body made of a 10 cm × 20 cm aluminum laminate film. Next, after dissolving LiPF 6 at a concentration of 1 mol / L in a solution in which EC, DEC and MEC are mixed at a volume ratio of 1: 1: 1, VC is further dissolved in an amount of 1% by mass. The prepared nonaqueous electrolyte solution: 1 g was injected into the exterior body. Then, the opening part of the exterior body was sealed and the nonaqueous electrolyte secondary battery of the cross-sectional structure shown in FIG. 2 was produced with the external appearance shown in FIG.
 ここで、図1および図2について説明すると、図1は、本実施例の非水電解液二次電池を模式的に表す平面図であり、図2は、図1のI-I線断面図である。図2において、非水電解液二次電池1は、2枚のラミネートフィルムで構成した外装体2内に、正極5と負極6とをセパレータ7を介して積層して構成した積層電極体と、非水電解液(図示しない)とを収容しており、外装体2は、その外周部において、上下のラミネートフィルムを熱融着することにより封止されている。図2において、非水電解液二次電池1の厚みをTとして示している。図2では、図面が煩雑になることを避けるために、外装体2を構成しているラミネートフィルムの各層、並びに正極5および負極6を構成している電極合剤層や集電体を区別して示していない。 Here, FIG. 1 and FIG. 2 will be described. FIG. 1 is a plan view schematically showing the nonaqueous electrolyte secondary battery of this example, and FIG. 2 is a cross-sectional view taken along the line II of FIG. It is. In FIG. 2, a nonaqueous electrolyte secondary battery 1 includes a laminated electrode body constituted by laminating a positive electrode 5 and a negative electrode 6 with a separator 7 in an exterior body 2 constituted by two laminated films, A non-aqueous electrolyte solution (not shown) is accommodated, and the outer package 2 is sealed at its outer peripheral portion by thermally fusing upper and lower laminate films. In FIG. 2, the thickness of the nonaqueous electrolyte secondary battery 1 is indicated as T. In FIG. 2, in order to avoid making the drawing complicated, the layers of the laminate film constituting the exterior body 2, and the electrode mixture layer and the current collector constituting the positive electrode 5 and the negative electrode 6 are distinguished. Not shown.
 正極5は、非水電解液二次電池1内でリード体を介して正極外部端子3と接続しており、また、図示していないが、負極6も、非水電解液二次電池1内でリード体を介して負極外部端子4(図1)と接続している。そして、図1に示すように、正極外部端子3および負極外部端子4は、外部の機器などと接続可能なように、片端側が外装体2の外側に引き出されている。 The positive electrode 5 is connected to the positive electrode external terminal 3 through a lead body in the non-aqueous electrolyte secondary battery 1, and the negative electrode 6 is also connected to the non-aqueous electrolyte secondary battery 1, although not shown. And connected to the negative external terminal 4 (FIG. 1) through the lead body. As shown in FIG. 1, the positive electrode external terminal 3 and the negative electrode external terminal 4 are drawn out to the outside of the exterior body 2 so that they can be connected to an external device or the like.
 (実施例2)
 沸騰床反応器中において、約1000℃に加熱されたSiO粒子(平均粒子径5μm)にメタンと窒素ガスからなる25℃の混合ガスを接触させ、気相成長法により、表面に低結晶性炭素の被覆層が形成されたSiOC粒子(SiOと炭素材料との複合体)を作製した。この複合体における炭素材料の割合は、SiO:100質量部に対して20質量部であった。このSiOと炭素材料との複合体と黒鉛とを1:4の質量比で混合し、この混合物を負極活物質として用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Example 2)
In a boiling bed reactor, SiO gas (average particle diameter 5 μm) heated to about 1000 ° C. is brought into contact with a mixed gas of 25 ° C. composed of methane and nitrogen gas, and low crystalline carbon is formed on the surface by vapor phase growth. SiOC particles (composite of SiO and carbon material) on which a coating layer was formed were prepared. The ratio of the carbon material in this composite was 20 parts by mass with respect to 100 parts by mass of SiO. The composite of SiO and carbon material and graphite were mixed at a mass ratio of 1: 4, and a negative electrode was produced in the same manner as in Example 1 except that this mixture was used as a negative electrode active material. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that.
 (実施例3)
 実施例1の含フッ素弾性共重合体(ムーニー粘度90)に代えて、乳化重合により得られたTFE/P=56/44(モル比)の含フッ素弾性共重合体(フッ素含有量57質量%、ムーニー粘度130)を32質量%の含有量で含む水分散体を使用した以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Example 3)
Instead of the fluorinated elastic copolymer of Example 1 (Mooney viscosity 90), the fluorinated elastic copolymer of TFE / P = 56/44 (molar ratio) obtained by emulsion polymerization (fluorine content 57 mass%). A negative electrode was prepared in the same manner as in Example 1 except that an aqueous dispersion containing a Mooney viscosity of 130) at a content of 32% by mass was used. An electrolyte secondary battery was produced.
 (実施例4)
 負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)を、93.5:1.5:2:2.5とし、水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1を0.8とした以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
Example 4
The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 2: 2.5, and the mass M 1 of the water-soluble adhesive resin. A negative electrode was prepared in the same manner as in Example 1 except that the mass ratio M 2 / M 1 of the mass M 2 of the fluorine-containing elastic copolymer to 0.8 was changed to 0.8, and Example 1 except that this negative electrode was used. Similarly, a non-aqueous electrolyte secondary battery was produced.
 (実施例5)
 負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)を、94:1.5:2.5:2とし、水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1を1.25とした以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Example 5)
The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 94: 1.5: 2.5: 2, and the content of the water-soluble adhesive resin with respect to the mass M 1 was included. A negative electrode was prepared in the same manner as in Example 1 except that the mass ratio M 2 / M 1 of the mass M 2 of the fluoroelastic copolymer was changed to 1.25, and in the same manner as in Example 1 except that this negative electrode was used. Thus, a non-aqueous electrolyte secondary battery was produced.
 (実施例6)
 負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)を、93.5:1.5:1.05:3.45とし、水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1を0.3とした以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Example 6)
The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 1.05: 3.45, and the mass of the water-soluble adhesive resin except that the mass ratio M 2 / M 1 0.3 mass M 2 of the fluorinated elastic copolymer for the M 1 in the same manner as in example 1 to prepare a negative electrode, the embodiment except for the use of this negative electrode In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
 (実施例7)
 CMCに代えてポリアクリル酸(PAA)を使用した以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Example 7)
A negative electrode was produced in the same manner as in Example 1 except that polyacrylic acid (PAA) was used in place of CMC, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. did.
 (比較例1)
 実施例1の含フッ素弾性共重合体の水分散体に代えて、SBRを使用した以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 1)
A negative electrode was produced in the same manner as in Example 1 except that SBR was used instead of the aqueous dispersion of the fluorinated elastic copolymer of Example 1, and the same procedure as in Example 1 was conducted except that this negative electrode was used. A non-aqueous electrolyte secondary battery was produced.
 (比較例2)
 実施例1の含フッ素弾性共重合体の水分散体に代えて、PTFE(フッ素含有量76%)の水分散体を使用した以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 2)
A negative electrode was produced in the same manner as in Example 1 except that an aqueous dispersion of PTFE (fluorine content: 76%) was used instead of the aqueous dispersion of the fluorinated elastic copolymer of Example 1. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that it was used.
 (比較例3)
 負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)を、93.5:1.5:0.33:4.17とし、水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1を0.08とした以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 3)
The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 0.33: 4.17, and the mass of the water-soluble adhesive resin except that the mass ratio M 2 / M 1 0.08 mass M 2 of the fluorinated elastic copolymer for the M 1 in the same manner as in example 1 to prepare a negative electrode, the embodiment except for the use of this negative electrode In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
 (比較例4)
 負極活物質と、カーボンブラックと、含フッ素弾性共重合体と、CMCとの比率(質量比)を、93.5:1.5:3.5:1.0とし、水溶性接着樹脂の質量M1に対する含フッ素弾性共重合体の質量M2の質量比M2/M1を3.5とした以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 4)
The ratio (mass ratio) of the negative electrode active material, carbon black, fluorinated elastic copolymer, and CMC was 93.5: 1.5: 3.5: 1.0, and the mass of the water-soluble adhesive resin except that the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer 3.5 for M 1 in the same manner as in example 1 to prepare a negative electrode, the embodiment except for the use of this negative electrode In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
 実施例1~7および比較例1~4の各非水電解液二次電池について、以下の充放電サイクル特性評価、負荷特性評価および高温貯蔵時電池膨れ評価を行った。 For the nonaqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4, the following charge / discharge cycle characteristic evaluation, load characteristic evaluation, and battery swelling evaluation during high-temperature storage were performed.
 <充放電サイクル特性評価>
 実施例および比較例の各電池について、電流10mAの定電流で電圧4.2Vまで充電し、続いて4.2Vの定電圧で充電する定電流-定電圧充電(充電の合計時間:5時間)を行った後、10mAの定電流で2.5Vまで定電流放電させる充放電サイクルを、温度20℃で500回繰り返した。そして、1サイクル目の放電容量、100サイクル目の放電容量、および500サイクル目の放電容量を測定し、下記式(1)および(2)によって100サイクル後の容量維持率と、500サイクル後の容量維持率とを求めた。
<Charge / discharge cycle characteristics evaluation>
About each battery of an Example and a comparative example, it charges to voltage 4.2V with the constant current of 10 mA of electric current, and is charged with the constant voltage of 4.2V subsequently, constant current-constant voltage charge (total time of charge: 5 hours) Then, a charge / discharge cycle in which a constant current was discharged to 2.5 V at a constant current of 10 mA was repeated 500 times at a temperature of 20 ° C. Then, the discharge capacity at the first cycle, the discharge capacity at the 100th cycle, and the discharge capacity at the 500th cycle are measured, and the capacity retention rate after 100 cycles and The capacity maintenance rate was obtained.
 式(1):100サイクル後の容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100
 式(2):500サイクル後の容量維持率(%)=(500サイクル目の放電容量/1サイクル目の放電容量)×100
Formula (1): Capacity retention rate after 100 cycles (%) = (discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100
Formula (2): Capacity maintenance ratio (%) after 500 cycles = (discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100
 <負荷特性評価>
 上記容量維持率の測定を行った各電池について、更に前記の充放電サイクル特性評価時と同じ条件で充放電サイクルを繰り返し行うが、1サイクル目と100サイクル目については、放電を20mAの定電流で2.5Vまで定電流放電させて、1サイクル目の放電容量および100サイクル目の放電容量(20mA放電時の放電容量)を測定した。そして、この測定結果と、前記の充放電サイクル特性評価において測定した1サイクル目および100サイクル目の放電容量(10mA放電時の放電容量)の値とを用いて、下記式(3)および(4)によって初期負荷特性および100サイクル後の負荷特性を求めた。
<Evaluation of load characteristics>
About each battery which measured the said capacity maintenance rate, a charging / discharging cycle is further repeated on the same conditions as the time of the said charging / discharging cycle characteristic evaluation, but discharge is a constant current of 20 mA about the 1st cycle and the 100th cycle. Then, the battery was discharged at a constant current up to 2.5 V, and the discharge capacity at the first cycle and the discharge capacity at the 100th cycle (discharge capacity at 20 mA discharge) were measured. And using this measurement result and the value of the discharge capacity (discharge capacity at the time of 10 mA discharge) of the 1st cycle and the 100th cycle measured in the above-mentioned charge / discharge cycle characteristic evaluation, the following formulas (3) and (4) ) To determine the initial load characteristics and the load characteristics after 100 cycles.
 式(3):初期負荷特性(%)=(1サイクル目の20mA放電時の放電容量/1サイクル目の10mA放電時の放電容量)×100
 式(4):100サイクル後の負荷特性(%)=(100サイクル目の20mA放電時の放電容量/100サイクル目の10mA放電時の放電容量)×100
Formula (3): Initial load characteristic (%) = (discharge capacity at 20 mA discharge in the first cycle / discharge capacity at 10 mA discharge in the first cycle) × 100
Formula (4): Load characteristics after 100 cycles (%) = (discharge capacity at 20 mA discharge at 100th cycle / discharge capacity at 10 mA discharge at 100th cycle) × 100
 <高温貯蔵時電池膨れ評価>
 実施例および比較例の各電池(上記評価を行った電池とは別の電池を使用)について、前記の充放電サイクル特性評価時と同じ条件で充放電サイクルを繰り返し行うが、5サイクル目については充電終了後に85℃の高温槽に大気雰囲気で24時間貯蔵し、貯蔵前後での電池の厚みT(図2)を測定し、貯蔵前後での電池の厚みTの差Δt(mm)を求めた。通常、充電状態でこのような高温に貯蔵した場合、負極において活物質中のLiと電解液の反応が進行してガス発生が生じ電池が膨れる現象が見られる。前記Δtは、電池厚みの増加量を示す。
<Battery expansion evaluation during high temperature storage>
For each battery in Examples and Comparative Examples (using a battery different from the battery evaluated above), the charge / discharge cycle is repeated under the same conditions as in the charge / discharge cycle characteristics evaluation. After completion of charging, the battery was stored in a high-temperature bath at 85 ° C. in an air atmosphere for 24 hours, the thickness T (FIG. 2) of the battery before and after storage was measured, and the difference Δt (mm) between the battery thickness T before and after storage was determined. . Normally, when the battery is stored at such a high temperature in a charged state, a reaction occurs between Li in the active material and the electrolytic solution in the negative electrode, and gas is generated and the battery swells. Δt represents an increase in battery thickness.
 表1に実施例および比較例の各電池の主要な構成を示す。また、表2に前記の各評価結果を示す。 Table 1 shows the main configurations of the batteries of the examples and comparative examples. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す通り、負極合剤層に係るバインダに、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体を含む2種以上の単量体に基づく構成単位を有する含フッ素弾性共重合体と、水溶性接着樹脂とを使用し、前記水溶性接着樹脂の質量M1に対する前記含フッ素弾性共重合体の質量M2の質量比M2/M1を適正値とした実施例1~7の非水電解液二次電池は、初期および100サイクル後の負荷特性が良好であり、また、100サイクル後および500サイクル後の容量維持率が高く充放電サイクル特性も良好であり、更に、85℃貯蔵後の電池厚みの増加量Δtは、全て0.1mm以下であった。 As shown in Table 1 and Table 2, the binder according to the negative electrode mixture layer contains at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride. A fluorine-containing elastic copolymer having a structural unit based on a body and a water-soluble adhesive resin, and a mass ratio M 2 of a mass M 2 of the fluorine-containing elastic copolymer to a mass M 1 of the water-soluble adhesive resin The non-aqueous electrolyte secondary batteries of Examples 1 to 7 with / M 1 being an appropriate value have good load characteristics at the initial stage and after 100 cycles, and the capacity retention ratio after 100 cycles and after 500 cycles is good. The charge / discharge cycle characteristics were high and the battery thickness increase Δt after storage at 85 ° C. was all 0.1 mm or less.
 これに対し、負極合剤層に係るバインダにSBRやPTFEを用いた比較例1、2の電池は、初期負荷特性は実施例1~7の電池と同様に良好であるものの、100サイクル後では負荷特性が低下しており、また、充放電サイクル特性も劣っている。また、前記水溶性接着樹脂の質量M1に対する前記含フッ素弾性共重合体の質量M2の質量比M2/M1が小さすぎる比較例3の電池では、負荷特性が大幅に低下した。一方、前記質量比M2/M1が大きすぎる比較例4の電池では、初期負荷特性は実施例1~7の電池と同様に高いものの、100サイクル後では容量維持率が低下し、負荷特性も低下した。 In contrast, the batteries of Comparative Examples 1 and 2 using SBR or PTFE as the binder for the negative electrode mixture layer have good initial load characteristics as in the batteries of Examples 1 to 7, but after 100 cycles. The load characteristics are deteriorated and the charge / discharge cycle characteristics are also inferior. Further, in the battery of Comparative Example 3 in which the mass ratio M 2 / M 1 of the mass M 2 of the fluorinated elastic copolymer to the mass M 1 of the water-soluble adhesive resin was too small, the load characteristics were significantly reduced. On the other hand, in the battery of Comparative Example 4 in which the mass ratio M 2 / M 1 is too large, the initial load characteristics are as high as those of the batteries of Examples 1 to 7, but the capacity retention rate decreases after 100 cycles and the load characteristics are reduced. Also declined.
 また、85℃貯蔵後の電池厚みの増加量Δtについては、比較例1、3の電池では0.2mm以上であった。実施例及び比較例の各電池について電池組立前の各負極に対して走査型電子顕微鏡(SEM)観察を行うと、例えば比較例1の負極では、使用したSBRが水溶性接着樹脂であるCMCの内部に球状で存在していたのに対して、実施例1~7で使用したTFE/Pや比較例2で使用したPTFEは、それぞれCMCと分離して存在していたことが判明した。すなわち、実施例1~7および比較例2の電池では、TFE/PやPTFEが負極活物質表面をCMCに邪魔されずに確実に被覆しており、結果的に活物質中のLiと電解液との反応を抑制することによってガス発生が少なくなり、電池厚みの増加量Δtが小さくなったものと考えられる。 Further, the battery thickness increase Δt after storage at 85 ° C. was 0.2 mm or more in the batteries of Comparative Examples 1 and 3. When the scanning electron microscope (SEM) observation is performed on each negative electrode before battery assembly for each of the batteries in Examples and Comparative Examples, for example, in the negative electrode of Comparative Example 1, the SBR used was CMC that is a water-soluble adhesive resin. It was found that the TFE / P used in Examples 1 to 7 and the PTFE used in Comparative Example 2 were present separately from CMC, while they existed in a spherical shape inside. That is, in the batteries of Examples 1 to 7 and Comparative Example 2, TFE / P and PTFE surely covered the surface of the negative electrode active material without being obstructed by CMC, and as a result, Li in the active material and the electrolyte solution It is considered that the generation of gas is reduced by suppressing the reaction with and the increase amount Δt of the battery thickness is reduced.
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in forms other than those described above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.
 1 非水電解液二次電池
 2 外装体
 3 正極外部端子
 4 負極外部端子
 5 正極
 6 負極
 7 セパレータ
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Exterior body 3 Positive electrode external terminal 4 Negative electrode external terminal 5 Positive electrode 6 Negative electrode 7 Separator

Claims (5)

  1.  正極、負極、非水電解液およびセパレータを含む非水電解液二次電池であって、
     前記正極は、リチウム含有遷移金属複合酸化物を含む正極合剤層を備え、
     前記負極は、黒鉛質炭素材料と、リチウムと合金化する元素を含む材料と、バインダとを含む負極合剤層を備え、
     前記バインダは、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体を含む2種以上の単量体に基づく構成単位を有する含フッ素弾性共重合体と、水溶性接着樹脂とを含み、
     前記負極合剤層に含まれる前記水溶性接着樹脂の質量をM1、前記負極合剤層に含まれる前記含フッ素弾性共重合体の質量をM2とすると、質量比M2/M1が0.1以上2以下であることを特徴とする非水電解液二次電池。
    A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator,
    The positive electrode includes a positive electrode mixture layer containing a lithium-containing transition metal composite oxide,
    The negative electrode includes a negative electrode mixture layer including a graphitic carbon material, a material containing an element alloyed with lithium, and a binder.
    The binder includes a fluorinated elastic copolymer having a structural unit based on two or more monomers including at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride; , Including water-soluble adhesive resin
    When the mass of the water-soluble adhesive resin contained in the negative electrode mixture layer is M 1 and the mass of the fluorinated elastic copolymer contained in the negative electrode mixture layer is M 2 , the mass ratio M 2 / M 1 is A non-aqueous electrolyte secondary battery characterized by being 0.1 or more and 2 or less.
  2.  前記水溶性接着樹脂が、セルロース類である請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the water-soluble adhesive resin is a cellulose.
  3.  前記含フッ素弾性共重合体が、プロピレンに基づく構成単位を含む請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the fluorinated elastic copolymer contains a structural unit based on propylene.
  4.  前記リチウムと合金化する元素を含む材料が、一般式SiOxで表わされる材料であり、前記一般式においてSiに対するOの原子比xは0.5≦x≦1.5である請求項1に記載の非水電解液二次電池。 The material containing an element that forms an alloy with lithium is a material represented by a general formula SiO x , and an atomic ratio x of O to Si in the general formula is 0.5 ≦ x ≦ 1.5. The nonaqueous electrolyte secondary battery as described.
  5.  前記一般式SiOxで表される材料の表面が炭素材料で被覆されている請求項4に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 4, wherein a surface of the material represented by the general formula SiO x is coated with a carbon material.
PCT/JP2014/050241 2013-01-11 2014-01-09 Nonaqueous electrolyte secondary battery WO2014109366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013003044A JP2016076292A (en) 2013-01-11 2013-01-11 Nonaqueous electrolyte secondary battery
JP2013-003044 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109366A1 true WO2014109366A1 (en) 2014-07-17

Family

ID=51167013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050241 WO2014109366A1 (en) 2013-01-11 2014-01-09 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2016076292A (en)
WO (1) WO2014109366A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145638B2 (en) * 2013-05-13 2017-06-14 三菱ケミカル株式会社 Water-soluble binder composition for secondary battery, mixture for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP6406813B2 (en) * 2013-11-25 2018-10-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. Negative electrode active material layer for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6196183B2 (en) 2014-04-22 2017-09-13 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, negative electrode active material layer for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
CN110100349B (en) * 2016-12-22 2022-12-23 三洋电机株式会社 Cylindrical nonaqueous electrolyte secondary battery
KR20200004415A (en) * 2017-05-15 2020-01-13 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Materials for Lithium-ion Electrochemical Cells and Methods for Manufacturing and Using the Same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233217A (en) * 1996-12-16 1998-09-02 Daikin Ind Ltd Binder for nonaqueous electrolyte secondary cell and battery electrode mix using it
JP2007128847A (en) * 2005-10-06 2007-05-24 Sony Corp Anode, battery, and their manufacturing method
JP2007273355A (en) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2010176980A (en) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2011054462A (en) * 2009-09-03 2011-03-17 Sony Corp Negative electrode for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
WO2011122261A1 (en) * 2010-03-30 2011-10-06 株式会社クレハ Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
JP2011204626A (en) * 2010-03-26 2011-10-13 Mitsubishi Chemicals Corp Composite polymer-impregnated active material for nonaqueous secondary battery electrode
JP2013171838A (en) * 2012-02-21 2013-09-02 Samsung Sdi Co Ltd Lithium battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233217A (en) * 1996-12-16 1998-09-02 Daikin Ind Ltd Binder for nonaqueous electrolyte secondary cell and battery electrode mix using it
JP2007128847A (en) * 2005-10-06 2007-05-24 Sony Corp Anode, battery, and their manufacturing method
JP2007273355A (en) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2010176980A (en) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2011054462A (en) * 2009-09-03 2011-03-17 Sony Corp Negative electrode for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2011204626A (en) * 2010-03-26 2011-10-13 Mitsubishi Chemicals Corp Composite polymer-impregnated active material for nonaqueous secondary battery electrode
WO2011122261A1 (en) * 2010-03-30 2011-10-06 株式会社クレハ Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
JP2013171838A (en) * 2012-02-21 2013-09-02 Samsung Sdi Co Ltd Lithium battery

Also Published As

Publication number Publication date
JP2016076292A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
KR101323179B1 (en) Non-aqueous secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP6685940B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
WO2015152113A1 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP6279233B2 (en) Lithium secondary battery
JP6654793B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
JP2013145669A (en) Nonaqueous electrolyte secondary battery
JP2013178913A (en) Nonaqueous electrolyte secondary battery
WO2016147976A1 (en) Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
WO2014109366A1 (en) Nonaqueous electrolyte secondary battery
JP2014007010A (en) Lithium secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP2017526145A (en) Anode materials for lithium-ion batteries
KR102180458B1 (en) Lithium secondary battery
JP6063705B2 (en) Nonaqueous electrolyte secondary battery
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
JP5978024B2 (en) Non-aqueous secondary battery
WO2017094526A1 (en) Electrode for electrochemical elements and lithium ion secondary battery
JP2017091942A (en) Nonaqueous secondary battery
JP2015125972A (en) Nonaqueous electrolyte secondary battery
JP6344470B2 (en) Lithium ion secondary battery
WO2016125726A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP