JP5734599B2 - CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them - Google Patents

CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them Download PDF

Info

Publication number
JP5734599B2
JP5734599B2 JP2010182144A JP2010182144A JP5734599B2 JP 5734599 B2 JP5734599 B2 JP 5734599B2 JP 2010182144 A JP2010182144 A JP 2010182144A JP 2010182144 A JP2010182144 A JP 2010182144A JP 5734599 B2 JP5734599 B2 JP 5734599B2
Authority
JP
Japan
Prior art keywords
target material
sputtering target
crti
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182144A
Other languages
Japanese (ja)
Other versions
JP2012041585A (en
Inventor
長谷川 浩之
浩之 長谷川
澤田 俊之
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010182144A priority Critical patent/JP5734599B2/en
Priority to CN201180039730.7A priority patent/CN103119186B/en
Priority to PCT/JP2011/068290 priority patent/WO2012023475A1/en
Priority to MYPI2013700253A priority patent/MY164775A/en
Priority to TW100129208A priority patent/TWI500791B/en
Publication of JP2012041585A publication Critical patent/JP2012041585A/en
Application granted granted Critical
Publication of JP5734599B2 publication Critical patent/JP5734599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73917Metallic substrates, i.e. elemental metal or metal alloy substrates
    • G11B5/73919Aluminium or titanium elemental or alloy substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Description

本発明は、スパッタリングにより薄膜を形成するために用いられる化合物の生成を抑制したCrTi系合金スパッタリング用ターゲット材およびそれらを使用した垂直磁気記録媒体の製造方法に関するものである。 The present invention relates to a manufacturing method of the perpendicular magnetic recording medium using them was CrTi interlockable Kims sputtering target material and suppress the formation of compounds used to form a thin film by sputtering.

一般に、CrTi系ターゲットは垂直磁気記録媒体の下磁膜に使用されており、純Cr粉末と純Ti粉末を熱間成形することで得られる。そのCrTi系ターゲットは脆い化合物相を多く含み、スパッタリング時に脆い化合物相がパーティクル起因となり、スパッタ膜へパーティクルが付着し製品歩留まりを下げている。そのため、CrTiターゲット中の化合物を減らす必要がある。   In general, a CrTi-based target is used for a lower magnetic film of a perpendicular magnetic recording medium, and is obtained by hot forming a pure Cr powder and a pure Ti powder. The CrTi target contains a lot of fragile compound phases, and the fragile compound phases are caused by particles at the time of sputtering, and the particles adhere to the sputtered film, reducing the product yield. Therefore, it is necessary to reduce the compound in the CrTi target.

上記、CrTiターゲット中の化合物を減らすための対策として、例えば、特公平01−2659号公報(特許文献1)に開示されているように、溶湯を急冷することで、化合物を減らしている。しかし、CrTi系ターゲットは粉末冶金法にて作製する材料で溶湯にすることは出来ないという問題がある。 As a countermeasure for reducing the compound in the above CrTi target, for example, as disclosed in Japanese Patent Publication No. 01-2659 (Patent Document 1), the molten metal is rapidly cooled to reduce the compound. However, there is a problem that the CrTi target cannot be made into a molten metal by a material produced by powder metallurgy.

一方、通常粉末焼結体の場合は融点の80%程度の温度で成形するもので、例えば、CrTi系類似組成のものである、特開2003−226963号公報(特許文献2)に開示されているように、ホットプレスにて1200℃以上の温度で成形している。また、特開2002−212607号公報(特許文献3)に開示されているように、アプセット法にて1200℃の温度で成形している。しかし、この焼結温度が高ければ高いほど化合物は増加する傾向にある。
特公平01−2659号公報 特開2003−226963号公報 特開2002−212607号公報
On the other hand, in the case of a normal powder sintered body, it is molded at a temperature of about 80% of the melting point. For example, it is disclosed in Japanese Patent Laid-Open No. 2003-226963 (Patent Document 2), which has a CrTi-based similar composition. As shown, it is molded at a temperature of 1200 ° C. or higher by a hot press. Further, as disclosed in Japanese Patent Application Laid-Open No. 2002-212607 (Patent Document 3), molding is performed at a temperature of 1200 ° C. by an upset method. However, the higher the sintering temperature, the more the compound tends to increase.
Japanese Patent Publication No. 01-2659 JP 2003-226963 A JP 2002-212607 A

上述した特許文献2、3は、いずれも成形温度が高いために、ターゲット中の化合物が多く存在するために、スパッタ時にパーティクルを多く発生し、スパッタ膜の製品歩留りを低下させるという問題がある。   Patent Documents 2 and 3 described above have a problem in that since the molding temperature is high, there are many compounds in the target, so that many particles are generated during sputtering and the product yield of the sputtered film is lowered.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、ターゲット中の化合物を減少させることで、スパッタ膜に生じるパーティクルを減らしたCrTi系合金スパッタリング用ターゲット材およびそれらを使用した垂直磁気記録媒体の製造方法を提供するものである。
その発明の要旨とするところは、
(1)Tiを35〜65原子%含み、残部Crおよび不可避的不純物からなるCrTi系合金スパッタリング用ターゲット材の製造方法において、該CrTi系合金粉末を800〜1100℃で熱間成形後、成形温度から冷却速度500〜36000℃/hrで冷却して得られたCr(110)のX線回折強度[I(Cr)]とCr2 Ti(311)のX線回折強度[I(Cr2 Ti)]の強度比[I(Cr2 Ti)/I(Cr)]0.50以下とすることを特徴とするCrTi系合金スパッタリング用ターゲット材の製造方法
To solve the problems described above, inventors have conducted intensive result of developing, by reducing the compound in the target, CrTi interlockable Kims sputtering target material with a reduced particle occurring sputtered film And a method of manufacturing a perpendicular magnetic recording medium using them.
The gist of the invention is that
(1) In a method for producing a CrTi alloy sputtering target material containing 35 to 65 atomic% of Ti, the balance being Cr and inevitable impurities, the CrTi alloy powder is hot formed at 800 to 1100 ° C., and then the forming temperature X-ray diffraction intensity [I (Cr)] of Cr (110) obtained by cooling at a cooling rate of 500 to 36000 ° C./hr from the above and X-ray diffraction intensity [I (Cr 2 Ti) of Cr 2 Ti (311) intensity ratio [I (Cr 2 Ti) / I (Cr)] the manufacturing method of CrTi alloy sputtering target material, characterized in that 0.50 the following.

(2)Tiを35〜65原子%含み、残部Crおよび不可避的不純物からなるCrTi系合金スパッタリング用ターゲット材を用いた垂直磁気記録媒体の製造方法において、該CrTi系合金粉末を800〜1100℃で熱間成形後、成形温度から冷却速度500〜36000℃/hrで冷却して得られたCr(110)のX線回折強度[I(Cr)]とCr2 Ti(311)のX線回折強度[I(Cr2 Ti)]の強度比[I(Cr2 Ti)/I(Cr)]0.50以下とすることを特徴とするCrTi系合金スパッタリング用ターゲット材を用いたスパッタリングにより得られた磁性膜を有する垂直磁気記録媒体の製造方法にある。 (2) In a method for producing a perpendicular magnetic recording medium using a CrTi alloy sputtering target material containing 35 to 65 atomic% of Ti, the balance being Cr and unavoidable impurities, the CrTi alloy powder is heated at 800 to 1100 ° C. After hot forming, X-ray diffraction intensity [I (Cr)] of Cr (110) obtained by cooling at a cooling rate of 500 to 36000 ° C./hr from the forming temperature and X-ray diffraction intensity of Cr 2 Ti (311) obtained by sputtering using a [I (Cr 2 Ti)] intensity ratio [I (Cr 2 Ti) / I (Cr)] a CrTi alloy sputtering target material, characterized in that 0.50 the following And a method of manufacturing a perpendicular magnetic recording medium having a magnetic film.

以上述べたように、本発明におけるCrTi系合金およびスパッタリングターゲット材は化合物が少なく、スパッタリング時のパーティクル発生を抑えることにより、スパッタ膜の製品歩留りの向上を図ることが出来る極めて優れた効果を奏するものである。   As described above, the CrTi-based alloy and the sputtering target material in the present invention have few compounds, and exhibit an extremely excellent effect that can improve the product yield of the sputtered film by suppressing the generation of particles during sputtering. It is.

以下、本発明について詳細に説明する。
本発明に係る成分組成として、Tiを35〜65原子%とした理由は、スパッタリングターゲット材としてTiが35原子%未満では、スパッタ後の膜がアモルファスにならず、また、65原子%を超えるとスパッタ後の膜がアモルファスにならない。したがって、その範囲を35〜65原子%とした。好ましくは、40〜60原子%とする。
Hereinafter, the present invention will be described in detail.
As the component composition according to the present invention, the reason why Ti is set to 35 to 65 atomic% is that when Ti is less than 35 atomic% as a sputtering target material, the film after sputtering does not become amorphous and exceeds 65 atomic%. The sputtered film does not become amorphous. Therefore, the range was 35 to 65 atomic%. Preferably, it is 40-60 atomic%.

また、Cr(110)のX線回折強度[I(Cr)]とCr2 Ti(311)のX線回折強度[I(Cr2 Ti)]の強度比が[I(Cr2 Ti)/I(Cr)]が0.50以下とした理由は、0.50より高い場合パーティクルを多く発生するからである。好ましくは0.07以下、より好ましくは0.03以下とする。 Further, X-ray diffraction intensity [I (Cr)] and the intensity ratio of X-ray diffraction intensity of Cr 2 Ti (311) [I (Cr 2 Ti)] is [I (Cr 2 Ti) of Cr (110) / I The reason why (Cr)] is 0.50 or less is that when it is higher than 0.50, many particles are generated. Preferably it is 0.07 or less, More preferably, it is 0.03 or less.

上記の製法としては、原料粉末を800〜1100℃で熱間成形する。800℃未満では、十分な密度が得られない。1100℃を超える温度であると、X線回折強度比の値が大きくなり、かつスパッタ時にパーティクルが多く発生し、スパッタ膜へパーティクルが付着し製品歩留りを低下させる。したがって、その範囲を800〜1100℃とした。好ましくは800〜1050℃とする。より好ましくは、アップセット法では上限を1000℃以下、HIP法で900℃以下とする。   As said manufacturing method, raw material powder is hot-molded at 800-1100 degreeC. If it is less than 800 degreeC, sufficient density cannot be obtained. When the temperature is higher than 1100 ° C., the value of the X-ray diffraction intensity ratio increases, and many particles are generated during sputtering, and the particles adhere to the sputtered film, resulting in a decrease in product yield. Therefore, the range was set to 800-1100 ° C. Preferably it is set as 800-1050 degreeC. More preferably, the upper limit is set to 1000 ° C. or lower in the upset method and 900 ° C. or lower in the HIP method.

また、熱間成形後、熱間成形温度から冷却速度144〜36000℃/hrで冷却することで化合物の生成抑制効果がさらに増す。すなわち、上記冷却速度による急冷をすることで高温相のCrTi固溶体を低温まで維持し、固溶体が化合物へ変態するのを抑制するためである。上記冷却速度の下限の好ましい速度は500℃/hr以上とする。   Moreover, the production | generation suppression effect of a compound increases further by cooling with a cooling rate 144-36000 degrees C / hr from hot forming temperature after hot forming. In other words, the rapid cooling at the cooling rate maintains the CrTi solid solution in the high temperature phase to a low temperature and suppresses the solid solution from transforming into a compound. A preferable lower limit of the cooling rate is 500 ° C./hr or more.

以下、本発明について実施例によって具体的に説明する。
粒度が250μm以下の純Cr粉末と粒度が150μm以下の純Ti粉末を表1に示すCr−Ti合金組成に配合し、混合したものを、スチール材質からなる封入缶に充填し、到達真空度10-1Pa以上で脱気真空封入した後、HIP(熱間等方圧プレス)の場合は、加熱温度800〜1100℃、成形圧力150MPa、加熱保持時間1時間の条件で成形し、その後表1に示す条件で300℃まで冷却速度を空冷(No.3、4、5、7、11、12、13、15、16、19、21、22、23、25、29、30、31、33)か水冷(No.8、9、17、26、27、34)で制御し成形体を作製した。また、アップセット法の場合は、加熱温度800〜1100℃、成形圧力500MPa、加熱保持時間1時間の条件で成形し、その後表1に示す条件で300℃まで冷却速度を空冷か水冷で制御し成形体を作製した。次いで機械加工によりターゲットを作製した。
Hereinafter, the present invention will be specifically described with reference to examples.
A pure Cr powder having a particle size of 250 μm or less and a pure Ti powder having a particle size of 150 μm or less were blended in the Cr—Ti alloy composition shown in Table 1 and mixed into a sealed can made of a steel material, and the ultimate vacuum was 10 After degassing vacuum sealing at -1 Pa or higher, in the case of HIP (hot isostatic pressing), molding is performed under the conditions of a heating temperature of 800 to 1100 ° C., a molding pressure of 150 MPa, and a heating and holding time of 1 hour, and then Table 1 The cooling rate is reduced to 300 ° C. under the conditions shown in (No. 3, 4, 5, 7, 11, 12, 13, 15, 16, 19, 21, 22, 23, 25, 29, 30, 31, 33) It was controlled by water cooling (No. 8, 9, 17, 26, 27, 34) to produce a molded body. In the case of the upset method, molding is performed under conditions of a heating temperature of 800 to 1100 ° C., a molding pressure of 500 MPa, and a heating and holding time of 1 hour, and then the cooling rate is controlled by air cooling or water cooling to 300 ° C. under the conditions shown in Table 1. A molded body was produced. Subsequently, the target was produced by machining.

なお、評価方法としては、化合物ピーク比[I(Cr2 Ti)/I(Cr)]はX線源がCu−Kα線で、スキャンスピード4°/minの条件のX線回折にて測定した。また、パーティクル評価方法は、直径95mm、板厚1.75mmのアルミ基板上にDCマグネトロンスパッタにてArガス圧力0.9Paで成膜し、Optical Surface Analyzerにてパーティクル数を評価した。 As an evaluation method, the compound peak ratio [I (Cr 2 Ti) / I (Cr)] was measured by X-ray diffraction under the condition that the X-ray source was Cu—Kα ray and the scan speed was 4 ° / min. . In the particle evaluation method, a film was formed on an aluminum substrate having a diameter of 95 mm and a plate thickness of 1.75 mm by DC magnetron sputtering at an Ar gas pressure of 0.9 Pa, and the number of particles was evaluated by an optical surface analyzer.

Figure 0005734599
表1に示すように、No.1〜35は本発明例、No.36〜45は比較例である。
Figure 0005734599
As shown in Table 1, no. 1-35 are examples of the present invention, No. 36 to 45 are comparative examples.

表1に示す、比較例No.36、38、40は、成形温度が低く冷却速度が遅いために、得られた粉末成形体の密度が低かったので評価していない。比較例No.37、39、41は、いずれも成形温度が高く、かつ冷却速度が遅いために、X線回折強度比の値が大きく、かつパーティクル数が大きい。比較例No.42は、成形温度が低いために得られた粉末成形体の密度が低かったので評価していない。比較例No.43は、成形後の冷却速度が遅いために、X線回折強度比の値が大きく、かつパーティクル数が大きい。   As shown in Table 1, Comparative Example No. 36, 38 and 40 were not evaluated because the density of the obtained powder compact was low because the molding temperature was low and the cooling rate was slow. Comparative Example No. 37, 39, and 41 all have a high molding temperature and a low cooling rate, so that the value of the X-ray diffraction intensity ratio is large and the number of particles is large. Comparative Example No. No. 42 was not evaluated because the density of the obtained powder compact was low because the molding temperature was low. Comparative Example No. No. 43 has a large X-ray diffraction intensity ratio and a large number of particles because the cooling rate after molding is slow.

比較例No.44は、Ti含有量が低いために、スパッタ後の膜がアモルファスにならないために評価していない。比較例No.45は、Ti含有量が高いために、比較例No.44と同様に、スパッタ後の膜がアモルファスにならないために評価していない。これに対し、本発明例である、No.1〜35は、いずれも本発明条件を満足していることから、X線回折強度を0.5以下に抑えることができ、かつパーティクル数の小さいことが分かる。   Comparative Example No. No. 44 is not evaluated because the Ti content is low and the film after sputtering does not become amorphous. Comparative Example No. No. 45 is a comparative example No. 45 because of its high Ti content. Similar to 44, the film after sputtering is not evaluated because it does not become amorphous. In contrast to this, No. 1 to 35 all satisfy the conditions of the present invention, so that the X-ray diffraction intensity can be suppressed to 0.5 or less and the number of particles is small.

以上のように、本発明による原料粉末を800〜1100℃の温度範囲で熱間成形し、かつその熱間成形後に成形温度から冷却速度144〜36000℃/hrの急速冷却することで、化合物生成量の少ないCrTi系合金およびCrTi系ターゲットを製造することが可能となり、スパッタ膜の製品歩留りの向上を図ることが出来た。



特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the raw material powder according to the present invention is hot-molded in a temperature range of 800 to 1100 ° C., and after the hot molding, rapid cooling is performed at a cooling rate of 144 to 36000 ° C./hr from the molding temperature. It was possible to manufacture a CrTi-based alloy and a CrTi-based target with a small amount, and it was possible to improve the product yield of the sputtered film.



Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

Tiを35〜65原子%含み、残部Crおよび不可避的不純物からなるCrTi系合金スパッタリング用ターゲット材の製造方法において、該CrTi系合金粉末を800〜1100℃で熱間成形後、成形温度から冷却速度500〜36000℃/hrで冷却して得られたCr(110)のX線回折強度[I(Cr)]とCr2 Ti(311)のX線回折強度[I(Cr2 Ti)]の強度比[I(Cr2 Ti)/I(Cr)]0.50以下とすることを特徴とするCrTi系合金スパッタリング用ターゲット材の製造方法In a method for producing a CrTi alloy sputtering target material containing 35 to 65 atomic% of Ti, the balance being Cr and inevitable impurities, the CrTi alloy powder is hot formed at 800 to 1100 ° C., and then cooled from the forming temperature. 500-36000 intensity of X-ray diffraction intensity of ° C. / hr at cooling-obtained Cr (110) [I (Cr )] and X-ray diffraction intensity of Cr 2 Ti (311) [I (Cr 2 Ti)] the ratio [I (Cr 2 Ti) / I (Cr)] the manufacturing method of CrTi alloy sputtering target material, characterized by 0.50 or less. Tiを35〜65原子%含み、残部Crおよび不可避的不純物からなるCrTi系合金スパッタリング用ターゲット材を用いた垂直磁気記録媒体の製造方法において、該CrTi系合金粉末を800〜1100℃で熱間成形後、成形温度から冷却速度500〜36000℃/hrで冷却して得られたCr(110)のX線回折強度[I(Cr)]とCr2 Ti(311)のX線回折強度[I(Cr2 Ti)]の強度比[I(Cr2 Ti)/I(Cr)]0.50以下とすることを特徴とするCrTi系合金スパッタリング用ターゲット材を用いたスパッタリングにより得られた磁性膜を有する垂直磁気記録媒体の製造方法In a method for manufacturing a perpendicular magnetic recording medium using a CrTi alloy sputtering target material containing 35 to 65 atomic% of Ti, the balance being Cr and inevitable impurities, the CrTi alloy powder is hot-formed at 800 to 1100 ° C. Thereafter, the X-ray diffraction intensity [I (Cr)] of Cr (110) and the X-ray diffraction intensity [I (Cr) of Cr 2 Ti (311) obtained by cooling at a cooling rate of 500 to 36000 ° C./hr from the molding temperature. Cr 2 Ti)] strength ratio [I (Cr 2 Ti) / I (Cr)] is 0.50 or less, and a magnetic film obtained by sputtering using a CrTi alloy sputtering target material A method for manufacturing a perpendicular magnetic recording medium having:
JP2010182144A 2010-08-17 2010-08-17 CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them Active JP5734599B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010182144A JP5734599B2 (en) 2010-08-17 2010-08-17 CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them
CN201180039730.7A CN103119186B (en) 2010-08-17 2011-08-10 CrTi-based alloy and sputtering target material, perpendicular magnetic recording medium, and processes for producing same
PCT/JP2011/068290 WO2012023475A1 (en) 2010-08-17 2011-08-10 CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND PROCESSES FOR PRODUCING SAME
MYPI2013700253A MY164775A (en) 2010-08-17 2011-08-10 CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND PRODUCTION METHODS THEREOF
TW100129208A TWI500791B (en) 2010-08-17 2011-08-16 CrTi alloy and sputtering target material, vertical magnetic recording medium and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182144A JP5734599B2 (en) 2010-08-17 2010-08-17 CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them

Publications (2)

Publication Number Publication Date
JP2012041585A JP2012041585A (en) 2012-03-01
JP5734599B2 true JP5734599B2 (en) 2015-06-17

Family

ID=45605129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182144A Active JP5734599B2 (en) 2010-08-17 2010-08-17 CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them

Country Status (5)

Country Link
JP (1) JP5734599B2 (en)
CN (1) CN103119186B (en)
MY (1) MY164775A (en)
TW (1) TWI500791B (en)
WO (1) WO2012023475A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854308B2 (en) * 2010-05-06 2016-02-09 日立金属株式会社 Cr-Ti alloy target material
JP5964121B2 (en) * 2012-04-18 2016-08-03 山陽特殊製鋼株式会社 CrTi alloy for adhesion film layer and sputtering target material used for magnetic recording medium, and perpendicular magnetic recording medium using the same
JP6312009B2 (en) * 2015-02-12 2018-04-18 日立金属株式会社 Cr-Ti alloy sputtering target material and method for producing the same
CN112517917B (en) * 2020-11-25 2023-04-18 河南东微电子材料有限公司 Preparation method of CrTiLa alloy powder for chromium-titanium target material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083893B2 (en) * 1987-02-12 1996-01-17 株式会社日立製作所 In-plane magnetic recording medium
JPH10134631A (en) * 1996-10-31 1998-05-22 Tokyo Gas Co Ltd Liminaire installation device responding to double ceiling
JPH10298742A (en) * 1997-04-23 1998-11-10 Hitachi Metals Ltd Cr-ti series target
JPH11134631A (en) * 1997-10-27 1999-05-21 Hitachi Metals Ltd Magnetic record medium
JPH11140506A (en) * 1997-11-10 1999-05-25 Daido Steel Co Ltd Production of multielement metal powder sintered target
CN1195098C (en) * 2002-10-28 2005-03-30 天津大学 Manufacturing method for producing target material with high resistance used in metal film resistor with high stability by using sputtering technique
JP4499044B2 (en) * 2006-01-04 2010-07-07 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium and magnetic storage device using the same
JP4331182B2 (en) * 2006-04-14 2009-09-16 山陽特殊製鋼株式会社 Soft magnetic target material
JP2009059431A (en) * 2007-08-31 2009-03-19 Showa Denko Kk Magnetic recording medium and magnetic recording and reproducing apparatus
JP5854308B2 (en) * 2010-05-06 2016-02-09 日立金属株式会社 Cr-Ti alloy target material

Also Published As

Publication number Publication date
TW201221674A (en) 2012-06-01
JP2012041585A (en) 2012-03-01
CN103119186A (en) 2013-05-22
CN103119186B (en) 2015-01-14
MY164775A (en) 2018-01-30
WO2012023475A1 (en) 2012-02-23
TWI500791B (en) 2015-09-21

Similar Documents

Publication Publication Date Title
JP4836136B2 (en) Sputtering target for producing metal glass film and method for producing the same
JP5337331B2 (en) Method for producing sputtering target material
JP5111835B2 (en) (CoFe) ZrNb / Ta / Hf-based target material and method for producing the same
JP2009263796A (en) Sputtering target and method for production thereof
JP2009293108A (en) METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
JP5734599B2 (en) CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them
JP6312009B2 (en) Cr-Ti alloy sputtering target material and method for producing the same
JP2007314883A (en) Method for producing tungsten sintered compact target for sputtering
US20210032741A1 (en) Fe-Pt-OXIDE-BN-BASED SINTERED COMPACT FOR SPUTTERING TARGET
JP6048651B2 (en) Sputtering target and manufacturing method thereof
JP2013112878A (en) Titanium composition
JP5854308B2 (en) Cr-Ti alloy target material
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP5384969B2 (en) Sputtering target material and thin film produced using the same
JP2019143179A (en) Sputtering target
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
JP5377901B2 (en) Sputtering target material for manufacturing Ni-W- (Si, B) -based interlayer film in perpendicular magnetic recording medium
JP7205999B1 (en) Sputtering target material
JP5699017B2 (en) Pd-V alloy-based sputtering target and method for producing the same
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
US20240042520A1 (en) Copper alloy powder for laminating and shaping and method of evaluating that, method of manufacturing copper alloy object, and copper alloy object
US10612128B2 (en) Sputtering target comprising Al—Te—Cu—Zr-based alloy and method of manufacturing same
JP2021109979A (en) Sputtering target material
JP2024037947A (en) Sputtering target and method for manufacturing sputtering target
JP5787273B2 (en) Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5734599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250