JP2013112878A - Titanium composition - Google Patents

Titanium composition Download PDF

Info

Publication number
JP2013112878A
JP2013112878A JP2011262246A JP2011262246A JP2013112878A JP 2013112878 A JP2013112878 A JP 2013112878A JP 2011262246 A JP2011262246 A JP 2011262246A JP 2011262246 A JP2011262246 A JP 2011262246A JP 2013112878 A JP2013112878 A JP 2013112878A
Authority
JP
Japan
Prior art keywords
titanium
powder
particle size
fluidity
diffraction peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011262246A
Other languages
Japanese (ja)
Inventor
Osamu Kanano
治 叶野
Shigehisa Takenaka
茂久 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2011262246A priority Critical patent/JP2013112878A/en
Publication of JP2013112878A publication Critical patent/JP2013112878A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide titanium powder in which fine particle properties and excellent fluidity are made consistent, and which can be used for powder metallurgy by metal injection molding, and to provide a titanium composition serving as a raw material thereof.SOLUTION: The titanium composition is obtained by contacting metallic titanium or a titanium alloy with hydrogen in the temperature range of 600 to 700°C, reducing the temperature and performing heating treatment in the temperature range of 500 to 580°C under the reduced pressure in an inert atmosphere. The titanium composition is characterized in that the diffraction peak Iappearing in the vicinity of 2θ=35° and the diffraction peak Iappearing in the vicinity of 2θ=38° in powder X-ray diffraction measurement satisfy I>I. Further, the titanium powder serving as the raw material of the titanium composition has the maximum particle diameter of ≤74 μm and also has a fluidity of <100 sec/50 g.

Description

本発明は、水素化脱水素法により得られるチタンまたはチタン合金の組成物(以下単に「チタン系組成物」という)および合金粉末(以下単に「チタン系粉末」という)に関する。   The present invention relates to a titanium or titanium alloy composition (hereinafter simply referred to as “titanium-based composition”) and alloy powder (hereinafter simply referred to as “titanium-based powder”) obtained by a hydrodehydrogenation method.

従来、チタン系粉末を製造する手段としては、四塩化チタンを還元性金属で還元してスポンジチタン塊を生成させ、このスポンジチタン塊を粉砕する際に発生する粉末を回収する方法や、四塩化チタンを金属ナトリウムで還元してチタンを製錬することによりチタン粉末を得る方法が知られている。   Conventionally, as a means for producing a titanium-based powder, titanium tetrachloride is reduced with a reducing metal to form a titanium sponge lump, and the powder generated when the sponge titanium lump is crushed, or tetrachloride A method for obtaining titanium powder by reducing titanium with metallic sodium and smelting titanium is known.

このうち、前者の方法は、クロール法によるチタン製錬工程中に副次的に発生するチタン粉を利用する関係で、生成量が制約される上、酸素、窒素または鉄等の不純物成分を多く含有する低品位のものしか得られない欠点があった。また、その粉末粒度も60〜20メッシュ(粒径250〜850μm)程度と粗く、通常は花火や溶接棒の原料といった用途にしか適用することができない。   Among these, the former method uses titanium powder that is generated secondaryly during the titanium smelting process by the crawl method, and the production amount is restricted, and more impurities such as oxygen, nitrogen, or iron are included. There was a drawback that only low-quality products were obtained. Moreover, the particle size of the powder is as coarse as about 60 to 20 mesh (particle size 250 to 850 μm), and it is usually applicable only to uses such as fireworks and raw materials for welding rods.

一方、後者の方法は、一般にハンター法と言われており、比較的安価にチタン粉末を得ることができるが、粉末中に多量のナトリウムおよび塩素成分が残留するため、高い機械的強度と信頼性が要求される自動車部品等を対象とする粉末冶金原料には適していない。   On the other hand, the latter method is generally called the Hunter method, and titanium powder can be obtained at a relatively low cost. However, since a large amount of sodium and chlorine components remain in the powder, high mechanical strength and reliability are obtained. Is not suitable for powder metallurgy raw materials for automobile parts and the like that require

これらの方法に対し、金属チタンの水素脆性を利用して、原料のチタンまたはチタン合金を一旦水素化させた後任意の粒度に粉砕し、これを真空加熱により脱水素してチタン系粉末を得る水素化脱水素法は、粉末冶金の焼結原料に要求される塩素含有量が極めて低いチタン系粉末を製造することができる。   For these methods, utilizing the hydrogen embrittlement of titanium metal, the raw material titanium or titanium alloy is once hydrogenated and then crushed to an arbitrary particle size, and this is dehydrogenated by vacuum heating to obtain a titanium-based powder. The hydrodehydrogenation method can produce a titanium-based powder that has a very low chlorine content required for a sintered raw material for powder metallurgy.

すなわち、この方法では得られるチタン系粉末の品質は主にチタン系原料の材質に依存することから、例えば予め溶解したインゴットの切粉やスクラップを原料とすることにより塩素含有量が極めて少ない高品質のチタン系粉末を得ることが可能となり、しかも粉体粒度を比較的容易に調整することができる利点がある。   That is, the quality of the titanium-based powder obtained by this method mainly depends on the material of the titanium-based raw material, so that, for example, high quality with extremely low chlorine content by using ingot chips and scraps previously dissolved as raw materials. The titanium-based powder can be obtained, and the particle size of the powder can be adjusted relatively easily.

通常、水素化脱水素法によるチタン系粉末の製造方法は、チタン系原料を高温下に水素ガス雰囲気中で水素化する水素化工程、得られた水素化チタン塊または水素化チタン合金塊を所定の粒度に粉砕して分級する粉砕・分級工程、粉砕後の水素化チタン系粉末を高温の真空中で脱水素処理する脱水素工程、脱水素時に焼結したチタン塊を解砕する工程および得られたチタン系粉末を所定の粒度に分級調整する篩別工程から構成されている。   Usually, the titanium-based powder production method by hydrodehydrogenation method includes a hydrogenation step in which a titanium-based raw material is hydrogenated in a hydrogen gas atmosphere at a high temperature, and the obtained titanium hydride lump or titanium hydride alloy lump is predetermined. Pulverization / classification process for pulverizing and classifying to the particle size of the powder, dehydrogenation process for dehydrogenating the pulverized titanium hydride-based powder in a high-temperature vacuum, and a process for pulverizing the titanium ingot sintered at the time of dehydrogenation It comprises a sieving step for classifying and adjusting the obtained titanium-based powder to a predetermined particle size.

しかしながら、上記製造方法においては、脱水素工程の段階で粉末相互が強固に焼結して塊状化し、後工程の解砕工程で微細なチタン系粉末に機械粉砕することができなくなる現象が生じ、これが工業的製造技術としての大きな課題となっている。   However, in the above production method, the powders are strongly sintered and agglomerated at the stage of the dehydrogenation process, and a phenomenon occurs in which it cannot be mechanically pulverized into a fine titanium-based powder in the subsequent pulverization process, This is a big problem as an industrial manufacturing technique.

このような脱水素工程における粉末の焼結を効果的に緩和抑制する手段として、水素化工程後に水素化チタンの塊状物を予め粒径63μm以下の粉体割合が30重量%以下の粒度分布になるように粉砕し、このように粒度調整された水素化チタン系粉末を脱水素処理するチタンまたはチタン合金粉末の製造方法が知られている(例えば、特許文献1参照) 。   As a means for effectively mitigating and suppressing the sintering of powder in such a dehydrogenation step, the titanium hydride lump is preliminarily made into a particle size distribution with a particle size of particle size of 63 μm or less of 30% by weight or less after the hydrogenation step. There is known a method for producing titanium or titanium alloy powder, in which the titanium hydride-based powder pulverized as described above is dehydrogenated in this manner (see, for example, Patent Document 1).

また、同様の目的で、水素化脱水素法によりチタン粉末を製造する方法において、水素化チタンを平均粒径で10μm以下に粉砕し、脱水素温度を300〜600℃とするTi粉末の製造方法も提案されている(例えば、特許文献2参照) 。   For the same purpose, in the method for producing titanium powder by hydrodehydrogenation, titanium powder is pulverized with an average particle size of 10 μm or less, and the dehydrogenation temperature is 300 to 600 ° C. Has also been proposed (see, for example, Patent Document 2).

ところで、金属射出成形による粉末冶金に使用されるチタン粉末は微細であるうえに優れた流動性を有することが極めて重要な要求特性とされており、チタン系粉末に高水準の流動特性がないと均質で高密度の成形体を得ることができない。   By the way, titanium powder used for powder metallurgy by metal injection molding is considered to be a very important requirement characteristic that it is fine and has excellent fluidity. A homogeneous and high-density molded body cannot be obtained.

一般に、粉末の流動性は粒度と密接な相関関係があり、粉末粒度が微細になるほど流動性は低下することが知られている。このため、金属射出成形などの用途に有利なチタン粉末においては、微細化と良流動性との間には背反的関係があり、単純に微細粒径のチタン粉末がこの目的に好適となることにはならないという問題を有していた。   Generally, the fluidity of powder has a close correlation with the particle size, and it is known that the fluidity decreases as the powder particle size becomes finer. For this reason, in titanium powder advantageous for applications such as metal injection molding, there is a tradeoff between refinement and good fluidity, and titanium powder with a fine particle size is simply suitable for this purpose. It had the problem of not becoming.

この流動性の問題を解決するために、チタン粉末の粒度範囲を5〜74μm、平均粒子径を20μm以下とする技術が検討されている(例えば、特許文献3参照)。しかしながら、5μm以下の微粉をすべて除去するためには、製造コストが高くなるという新たな課題が求められる。   In order to solve this fluidity problem, a technique has been examined in which the particle size range of titanium powder is 5 to 74 μm and the average particle size is 20 μm or less (for example, see Patent Document 3). However, in order to remove all fine powders of 5 μm or less, a new problem that the manufacturing cost is increased is required.

特開平5−247503号公報JP-A-5-247503 特開平3−122205号公報Japanese Patent Laid-Open No. 3-122205 特開平7−278601号公報JP 7-278601 A

本発明の目的は、平均粒径が微細であるにも拘わらず、流動性に優れたチタン粉を提供することにあり、特に、射出成形用に好適なチタン粉の提供を目的とするものである。   An object of the present invention is to provide titanium powder excellent in fluidity despite the fact that the average particle size is fine. In particular, the object is to provide titanium powder suitable for injection molding. is there.

本発明者らは、上記状況に鑑みて、微細粒径でありながら優れた流動性を有する金属射出成形用等の用途に好適なチタン系粉末を製造する技術について鋭意研究を重ねたところ、特定の条件にて水素化および脱水素化を行なうことによって粉末X線回折測定において特定のピーク強度比を有するチタン系組成物を得、この組成物を用いて得たチタン系粉末により、前記特性要件を効果的に両立させ得ることを見出し、本願発明を完成するに至った。   In view of the above situation, the present inventors have conducted extensive research on a technique for producing a titanium-based powder suitable for uses such as metal injection molding having a fine particle size and excellent fluidity. By performing hydrogenation and dehydrogenation under the conditions of the above, a titanium-based composition having a specific peak intensity ratio in powder X-ray diffraction measurement is obtained, and the above-mentioned characteristic requirements are obtained by using the titanium-based powder obtained using this composition. Has been found to be able to achieve both effectively, and the present invention has been completed.

即ち、本願発明に係るチタン系組成物は、金属チタンあるいはチタン合金に600〜700℃の温度域において水素を接触させ得られたチタンあるいはチタン合金の水素化物を、不活性雰囲気の減圧下500〜580℃の温度域で加熱処理することによって得られるチタン系組成物であり、粉末X線回折測定において、2θ=35°近傍に現れる回折ピークIと2θ=38°近傍に現れる回折ピークIがI>Iであることを特徴とするものである。 That is, the titanium-based composition according to the present invention is a titanium or titanium alloy hydride obtained by contacting metal titanium or a titanium alloy with hydrogen in a temperature range of 600 to 700 ° C. under reduced pressure in an inert atmosphere. A titanium-based composition obtained by heat treatment in a temperature range of 580 ° C., and in powder X-ray diffraction measurement, a diffraction peak I 1 that appears in the vicinity of 2θ = 35 ° and a diffraction peak I 2 that appears in the vicinity of 2θ = 38 ° Is characterized in that I 1 > I 2 .

また、本願発明に係るチタン系組成物においては、最大粒子径74μm以下、流動度が100sec/50g未満であることを好ましい態様とするものである。   In addition, the titanium-based composition according to the present invention preferably has a maximum particle diameter of 74 μm or less and a fluidity of less than 100 sec / 50 g.

前記した特徴を有するチタン粉あるいはチタン合金粉は、74μm以下と微粒であるにもかかわらず、流動性に優れているという効果を奏するものであり、特に、射出成形用のチタン粉として好適に利用することができる。   Titanium powder or titanium alloy powder having the characteristics described above has the effect of excellent fluidity despite being fine particles of 74 μm or less, and is particularly suitably used as titanium powder for injection molding. can do.

六方晶チタンのJCPDS(44−1294)に報告されているXRDチャートである。It is an XRD chart reported in JCPDS (44-1294) of hexagonal titanium. 六方晶チタンの格子面を示す模式図である。It is a schematic diagram which shows the lattice plane of hexagonal titanium. 実施例のXRDチャートである。It is an XRD chart of an Example. 比較例のXRDチャートである。It is an XRD chart of a comparative example.

本発明のチタン系組成物は、金属チタンあるいはチタン合金を以下の条件で水素化・脱水素化することを好ましい態様とするものである。   The titanium-based composition of the present invention is a preferred embodiment in which metal titanium or titanium alloy is hydrogenated / dehydrogenated under the following conditions.

金属チタンあるいはチタン合金の水素化反応は、減圧雰囲気下にて、600〜700℃まで加熱し、600〜700℃の温度域において水素ガスと接触させ、水素化による発熱での炉内温度上昇が770℃を超えないように制御して、水素ガス0.2MPa加圧状態のままで室温まで降温させることが好ましい。   The hydrogenation reaction of titanium metal or titanium alloy is heated to 600 to 700 ° C. in a reduced pressure atmosphere and brought into contact with hydrogen gas in the temperature range of 600 to 700 ° C., and the furnace temperature rises due to heat generation due to hydrogenation. It is preferable that the temperature is controlled to not exceed 770 ° C. and the temperature is lowered to room temperature while maintaining the hydrogen gas pressure of 0.2 MPa.

水素化の温度が770℃を超えると、水素化反応で生成した水素化チタンが熱分解して、金属チタンに戻る傾向が強まり好ましくない。   When the temperature of hydrogenation exceeds 770 ° C., titanium hydride produced by the hydrogenation reaction is thermally decomposed and tends to return to metallic titanium, which is not preferable.

また、水素化の雰囲気圧力は加圧状態で行うことが好ましい。水素化反応を加圧状態で行なうことにより、水素化反応速度を高めることができ好ましい。   Moreover, it is preferable to perform the hydrogenation atmosphere pressure in a pressurized state. It is preferable to perform the hydrogenation reaction in a pressurized state because the hydrogenation reaction rate can be increased.

具体的には、100kPa〜350kPa(1気圧〜3.5気圧)の圧力範囲で行なうことが好ましい。炉内圧力が、100kPa未満では、炉内に大気が流入する恐れがあり安全上避けなければならない。   Specifically, it is preferably performed in a pressure range of 100 kPa to 350 kPa (1 atm to 3.5 atm). If the pressure in the furnace is less than 100 kPa, the atmosphere may flow into the furnace and must be avoided for safety.

一方、炉内圧力が350kPaを超える場合には、水素化反応速度に及ぼす改善効果は、飽和傾向を示し、加圧の効果が薄れてくる。   On the other hand, when the furnace pressure exceeds 350 kPa, the improvement effect on the hydrogenation reaction rate shows a saturation tendency, and the effect of pressurization is diminished.

よって、本願発明においては、炉内圧力は、100kPa〜350kPaの範囲が好ましいとされる。 ここで、100kPa=0.1MPa=1気圧である。   Therefore, in the present invention, the furnace pressure is preferably in the range of 100 kPa to 350 kPa. Here, 100 kPa = 0.1 MPa = 1 atm.

ついで、チタン原料の水素化反応で生成した水素化チタンは、一旦降温させられて冷却された後、粉砕・分級工程に移される。粉砕はアルゴン等の不活性ガス雰囲気で行われ、粉砕と分級は同時におこなわれるのが好ましい。   Next, the titanium hydride produced by the hydrogenation reaction of the titanium raw material is once cooled down and cooled, and then transferred to a pulverization / classification step. The pulverization is preferably performed in an inert gas atmosphere such as argon, and the pulverization and classification are preferably performed simultaneously.

水素化チタンの分級は気流分級等の手段を利用して行なうことができ、例えば5μm以下の微粉を完全に除去する等の管理は不要である。気流分級で完全に微粉を除去するためには、製品率を落とすような操業条件を選択しなければならない場合が多いが、本願では特別な微粉除去は不要であり、製造コストの低減が図られる。   Classification of titanium hydride can be performed using means such as air classification, and management such as complete removal of fine powder of 5 μm or less, for example, is unnecessary. In order to completely remove fine powder by air classification, it is often necessary to select operating conditions that reduce the product rate. However, in this application, special fine powder removal is unnecessary and the production cost can be reduced. .

室温まで降温された水素化チタンは、不活性雰囲気で粉砕・分級し最大粒子径74μm以下の水素化チタン粉とすることが好ましい。   The titanium hydride cooled to room temperature is preferably pulverized and classified in an inert atmosphere to obtain a titanium hydride powder having a maximum particle size of 74 μm or less.

ここで、最大粒子径を74μmを超える最大粒子径を有する形に分級した場合には、チタン粉を用いて焼結工程で緻密化しにくい現象を引き起こすので好ましくない。よって、本願発明においては、最大粒子径を74μm以下に分級することが好ましい。   Here, when the maximum particle size is classified into a shape having a maximum particle size exceeding 74 μm, it is not preferable because titanium powder is used to cause a phenomenon that is difficult to be densified in the sintering process. Therefore, in the present invention, it is preferable to classify the maximum particle size to 74 μm or less.

粉砕・分級された水素化チタン粉はついで脱水素工程に移される。脱水素工程は、反応炉において、不活性雰囲気下、必要な減圧下(例えば1×10−4Torr) に真空引きしながら加熱する操作で行われるが、この際の加熱温度は500〜580℃の範囲に設定する必要がある。この際、加熱温度を500℃未満に設定すると脱水素に要する時間が著しく長くなるため生産性が低下し、酸素含有量も増大する。また、580℃を超えると脱水素中に粉末相互の焼結が進行して塊状化し、解砕が困難となる。 The ground and classified titanium hydride powder is then transferred to the dehydrogenation process. The dehydrogenation step is performed by heating in a reaction furnace under an inert atmosphere and under a required reduced pressure (for example, 1 × 10 −4 Torr) while evacuating. The heating temperature at this time is 500 to 580 ° C. It is necessary to set to the range. At this time, if the heating temperature is set to less than 500 ° C., the time required for dehydrogenation becomes remarkably long, so that productivity is lowered and oxygen content is also increased. On the other hand, when the temperature exceeds 580 ° C., the powders are sintered together during dehydrogenation and become agglomerated, making it difficult to disintegrate.

上記の方法で製造されたチタン粉は、粉末X線回折測定において2θ=35°近傍に現れる回折ピークIと2θ=38°近傍に現れる回折ピークIがI>Iであるチタン系組成物を好適に得ることができる。また、上記チタン系組成物を解砕・分級して最大粒子径74μm以下の粒子性状を有するチタン系粉末を得ることができる。 The titanium powder produced by the above method is a titanium-based material in which the diffraction peak I 1 that appears in the vicinity of 2θ = 35 ° and the diffraction peak I 2 that appears in the vicinity of 2θ = 38 ° in the powder X-ray diffraction measurement satisfy I 1 > I 2. A composition can be suitably obtained. In addition, the titanium-based composition can be crushed and classified to obtain a titanium-based powder having a particle property with a maximum particle size of 74 μm or less.

チタン粉末のX線回折のデータは様々報告されている。X線回折の標準ピークを集めているデータベースJCPDSには、六方晶チタンが44−1294の番号で報告されており、図1のピークが報告されている。ここで、I/I=0.83である。 Various data of X-ray diffraction of titanium powder have been reported. In the database JCPDS, which collects standard peaks of X-ray diffraction, hexagonal titanium is reported with the numbers 44-1294, and the peak in FIG. 1 is reported. Here, I 1 / I 2 = 0.83.

2θ=35°近傍に現れる回折ピークIは(100)面に対応し、2θ=38°近傍に現れる回折ピークIは(002)面に対応する。最大ピークは2θ=40°近傍に現れる回折ピークであり、このピークは(101)面に対応する。各ピークに対応する格子面を図2に示す。Iで定義した(100)面はチタン原子の面内密度が低く、格子内部に覆われて存在する原子が多い。 The diffraction peak I 1 appearing near 2θ = 35 ° corresponds to the (100) plane, and the diffraction peak I 2 appearing near 2θ = 38 ° corresponds to the (002) plane. The maximum peak is a diffraction peak that appears in the vicinity of 2θ = 40 °, and this peak corresponds to the (101) plane. The lattice plane corresponding to each peak is shown in FIG. Defined in I 1 (100) plane has a low in-plane density of the titanium atom, atoms present covered within the lattice is large.

で定義した(002)面はチタンの最稠密面であり、面内の原子密度が一番高く、チタン原子は表面に出ている割合が高い。粉末の流動性を考えたとき、原子が表面にでている割合が高いと粉同士の干渉程度が高く流動性が低くなると考えられる。一方、チタン原子が内部に覆われている割合が高い場合は、粉末表面が平滑で、高い流動性を示すと考えられる。 The (002) plane defined by I 2 is the most dense surface of titanium, the atomic density in the plane is the highest, and the proportion of titanium atoms appearing on the surface is high. When considering the flowability of the powder, it is considered that if the ratio of atoms on the surface is high, the degree of interference between the powders is high and the flowability is low. On the other hand, when the ratio of titanium atoms covered inside is high, it is considered that the powder surface is smooth and exhibits high fluidity.

よって、2θ=35°近傍に現れるX線回折強度Iおよび2θ=38°近傍に現れるX線回折強度I強度が、I>Iという関係を満足するチタン粉は、流動性が高くなるものと考えられる。 Therefore, the titanium powder in which the X-ray diffraction intensity I 1 appearing near 2θ = 35 ° and the X-ray diffraction intensity I 2 appearing near 2θ = 38 ° satisfy the relationship of I 1 > I 2 has high fluidity. It is considered to be.

本発明によるチタン系粉末は、最大粒子径74μm以下の粒子性状を備えており、従来報告されている金属射出成形用などに要求される粉末の粒度分布と比べて微細粉を含有しているが優れた流動性を発揮し、常に均質で高密度の成形体を得るために好適である。   The titanium-based powder according to the present invention has a particle property with a maximum particle size of 74 μm or less, and contains fine powder as compared with the particle size distribution of powder that is conventionally required for metal injection molding. It is suitable for exhibiting excellent fluidity and always obtaining a uniform and high-density molded body.

このように本発明に従えば、特定された条件による水素化工程、脱水素工程を施すことにより、特に金属射出成形等による粉末冶金用として好適な微細粒子性状と良流動性を同時に備え、かつ酸素含有量の低い高品位のチタン系粉末を効率よく製造することが可能となる。   Thus, according to the present invention, by performing the hydrogenation step and the dehydrogenation step under the specified conditions, it has fine particle properties and good fluidity suitable for powder metallurgy particularly by metal injection molding, etc., and It becomes possible to efficiently produce a high-quality titanium-based powder having a low oxygen content.

[実施例1]
純チタン(JIS−1種相当、酸素含有量500ppm) のインゴットを切削した厚さ約2mm、長さ約30mmの切粉を用い、これをステンレス製容器に装入したのち、真空加熱炉に収納して650℃まで真空雰囲気下にて昇温した。ここで、加熱炉ヒーターをオフにし、炉内に精製した水素ガスを供給した。炉内はチタンと水素ガスの発熱反応により昇温したが、炉内温度が770℃を超えないよう調整しながら、かつ、炉内の水素分圧が0.2MPaの加圧状態を維持しながら、炉内温度を維持した。約1時間後に水素吸収が完了したので、炉内を0.2MPaの水素加圧のまま常温まで冷却した。この処理によってほぼ理論量(TiH換算) 相当の水素が吸収された。このようにして処理した水素化チタン塊をアルゴン雰囲気で粉砕し、最大粒子径が74μm以下になるよう気流分級した。
[Example 1]
Using pure titanium (corresponding to JIS-1 type, oxygen content 500ppm) cutting ingot of about 2mm in thickness and about 30mm in length, this was placed in a stainless steel container and stored in a vacuum heating furnace The temperature was raised to 650 ° C. in a vacuum atmosphere. Here, the heating furnace heater was turned off, and purified hydrogen gas was supplied into the furnace. The temperature in the furnace was raised by an exothermic reaction between titanium and hydrogen gas, while adjusting the furnace temperature so that it did not exceed 770 ° C. and maintaining the pressurized state where the hydrogen partial pressure in the furnace was 0.2 MPa. The furnace temperature was maintained. Since hydrogen absorption was completed after about 1 hour, the inside of the furnace was cooled to room temperature with a hydrogen pressure of 0.2 MPa. By this treatment, hydrogen corresponding to a theoretical amount (in terms of TiH 2 ) was absorbed. The titanium hydride lump treated in this way was pulverized in an argon atmosphere, and airflow classification was performed so that the maximum particle size was 74 μm or less.

上記の水素化チタン粉末を容器に入れ、真空加熱炉で550℃まで加熱した。約500℃から水素化物の乖離による水素ガスが発生するが、1×10−4Torrの真空に回復するまで真空排気を続けた。 The titanium hydride powder was put in a container and heated to 550 ° C. in a vacuum heating furnace. Hydrogen gas was generated from about 500 ° C. due to hydride separation, but evacuation was continued until the vacuum was recovered to 1 × 10 −4 Torr.

皿状容器内から脱水素チタン塊を取り出し、解砕・分級により最大粒子径74μm以下のチタン粉末を得た。このチタン粉末のXRD測定、および流動度測定をおこなった。XRD回折は、リガク製RINT−2000を用いておこなった。流動度はJIS Z 2502に準拠して測定した。得られたXRDチャートを図3に示すが、2θ=35°近傍に現れる回折ピークIと2θ=38°近傍に現れる回折ピークIの比I/I=1.2であった。流動度は85sec/50gであった。 A dehydrogenated titanium lump was taken out from the dish-like container, and titanium powder having a maximum particle size of 74 μm or less was obtained by crushing and classification. This titanium powder was subjected to XRD measurement and fluidity measurement. XRD diffraction was performed using Rigaku RINT-2000. The fluidity was measured according to JIS Z 2502. The obtained XRD chart is shown in FIG. 3, which was a ratio I 1 / I 2 = 1.2 of the diffraction peak I 1 appearing near 2θ = 35 ° and the diffraction peak I 2 appearing near 2θ = 38 °. The fluidity was 85 sec / 50 g.

[比較例1]
スポンジチタン製造時に発生する微細粉を集めて、気流分級により、最大粒子径74μm以下のチタン粉末を得た。実施例1と同じ条件で、粉末のXRD回折、流動度測定をおこなった。XRDチャートを図4に示す。2θ=35°近傍に現れる回折ピークIと2θ=38°近傍に現れる回折ピークIの比I/I=0.9であった。流動度は与えられた条件で粉末の流動が起こらず測定不能であった。
[Comparative Example 1]
Fine powder generated during the production of sponge titanium was collected, and titanium powder having a maximum particle size of 74 μm or less was obtained by air classification. Under the same conditions as in Example 1, XRD diffraction and fluidity measurement of the powder were performed. An XRD chart is shown in FIG. The ratio I 1 / I 2 = 0.9 between the diffraction peak I 1 appearing near 2θ = 35 ° and the diffraction peak I 2 appearing near 2θ = 38 °. The fluidity was not measurable because no powder flow occurred under the given conditions.

以上のとおり、金属射出成形などの用途に好適な微細粒度と流動特性を兼備した高品位のチタン系粉末を工業的に生産性よく製造することが可能となる。


As described above, it is possible to industrially produce a high-grade titanium-based powder having a fine particle size and fluidity suitable for applications such as metal injection molding with high productivity.


Claims (2)

金属チタンあるいはチタン合金に600〜700℃の温度域において水素を接触させ得られたチタンあるいはチタン合金の水素化物を、不活性雰囲気の減圧下500〜580℃の温度域で加熱処理することによって得られるチタン系組成物であり、
粉末X線回折測定において、2θ=35°近傍に現れる回折ピークIと2θ=38°近傍に現れる回折ピークIがI>Iであることを特徴とするチタン系組成物。
Obtained by heat-treating titanium or titanium alloy hydride obtained by contacting metal titanium or titanium alloy with hydrogen in a temperature range of 600 to 700 ° C. in a temperature range of 500 to 580 ° C. under reduced pressure of an inert atmosphere. A titanium-based composition,
In the powder X-ray diffraction measurement, a diffraction peak I 1 appearing in the vicinity of 2θ = 35 ° and a diffraction peak I 2 appearing in the vicinity of 2θ = 38 ° satisfy I 1 > I 2 .
最大粒子径74μm以下、流動度が100sec/50g未満であることを特徴とする請求項1に記載のチタン系組成物。


2. The titanium-based composition according to claim 1, having a maximum particle size of 74 μm or less and a fluidity of less than 100 sec / 50 g.


JP2011262246A 2011-11-30 2011-11-30 Titanium composition Pending JP2013112878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262246A JP2013112878A (en) 2011-11-30 2011-11-30 Titanium composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262246A JP2013112878A (en) 2011-11-30 2011-11-30 Titanium composition

Publications (1)

Publication Number Publication Date
JP2013112878A true JP2013112878A (en) 2013-06-10

Family

ID=48708705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262246A Pending JP2013112878A (en) 2011-11-30 2011-11-30 Titanium composition

Country Status (1)

Country Link
JP (1) JP2013112878A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176700A1 (en) * 2018-03-16 2019-09-19 トーホーテック株式会社 Titanium powder and method for producing same
CN110666178A (en) * 2019-08-26 2020-01-10 中国航天空气动力技术研究院 Recovery processing method of additive manufacturing waste titanium or titanium alloy powder
KR102323009B1 (en) * 2020-07-09 2021-11-10 한국생산기술연구원 Surface treatment method for improving the flowability of titanium powder for additive manufacturing and titanium powder for additive manufacturing manufactured thereby
KR102323008B1 (en) * 2020-07-09 2021-11-10 한국생산기술연구원 Method for surface treatment of metal powder for 3D printing and metal powder for 3D printing produced thereby
CN114226735A (en) * 2021-11-23 2022-03-25 成都先进金属材料产业技术研究院股份有限公司 Powdery titanium-based brazing filler metal and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122205A (en) * 1989-10-05 1991-05-24 Nippon Steel Corp Manufacture of ti powder
JPH05247503A (en) * 1992-03-06 1993-09-24 Toho Titanium Co Ltd Production of titanium or titanium alloy powder
JPH0688104A (en) * 1992-07-21 1994-03-29 Nippon Steel Corp Production of titanium powder
JPH07278601A (en) * 1994-04-04 1995-10-24 Toho Titanium Co Ltd Titanium-base powder and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122205A (en) * 1989-10-05 1991-05-24 Nippon Steel Corp Manufacture of ti powder
JPH05247503A (en) * 1992-03-06 1993-09-24 Toho Titanium Co Ltd Production of titanium or titanium alloy powder
JPH0688104A (en) * 1992-07-21 1994-03-29 Nippon Steel Corp Production of titanium powder
JPH07278601A (en) * 1994-04-04 1995-10-24 Toho Titanium Co Ltd Titanium-base powder and production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176700A1 (en) * 2018-03-16 2019-09-19 トーホーテック株式会社 Titanium powder and method for producing same
CN112055628A (en) * 2018-03-16 2020-12-08 东邦技术服务股份有限公司 Titanium-based powder and method for producing same
JPWO2019176700A1 (en) * 2018-03-16 2021-03-11 トーホーテック株式会社 Titanium powder and its manufacturing method
EP3766601A4 (en) * 2018-03-16 2021-12-01 Toho Technical Service Co., Ltd. Titanium powder and method for producing same
CN110666178A (en) * 2019-08-26 2020-01-10 中国航天空气动力技术研究院 Recovery processing method of additive manufacturing waste titanium or titanium alloy powder
KR102323009B1 (en) * 2020-07-09 2021-11-10 한국생산기술연구원 Surface treatment method for improving the flowability of titanium powder for additive manufacturing and titanium powder for additive manufacturing manufactured thereby
KR102323008B1 (en) * 2020-07-09 2021-11-10 한국생산기술연구원 Method for surface treatment of metal powder for 3D printing and metal powder for 3D printing produced thereby
CN114226735A (en) * 2021-11-23 2022-03-25 成都先进金属材料产业技术研究院股份有限公司 Powdery titanium-based brazing filler metal and preparation method thereof
CN114226735B (en) * 2021-11-23 2024-03-26 成都先进金属材料产业技术研究院股份有限公司 Powdery titanium-based brazing filler metal and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2019085183A1 (en) Method for fabricating titanium and titanium alloy metallurgical products
RU2572928C2 (en) Powder mix for production of titanium alloy, titanium alloy made thereof and methods of their fabrication
CN105624447B (en) A kind of method of ultra-fine cemented carbide crystal grain refinement and even size distribution
US8920712B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
JP2021515106A (en) Powder metallurgy sputtering target and its manufacturing method
KR101421244B1 (en) The fabrication method of spherical titanium powder by plasma treatment and the spherical titanium powder thereby
JP2012132100A (en) Method for fabricating metallic article without any melting
KR101411429B1 (en) The fabrication method of spherical titanium powder and the spherical titanium powder thereby
JP2013112878A (en) Titanium composition
WO2012148471A1 (en) Powder metallurgy methods for the production of fine and ultrafine grain ti, and ti alloys
US20160243617A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
Luo et al. Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices
CN114481053B (en) Magnesium zinc aluminum nickel vanadium alloy target and manufacturing method thereof
JP4885065B2 (en) Method for manufacturing tungsten sintered compact target for sputtering
CN111910114A (en) Endogenous nano carbide reinforced multi-scale FCC high-entropy alloy-based composite material and preparation method thereof
Shen et al. Microstructure of a commercial W–1% La2O3 alloy
CN115725944A (en) Preparation method of tungsten-titanium sputtering target material
JP2015196885A (en) Manufacturing method of ultra-low oxygen/ultra-high pure chromium target and ultra-low oxygen/ultra-high pure chromium target
JP2013204075A (en) Method for producing fine reduced iron powder
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
CN112355312A (en) Activation sintering preparation method of ultrafine-grained pure molybdenum metal material
JP5734599B2 (en) CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them
CN104475747A (en) Method for sintering preparation of tantalum powder for high-purity tantalum ingots by carbon reduction process
JP2821662B2 (en) Titanium-based powder and method for producing the same
WO2013022531A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150806