JP2782665B2 - Method for producing titanium or titanium alloy powder - Google Patents

Method for producing titanium or titanium alloy powder

Info

Publication number
JP2782665B2
JP2782665B2 JP8465192A JP8465192A JP2782665B2 JP 2782665 B2 JP2782665 B2 JP 2782665B2 JP 8465192 A JP8465192 A JP 8465192A JP 8465192 A JP8465192 A JP 8465192A JP 2782665 B2 JP2782665 B2 JP 2782665B2
Authority
JP
Japan
Prior art keywords
titanium
powder
particle size
less
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8465192A
Other languages
Japanese (ja)
Other versions
JPH05247503A (en
Inventor
良治 村山
英一 深澤
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP8465192A priority Critical patent/JP2782665B2/en
Publication of JPH05247503A publication Critical patent/JPH05247503A/en
Application granted granted Critical
Publication of JP2782665B2 publication Critical patent/JP2782665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素化脱水素法による
チタンまたはチタン合金粉末(以下単に「チタン系粉
末」という。)の製造方法、詳しくは脱水素処理工程を
改良して水素化チタンまたは水素化チタン合金粉末(以
下単に「水素化チタン系粉末」という。)の焼結現象を
抑制しながら酸素含有量の少ない高品位のチタン系粉末
を効率よく製造するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing titanium or titanium alloy powder (hereinafter simply referred to as "titanium-based powder") by a hydrodehydrogenation method. Alternatively, the present invention relates to a method for efficiently producing a high-quality titanium-based powder having a low oxygen content while suppressing a sintering phenomenon of a titanium hydride alloy powder (hereinafter, simply referred to as “titanium hydride-based powder”).

【0002】[0002]

【従来の技術】従来、チタン系粉末を製造する手段とし
ては、四塩化チタンを金属マグネシウムにより還元して
スポンジチタン塊を生成させる過程で、スポンジチタン
塊を粉砕する際に発生する粉末を回収する方法、四塩化
チタンを金属ナトリウムで還元してチタンを精錬する、
いわゆるハンター法によってチタン粉末を得る方法が知
られている。このうち、前者の方法はチタン精錬工程
(クロール法)中で副次的に発生する粉を利用するもの
である関係で生成量が制約されるうえ、酸素、窒素また
は鉄等の不純物成分を多く含有する低品位のものしか得
られない欠点がある。また、粉末粒度も60〜20メッシュ
(粒径 250〜850 μm)程度と粗く、通常は花火や溶接棒
の原料といった用途にしか適用することができない。一
方、後者の方法は比較的安価にチタン粉末を得ることが
できるが、粉末中に多量のナトリウムおよび塩素成分が
残留するため、高い機械的強度と信頼性が要求される自
動車部品等を対象とする粉末冶金原料には適していな
い。また、微粉を得ることも難しく、45〜150 μm 程度
の粗目の粒分が主体となる。
2. Description of the Related Art Conventionally, as a means for producing a titanium-based powder, powder generated when pulverizing a titanium sponge mass in the process of reducing titanium tetrachloride with magnesium metal to form a titanium sponge mass is recovered. Method, refining titanium by reducing titanium tetrachloride with metallic sodium,
A method of obtaining titanium powder by a so-called Hunter method is known. Among them, the former method uses powder generated as a by-product in the titanium refining process (the crawl method), so the amount produced is limited, and impurities such as oxygen, nitrogen or iron are increased. There is a disadvantage that only low-quality products can be obtained. In addition, the powder has a coarse particle size of about 60 to 20 mesh (particle size of 250 to 850 μm), and is generally applicable only to applications such as fireworks and raw materials for welding rods. On the other hand, the latter method can obtain titanium powder relatively inexpensively, but because a large amount of sodium and chlorine components remain in the powder, it is intended for automobile parts and the like that require high mechanical strength and reliability. Not suitable for powder metallurgy raw materials. Also, it is difficult to obtain fine powder, and coarse particles of about 45 to 150 μm are mainly used.

【0003】これらの方法に対し、金属チタンの水素脆
性を利用して原料のチタンまたはチタン合金(以下単に
「チタン系原料」という。)を一旦水素化させたのち任
意の粒度に粉砕し、これを真空加熱により脱水素してチ
タン系粉末に転化させる水素化脱水素法は、高性能な粉
末冶金原料に必要な極低塩素チタン系粉末を製造するこ
とができる。すなわち、この方法では得られるチタン系
粉末の品質は主にチタン系原料の材質に依存することか
ら、例えば予め溶解したインゴットの切粉やスクラップ
を原料とすることにより塩素含有量が極めて少ない高品
質のチタン系粉末を得ることが可能となる。このほか、
水素化できる材質及び形状であれば比較的安価に入手で
きるスクラップや圧延端材なども使用できるため、原料
の選択範囲が著しく広くなる。また、粒度調整も比較的
容易で、例えば45μm 以下の微粉から250 μm 程度の粗
粉に至る任意の粒度範囲を造り分けることができるな
ど、生産技術面における種々の利点がある。
[0003] In contrast to these methods, the raw material titanium or titanium alloy (hereinafter simply referred to as "titanium-based raw material") is once hydrogenated by utilizing the hydrogen embrittlement of metallic titanium, and then ground to an arbitrary particle size. Is dehydrogenated by heating in a vacuum to convert it into titanium-based powder, and it is possible to produce extremely low-chlorine titanium-based powder required for high-performance powder metallurgy raw materials. In other words, since the quality of the titanium-based powder obtained by this method mainly depends on the material of the titanium-based raw material, for example, by using ingot chips and scraps dissolved in advance as raw materials, the chlorine content is extremely low and high quality is obtained. Can be obtained. other than this,
As long as the material and shape can be hydrogenated, scraps and rolled scraps that can be obtained relatively inexpensively can be used, so that the selection range of raw materials is significantly widened. Further, the particle size can be relatively easily adjusted, and there are various advantages in production technology, for example, an arbitrary particle size range from fine powder of 45 μm or less to coarse powder of about 250 μm can be produced.

【0004】[0004]

【発明が解決しようとする課題】水素化脱水素法による
チタン系粉末の製造プロセスは、チタン系原料を高温
下、水素ガス雰囲気中で水素化する水素化工程、得られ
た水素化チタン塊または水素化チタン合金塊(以下単に
「チタン系塊」という。)を所定の粒度に粉砕する粉砕
工程、粉砕後の水素化チタン系粉末を高温の真空中で脱
水素処理する脱水素工程、脱水素時に焼結したチタン系
塊を破砕する解砕工程および得られたチタン系粉末を所
定の粒度に分級調整する篩別工程の各段階からなってい
る。
The production process of titanium-based powder by hydrodehydrogenation includes a hydrogenation step of hydrogenating a titanium-based material in a hydrogen gas atmosphere at a high temperature, a titanium hydride mass or A pulverizing step of pulverizing a titanium hydride alloy lump (hereinafter simply referred to as “titanium lump”) to a predetermined particle size, a dehydrogenating step of dehydrogenating the pulverized titanium hydride powder in a high-temperature vacuum, It comprises a crushing step of crushing the sometimes-sintered titanium-based lump and a sieving step of classifying and adjusting the obtained titanium-based powder to a predetermined particle size.

【0005】このうち、脱水素工程は通常 500〜900 ℃
の温度範囲に保持された真空加熱炉中でおこなわれる。
この理由は、500 ℃未満の温度では所定の水素量(例え
ば0.06重量%以下) まで脱水素するのに長時間を要する
ため工業的に不利となり、また900 ℃を上廻ると処理中
に粉末の焼結が著しく進行して、後工程の解砕および篩
別処理の円滑な作業性を阻害し、製品チタン系粉末の収
率低下を招くためである。
[0005] Of these, the dehydrogenation step is usually performed at 500 to 900 ° C.
This is performed in a vacuum heating furnace maintained at a temperature range of
The reason for this is that if the temperature is lower than 500 ° C, it takes a long time to dehydrogenate to a predetermined amount of hydrogen (for example, 0.06% by weight or less), which is industrially disadvantageous. This is because sintering remarkably progresses, hinders smooth workability of the crushing and sieving processes in the subsequent steps, and leads to a reduction in the yield of the product titanium-based powder.

【0006】本発明者らは、これら現象のうち粉末が焼
結する原因について多面的に検討を加えた結果、焼結化
の傾向は水素化チタン系粉末中に微粉が占める割合が高
くなるほど顕著となり、脱水素時の温度範囲を 500〜90
0 ℃に設定した場合には無視できない悪影響を及ぼす事
実を解明した。同時に、微粉が多く存在すると脱水素工
程およびその後の工程において酸化あるいは窒化による
汚染も受け易くなり、品質管理上も問題となることが判
明した。
The present inventors have conducted various studies on the cause of powder sintering among these phenomena. As a result, the tendency of sintering becomes more pronounced as the proportion of fine powder in titanium hydride-based powder increases. And the temperature range during dehydrogenation is 500 to 90
We have clarified the fact that setting the temperature to 0 ° C has a considerable adverse effect. At the same time, it has been found that if a large amount of fine powder is present, contamination due to oxidation or nitridation is liable to occur in the dehydrogenation step and the subsequent steps, which poses a problem in quality control.

【0007】本発明は上記の知見に基づいて開発された
もので、その目的は水素化脱水素法を適用するにあたり
脱水素工程における粉末の焼結を効果的に緩和抑制しな
がら酸素含有量の低い高品位のチタン系粉末を効率よく
製造するための方法を提供することにある。
The present invention has been developed on the basis of the above-mentioned findings, and its object is to apply the hydrodehydrogenation method while effectively reducing and suppressing the sintering of the powder in the dehydrogenation step. An object of the present invention is to provide a method for efficiently producing low-grade titanium-based powder.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるチタン系粉末の製造方法は、水素化脱
水素法によるチタン系粉末の製造プロセスにおいて、水
素化工程後に粉砕した水素化チタン系粉末の粒度分布を
予め粒径63μm 以下、好ましくは45μm 以下の粉体割合
が30重量%以下になるように調整し、該水素化チタン系
粉末を脱水素処理することを構成上の特徴とする。
In order to achieve the above object, a method for producing a titanium-based powder according to the present invention is provided in a process for producing a titanium-based powder by a hydrodehydrogenation method. The constitutional feature is that the particle size distribution of the titanium-based powder is adjusted in advance so that the proportion of powder having a particle size of 63 μm or less, preferably 45 μm or less is 30% by weight or less, and the titanium hydride-based powder is dehydrogenated. And

【0009】本発明の原料としては、スポンジチタン
塊、チタンまたはチタン合金インゴットの切削屑、スク
ラップ材、圧延端材などを目的に応じて適宜に選択して
適用することができる。これら原料は、真空置換可能な
水素化炉に装入し、400 ℃以上の温度まで昇温させて水
素ガスを系内に供給しながら水素化処理をおこなう。
[0009] As the raw material of the present invention, titanium sponge lump, cutting waste of titanium or titanium alloy ingot, scrap material, rolled scrap material and the like can be appropriately selected and applied according to the purpose. These raw materials are charged into a vacuum-replaceable hydrogenation furnace, and heated to a temperature of 400 ° C. or more, and subjected to hydrogenation while supplying hydrogen gas into the system.

【0010】水素化処理された原料は脆性化され、ハン
マー等による粉砕によっても容易に粉末にすることが可
能であるが、工業的にはボールミルや振動ミルのような
粉砕装置を用いて機械的に粉砕する。本発明において
は、粉砕した水素化チタン系粉末の粒度分布を粒径63μ
m 以下好ましくは45μm 以下の粉体割合が30重量%以下
になるように予め調整することが主要な要件となる。水
素化チタン系粉末に占める上記の粒径の微粉割合が30重
量%を越えると、脱水素時における焼結化の進行を緩和
抑制することが困難となり、酸素量も著しく増加する。
[0010] The hydrogenated raw material is embrittled and can be easily made into a powder by pulverization with a hammer or the like. However, industrially, mechanically using a pulverizer such as a ball mill or a vibration mill is used. Crushed. In the present invention, the particle size distribution of the ground titanium hydride-based powder is 63μ
The main requirement is to preliminarily adjust the proportion of powder having a particle size of m or less, preferably 45 μm or less, to 30% by weight or less. If the proportion of the fine powder having the above-mentioned particle size in the titanium hydride-based powder exceeds 30% by weight, it becomes difficult to relax and suppress the progress of sintering during dehydrogenation, and the amount of oxygen increases significantly.

【0011】水素化チタン系粉末の上記粒径の微粉を30
重量%以下に除去するには、円型振動篩や気流分級器な
どの篩別装置を用いて分級することによっておこなうこ
とができる。この際の篩別操作は、水素化チタン系粉末
が燃焼又は爆発することを防止するため例えばアルゴン
ガスのような不活性ガス雰囲気中でおこなう必要があ
る。
[0011] The fine powder having the above particle size of titanium hydride-based powder is
The removal by weight or less can be performed by classification using a sieving apparatus such as a circular vibrating sieve or an airflow classifier. The sieving operation at this time needs to be performed in an inert gas atmosphere such as argon gas in order to prevent the titanium hydride-based powder from burning or exploding.

【0012】ついで、粒度調整された水素化チタン系粉
末を容器に充填したのち真空加熱型の脱水素炉にセット
し、所定の温度域、好ましくは 500〜900 ℃の温度範囲
で目標とする水素含有量になるに必要な減圧下(例えば
10-2Torr) に真空引きして脱水素処理をおこなう。
Then, after the titanium hydride-based powder whose particle size has been adjusted is filled in a container, it is set in a vacuum heating type dehydrogenation furnace, and the target hydrogen is set in a predetermined temperature range, preferably in a temperature range of 500 to 900 ° C. Under the vacuum required to reach the content (eg
Vacuum to 10 -2 Torr) and perform dehydrogenation.

【0013】脱水素処理後のチタン系粉末は焼結状態を
呈しているが、その程度は粒径63μm 以下、好ましくは
45μm 以下の微粉が30重量%を越すような粒度分布の水
素化チタン系粉末を用いた場合に比べて緩和抑制されて
おり、ハンマー等の解砕で容器から取り出したのち常用
の粉砕装置を用いて粉砕することにより高収率で目的と
する粒度範囲のチタン系粉末を製造することができる。
[0013] The titanium-based powder after the dehydrogenation treatment is in a sintered state, the degree of which is less than 63 µm, preferably less than 63 µm.
Compared to the case of using titanium hydride-based powder having a particle size distribution such that fine powder of 45 μm or less exceeds 30% by weight, the use of a conventional pulverizer after removing from a container by crushing a hammer etc. By pulverizing the powder, a titanium-based powder having a desired particle size range can be produced in high yield.

【0014】[0014]

【作用】脱水素工程においては、処理すべき水素化チタ
ン系粉末が微細になるほどその表面エネルギーが大きく
なり、このため脱水素時に表面エネルギーが減少する方
向で焼結が進行する。したがって、脱水素工程の処理温
度を好適な 500〜900 ℃の範囲に設定したうえで焼結現
象を軽減させるためには、予め表面エネルギーの大きな
微粉の占める割合を少なくした水素化チタン系粉末を用
いて脱水素処理を施すことが効果的な手段となる。
In the dehydrogenation step, as the titanium hydride-based powder to be treated becomes finer, its surface energy increases, and sintering proceeds in the direction of decreasing the surface energy during dehydrogenation. Therefore, in order to reduce the sintering phenomenon after setting the processing temperature of the dehydrogenation process to a preferable range of 500 to 900 ° C., it is necessary to use a titanium hydride-based powder in which the proportion of fine powder having a large surface energy is reduced in advance. It is an effective means to carry out dehydrogenation treatment.

【0015】本発明においては、工業的に比較的容易に
篩別することができる目開き63μm、好ましくは45μm
の篩を通過する微粉の粉体割合を30重量%以下にした水
素化チタン系粉末を脱水素処理の原料粉に選定したもの
で、この粒度調整が脱水素時における粉末焼結の進行を
効果的に緩和抑制する機能を発揮する。このような作用
を介して後工程の作業性が大幅に向上するとともに、微
粉の酸素汚染に起因する酸素含有量の増加を阻止した高
品位のチタン系粉末を製造することが可能となる。
In the present invention, the mesh size is 63 μm, preferably 45 μm, which can be screened relatively easily on an industrial scale.
Titanium hydride-based powder in which the proportion of fine powder passing through a sieve is reduced to 30% by weight or less as the raw material powder for dehydrogenation treatment. This particle size adjustment has an effect on the progress of powder sintering during dehydrogenation. It exerts the function of suppressing relaxation. Through such an action, the workability in the post-process is greatly improved, and it is possible to produce a high-grade titanium-based powder in which an increase in the oxygen content due to oxygen contamination of the fine powder is prevented.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0017】実施例1〜3、比較例1〜2 原料として純チタン(JIS−1種相当、酸素量0.04wt
%) のインゴットを切削した厚さ約2mm、長さ約30mmの
切粉を用い、これをステンレス製容器に200kg装入した
のち、真空加熱炉に収納して650 ℃まで真空雰囲気下に
昇温した。ついで、容器に水素ガスを供給して約1時間
後に容器系内が大気圧になるのを確認し、加熱炉を取り
外して水素ガスの供給を継続した。30時間後にはほぼ理
論量(TiH2換算) 相当の水素が吸収された。水素化処理
した原料をボールミルで粉砕し、引き続き目開き 150μ
m の円型振動篩を用いて篩別した。ついで、それぞれの
篩下粉末を目開き45μm の篩により粒径45μm 以下の粉
を篩別除去し、粒径45μm以下の粉体割合が異なる水素
化チタン粉を調整した。
Examples 1-3, Comparative Examples 1-2 Pure titanium (equivalent to JIS-1 class, oxygen content 0.04 wt.
%) Ingot of about 2 mm in thickness and about 30 mm in length was cut into a stainless steel container, 200 kg of this was placed in a vacuum heating furnace, and the temperature was raised to 650 ° C in a vacuum atmosphere. did. Then, about 1 hour after supplying hydrogen gas to the container, it was confirmed that the inside of the container system became atmospheric pressure, the heating furnace was removed, and the supply of hydrogen gas was continued. After 30 hours, hydrogen equivalent to a theoretical amount (in terms of TiH 2 ) was absorbed. The hydrogenated raw material is pulverized with a ball mill and then
m was sieved using a circular vibrating sieve. Then, the powder having a particle size of 45 μm or less was removed by sieving the powder under each sieve through a sieve having an opening of 45 μm to prepare titanium hydride powder having a particle size of 45 μm or less and having a different powder ratio.

【0018】上記の水素化チタン粉を容器に入れ、水素
化処理と同様の真空加熱炉にセットして脱水素処理をお
こなった。容器には直径700mm 、高さ50mmのステンレス
製皿状のものを用い、この容器に水素化チタン粉を厚さ
30mmになるように充填して6段に積み重ねた。この状態
で、脱水素温度600 〜750 ℃で到達圧力が10-2torr以下
になるまで脱水素処理を継続した。脱水素処理後は炉内
にアルゴンガスを導入して系内を大気圧に保持しながら
常温まで冷却した。
The above-mentioned titanium hydride powder was placed in a container, set in a vacuum heating furnace similar to that for the hydrogenation treatment, and dehydrogenated. Use a stainless steel dish with a diameter of 700 mm and a height of 50 mm.
Filled to 30 mm and stacked in 6 tiers. In this state, the dehydrogenation treatment was continued at a dehydrogenation temperature of 600 to 750 ° C. until the ultimate pressure became 10 −2 torr or less. After the dehydrogenation treatment, the system was cooled to room temperature while introducing argon gas into the furnace and keeping the system at atmospheric pressure.

【0019】得られた脱水素チタンは容器内で塊状に焼
結しており、これらの焼結塊状物は、いずれも容器から
取り出す際にハンマー等により打砕する必要があった。
The obtained dehydrogenated titanium is sintered in a lump in a container, and any of these sintered lumps must be crushed with a hammer or the like when taken out of the container.

【0020】取り出した塊状チタンにつき、次工程で粉
砕するのに必要な約20mm角以下になるまで手ハンマーで
粉砕し、この際の粉砕難易度を下記の3段階で感性評価
して焼結の進行状態を判定した。その結果を表1に示し
た。 ○ : 手ハンマーで容易に粉砕可能 △ : 手ハンマーで粉砕可能 × : 手ハンマーでの粉砕がかなり困難 また、各試料を粉砕して20mm角以下のサイズにしたの
ち、カッターミルを用い一定の運転条件でスクリーン目
開き3mmおよび1mmの網目を1回づつ通した後、目開き
150μm の円型振動篩を用いて 150μm 以下のチタン粉
末を得、このチタン粉末の酸素含有量を測定した。結果
を表1に併載した。
The removed bulk titanium is pulverized with a hand hammer until it becomes less than about 20 mm square required for pulverization in the next step. Progress was determined. The results are shown in Table 1. ○: Can be easily crushed with a hand hammer △: Can be crushed with a hand hammer ×: Quite difficult to crush with a hand hammer Also, after crushing each sample to a size of 20 mm square or less, constant operation using a cutter mill After passing through a 3mm and 1mm screen mesh once under the conditions,
Using a 150 μm circular vibrating sieve, titanium powder of 150 μm or less was obtained, and the oxygen content of the titanium powder was measured. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から、用いる水素化チタン粉中
に占める粒径45μm 以下の粉が増加するに従って手ハン
マーによる粉砕が困難となり、またチタン粉末中の酸素
含有量が増加する。特に粒径45μm 以下の割合が30重量
%以下の実施例はこの割合を越える比較例に比べて感性
評価が優れ、チタン粉末中の酸素含有量ともに有意に減
少しており、本発明を適用した場合には脱水素時におけ
る焼結が緩和抑制しており、比較例と対比すると微粉に
よる酸素含有量の取込みが明かに軽減されていることが
認められる。
From the results shown in Table 1, as the powder having a particle size of 45 μm or less occupies in the titanium hydride powder used, pulverization with a manual hammer becomes more difficult and the oxygen content in the titanium powder increases. In particular, the examples having a particle size of 45 μm or less having a ratio of 30% by weight or less have excellent sensitivity evaluation as compared with the comparative examples exceeding this ratio, and the oxygen content in the titanium powder is significantly reduced. In this case, the sintering during the dehydrogenation was suppressed and the sintering during dehydrogenation was suppressed, and the uptake of the oxygen content by the fine powder was clearly reduced as compared with the comparative example.

【0023】実施例4〜6、比較例3〜4 粉砕した水素化チタン粉およびチタン粉を目開き 250μ
m の円型振動篩を用いて篩別した以外は実施例1〜3、
比較例1〜2と同一条件で処理し、得られた脱水素チタ
ン塊について同様に感性評価と製品チタン粉末(粒径25
0 μm 以下)に含有する酸素量を測定した。その結果を
表2に示した。
Examples 4 to 6 and Comparative Examples 3 to 4 The pulverized titanium hydride powder and titanium powder were screened with an aperture of 250 μm.
Examples 1 to 3, except that sieving was performed using a circular vibrating sieve of m.
The treatment was carried out under the same conditions as in Comparative Examples 1 and 2, and the resulting dehydrogenated titanium lump was similarly subjected to sensitivity evaluation and product titanium powder (particle diameter 25%).
(0 μm or less) was measured. The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2の結果から、実施例の水素化チタン粉
を適用して脱水素処理を施したチタンは焼結度合が緩和
抑制されていることが判る。そのうえ、比較例に比べて
微粉による酸素含有量の持ち込みが明らかに軽減されて
いることも認められた。
From the results shown in Table 2, it can be seen that the degree of sintering of titanium which has been subjected to dehydrogenation treatment by using the titanium hydride powder of the example is suppressed. Furthermore, it was also recognized that the introduction of the oxygen content by the fine powder was clearly reduced as compared with the comparative example.

【0026】実施例7〜9、比較例5〜6 粉砕した水素化チタン粉を目開き 250μm の円型振動篩
を用いて篩別した。ついで篩下粉末を目開き63μm の円
型振動篩を用いて、粒径63μm 以下の粉末を篩別除去す
ることにより、粒径63μm 以下の粉体割合が異なる水素
化チタン粉末を調整した以外は、実施例1〜3、比較例
1〜2と同一条件で処理し、得られた脱水素チタン塊に
ついて、同様に感性評価およびチタン粉末中の酸素含有
量の測定を行い、その結果を表3に示した。
Examples 7 to 9 and Comparative Examples 5 to 6 Pulverized titanium hydride powder was sieved using a circular vibrating sieve having a mesh size of 250 μm. Next, by using a circular vibrating sieve having a mesh size of 63 μm and removing the powder having a particle size of 63 μm or less, the titanium hydride powder having a different powder ratio having a particle size of 63 μm or less was prepared. The treatment was performed under the same conditions as in Examples 1 to 3 and Comparative Examples 1 and 2, and the resulting dehydrogenated titanium lump was similarly subjected to sensitivity evaluation and measurement of the oxygen content in the titanium powder. It was shown to.

【0027】[0027]

【表3】 [Table 3]

【0028】表3の数値を表2の数値と対比すると、除
去する水素化チタン粉末の粒径を大きくすることによ
り、焼結の緩和と微粉による酸素含有量の取込み量の軽
減が認められる。除去する水素化チタン粉末の粒径を大
きくすることは、その分量だけ全体のチタン系粉末回収
率は低下することとなり、コスト面などを勘案した場合
の数値限定の臨界点は、水素化チタン粉末の粒径が63μ
m 以下にあり、好ましい該粒径は45μm 以下となること
が明確となった。
Comparing the values in Table 3 with the values in Table 2, it can be seen that by increasing the particle size of the titanium hydride powder to be removed, sintering is reduced and the amount of oxygen content taken up by the fine powder is reduced. Increasing the particle size of the titanium hydride powder to be removed decreases the overall titanium-based powder recovery rate by that amount, and the critical point of the numerical limitation when considering cost etc. is the titanium hydride powder. Has a particle size of 63μ
m or less, and the preferred particle size was found to be 45 μm or less.

【0029】実施例10〜12、比較例7〜8 チタン原料として、Ti−6Al−4V合金(ASTM Gra
de5相当品、酸素含有量0.14%)のインゴットを、実施
例1〜3、比較例1〜2と同一の条件で水素化、脱水素
処理を施し、得られた脱水素チタン合金塊について同様
に感性評価およびチタン合金粉末中の酸素含有量の測定
を行い、その結果を表4に示した。
Examples 10 to 12 and Comparative Examples 7 and 8 Ti-6Al-4V alloy (ASTM Gra
de5 equivalent product, oxygen content 0.14%) ingot was subjected to hydrogenation and dehydrogenation treatment under the same conditions as in Examples 1 to 3 and Comparative Examples 1 and 2, and the resulting dehydrogenated titanium alloy ingot was similarly treated. The sensitivity was evaluated and the oxygen content in the titanium alloy powder was measured. The results are shown in Table 4.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】以上のとおり、本発明に従えば水素化脱
水素法によるチタン系粉末の製造工程において予め脱水
素前の水素化チタン系粉末の粒径分布を特定範囲に調整
することにより脱水素処理時の粉末焼結現象を効果的に
緩和抑制することが可能となる。同時に製品チタン系粉
末中の酸素含有量を低減させることもできるから、常に
作業能率よく高品位のチタン系粉末を高収率で製造する
ことができる。したがって、優れた機械的強度と信頼性
が要求される自動車部品等を対象とする粉末冶金用チタ
ン系粉末の工業的な製造技術として極めて有用である。
As described above, according to the present invention, dehydration is performed by adjusting the particle size distribution of the titanium hydride powder before the dehydrogenation to a specific range in the production process of the titanium powder by the hydrodehydrogenation method. It becomes possible to effectively reduce and suppress the powder sintering phenomenon during elementary treatment. At the same time, the oxygen content in the product titanium-based powder can be reduced, so that a high-quality titanium-based powder can always be produced with high work efficiency and high yield. Therefore, it is extremely useful as an industrial production technology of titanium-based powder for powder metallurgy for automobile parts and the like that require excellent mechanical strength and reliability.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素化脱水素法によるチタンまたはチタ
ン合金粉末の製造プロセスにおいて、水素化工程後に粉
砕した水素化チタンまたは水素化チタン合金粉末の粒度
分布を予め粒径63μm 以下の粉体割合が30重量%以下に
なるように調整し、該水素化チタンまたは水素化チタン
合金粉末を脱水素処理することを特徴とするチタンまた
はチタン合金粉末の製造方法。
In a process for producing titanium or titanium alloy powder by a hydrodehydrogenation method, the particle size distribution of titanium hydride or titanium hydride alloy powder pulverized after a hydrogenation step is determined in advance so that the proportion of powder having a particle size of 63 μm or less is reduced. A method for producing titanium or titanium alloy powder, comprising adjusting the content to 30% by weight or less and dehydrogenating the titanium hydride or titanium hydride alloy powder.
【請求項2】 水素化工程後に粉砕した水素化チタンま
たは水素化チタン合金粉末の粒度分布を予め粉径45μm
以下の粉体割合が30重量%以下になるように調整する請
求項1記載のチタンまたはチタン合金粉末の製造方法。
2. The particle size distribution of the titanium hydride or titanium hydride alloy powder pulverized after the hydrogenation step is determined in advance with a powder diameter of 45 μm.
The method for producing a titanium or titanium alloy powder according to claim 1, wherein the proportion of the following powder is adjusted to be 30% by weight or less.
JP8465192A 1992-03-06 1992-03-06 Method for producing titanium or titanium alloy powder Expired - Lifetime JP2782665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8465192A JP2782665B2 (en) 1992-03-06 1992-03-06 Method for producing titanium or titanium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8465192A JP2782665B2 (en) 1992-03-06 1992-03-06 Method for producing titanium or titanium alloy powder

Publications (2)

Publication Number Publication Date
JPH05247503A JPH05247503A (en) 1993-09-24
JP2782665B2 true JP2782665B2 (en) 1998-08-06

Family

ID=13836620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8465192A Expired - Lifetime JP2782665B2 (en) 1992-03-06 1992-03-06 Method for producing titanium or titanium alloy powder

Country Status (1)

Country Link
JP (1) JP2782665B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004375A1 (en) * 1996-07-30 1998-02-05 Toho Titanium Co., Ltd. Titanium-base powder and process for the production of the same
KR100726817B1 (en) * 2006-09-07 2007-06-11 한국생산기술연구원 Manufacturing method for titanium hydride powders
KR101014350B1 (en) * 2010-10-07 2011-02-15 한국기계연구원 Fabrication method of high purity titanium alloy powder, and high purity titanium alloy powder thereby
JP2013112878A (en) * 2011-11-30 2013-06-10 Toho Titanium Co Ltd Titanium composition
KR102021939B1 (en) * 2017-10-20 2019-09-17 한국생산기술연구원 Method for producing high purity metal powder by repeated hydrogenation-dehydrogenation
CN107760897A (en) * 2017-10-30 2018-03-06 东北大学 To hydrogenate method of the titanium sponge as raw material manufacture titanium and titanium alloy and its parts
KR102029687B1 (en) * 2017-12-12 2019-10-10 한국생산기술연구원 Method of manufacturing high purity sintered body
JP7026543B2 (en) * 2018-03-16 2022-02-28 トーホーテック株式会社 Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method
WO2019176700A1 (en) 2018-03-16 2019-09-19 トーホーテック株式会社 Titanium powder and method for producing same
KR102389566B1 (en) * 2020-10-26 2022-04-22 한국생산기술연구원 Iingot for nanoparticle dispersion strengthened composite powder and manufacturing method thereof
KR102300837B1 (en) * 2021-04-15 2021-09-13 한국지질자원연구원 Method for deoxidation of off-grade titanium sponge using magnesium

Also Published As

Publication number Publication date
JPH05247503A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP2009221603A (en) Method for producing spherical titanium alloy powder
CA2233137C (en) Titanium-base powders and process for the production of the same
JP5837407B2 (en) Titanium alloy and manufacturing method thereof
IL309426A (en) Tantalum-tungsten alloy powder and preparation method therefor
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
US4464206A (en) Wrought P/M processing for prealloyed powder
JP2821662B2 (en) Titanium-based powder and method for producing the same
JPH0237402B2 (en)
JP2013112878A (en) Titanium composition
US4655825A (en) Metal powder and sponge and processes for the production thereof
JP2921790B2 (en) Method for producing low oxygen titanium material and low oxygen titanium dissolving material
RU2240896C1 (en) Method for producing finely divided titanium powder
JPH03166330A (en) Tough titanium alloy and its manufacture
JP2987603B2 (en) Method for producing titanium-based powder
EP0801138A2 (en) Producing titanium-molybdenum master alloys
WO2021243175A1 (en) Hdh (hydride-dehydride) process for fabrication of braze alloy powders
JP6987884B2 (en) Titanium powder and its manufacturing method
JP7026543B2 (en) Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method
JP6976415B2 (en) Titanium powder and its manufacturing method
JPH10195504A (en) Titanium hydride powder and its production
JPH07278612A (en) Method for crushing sponge titanium
JPH0776707A (en) Production of titanium powder
JP3459342B2 (en) Method for producing titanium-based powder
JP2002047501A (en) Titanium base powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090522

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100522

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100522

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120522

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120522