JP2987603B2 - Method for producing titanium-based powder - Google Patents

Method for producing titanium-based powder

Info

Publication number
JP2987603B2
JP2987603B2 JP3352458A JP35245891A JP2987603B2 JP 2987603 B2 JP2987603 B2 JP 2987603B2 JP 3352458 A JP3352458 A JP 3352458A JP 35245891 A JP35245891 A JP 35245891A JP 2987603 B2 JP2987603 B2 JP 2987603B2
Authority
JP
Japan
Prior art keywords
titanium
powder
fluidity
apparent density
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3352458A
Other languages
Japanese (ja)
Other versions
JPH05163508A (en
Inventor
良治 村山
英一 深澤
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP3352458A priority Critical patent/JP2987603B2/en
Publication of JPH05163508A publication Critical patent/JPH05163508A/en
Application granted granted Critical
Publication of JP2987603B2 publication Critical patent/JP2987603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素化脱水素法(HD
H法)により粉末冶金に適する高位の見掛密度と優れた
流動性を有するチタン系粉末を製造する方法に関する。
The present invention relates to a hydrodehydrogenation process (HD
H method) to produce a titanium-based powder having a high apparent density and excellent fluidity suitable for powder metallurgy.

【0002】[0002]

【従来の技術】チタンまたはチタン合金は比強度が高
く、耐熱性、耐食性にも優れているため航空機や自動車
部品の材料として有用されているが、加工性の面に難点
があって製品歩留りが低くなる関係で製造コストが高く
なる問題がある。このため、可及的に最終製品に近似す
る形状に成形して加工段階を少なくする部材の製造方法
として粉末冶金法が注目されている。
2. Description of the Related Art Titanium or a titanium alloy is useful as a material for aircraft and automobile parts because of its high specific strength and excellent heat resistance and corrosion resistance. There is a problem that the manufacturing cost increases due to the lowering. For this reason, powder metallurgy has attracted attention as a method of manufacturing a member that can be formed into a shape as close as possible to the final product and that reduces the number of processing steps.

【0003】従来、チタン合金の粉末冶金法には、原料
にチタン粉末とチタン母合金粉末の混合粉を用いる方法
(素粉末法)とチタン合金粉末を用いる方法(合金粉末
法)とがあるが、前者の素粉末法は各原料粉末の混合割
合を変えることで所望の合金組成を形成することができ
るため、技術的、経済的に有利な方法とされている。チ
タン粉の製造技術としては、スポンジチタンなどにより
形成した電極を高速回転させながらプラズマアークによ
って溶解し、遠心力を利用して粉末化するプラズマ回転
電極法が知られている。この方法によれば比較的純度の
高いチタン粉が製造できるが、100 μm 以下の微粉を得
ることが難しく、また電極の成形と溶解工程を含むため
に製造コストが高くなる難点がある。
Conventionally, the powder metallurgy of titanium alloys includes a method of using a mixed powder of titanium powder and a titanium master alloy powder as raw materials (elementary powder method) and a method of using titanium alloy powder (alloy powder method). The former elemental powder method is technically and economically advantageous because a desired alloy composition can be formed by changing the mixing ratio of each raw material powder. As a manufacturing technique of titanium powder, there is known a plasma rotating electrode method in which an electrode formed of titanium sponge or the like is melted by a plasma arc while rotating at a high speed, and powdered by using centrifugal force. According to this method, titanium powder having a relatively high purity can be produced, but it is difficult to obtain fine powder having a size of 100 μm or less, and the production cost is high because of the steps of forming and dissolving the electrodes.

【0004】一方、金属チタンが水素を吸蔵して脆化す
る性質を利用した水素化脱水素法(HDH法)もチタン
粉を製造する手段として良く知られており、この方法に
よる場合には高性能な粉末冶金原料に必要な極低塩素チ
タン粉の製造が可能で、任意粒度のチタン粉を比較的低
コストで得ることができるため工業的規模において広く
利用されている。
[0004] On the other hand, a hydrodehydrogenation method (HDH method) utilizing the property that metallic titanium absorbs hydrogen and embrittles it is also well known as a means for producing titanium powder. It is widely used on an industrial scale because it can produce extremely low chlorine titanium powder required for high performance powder metallurgy raw materials and can obtain titanium powder of any particle size at relatively low cost.

【0005】しかしながら、水素化脱水素法で製造され
るチタン系粉末は、角ばった粒子形状を呈しているた
め、例えば、粒度 150μm 以下のチタン粉では粉体の充
填特性の指標となる見掛密度が 1.7〜1.9g/cm3程度と低
位にあり、また流動性の指標となる流動度もせいぜい40
〜60秒/50g 程度である。
However, the titanium-based powder produced by the hydrodehydrogenation method has an angular particle shape. For example, in the case of titanium powder having a particle size of 150 μm or less, the apparent density which is an index of the powder filling characteristics is used. There is in 1.7~1.9g / cm 3 degree and low, also at best even flowability as a fluidity index 40
~ 60 seconds / 50g.

【0006】見掛密度は、工業的な粉末成形において金
型やゴム型に粉末を充填する際に型の設計に関係する重
要な特性であり、高性能な高強度材料を目的とする場合
にはプレス成形体(グリーン)の密度が高いほど焼成後
の緻密度も増大するため、高い見掛密度値の粉末が良好
な充填特性を与える。流動度についても、工業的な自動
プレス作業での生産性を向上させる目的から流動性に優
れる粉末が要求される。
[0006] The apparent density is an important property related to the design of a mold or rubber mold when filling the powder into a mold or a rubber mold in industrial powder molding. As the density of the green compact increases as the density of the green compact increases, the powder having a high apparent density value gives good filling characteristics. As for the fluidity, powder having excellent fluidity is required for the purpose of improving the productivity in industrial automatic press work.

【0007】水素化脱水素法のプロセスでは、水素脆化
した水素化チタンを粉砕し、加熱真空引きをおこなって
水素を除去したのち加熱焼結により焼結したチタン塊を
解砕して目的粒度のチタン粉末を得る。この製造過程で
中間的に生成する水素化チタンは極めて脆いため、目的
とする粒度、例えば 150μm 以下の粒度に粉砕すること
は容易であるものの、粉砕後の水素化チタンの粒子形状
は外形が鋭角になり易い。このため、該一次粒子が焼結
した脱水素化後のチタン塊もカッター式粉砕機などを用
いて容易にチタン系粉末まで解砕できるが、粒形はやは
り角ばった形状を呈していて見掛密度が低く、流動性の
良くない粉末となる。
[0007] In the hydrodehydrogenation process, titanium embrittled by hydrogen embrittlement is pulverized, heated and evacuated to remove hydrogen, and then the sintered titanium mass is pulverized by heat sintering to obtain a target particle size. To obtain titanium powder. Titanium hydride produced in the middle of this manufacturing process is extremely brittle, so it is easy to pulverize it to the target particle size, for example, a particle size of 150 μm or less. Easy to be. For this reason, the titanium lump after the dehydrogenation, in which the primary particles are sintered, can be easily crushed into titanium-based powder using a cutter-type crusher or the like, but the grain shape still shows a square shape and is apparent. The powder has low density and poor fluidity.

【0008】[0008]

【発明が解決しようとする課題】一般に、見掛密度は流
動度と高い相関性があって、見掛密度が大きくなるに従
って流動性も向上すると言われている。また、この両特
性は粉末の形状や粒度にも関係し、真球に近い粉末ほど
見掛密度が高くなるとともに流動性も増し、粉末が微細
なほど見掛密度は小さくなり流動性は減退する傾向があ
る。このため、通常のセラミックス粉末では造粒などの
処理を施すことによって流動性を向上させる工夫がなさ
れているが、チタン系粉末の場合には非常に活性である
ため、造粒過程で添加剤による汚染現象が生じる等の問
題から適用することができない。
Generally, it is said that the apparent density has a high correlation with the fluidity, and the fluidity improves as the apparent density increases. In addition, both of these properties are related to the shape and particle size of the powder, and the closer the powder is to a perfect sphere, the higher the apparent density and the fluidity increase, and the finer the powder, the smaller the apparent density and the fluidity decreases. Tend. For this reason, ordinary ceramic powders have been devised to improve the fluidity by performing processes such as granulation, but in the case of titanium-based powders, since they are very active, they may be added by additives during the granulation process. It cannot be applied due to problems such as contamination.

【0009】本発明は、水素化脱水素法を適用してチタ
ン系粉末を製造する場合に脱水素後のチタン粉焼結塊に
特定の粉砕処理を施すと円滑に角の取れた粒子形状の粉
末に転化させることができることを実証して開発に至っ
たもので、その目的は水素化脱水素法を用いて粉末冶金
に好適な優れた見掛密度ならびに流動性を有するチタン
系粉末の製造方法を提供することにある。
According to the present invention, when a titanium-based powder is produced by applying a hydrodehydrogenation method, a specific pulverization treatment is applied to a titanium powder sintered mass after dehydrogenation to obtain a smoothly shaped particle shape. A method for producing titanium powder having excellent apparent density and fluidity suitable for powder metallurgy using a hydrodehydrogenation method by demonstrating that it can be converted to powder. Is to provide.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるチタン系粉末の製造方法は、水素化脱
水素法によるチタン系粉末の製造プロセスにおいて、脱
水素後のチタン粉焼結塊を衝撃・打撃の粉砕機構による
機械的手段を介して粉砕し、見掛密度が高く、かつ流動
性に優れたチタン系粉末に転化させることを構成上の特
徴とする。なおこの構成において、チタン系粉末とはチ
タンもしくはチタン基合金を意味する。
In order to achieve the above-mentioned object, a method for producing a titanium-based powder according to the present invention is a method for producing a titanium-based powder by hydrodehydrogenation. The structural feature is that the lump is pulverized through mechanical means by a pulverizing mechanism of impact and impact and converted into a titanium-based powder having a high apparent density and excellent fluidity. In this configuration, the titanium-based powder means titanium or a titanium-based alloy.

【0011】本発明の前提となる水素化脱水素法には、
公知のプロセスが適用される。すなわち、スポンジチタ
ン、純チタンまたはチタン基合金のインゴット切削粉な
どの原料チタンを高温下、水素ガス雰囲気中で水素化す
る水素化工程、水素化チタン塊を不活性雰囲気下で粉砕
する粉砕工程、粉砕後の水素化チタン粉を高温の真空中
で脱水素処理する脱水素工程、脱水素時に焼結したチタ
ン塊を破砕および粉砕する解砕工程、およびチタン粉末
を所定の粒度に分級調整する篩別工程の各段階からな
る。このうち、従来方法では解砕工程における脱水素化
チタン粉焼結塊の粉砕処理に例えばカッターミル等の切
断粉砕機構による粉砕手段が採られていたが、本発明で
はこの粉砕処理を衝撃・打撃の粉砕機構による機械的手
段を用いておこなうところに要点がある。
The hydrodehydrogenation method on which the present invention is based includes:
Known processes apply. That is, a hydrogenation step of hydrogenating raw titanium such as sponge titanium, ingot cutting powder of pure titanium or titanium-based alloy at high temperature in a hydrogen gas atmosphere, a pulverization step of pulverizing a titanium hydride lump in an inert atmosphere, A dehydrogenation step of dehydrogenating the pulverized titanium hydride powder in a high-temperature vacuum, a crushing step of crushing and pulverizing the titanium mass sintered during dehydrogenation, and a sieve for classifying and adjusting the titanium powder to a predetermined particle size It consists of each stage of a separate process. Among these, in the conventional method, the pulverizing means by a cutting and pulverizing mechanism such as a cutter mill is employed for the pulverizing processing of the dehydrogenated titanium powder sintered mass in the pulverizing step. There is a point in performing this using mechanical means by a pulverizing mechanism.

【0012】本発明の目的に好適な衝撃・打撃の粉砕機
構による機械的手段としては、粗砕機または破砕機に分
類されるハンマブレーカー、ハンマクラッシャー、ハン
マーミル等の粉砕装置を挙げることができる。この種の
粉砕装置は、上部から投入された原料がスイングハンマ
が高速回転している内部で繰り返し粉砕され、粉砕され
て所定粒度以下になったものは落下間隙間調整孔(ロス
トル)を通過し、粗粉は粉砕装置の内部に滞留して再粉
砕される構造となっている。粉砕の機構は衝撃と打撃で
あるが、強い力が加わるロストルは幅が10mm程度の角材
を数mm間隔の落下隙間となるように並べるように設計す
る。この際、落下隙間の総面積は落下隙間の寸法によっ
て決まり、例えば1.6mm の場合にはロストル総面積に対
して僅か6%程度となる。したがって、開口部面積を調
整することにより粉砕機内部での滞留時間を増加し、ロ
ストル上でのスイングハンマーと粉砕装置内部のライナ
ーの機構で原料が衝撃・打撃粉砕される頻度が増加す
る。
The mechanical means of the impact / impact pulverizing mechanism suitable for the purpose of the present invention may be a pulverizer such as a hammer breaker, a hammer crusher or a hammer mill classified as a crusher or a crusher. In this type of crushing apparatus, the raw material supplied from above is repeatedly crushed inside a swing hammer rotating at a high speed, and the crushed material having a predetermined particle size or less passes through a gap adjusting hole (Rostor) during dropping. In this structure, the coarse powder stays inside the pulverizer and is re-pulverized. The mechanism of crushing is shock and impact, but Rostor, where strong force is applied, is designed so that square lumbers with a width of about 10 mm are arranged so that drop gaps are several mm apart. At this time, the total area of the drop gap is determined by the size of the drop gap. For example, in the case of 1.6 mm, the total area is only about 6% of the total area of Rostor. Therefore, by adjusting the opening area, the residence time inside the crusher is increased, and the frequency of impact and impact crushing of the raw material by the mechanism of the swing hammer on the roaster and the liner inside the crusher is increased.

【0013】粉末冶金に供するチタン系粉末の粒度は、
通常 150μm 以下であるため、水素化チタン粉の段階で
予め 150μm 以下の粒度に調整しておけば、脱水素化工
程での焼結体は落下隙間が例えば1.6mm であっても前記
粉砕装置により十分 150μm以下の粒度まで粉砕するこ
とが可能となる。このため、数10mm程度に焼結した脱水
素化後のチタン粉塊でも角部が除かれた高見掛密度で流
動性の良好なチタン系微粉末に転化させることができ
る。
The particle size of the titanium-based powder used for powder metallurgy is as follows:
Since the particle size is usually 150 μm or less, if the particle size is adjusted to 150 μm or less in advance at the stage of the titanium hydride powder, the sintered body in the dehydrogenation step can be subjected to the above-mentioned pulverizing device even if the drop gap is 1.6 mm, for example. It is possible to pulverize to a particle size of 150 μm or less. For this reason, even a titanium powder lump after dehydrogenation sintered to about several tens of mm can be converted to a titanium-based fine powder having a high apparent density and good fluidity with corners removed.

【0014】このようにして衝撃・打撃の粉砕機構によ
る機械的手段を介して粉砕されたチタン系粉末は、つい
で所定粒度に篩別処理を施して製品とする。
The titanium-based powder pulverized through the mechanical means of the impact / impact pulverizing mechanism is then subjected to sieving to a predetermined particle size to obtain a product.

【0015】[0015]

【作用】本発明によれば、水素化脱水素法でチタン系粉
末を製造するにあたり、脱水素処理後における焼結チタ
ン塊の粉砕処理を衝撃・打撃による機構の機械的手段を
適用しておこなうことにより、粉砕過程で粒子の角が除
去され、丸みを帯びた粒子形態の微粉末に粉砕すること
ができる。この作用により、粉末冶金に好適な高い見掛
密度と優れた流動性を有する高品位のチタン系粉末を操
作性よく工業的に製造することができる。
According to the present invention, in producing titanium-based powder by hydrodehydrogenation, pulverization of a sintered titanium mass after dehydrogenation is performed by applying mechanical means of a mechanism by impact and impact. As a result, the corners of the particles are removed in the pulverization process, and the particles can be pulverized into fine powder having a rounded particle form. By this action, a high-grade titanium-based powder having high apparent density and excellent fluidity suitable for powder metallurgy can be industrially produced with good operability.

【0016】[0016]

【実施例】【Example】

以下、本発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0017】実施例1 純チタン(JIS−1種相当)のインゴットを切削した
厚さ約2mm、長さ約30mmの切り粉を原料とし、これをス
テンレス容器に200kg 装入したのち加熱炉に移して真空
雰囲気下で 650℃まで昇温した。ついで、容器に水素ガ
スを供給して約1時間後に内圧が大気圧になるのを確認
し、加熱を停止して引き続き水素ガスの供給を継続し
た。約30時間後に理論量相当の水素が吸収されたので、
そのまま水素ガス雰囲気中で常温まで冷却した。処理後
の原料は若干の焼結は認められたが、容器を傾けて棒で
掻き出すことにより取り出すことができた。
Example 1 A raw material was obtained by cutting an ingot of pure titanium (equivalent to JIS-1 class) into a cut piece having a thickness of about 2 mm and a length of about 30 mm, and 200 kg of this was placed in a stainless steel container and then transferred to a heating furnace. The temperature was raised to 650 ° C. in a vacuum atmosphere. Then, about 1 hour after supplying hydrogen gas to the container, it was confirmed that the internal pressure became atmospheric pressure, heating was stopped, and the supply of hydrogen gas was continued. After about 30 hours, the theoretical amount of hydrogen was absorbed,
It was cooled to room temperature in a hydrogen gas atmosphere as it was. Although some sintering was observed in the raw material after the treatment, the raw material could be taken out by tilting the container and scraping it off with a stick.

【0018】水素化処理後の原料を切断粉砕機構のカッ
ターミルで粉砕したのち、目開き150 μm の円型振動篩
によって篩別し、粒度 150μm 以下の水素化チタン粉を
調製した。得られた水素化チタン粉につき、JIS Z
2504(オリフィス口径5mm、試料の乾燥処理を省
略した条件。以下同じ) で測定したところ1.7g/cm3であ
った。また、流動度をJIS Z 2502(試料の乾
燥処理を省略した条件。以下同じ)で測定した結果、46
秒/50g であった。
The raw material after the hydrogenation treatment was pulverized by a cutter mill of a cutting and pulverizing mechanism, and then sieved by a circular vibrating sieve having an opening of 150 μm to prepare titanium hydride powder having a particle size of 150 μm or less. JIS Z for the obtained titanium hydride powder
It was 1.7 g / cm 3 when measured with 2504 (orifice diameter: 5 mm, condition that drying treatment of the sample was omitted; the same applies hereinafter). In addition, as a result of measuring the fluidity in accordance with JIS Z 2502 (conditions in which the drying treatment of the sample was omitted; the same applies hereinafter), 46
Seconds / 50 g.

【0019】上記の水素化チタン粉50kgを中間原料とし
てステンレス製の皿状容器(内径350mm 、高さ50mm)に
約40mmの層厚に充填し、これを真空加熱炉にセットして
真空引きしながら 800℃まで昇温して保持した。炉内圧
力が10-2Torr以下になった時点で加熱を停止して炉内に
アルゴンガスを導入し、炉内温度が室温まで冷却された
段階で容器を回収した。
Using the above-mentioned titanium hydride powder (50 kg) as an intermediate material, a stainless steel dish (350 mm in diameter, 50 mm in height) is filled to a layer thickness of about 40 mm, and this is set in a vacuum heating furnace and evacuated. While maintaining the temperature, the temperature was raised to 800 ° C. The heating was stopped when the pressure in the furnace became 10 -2 Torr or less, argon gas was introduced into the furnace, and the vessel was recovered when the temperature in the furnace was cooled to room temperature.

【0020】このようにして脱水素されたチタンは焼結
しており、これを皿状容器から取り出すためにハンマー
で叩いて30〜100mm 角の塊片に塊砕した。ついでチタン
塊片をハンマブレーカーにかけ、スイングハンマ回転数
2800rpm 、ロストル落下隙間1.6mm (ロストルの落下隙
間の総面積は、ロストル総面積に対して約6%)、供給
速度100kg/H の条件で2回反復して粉砕処理を施した。
ついで、チタン粉末を目開き 150μm の円型振動篩で篩
別した。
The titanium thus dehydrogenated is sintered, and is beaten with a hammer to remove the titanium from the dish-shaped container into a lump of 30 to 100 mm square. Next, the titanium lump is placed on a hammer breaker, and the swing hammer rotation speed is set.
The pulverization treatment was repeated twice under the conditions of 2800 rpm, 1.6 mm of the rostol drop gap (total area of the rostre drop gap is about 6% of the total area of the rostol), and the supply speed was 100 kg / H.
Next, the titanium powder was sieved with a circular vibrating sieve having a mesh size of 150 μm.

【0021】得られたチタン粉末の粒子構造につき走査
型電子顕微鏡で観察した結果、図1に示すような角のと
れた丸味のある粒子形状であった。また、その見掛密度
および流動度を測定し、表1に示した。
As a result of observing the particle structure of the obtained titanium powder with a scanning electron microscope, it was found that the particle shape had rounded corners as shown in FIG. The apparent density and the fluidity were measured and are shown in Table 1.

【0022】比較例1 実施例1の脱水素工程で得られたチタン塊を切断粉砕機
構のカッターミルで粉砕した。粉砕条件は、カッター回
転速度2000rpm 、スクリーンは1.0mm 丸の開孔を開けた
パンチプレート状とし、開孔総面積はスクリーン総面積
に対して約30%とし、供給速度を100kg/H に設定し、2
回反復して粉砕した。得られたチタン粉末の粒子形状
は、図2の走査型顕微鏡写真に示したとおり、外形が角
ばった形状を呈していた。また、見掛密度および流動度
を測定し、結果を表1に併載した。
Comparative Example 1 The titanium lump obtained in the dehydrogenation step of Example 1 was pulverized by a cutter mill having a cutting and pulverizing mechanism. The milling conditions were as follows: cutter rotation speed 2000 rpm, screen was a punch plate with a 1.0 mm round hole, the total area of the hole was about 30% of the total screen area, and the feed rate was 100 kg / H. , 2
Milled repeatedly. The particle shape of the obtained titanium powder had a square shape as shown in the scanning micrograph of FIG. In addition, the apparent density and the fluidity were measured, and the results are shown in Table 1.

【0023】実施例2 チタン原料としてTi−6Al−4V合金(ASTM G
rade5 相当品) のインゴット切削粉を用い、その他は実
施例1と同一条件の水素化脱水素工程によりチタン基合
金粉末を製造した。得られた粉末の粒子形状は角がとれ
て丸味を帯びていた。見掛密度おとび流動度は表1の併
載したとおりであった。
Example 2 Ti-6Al-4V alloy (ASTM G
(equivalent to rade5), and a titanium-based alloy powder was produced by a hydrodehydrogenation process under the same conditions as in Example 1 except for the ingot cutting powder. The particle shape of the obtained powder was rounded with corners removed. The apparent density and flowability were as shown in Table 1.

【0024】比較例2 実施例2と同一の原料を用い、比較例1と同一の粉砕条
件によりチタン基合金粉末を製造した。得られた粉末の
粒子形態は、比較例1と同様に外形が角ばったものであ
った。その見掛密度と流動度の測定結果は表1に併載し
たとおりであった。
Comparative Example 2 A titanium-based alloy powder was produced using the same raw materials as in Example 2 and under the same grinding conditions as in Comparative Example 1. The particle form of the obtained powder was angular in shape as in Comparative Example 1. The measurement results of the apparent density and the fluidity are as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上のとおり、本発明に従えば水素化脱
水素法によるチタン系粉末の製造プロセスのうち脱水素
処理後の解砕工程を衝撃・打撃機構の粉砕手段を適用し
て粉砕処理を施すことにより、高い見掛密度と優れた流
動性を有する高品位のチタン系粉末を円滑かつ効率的に
製造することができる。したがって、粉末冶金の原料チ
タン粉の工業的な製造技術として極めて有用である。
As described above, according to the present invention, the crushing step after the dehydrogenation process in the production process of the titanium-based powder by the hydrodehydrogenation method is performed by applying the crushing means of the impact / hitting mechanism. , A high-grade titanium-based powder having a high apparent density and excellent fluidity can be produced smoothly and efficiently. Therefore, it is extremely useful as an industrial production technique of titanium powder as a raw material for powder metallurgy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得たチタン粉末の粒子構造を示した
走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing the particle structure of a titanium powder obtained in Example 1.

【図2】比較例1で得たチタン粉末の粒子構造を示した
走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph showing the particle structure of the titanium powder obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−20103(JP,A) 特開 平4−131309(JP,A) 特開 平1−156409(JP,A) 特公 平3−40082(JP,B2) 神奈川県工業試験所研究報告,No. 58,pp.131−133(1987) (58)調査した分野(Int.Cl.6,DB名) B22F 9/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-20103 (JP, A) JP-A-4-131309 (JP, A) JP-A-1-156409 (JP, A) 40082 (JP, B2) Kanagawa Industrial Laboratory Research Report, No. 58, pp. 146 131-133 (1987) (58) Field surveyed (Int. Cl. 6 , DB name) B22F 9/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素化脱水素法によるチタン系粉末の製
造プロセスにおいて、脱水素後のチタン粉焼結塊を衝撃
・打撃の粉砕機構による機械的手段を介して粉砕して、
見掛密度が高く、かつ流動性の優れたチタン系粉末に転
化させることを特徴とするチタン系粉末の製造方法。
In a process for producing a titanium-based powder by a hydrodehydrogenation method, a titanium powder sintered mass after dehydrogenation is pulverized through mechanical means by a pulverizing mechanism of impact and impact,
A method for producing a titanium-based powder, characterized in that the powder is converted into a titanium-based powder having a high apparent density and excellent fluidity.
【請求項2】 チタン系粉末が、チタンもしくはチタン
基合金である請求項1記載のチタン系粉末の製造方法。
2. The method according to claim 1, wherein the titanium-based powder is titanium or a titanium-based alloy.
JP3352458A 1991-12-12 1991-12-12 Method for producing titanium-based powder Expired - Lifetime JP2987603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352458A JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352458A JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Publications (2)

Publication Number Publication Date
JPH05163508A JPH05163508A (en) 1993-06-29
JP2987603B2 true JP2987603B2 (en) 1999-12-06

Family

ID=18424214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352458A Expired - Lifetime JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Country Status (1)

Country Link
JP (1) JP2987603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057634A (en) * 2000-11-09 2009-03-19 Nikko Kinzoku Kk Manufacturing method for high-purity zirconium or hafnium powder
CN103418798B (en) * 2012-05-22 2015-12-16 宁波江丰电子材料股份有限公司 A kind of method utilizing the residual target of titanium to prepare high-purity titanium valve
JP6165910B1 (en) * 2016-03-17 2017-07-19 日本碍子株式会社 Method for producing positive current collector for sodium-sulfur battery and method for producing sodium-sulfur battery
RU2631692C1 (en) * 2016-10-27 2017-09-26 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет" Method for production of fine-dispersed spherical titanium-containing powders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
神奈川県工業試験所研究報告,No.58,pp.131−133(1987)

Also Published As

Publication number Publication date
JPH05163508A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP7383300B2 (en) Powder metallurgy sputtering target and its manufacturing method
US20070199410A1 (en) Method For The Production Of Fine Metal Powder, Alloy Powder And Composite Powder
JP6949844B2 (en) Manufacturing method of cemented carbide material
WO1998004375A1 (en) Titanium-base powder and process for the production of the same
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP2987603B2 (en) Method for producing titanium-based powder
EP3124647B1 (en) Sputtering target comprising al-te-cu-zr alloy, and method for producing same
RU2301723C1 (en) Method for producing finely dispersed titanium powder
JP2821662B2 (en) Titanium-based powder and method for producing the same
JPH0237402B2 (en)
WO2021243175A1 (en) Hdh (hydride-dehydride) process for fabrication of braze alloy powders
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
JPH02247379A (en) Production of silicide target
JP2002047501A (en) Titanium base powder
JPH04362105A (en) Production of fine intermetallic compound powder
JP3459342B2 (en) Method for producing titanium-based powder
JP6976415B2 (en) Titanium powder and its manufacturing method
WO2019124325A1 (en) Titanium powder and method for producing same
JP7026543B2 (en) Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method
JPH0565629A (en) Production of sputtering target
JPH0776707A (en) Production of titanium powder
KR101647997B1 (en) Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
JP2001123206A (en) Rare earth metal electrode and rare earth metal powder obtained by rotary electrode atomizing method
JPH05140739A (en) Production of silicide target
JPH08170110A (en) High melting point metal-based alloy powder and production of high melting point metal-based alloy compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13