JP6987884B2 - Titanium powder and its manufacturing method - Google Patents

Titanium powder and its manufacturing method Download PDF

Info

Publication number
JP6987884B2
JP6987884B2 JP2019561082A JP2019561082A JP6987884B2 JP 6987884 B2 JP6987884 B2 JP 6987884B2 JP 2019561082 A JP2019561082 A JP 2019561082A JP 2019561082 A JP2019561082 A JP 2019561082A JP 6987884 B2 JP6987884 B2 JP 6987884B2
Authority
JP
Japan
Prior art keywords
powder
dehydrogenation
less
furnace
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019561082A
Other languages
Japanese (ja)
Other versions
JPWO2019124325A1 (en
Inventor
竹中茂久
平嶋謙治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Technical Service Co Ltd
Original Assignee
Toho Technical Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Technical Service Co Ltd filed Critical Toho Technical Service Co Ltd
Publication of JPWO2019124325A1 publication Critical patent/JPWO2019124325A1/en
Application granted granted Critical
Publication of JP6987884B2 publication Critical patent/JP6987884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、水素化脱水素法により得られるチタン粉末およびその製造方法に関する。 The present invention relates to titanium powder obtained by a hydrogenation dehydrogenation method and a method for producing the same.

粉末冶金用チタン粉末は、原料であるスポンジチタン、チタンスクラップやチタンの切粉を水素化して脆化させた後に粉砕しその後に脱水素する、いわゆる水素化脱水素法により製造される。 Titanium powder for powder metallurgy is produced by a so-called hydrodehydrogenation method in which raw materials such as titanium sponge, titanium scrap and chips of titanium are hydrogenated to be brittle, then crushed and then dehydrogenated.

従来、水素化脱水素法により製造したチタン粉末中に水素が数百ppm程度含有されていても特に問題はないと考えられていた。このため、水素化脱水素法によるチタン粉末中の水素濃度に対する低減要求はこれまで殆どなかった。実際、市販製品での水素濃度の最低値は200ppm程度である。ここで、水素濃度は質量分率を意味し、1ppmは1mg/kgとする。 Conventionally, it has been considered that there is no particular problem even if the titanium powder produced by the hydrogenation dehydrogenation method contains about several hundred ppm of hydrogen. Therefore, there has been almost no demand for reduction of the hydrogen concentration in the titanium powder by the hydrogenation dehydrogenation method. In fact, the minimum hydrogen concentration in a commercial product is about 200 ppm. Here, the hydrogen concentration means a mass fraction, and 1 ppm is 1 mg / kg.

従来の先行文献における脱水素工程の条件について、例えば、特許文献1では、水素化チタン粉末を容器に充填して、真空加熱型の脱水素炉に装入し、例えば10-3Torr(1.32×10-1Pa)以下の真空中で、500℃以上900℃以下程度の温度に加熱して脱水素することが開示されている。なお、先行文献1の明細書中に記載の圧力(=真空度)の意味は、加熱停止時の圧力を意味する。Regarding the conditions of the dehydrogenation step in the prior art, for example, in Patent Document 1, a container is filled with titanium hydride powder and charged into a vacuum-heated dehydrogenation furnace, for example, 10-3 Torr (1. It is disclosed that dehydrogenation is performed by heating to a temperature of about 500 ° C. or higher and 900 ° C. or lower in a vacuum of 32 × 10 -1 Pa) or lower. In addition, the meaning of the pressure (= degree of vacuum) described in the specification of the prior art 1 means the pressure at the time of stopping heating.

また、特許文献2では、脱水素工程は、水素化チタン系粉末を容器に充填して真空加熱型の脱水素炉にセットし、必要な減圧下(例えば10-2Torr)に真空引きしながら加熱する操作で行われるが、この際の加熱温度は500℃以上580℃以下の範囲に設定する必要があることが開示されている。また実施例では、系内圧力が10-2Torrになった時点で加熱を停止したとの記載がある。Further, in Patent Document 2, in the dehydrogenation step, a container is filled with titanium hydride powder, set in a vacuum heating type dehydrogenation furnace, and evacuated under the required depressurization (for example, 10-2 Torr). It is performed by the operation of heating, and it is disclosed that the heating temperature at this time needs to be set in the range of 500 ° C. or higher and 580 ° C. or lower. Further, in the embodiment, there is a description that the heating is stopped when the pressure in the system reaches 10-2 Torr.

特開平10−195504号公報Japanese Unexamined Patent Publication No. 10-195504 特開平7−278601号公報Japanese Unexamined Patent Publication No. 7-278601

近年、水素化脱水素法によるチタン粉末を用いた焼結体の密度向上の要求により、水素化脱水素法により製造したチタン粉末中の水素濃度低減要求が高まってきている。水素化脱水素法によるチタン粉の水素濃度の低減策についての技術思想を開示した先行文献はない。 In recent years, due to the demand for improving the density of sintered bodies using titanium powder by the hydrogenation dehydrogenation method, the demand for reducing the hydrogen concentration in titanium powder produced by the hydrogenation dehydrogenation method has been increasing. There is no prior document that discloses the technical idea of measures to reduce the hydrogen concentration of titanium powder by the hydrogenation dehydrogenation method.

本発明者らが実験を行ったところ、特許文献1及び特許文献2の製造条件で作製されたチタン粉の水素濃度は十分に低減されておらず改善の余地がある。さらに言えば、特許文献1及び特許文献2の製造条件は、いずれも脱水素時間が長くなることによる生産性の低下と粉末相互の焼結の進行による塊状化による解砕困難を回避することを目的として設定された条件であり、チタン粉中の水素濃度に着目していないし、ましてや水素濃度を低減させることの課題も全く認識されていない。 As a result of experiments conducted by the present inventors, the hydrogen concentration of the titanium powder produced under the production conditions of Patent Document 1 and Patent Document 2 has not been sufficiently reduced and there is room for improvement. Furthermore, the production conditions of Patent Document 1 and Patent Document 2 both avoid a decrease in productivity due to a long dehydrogenation time and a difficulty in crushing due to agglomeration due to the progress of sintering between powders. It is a condition set as a purpose, and does not pay attention to the hydrogen concentration in the titanium powder, much less the problem of reducing the hydrogen concentration is not recognized at all.

本発明は上記の問題を解決することを目的とするものであり、すなわち、水素濃度が低減されたチタン粉およびその製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems, that is, to provide titanium powder having a reduced hydrogen concentration and a method for producing the same.

上記の目的を達成するために本発明では、脱水素工程の終了時の真空度に着目し、その真空度を5×10-2Pa以下とすることで、水素化脱水素法によるチタン粉の水素濃度を低減できることを見出し、本発明を完成させた。In order to achieve the above object, the present invention focuses on the degree of vacuum at the end of the dehydrogenation step, and by setting the degree of vacuum to 5 × 10 −2 Pa or less, the titanium powder produced by the hydride dehydrogenation method can be used. We have found that the hydrogen concentration can be reduced and completed the present invention.

本開示の一実施形態は、水素化脱水素法により得られるチタン粉末であって、チタン粉末に含有される水素濃度が150ppm以下であることを特徴とする。水素化脱水素法により得られるチタン粉末に含有される水素濃度は50ppm以下であってもよい。 One embodiment of the present disclosure is a titanium powder obtained by a hydrogenation dehydrogenation method, wherein the hydrogen concentration contained in the titanium powder is 150 ppm or less. The hydrogen concentration contained in the titanium powder obtained by the hydrogenation dehydrogenation method may be 50 ppm or less.

本開示の一実施形態は、水素化脱水素法によるチタン粉末の製造方法であって、脱水素工程の終了時の真空度を5×10-2Pa以下とすることを特徴とする。脱水素工程の終了時の真空度は5×10-3Pa以下であってもよい。脱水素工程での加熱温度が450℃以上900℃以下、加熱保持時間が5時間以上30時間以下であってもよい。脱水素工程での加熱温度は590℃以上であってもよい。One embodiment of the present disclosure is a method for producing titanium powder by a hydrogenation dehydrogenation method, characterized in that the degree of vacuum at the end of the dehydrogenation step is 5 × 10 −2 Pa or less. The degree of vacuum at the end of the dehydrogenation step may be 5 × 10 -3 Pa or less. The heating temperature in the dehydrogenation step may be 450 ° C. or higher and 900 ° C. or lower, and the heating holding time may be 5 hours or longer and 30 hours or lower. The heating temperature in the dehydrogenation step may be 590 ° C. or higher.

水素化脱水素法によるチタン粉の製造方法において、脱水素工程の終了時の真空度に着目し、その真空度を従来よりも低くすることで、チタン粉の水素濃度を低減できることができる。 In the method for producing titanium powder by the hydrogenation dehydrogenation method, the hydrogen concentration of the titanium powder can be reduced by paying attention to the degree of vacuum at the end of the dehydrogenation step and lowering the degree of vacuum as compared with the conventional method.

<水素化脱水素法の説明>
水素化脱水素法とは水素化、粉砕、脱水素、解砕の工程によりチタン粉を製造する方法である。この際、水素化の工程で真空置換可能な水素化炉に装入し、100℃以上1000℃以下の高温下で、水素ガス雰囲気中で水素脆化させて水素化処理としてもよい。これにより、水素化チタンの塊状体を得ることができる。
<Explanation of hydrogenation dehydrogenation method>
The hydrogenation dehydrogenation method is a method for producing titanium powder by the steps of hydrogenation, crushing, dehydrogenation, and crushing. At this time, it may be charged into a hydrogenation furnace capable of vacuum replacement in the hydrogenation step, and hydrogen embrittled in a hydrogen gas atmosphere at a high temperature of 100 ° C. or higher and 1000 ° C. or lower for hydrogenation treatment. This makes it possible to obtain a mass of titanium hydride.

粉砕の工程では、機械粉砕したのち、分級および/または篩別して微粉を除去し、平均粒径が100μm以下、粒径5μm以下の粉末割合を10重量%以下となるよう粒度調整するのが好ましい。機械的粉砕には、ボールミル、振動ミルなどの粉砕装置が使用でき、粒度調整には円形振動篩、気流分級機などの篩別分級装置を用いてもよい。なお、本発明において平均粒径は、レーザー回折・散乱法により求められる粒度分布測定において、体積基準の累積分布が50%となる粒径を指す。すなわち、JIS Z8825:2013に基づき測定する。 In the pulverization step, it is preferable that after mechanical pulverization, fine powder is removed by classification and / or sieving, and the particle size is adjusted so that the powder ratio having an average particle size of 100 μm or less and a particle size of 5 μm or less is 10% by weight or less. A crushing device such as a ball mill or a vibration mill can be used for mechanical crushing, and a sieve classification device such as a circular vibration sieve or an air flow classifier may be used for particle size adjustment. In the present invention, the average particle size refers to a particle size in which the cumulative distribution on a volume basis is 50% in the particle size distribution measurement obtained by the laser diffraction / scattering method. That is, the measurement is performed based on JIS Z8825: 2013.

脱水素の工程は、上記粉砕後の水素化チタン粉末を容器に充填して、真空加熱型の脱水素炉に装入し、例えば0.1Pa未満の真空度中で、450℃以上900℃以下程度の温度に加熱して、5時間以上30時間以下の間、脱水素をしてもよい。脱水素の工程は、例えば5×10-2Pa以下の真空度中であることが好ましい。脱水素の工程は、例えば5×10-3Pa以下の真空度中であることがより好ましい。脱水素の工程は、例えば590℃以上の温度に加熱して脱水素をすることがより好ましい。脱水素の工程は、例えば加熱保持時間が15時間以上であることが好ましい。脱水素の工程は、例えば590℃以上の温度に加熱して、加熱保持時間が15時間以上であることがより好ましい。脱水素の工程は、例えば加熱保持時間が25時間以上であることがより好ましい。In the dehydrogenation step, the pulverized titanium hydride powder is filled in a container and charged into a vacuum heating type dehydrogenation furnace. For example, in a vacuum degree of less than 0.1 Pa, 450 ° C. or higher and 900 ° C. or lower. It may be heated to a certain temperature and dehydrogenated for 5 hours or more and 30 hours or less. The dehydrogenation step is preferably performed in a vacuum degree of, for example, 5 × 10 −2 Pa or less. It is more preferable that the dehydrogenation step is in a vacuum degree of, for example, 5 × 10 -3 Pa or less. In the dehydrogenation step, it is more preferable to dehydrogenate by heating to a temperature of, for example, 590 ° C. or higher. In the dehydrogenation step, for example, the heating and holding time is preferably 15 hours or more. The dehydrogenation step is more preferably heated to a temperature of, for example, 590 ° C. or higher, and the heating holding time is 15 hours or longer. In the dehydrogenation step, for example, the heating and holding time is more preferably 25 hours or more.

得られたチタンの塊状体は、解砕の工程で、機械的に解砕処理してもよい。その結果として得られるチタン粉末は、平均粒径100μm以下、粒径5μm以下の粉体割合は10重量%以下とするのが好ましい。 The obtained titanium agglomerates may be mechanically crushed in the crushing step. The titanium powder obtained as a result preferably has an average particle size of 100 μm or less and a powder ratio of 5 μm or less is preferably 10% by weight or less.

脱水素工程において、上述する範囲に限定した温度、時間、真空度を組み合わせることで、水素濃度が150ppm以下のチタン粉末を得ることができる。本実施形態に係る水素化脱水素法により得られるチタン粉末は、水素濃度が50ppm以下であることが好ましく、30ppm以下であることがより好ましく、20ppm以下であることがより好ましい。なお、水素濃度は質量分率を意味し、1ppmは1mg/kgとする。 In the dehydrogenation step, a titanium powder having a hydrogen concentration of 150 ppm or less can be obtained by combining the temperature, time, and degree of vacuum limited to the above range. The titanium powder obtained by the hydrogenation dehydrogenation method according to the present embodiment preferably has a hydrogen concentration of 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less. The hydrogen concentration means a mass fraction, and 1 ppm is 1 mg / kg.

<水素濃度の分析方法の説明>
チタン粉中の水素濃度はガスクロマトグラフ法という分析方法で分析する。具体的には、試料を真空または不活性気体中で融解するか、あるいは融点以下の温度で加熱し、水素をH2として抽出する。抽出された水素(H2)をガスクロマトグラフにより定量する。
<Explanation of hydrogen concentration analysis method>
The hydrogen concentration in the titanium powder is analyzed by an analysis method called a gas chromatograph method. Specifically, the sample is melted in a vacuum or an inert gas, or heated at a temperature below the melting point to extract hydrogen as H 2. The extracted hydrogen (H 2 ) is quantified by gas chromatography.

[実施例1]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉26.4kgを炉に投入し、真空引きし620℃で加熱し(脱水素工程での加熱開始時。以下同じ。)、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が5×10-3Paに到達するまで合計6.0時間脱水素を行った。得られたチタン粉の水素濃度は0.003%(30ppm,n=21)であった。また、得られた粉体の平均粒径は25μmであった。
[Example 1]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 26.4 kg of hydride powder obtained by crushing with a crushing mill and removing fine powder of 10 μm or less is put into a furnace, evacuated and heated at 620 ° C. (at the start of heating in the dehydrogenation step. The same applies hereinafter). When the pressure (vacuum degree) reached 10 Pa, dehydrogenation was performed for a total of 6.0 hours until the furnace pressure (vacuum degree) reached 5 × 10 -3 Pa using an oil diffusion pump. The hydrogen concentration of the obtained titanium powder was 0.003% (30 ppm, n = 21). The average particle size of the obtained powder was 25 μm.

[実施例2]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉26.4kgを炉に投入し、真空引きし640℃で加熱し、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が4×10-3Paに到達するまで合計5.5時間脱水素を行った。得られたチタン粉の水素濃度は0.003%(30ppm,n=1)であった。また、得られた粉体の平均粒径は25μmであった。
[Example 2]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 26.4 kg of hydride powder obtained by crushing with a crushing mill and removing fine powder of 10 μm or less is put into a furnace, evacuated and heated at 640 ° C., and oil diffusion is performed when the furnace pressure (vacuum degree) reaches 10 Pa. Using a pump, dehydrogenation was performed for a total of 5.5 hours until the furnace pressure (vacuum degree) reached 4 × 10 -3 Pa. The hydrogen concentration of the obtained titanium powder was 0.003% (30 ppm, n = 1). The average particle size of the obtained powder was 25 μm.

[実施例3]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉69.6kgを炉に投入し、真空引きし595℃で加熱し、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が5×10-3Paに到達するまで合計18時間脱水素を行った。得られたチタン粉の水素濃度は26.5ppm(n=9)であった。また、得られた粉体の平均粒径は25μmであった。
[Example 3]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 69.6 kg of hydride powder, which was crushed with a crushing mill to remove fine powder of 10 μm or less, was put into a furnace, evacuated and heated at 595 ° C., and oil diffused when the furnace pressure (vacuum degree) reached 10 Pa. Using a pump, dehydrogenation was performed for a total of 18 hours until the furnace pressure (vacuum degree) reached 5 × 10 -3 Pa. The hydrogen concentration of the obtained titanium powder was 26.5 ppm (n = 9). The average particle size of the obtained powder was 25 μm.

[実施例4]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉63.8kgを炉に投入し、真空引きし590℃で加熱し、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が5×10-3Paに到達するまで合計30時間脱水素を行った。得られたチタン粉の水素濃度は19ppm(n=21)であった。また、得られた粉体の平均粒径は25μmであった。
[Example 4]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 63.8 kg of hydride powder, which was crushed with a crushing mill to remove fine powder of 10 μm or less, was put into a furnace, evacuated and heated at 590 ° C., and oil diffused when the furnace pressure (vacuum degree) reached 10 Pa. Using a pump, dehydrogenation was performed for a total of 30 hours until the furnace pressure (vacuum degree) reached 5 × 10 -3 Pa. The hydrogen concentration of the obtained titanium powder was 19 ppm (n = 21). The average particle size of the obtained powder was 25 μm.

[実施例5]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉26.4kgを炉に投入し、真空引きし560℃で加熱し、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が5×10-3Paに到達するまで合計8.0時間脱水素を行った。得られたチタン粉の水素濃度は0.0145%(145ppm,n=1)であった。また、得られた粉体の平均粒径は70μmであった。
[Example 5]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 26.4 kg of hydride powder obtained by crushing with a crushing mill and removing fine powder of 10 μm or less is put into a furnace, evacuated and heated at 560 ° C., and oil is diffused when the furnace pressure (vacuum degree) reaches 10 Pa. Using a pump, dehydrogenation was performed for a total of 8.0 hours until the furnace pressure (vacuum degree) reached 5 × 10 -3 Pa. The hydrogen concentration of the obtained titanium powder was 0.0145% (145 ppm, n = 1). The average particle size of the obtained powder was 70 μm.

[比較例1]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉92.4kgを炉に投入し、真空引きし580℃で17時間加熱し、炉圧(真空度)が15Paに到達するまで脱水素を行った。得られたチタン粉の水素濃度は380ppm(n=91)であった。また、得られた粉体の平均粒径は25μmであった。
[Comparative Example 1]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 92.4 kg of hydrogenated powder crushed with a crushing mill to remove fine powder of 10 μm or less is put into a furnace, evacuated and heated at 580 ° C. for 17 hours, and dehydrated until the furnace pressure (vacuum degree) reaches 15 Pa. I went straight. The hydrogen concentration of the obtained titanium powder was 380 ppm (n = 91). The average particle size of the obtained powder was 25 μm.

[比較例2]
インゴットの切削片を炉に投入し、炉圧(真空度)を5Pa以下に真空引きした後、雰囲気を650℃に加熱し30分間保持した後、炉内に水素を導入し水素吸蔵反応で水素化した。その後、粉砕ミルで粉砕し10μm以下の微粉を除去した水素化粉26.4kgを炉に投入し、真空引きし580℃で加熱し、炉圧(真空度)が10Paに到達した段階で油拡散ポンプを使用し炉圧(真空度)が1×10-1Paに到達するまで合計6.0時間脱水素を行った。得られたチタン粉の水素濃度は0.0719%(719ppm,n=1)であった。また、得られた粉体の平均粒径は25μmであった。

Figure 0006987884
[Comparative Example 2]
After putting the cut pieces of the ingot into the furnace and evacuating the furnace pressure (vacuum degree) to 5 Pa or less, the atmosphere is heated to 650 ° C and held for 30 minutes, then hydrogen is introduced into the furnace and hydrogen is stored in the hydrogen storage reaction. It became. After that, 26.4 kg of hydride powder obtained by crushing with a crushing mill and removing fine powder of 10 μm or less is put into a furnace, evacuated and heated at 580 ° C., and oil is diffused when the furnace pressure (vacuum degree) reaches 10 Pa. Using a pump, dehydrogenation was performed for a total of 6.0 hours until the furnace pressure (vacuum degree) reached 1 × 10 -1 Pa. The hydrogen concentration of the obtained titanium powder was 0.0719% (719 ppm, n = 1). The average particle size of the obtained powder was 25 μm.
Figure 0006987884

上記表にまとめた通り、本発明によれば、水素化脱水素法により得られるチタン粉末であって、水素濃度が150ppm以下のチタン粉末を得ることができる。 As summarized in the above table, according to the present invention, it is possible to obtain a titanium powder obtained by a hydrogenation dehydrogenation method and having a hydrogen concentration of 150 ppm or less.

Claims (3)

水素化脱水素法によるチタン粉末の製造方法であって、水素化チタンを粉砕し、得られた水素化チタン粉末から10μm以下の微粉を除去し、微粉を除去した水素化チタン粉末を加熱温度が450℃以上900℃以下、加熱保持時間が5時間以上30時間以下で脱水素し、前記脱水素の工程の終了時の真空度を5×10-2Pa以下とすることを特徴とするチタン粉末の製造方法。 It is a method for producing titanium powder by the hydrogenation dehydrogenation method. Titanium hydride is crushed, fine powder of 10 μm or less is removed from the obtained titanium hydride powder, and the heating temperature of the titanium hydride powder from which the fine powder has been removed is high. A titanium powder characterized by dehydrogenating at 450 ° C. or higher and 900 ° C. or lower and a heating holding time of 5 hours or longer and 30 hours or lower, and having a vacuum degree at the end of the dehydrogenation step of 5 × 10 −2 Pa or lower. Manufacturing method. 水素化脱水素法によるチタン粉末の製造方法であって、脱水素工程の終了時の真空度を5×10-3Pa以下とすることを特徴とする請求項に記載のチタン粉末の製造方法。 A method of manufacturing a titanium powder by hydrogenation dehydrogenation method of producing titanium powder according to claim 1, characterized in that the end of the degree of vacuum dehydrogenation step and 5 × 10 -3 Pa or less .. 脱水素工程での加熱温度が590℃以上であることを特徴とする請求項またはに記載のチタン粉末の製造方法。 The method for producing titanium powder according to claim 1 or 2 , wherein the heating temperature in the dehydrogenation step is 590 ° C. or higher.
JP2019561082A 2017-12-20 2018-12-17 Titanium powder and its manufacturing method Active JP6987884B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017243671 2017-12-20
JP2017243671 2017-12-20
PCT/JP2018/046423 WO2019124325A1 (en) 2017-12-20 2018-12-17 Titanium powder and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019124325A1 JPWO2019124325A1 (en) 2020-12-03
JP6987884B2 true JP6987884B2 (en) 2022-01-05

Family

ID=66993386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019561082A Active JP6987884B2 (en) 2017-12-20 2018-12-17 Titanium powder and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6987884B2 (en)
WO (1) WO2019124325A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116037935B (en) * 2023-02-16 2024-04-19 华中科技大学 Near-flake titanium alloy powder for metal automobile paint, and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139706A (en) * 1987-11-25 1989-06-01 Nippon Steel Corp Manufacture of low chlorine titanium powder
JPH03122205A (en) * 1989-10-05 1991-05-24 Nippon Steel Corp Manufacture of ti powder
JPH05105917A (en) * 1991-10-15 1993-04-27 Toho Titanium Co Ltd Production of titanium powder
JP3113144B2 (en) * 1994-04-08 2000-11-27 新日本製鐵株式会社 Method for producing high density sintered titanium alloy
CN105499589A (en) * 2016-01-27 2016-04-20 攀枝花学院 Method for preparing high-purity superfine low-oxygen titanium hydride powder and dehydrogenated titanium powder
JP6699209B2 (en) * 2016-02-10 2020-05-27 日本製鉄株式会社 Aggregate of sponge titanium particles for producing titanium powder and method for producing the same

Also Published As

Publication number Publication date
WO2019124325A1 (en) 2019-06-27
JPWO2019124325A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
RU2572928C2 (en) Powder mix for production of titanium alloy, titanium alloy made thereof and methods of their fabrication
CN105624447B (en) A kind of method of ultra-fine cemented carbide crystal grain refinement and even size distribution
JP5234735B2 (en) Tantalum-ruthenium alloy sputtering target
JP2011500962A (en) Production method of tantalum powder using recycled scrap as raw material
JP5837407B2 (en) Titanium alloy and manufacturing method thereof
KR102519021B1 (en) Tungsten silicide target and method of manufacturing same
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
US9689067B2 (en) Method for producing molybdenum target
TW201643264A (en) Fine tantalum powder and manufacturing method thereof
JP6987884B2 (en) Titanium powder and its manufacturing method
JP5265867B2 (en) Method for producing a high density semi-finished product or component
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP2005171389A (en) Method for manufacturing tungsten target for sputtering
JP2013112878A (en) Titanium composition
CN109694969B (en) Pre-alloyed powder, TiCN-based metal ceramic composite material added with pre-alloyed powder and preparation method of TiCN-based metal ceramic composite material
JP2821662B2 (en) Titanium-based powder and method for producing the same
JP5628767B2 (en) Hydrogenation method of titanium alloy
RU2240896C1 (en) Method for producing finely divided titanium powder
JP5754603B2 (en) Method for regenerating target for film formation
JP6699209B2 (en) Aggregate of sponge titanium particles for producing titanium powder and method for producing the same
JP5851772B2 (en) Titanium alloy hydride and method for producing the same
JP3459342B2 (en) Method for producing titanium-based powder
JP2002047501A (en) Titanium base powder
JP6976415B2 (en) Titanium powder and its manufacturing method
JP7026543B2 (en) Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150