JP5727977B2 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP5727977B2
JP5727977B2 JP2012188760A JP2012188760A JP5727977B2 JP 5727977 B2 JP5727977 B2 JP 5727977B2 JP 2012188760 A JP2012188760 A JP 2012188760A JP 2012188760 A JP2012188760 A JP 2012188760A JP 5727977 B2 JP5727977 B2 JP 5727977B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
resin composition
oil
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188760A
Other languages
Japanese (ja)
Other versions
JP2013021342A (en
Inventor
勇人 小谷
勇人 小谷
直之 浦崎
直之 浦崎
加奈子 湯浅
加奈子 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39979220&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5727977(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012188760A priority Critical patent/JP5727977B2/en
Publication of JP2013021342A publication Critical patent/JP2013021342A/en
Application granted granted Critical
Publication of JP5727977B2 publication Critical patent/JP5727977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、光半導体素子と蛍光体等の波長変換手段とを組み合わせた光半導体装置に用いる熱硬化性光反射用樹脂組成物、ならびに当該樹脂組成物を用いた光半導体素子搭載用基板とその製造方法および光半導体装置に関する。   The present invention relates to a thermosetting light reflecting resin composition used in an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined, an optical semiconductor element mounting substrate using the resin composition, and The present invention relates to a manufacturing method and an optical semiconductor device.

光半導体素子を利用した光半導体装置として、図5に示すような構成のSMD(Surfacemounted device)タイプのLED(Light Emitting Diode)が知られている。このLEDは、通常、マウント基板リフレクターに形成されたカップ状部(凹部)に発光素子が配置され、さらに当該発光素子が配置されたカップ状部に蛍光体を含有する透明封止樹脂が充填されている。リフレクターは、発光素子から側方に放射された光をその表面で拡散反射して軸方向に分配し、これによって軸上強度を高めることを目的として使用されている。
近年、LED等の光半導体装置は、高エネルギー効率、長寿命等の利点を有することから、屋外用ディスプレイ、携帯液晶バックライト、車載用途等その需要を拡大しつつある。これに伴いLEDデバイスの高輝度化が進み、素子の発熱量増大によるジャンクション温度の上昇、あるいは直接的な光エネルギーの増大による材料の耐熱劣化・耐光劣化が課題となっている。特許文献1には、耐熱試験後の光反射特性に優れる熱硬化性光反射用樹脂組成物を成型してなる光半導体素子搭載用基板が開示されている。
As an optical semiconductor device using an optical semiconductor element, an SMD (Surface Mounted Device) type LED (Light Emitting Diode) configured as shown in FIG. 5 is known. In this LED, a light emitting element is usually arranged in a cup-shaped part (concave part) formed on a mount substrate reflector, and a transparent sealing resin containing a phosphor is filled in the cup-shaped part in which the light emitting element is arranged. ing. The reflector is used for the purpose of increasing the on-axis strength by diffusing and reflecting the light emitted from the light-emitting element to the side and distributing it in the axial direction.
In recent years, an optical semiconductor device such as an LED has advantages such as high energy efficiency and long life, and therefore, the demand for outdoor displays, portable liquid crystal backlights, in-vehicle applications, and the like is expanding. As a result, the brightness of LED devices has increased, and there has been a problem of heat resistance degradation and light resistance degradation of materials due to an increase in junction temperature due to an increase in the amount of heat generated by the element or a direct increase in light energy. Patent Document 1 discloses a substrate for mounting an optical semiconductor element formed by molding a thermosetting light reflecting resin composition having excellent light reflection characteristics after a heat resistance test.

特開2006−140207号公報JP 2006-140207 A

熱硬化性光反射用樹脂組成物を成型する場合は、例えば、当該樹脂組成物を、臼型と杵型の成型金型を用いて、円筒状のタブレットに加圧成型した後、当該タブレットをトランスファー成型により所望の形状に成型する。しかし、従来の熱硬化性光反射用樹脂組成物は、タブレット成型時に用いる臼型や杵型の表面に付着し易く、それによってタブレットの破壊が生じ易いという問題がある。図1は、成型金型を使用して熱硬化性樹脂からなるタブレットを成型する際の金型に対する樹脂組成物の付着を説明する概略図である。図中、参照符号1は臼型、2は上杵型、3は下杵型、4は樹脂組成物(タブレット)、5は杵に付着した樹脂組成物であり、図では樹脂組成物が金型表面に付着し、タブレットが破壊した様子を示している。また、従来の熱硬化性光反射用樹脂組成物から成るタブレットは外力に対する機械的強度が低く、タブレット完成後のひび割れ等が生じ易いという問題がある。
上記を鑑みて、本発明は、タブレット成型時に成形金型の杵型や臼型の表面に付着することがなく、優れた機械的強度を有するタブレット成型体を得ることが可能な熱硬化性光反射用樹脂組成物、ならびに当該樹脂組成物を用いた光半導体素子搭載用基板とその製造方法および光半導体装置を提供することを目的とする。
When molding a thermosetting light reflecting resin composition, for example, the resin composition is press-molded into a cylindrical tablet using a mortar mold and a saddle mold mold, and then the tablet is molded. Molded into a desired shape by transfer molding. However, the conventional thermosetting light reflecting resin composition has a problem that it easily adheres to the surface of a mortar type or a bowl type used at the time of tablet molding, so that the tablet is easily broken. FIG. 1 is a schematic diagram illustrating adhesion of a resin composition to a mold when a tablet made of a thermosetting resin is molded using the mold. In the figure, reference numeral 1 is a mortar type, 2 is an upper punch type, 3 is a lower punch type, 4 is a resin composition (tablet), 5 is a resin composition attached to the punch, and in the figure the resin composition is gold It shows a state where the tablet is attached to the mold surface and destroyed. Moreover, the tablet which consists of the conventional thermosetting light reflection resin composition has the problem that the mechanical strength with respect to external force is low, and the crack etc. after tablet completion are easy to produce.
In view of the above, the present invention is a thermosetting light capable of obtaining a tablet-molded body having excellent mechanical strength without adhering to the surface of a mold or mortar of a molding die during tablet molding. It is an object of the present invention to provide a reflective resin composition, a substrate for mounting an optical semiconductor element using the resin composition, a manufacturing method thereof, and an optical semiconductor device.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、光半導体用熱硬化性光反射用樹脂組成物の無機充填剤として、従来から用いられている無機充填剤の他に、微細孔を多数有する無機充填剤(以下、多孔質充填剤と呼ぶ。)または吸油性を有する化合物を用いることにより、上記目的が達成されることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors, as an inorganic filler of a thermosetting light reflecting resin composition for an optical semiconductor, in addition to conventionally used inorganic fillers The inventors have found that the above object can be achieved by using an inorganic filler having a large number of fine pores (hereinafter referred to as a porous filler) or an oil-absorbing compound, and the present invention has been completed based on this finding. It came to do.

すなわち、本発明は、以下(1)〜(14)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (14).

(1)(A)エポキシ樹脂、(B)硬化剤、(C)硬化触媒、(D)無機充填剤、(E)白色顔料、および(F)カップリング剤を含む樹脂組成物において、上記(D)無機充填剤および上記(E)白色顔料の少なくとも一方の成分として、多孔質充填剤または吸油性を有する化合物を含むことを特徴とする熱硬化性光反射用樹脂組成物。 (1) In a resin composition comprising (A) an epoxy resin, (B) a curing agent, (C) a curing catalyst, (D) an inorganic filler, (E) a white pigment, and (F) a coupling agent, D) A thermosetting light-reflecting resin composition comprising a porous filler or an oil-absorbing compound as at least one component of the inorganic filler and the (E) white pigment.

(2)上記多孔質充填剤または吸油性を有する化合物の形状が、真球状、破砕状、円盤状、棒状、繊維状からなる群の中から選ばれる少なくとも1種であることを特徴とする上記(1)に記載の熱硬化性光反射用樹脂組成物。 (2) The porous filler or the compound having an oil-absorbing property is at least one selected from the group consisting of a spherical shape, a crushed shape, a disc shape, a rod shape, and a fiber shape. The thermosetting light reflecting resin composition according to (1).

(3)上記多孔質充填剤または吸油性を有する化合物が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、ゼオライト、ノルボルネンゴム、アクリロニトリル・ブタジエン・スチレン共重合樹脂からなる群の中から選ばれる少なくとも1種であることを特徴とする上記(1)または(2)に記載の熱硬化性光反射用樹脂組成物。 (3) The above porous filler or oil-absorbing compound is silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, zeolite. The thermosetting light reflecting resin composition as described in (1) or (2) above, wherein the resin composition is at least one member selected from the group consisting of norbornene rubber and acrylonitrile / butadiene / styrene copolymer resin .

(4)上記多孔質充填剤または吸油性を有する化合物の表面が、疎水化処理または親水化処理されていることを特徴とする上記(1)〜(3)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (4) The thermosetting as described in any one of (1) to (3) above, wherein the surface of the porous filler or the oil-absorbing compound is hydrophobized or hydrophilized. A resin composition for light reflection.

(5)上記多孔質充填剤または吸油性を有する化合物の見掛け密度が、0.4g/cm以上であることを特徴とする上記(1)〜(4)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (5) The thermosetting property as set forth above in any one of (1) to (4), wherein the apparent density of the porous filler or the oil-absorbing compound is 0.4 g / cm 3 or more. A resin composition for light reflection.

(6)上記(D)無機充填剤および上記(E)白色顔料の合計量を基準として、上記多孔質充填剤または吸油性を有する化合物の含有量が、0.1体積%〜20体積%の範囲であることを特徴とする上記(1)〜(5)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (6) Based on the total amount of the (D) inorganic filler and the (E) white pigment, the content of the porous filler or the oil-absorbing compound is 0.1% by volume to 20% by volume. The thermosetting light reflecting resin composition according to any one of the above (1) to (5), which is in a range.

(7)上記(D)無機充填剤が、多孔質構造または吸油性を持たないシリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種を含むことを特徴とする上記(1)〜(6)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (7) The (D) inorganic filler is at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate having no porous structure or oil absorption. The thermosetting light reflecting resin composition according to any one of the above (1) to (6), comprising:

(8)上記(E)白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子からなる群の中から選ばれる少なくとも1種であることを特徴とする上記(1)〜(7)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (8) The above (E), wherein the white pigment (E) is at least one selected from the group consisting of alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, and inorganic hollow particles. The thermosetting light reflecting resin composition according to any one of to (7).

(9)上記(E)白色顔料の平均粒径が、0.1〜50μmの範囲にあることを特徴とする上記(1)〜(8)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (9) The thermosetting light reflecting resin as described in any one of (1) to (8) above, wherein the average particle diameter of the white pigment (E) is in the range of 0.1 to 50 μm. Composition.

(10)上記(D)無機充填剤と上記(E)白色顔料の合計含有量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする上記(1)〜(9)のいずれかに記載の熱硬化性光反射用樹脂組成物。 (10) The above (1), wherein the total content of the (D) inorganic filler and the (E) white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. The thermosetting resin composition for light reflection according to any one of (9) to (9).

(11)上記(1)〜(10)のいずれかに記載の熱硬化性光反射用樹脂組成物を用いてなることを特徴とする光半導体素子搭載用基板。 (11) An optical semiconductor element mounting substrate comprising the thermosetting light reflecting resin composition according to any one of (1) to (10).

(12)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板であって、少なくとも上記凹部の内周側面が上記(1)〜(10)のいずれかに記載の光反射用熱硬化性樹脂組成物からなることを特徴とする光半導体素子搭載用基板。 (12) An optical semiconductor element mounting substrate in which one or more recesses to be an optical semiconductor element mounting region are formed, and at least an inner peripheral side surface of the recess is described in any one of (1) to (10). A substrate for mounting an optical semiconductor element, comprising: a thermosetting resin composition for light reflection.

(13)光半導体素子搭載領域となる凹部が1つ以上形成されている光半導体素子搭載用基板の製造方法であって、少なくとも上記凹部を上記(1)〜(10)のいずれかに記載の光反射用熱硬化性樹脂組成物を用いたトランスファー成型により形成することを特徴とする光半導体搭載用基板の製造方法。 (13) A method for manufacturing a substrate for mounting an optical semiconductor element in which one or more recesses serving as an optical semiconductor element mounting region are formed, wherein at least the recess is described in any one of (1) to (10) above. A method for producing a substrate for mounting an optical semiconductor, wherein the optical semiconductor mounting substrate is formed by transfer molding using a thermosetting resin composition for light reflection.

(14)上記(12)に記載の光半導体素子搭載用基板と、上記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、上記光半導体素子を覆うように上記凹部内に形成された蛍光体含有透明封止樹脂層とを少なくとも備える光半導体装置。 (14) The optical semiconductor element mounting substrate according to (12), the optical semiconductor element mounted on the bottom surface of the concave portion of the optical semiconductor element mounting substrate, and the optical semiconductor element formed in the concave portion so as to cover the optical semiconductor element. An optical semiconductor device comprising at least the phosphor-containing transparent sealing resin layer.

なお、本発明において「多孔質充填剤」とは、比表面積が10m/g以上の充填剤を意味し、「吸油性を有する化合物」とは、JIS K5101に規定される吸油量が10ml/100g以上の化合物を意味する。 In the present invention, the “porous filler” means a filler having a specific surface area of 10 m 2 / g or more, and the “compound having oil absorbency” means an oil absorption amount defined by JIS K5101 of 10 ml / g. It means a compound of 100 g or more.

本発明によれば、タブレット成型時に使用する金型の杵型や臼型の表面に付着することがなく、優れた機械的強度を有するタブレット成型体を得ることが可能な熱硬化性光反射用樹脂組成物、ならびに当該樹脂組成物を用いた光半導体素子搭載用基板とその製造方法および光半導体装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, for thermosetting light reflection which can obtain the tablet molding which has the outstanding mechanical strength, without adhering to the surface of the metal mold | die or mortar type | mold used at the time of tablet shaping | molding It becomes possible to provide a resin composition, a substrate for mounting an optical semiconductor element using the resin composition, a manufacturing method thereof, and an optical semiconductor device.

金型を使用して熱硬化性樹脂からなるタブレットを成型する際の金型に対する樹脂組成物の付着を説明する概略図である。It is the schematic explaining adhesion of the resin composition with respect to a metal mold | die at the time of shape | molding the tablet which consists of thermosetting resins using a metal mold | die. 本発明の光半導体素子搭載用基板の一実施形態を示す図であり、(a)は斜視図、(b)は側面断面図である。It is a figure which shows one Embodiment of the board | substrate for optical semiconductor element mounting of this invention, (a) is a perspective view, (b) is side sectional drawing. 本発明の光半導体素子搭載用基板の製造方法を説明する概略図であり、(a)〜(c)はトランスファー成型によって基板を製造する場合の各工程に対応する。It is the schematic explaining the manufacturing method of the board | substrate for optical semiconductor element mounting of this invention, (a)-(c) respond | corresponds to each process in the case of manufacturing a board | substrate by transfer molding. 本発明の光半導体装置の一実施形態を示す図であり、(a)および(b)はそれぞれ装置の構造を模式的に示す側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the optical semiconductor device of this invention, (a) And (b) is side sectional drawing which shows the structure of an apparatus typically, respectively. 一般的なSMDタイプのLED(光半導体装置)を示す側面断面図である。It is side surface sectional drawing which shows a general SMD type LED (optical semiconductor device).

本発明の熱硬化性光反射用樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化触媒、(D)無機充填剤、(E)白色顔料、および(F)カップリング剤を含み、上記(D)無機充填剤および上記(E)白色顔料の少なくとも一方の成分として、多孔質充填剤または吸油性を有する化合物を含むことを特徴とするものである。もちろん、上記(D)無機充填剤および上記(E)白色顔料の少なくとも一方の成分として、多孔質構造を有し、さらに吸油性を有する化合物を用いてもよい。   The thermosetting light reflecting resin composition of the present invention comprises (A) an epoxy resin, (B) a curing agent, (C) a curing catalyst, (D) an inorganic filler, (E) a white pigment, and (F) a cup. A ring agent is included, and a porous filler or an oil-absorbing compound is included as at least one component of the (D) inorganic filler and the (E) white pigment. Of course, a compound having a porous structure and having an oil absorbing property may be used as at least one component of the (D) inorganic filler and the (E) white pigment.

上記多孔質充填剤または吸油性を有する化合物としては、特に限定されないが、例えば、多孔質構造もしくは吸油性を有するシリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、ゼオライト、ノルボルネンゴム、アクリロニトリル・ブタジエン・スチレン共重合樹脂等を挙げることができ、これらは単独で使用しても、併用しても構わない。熱伝導性、光反射特性、成型性の点からは、シリカ、アルミナまたはこれらの混合物が好ましい。   The porous filler or the oil-absorbing compound is not particularly limited, and examples thereof include silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, water having a porous structure or oil-absorbing property. Examples thereof include magnesium oxide, barium sulfate, magnesium carbonate, barium carbonate, zeolite, norbornene rubber, acrylonitrile / butadiene / styrene copolymer resin, and these may be used alone or in combination. Silica, alumina, or a mixture thereof is preferable from the viewpoint of thermal conductivity, light reflection characteristics, and moldability.

また、上記多孔質充填剤または吸油性を有する化合物の形状としては、特に限定されず、例えば、真球状、破砕状、円盤状、棒状、繊維状等のものを用いることができる。トランスファー成型時の金型内の流動性を考慮すると真球状、破砕状のものが好ましく、真球状のものがより好ましい。   In addition, the shape of the porous filler or the oil-absorbing compound is not particularly limited, and for example, a spherical shape, a crushed shape, a disk shape, a rod shape, a fiber shape, or the like can be used. Considering the fluidity in the mold at the time of transfer molding, a spherical shape and a crushed shape are preferable, and a true spherical shape is more preferable.

また、上記多孔質充填剤または吸油性を有する化合物は、その表面が物理的または化学的に親水化処理または疎水化処理されていてもよい。好ましくは表面が疎水化処理されたものであり、吸油量(JIS K5101に準ずる規定量)が50ml/100g以上となるように化学的に疎水化処理されたものであることがより好ましい。表面が疎水化処理された多孔質充填剤または吸油性を有する化合物を用いることで、上記(A)エポキシ樹脂や上記(B)硬化剤との接着性が増加し、結果として熱硬化物の機械強度やトランスファー成型時の流動性が向上する。また、吸油量50ml/100g以上となるように表面が疎水化処理された多孔質充填剤または吸油性を有する化合物を用いることで、上記(A)エポキシ樹脂との接着性が向上するとともに、混錬後の樹脂組成物のポットライフ低下を抑制することができ、また、熱硬化時に着色を抑制することもできる。このような疎水化処理が施された多孔質充填剤としては、例えば、富士シリシア化学株式会社から販売されているサイロホービック702等を挙げることができる。   Further, the surface of the porous filler or the compound having oil absorbency may be subjected to a physical or chemical hydrophilization treatment or a hydrophobization treatment. Preferably, the surface is subjected to a hydrophobic treatment, and the surface is more preferably subjected to a chemical hydrophobic treatment so that the oil absorption amount (a prescribed amount according to JIS K5101) is 50 ml / 100 g or more. By using a porous filler whose surface is hydrophobized or an oil-absorbing compound, the adhesiveness with the (A) epoxy resin or the (B) curing agent is increased, and as a result, a thermoset machine. Strength and fluidity during transfer molding are improved. Further, by using a porous filler or an oil-absorbing compound whose surface has been subjected to a hydrophobic treatment so that the oil absorption amount is 50 ml / 100 g or more, the adhesiveness with the above-mentioned (A) epoxy resin is improved and mixed. The pot life reduction of the resin composition after tempering can be suppressed, and coloring can also be suppressed at the time of thermosetting. Examples of the porous filler subjected to such a hydrophobization treatment include Silo Hovic 702 sold by Fuji Silysia Chemical Co., Ltd.

また、上記多孔質充填剤または吸油性を有する化合物の見掛け密度は、特に限定されないが、0.4g/cm以上であることが好ましく、0.4〜2.0g/cmであることがより好ましい。なお、見掛け密度とは、多孔質充填剤または吸油性を有する化合物の素原料が占める密度と微細孔の占める空間(即ち細孔容積)とを考慮した密度のことである。この見掛け密度が0.4g/cmに満たない場合は、充填剤粒子の機械的強度が小さく、ミキシングロールミル等のせん断力を生じるような溶融混錬時において、粒子が破壊されてしまうおそれがある。一方、見掛け密度が2.0g/cmを超える場合は、タブレット成型時に臼型と杵型の金型表面に樹脂組成物が付着し易くなる傾向にある。 Further, the apparent density of the porous filler or a compound having an oil absorbency is not particularly limited, it is preferably 0.4 g / cm 3 or more, to be 0.4 to 2.0 g / cm 3 More preferred. The apparent density is a density in consideration of the density occupied by the raw material of the porous filler or the oil-absorbing compound and the space occupied by the fine pores (that is, the pore volume). When this apparent density is less than 0.4 g / cm 3 , the mechanical strength of the filler particles is small, and the particles may be destroyed at the time of melt-kneading that generates shearing force such as a mixing roll mill. is there. On the other hand, when the apparent density exceeds 2.0 g / cm 3 , the resin composition tends to easily adhere to the surface of the mortar mold and bowl mold during tablet molding.

また、上記多孔質充填剤または吸油性を有する化合物の平均粒径は、0.1〜100μmであることが好ましく、白色顔料とのパッキング効率を考慮すると1〜10μmの範囲であることがより好ましい。平均粒径が100μmよりも大きく、または0.1μmよりも小さくなると、トランスファー成型する際の溶融時に樹脂組成物の流動性が悪くなる傾向にある。   The average particle diameter of the porous filler or the oil-absorbing compound is preferably 0.1 to 100 μm, and more preferably in the range of 1 to 10 μm in view of packing efficiency with a white pigment. . If the average particle size is larger than 100 μm or smaller than 0.1 μm, the fluidity of the resin composition tends to be poor at the time of melting during transfer molding.

また、上記多孔質充填剤または吸油性を有する化合物の比表面積は、100〜1000m/gであることが好ましく、300〜700m/gであることがより好ましい。比表面積が100m/gよりも小さくなると充填剤による樹脂の吸油量が小さくなり、タブレット成型時に杵型に樹脂が付着し易くなる傾向にあり、比表面積が1000m/gよりも大きくなると、トランスファー成型する際の溶融時に樹脂組成物の流動性が悪くなる傾向にある。 The specific surface area of the porous filler or a compound having an oil absorbency is preferably 100~1000m 2 / g, more preferably 300~700m 2 / g. When the specific surface area is smaller than 100 m 2 / g, the oil absorption amount of the resin by the filler is decreased, and the resin tends to adhere to the bowl at the time of tablet molding, and when the specific surface area is larger than 1000 m 2 / g, The fluidity of the resin composition tends to deteriorate during melting during transfer molding.

また、上記多孔質充填剤または吸油性を有する化合物の含有量は、特に限定されないが、(D)無機充填剤および(E)白色顔料の合計量を基準として、0.1体積%〜20体積%の範囲であることが好ましい。溶融時の樹脂組成物の成型性を考慮すると、1体積%〜5体積%であることがより好ましい。この含有量が0.1体積%よりも小さい場合は、樹脂組成物の一部が臼型と杵型の成型金型表面に付着し易くなり、20体積%よりも大きい場合は、トランスファー成型する際の溶融時に樹脂組成物の流動性が低下する傾向にある。例えば、上記多孔質充填剤として上記サイロホービック702を用いる場合には、その含有量を、樹脂組成物の溶融時の流動性や樹脂硬化物の強度の観点から5体積%以下とすることが好ましい。   Further, the content of the porous filler or the oil-absorbing compound is not particularly limited, but is 0.1 volume% to 20 volume based on the total amount of (D) inorganic filler and (E) white pigment. % Is preferable. Considering the moldability of the resin composition at the time of melting, it is more preferably 1% by volume to 5% by volume. When this content is less than 0.1% by volume, a part of the resin composition tends to adhere to the surfaces of the mortar mold and bowl mold, and when it is greater than 20% by volume, transfer molding is performed. At the time of melting, the fluidity of the resin composition tends to decrease. For example, when the silophobic 702 is used as the porous filler, the content may be 5% by volume or less from the viewpoint of fluidity when the resin composition is melted and strength of the resin cured product. preferable.

本発明の樹脂組成物に含まれる上記(A)エポキシ樹脂としては、従来の熱硬化性光反射用樹脂組成物やエポキシ樹脂成型材料として通常配合されているものであれば、特に制限されることなく用いることができる。それを例示すれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂等が挙げられ、これらは単独でも二種以上併用してもよい。また、これらエポキシ樹脂のうち、比較的着色のないものが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートを挙げることができる。   The epoxy resin (A) contained in the resin composition of the present invention is particularly limited as long as it is usually blended as a conventional thermosetting light reflecting resin composition or epoxy resin molding material. Can be used. For example, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin and other phenols and aldehyde novolak resins epoxidized, bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, etc. Diglycidyl ether, diaminodiphenylmethane, isocyanuric acid and other polyamines obtained by the reaction of epichlorohydrin with glycidylamine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, alicyclics An epoxy resin etc. are mentioned, These may be individual or may be used together 2 or more types. Among these epoxy resins, those having relatively little color are preferable, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, and triglycidyl isocyanurate. it can.

上記(B)硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限されることなく用いることができるが、比較的着色のないものが好ましい。例えば、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤等が挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられ、イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレート等が挙げられる。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。硬化剤は、その分子量が100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   As said (B) hardening | curing agent, if it reacts with an epoxy resin, it can use without being restrict | limited especially, However, The thing without a coloring is preferable. For example, an acid anhydride curing agent, an isocyanuric acid derivative, a phenolic curing agent, and the like can be given. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like. Examples of isocyanuric acid derivatives include 1,3,5-tris (1-carboxyl Methyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate Etc. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous Diethyl glutaric acid and 1,3,5-tris (3-carboxypropyl) isocyanurate are preferably used. The curing agent preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

また、(A)エポキシ樹脂と(B)硬化剤の配合比は、(A)エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な(B)硬化剤中の活性基(酸無水物基や水酸基)が0.5〜1.2当量となるような割合であることが好ましく、0.6〜0.8当量となるような割合であることがより好ましい。上記活性基が0.5当量未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化物のガラス転移温度が低くなり、充分な弾性率が得られない場合がある。一方、上記活性基が1.2当量を超える場合には、硬化後の強度が減少する場合がある。   Moreover, the compounding ratio of (A) epoxy resin and (B) hardening | curing agent is the active group (B) hardening | curing agent (B) which can react with the said epoxy group with respect to 1 equivalent of epoxy groups in (A) epoxy resin. The ratio is such that the acid anhydride group or hydroxyl group is 0.5 to 1.2 equivalents, and more preferably 0.6 to 0.8 equivalents. When the said active group is less than 0.5 equivalent, while the cure rate of an epoxy resin composition becomes slow, the glass transition temperature of the hardened | cured material obtained becomes low, and sufficient elastic modulus may not be obtained. On the other hand, when the active group exceeds 1.2 equivalents, the strength after curing may decrease.

上記(C)硬化触媒(硬化促進剤)としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール等の3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレート等のリン化合物、4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等が挙げられる。これらは単独で使用してもよく、あるいは併用してもよい。これらの(C)硬化触媒の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   The (C) curing catalyst (curing accelerator) is not particularly limited, and for example, 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4. Tertiary amines such as 1,6-dimethylaminomethylphenol, imidazoles such as 2-ethyl-4methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o , O-diethyl phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, phosphorus compounds such as tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof Can be mentioned. These may be used alone or in combination. Among these (C) curing catalysts, tertiary amines, imidazoles, and phosphorus compounds are preferably used.

上記(C)硬化触媒の含有率は、上記(A)エポキシ樹脂に対して、0.01〜8.0重量%であることが好ましく、より好ましくは、0.1〜3.0重量%である。(C)硬化触媒の含有率が0.01%重量未満では、硬化促進効果を十分に得られない場合があり、また8.0重量%を超えると、得られる成型体に変色が見られる場合がある。   The content of the (C) curing catalyst is preferably 0.01 to 8.0% by weight, more preferably 0.1 to 3.0% by weight with respect to the (A) epoxy resin. is there. (C) When the content of the curing catalyst is less than 0.01% by weight, the curing acceleration effect may not be sufficiently obtained. When the content exceeds 8.0% by weight, discoloration is observed in the resulting molded product. There is.

上記多孔質充填剤または吸油性を有する化合物以外の上記(D)無機充填剤としては、特に限定されない。例えば、多孔質構造または吸油性を持たないシリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム等を用いることができ、これらは単独でも2種以上を併用しても構わない。熱伝導性、光反射特性、成型性の点から、シリカ、水酸化アルミニウム、水酸化マグネシウム、またはこれらの混合物が好ましい。また、(D)無機充填剤の平均粒径は、特に限定されるものではないが、白色顔料とのパッキングが効率良くなるように1〜100μmの範囲のものを用いることが好ましい。   The (D) inorganic filler other than the porous filler or the oil-absorbing compound is not particularly limited. For example, silica, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, etc. having no porous structure or oil absorption can be used, and these may be used alone or in combination of two or more. . Silica, aluminum hydroxide, magnesium hydroxide, or a mixture thereof is preferable from the viewpoint of thermal conductivity, light reflection characteristics, and moldability. Moreover, the average particle diameter of the (D) inorganic filler is not particularly limited, but it is preferable to use an inorganic filler having a range of 1 to 100 μm so that the packing with the white pigment is efficient.

上記(E)白色顔料としては、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、無機中空粒子等を用いることができ、これらは単独でも2種以上を併用しても構わない。また、上記無機中空粒子としては、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。また、上記(E)白色顔料の平均粒径は、0.1〜50μmの範囲にあることが好ましい。0.1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると硬化物の反射特性が十分に得られない傾向にある。
また、上記(D)無機充填剤と上記(E)白色顔料の合計含有量は、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることが好ましい。合計含有量が10体積%未満であると硬化物の光反射特性が十分得られない傾向にあり、85体積%を超えると樹脂組成物の成型性が悪くなり、基板の作製が困難となる傾向にある。
The white pigment (E) is not particularly limited. For example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, inorganic hollow particles, and the like can be used, and these can be used alone or in combination of two or more. It doesn't matter. Examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. Moreover, it is preferable that the average particle diameter of the said (E) white pigment exists in the range of 0.1-50 micrometers. If the thickness is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 μm, the reflective properties of the cured product tend to be insufficient.
Moreover, it is preferable that the total content of the (D) inorganic filler and the (E) white pigment is in the range of 10% by volume to 85% by volume with respect to the entire resin composition. If the total content is less than 10% by volume, the light reflection characteristics of the cured product tend not to be sufficiently obtained. If the total content exceeds 85% by volume, the moldability of the resin composition tends to be poor, and it becomes difficult to produce a substrate. It is in.

上記(F)カップリング剤としては、特に限定されないが、例えば、シランカップリング剤やチタネート系カップリング剤を用いることができる。シランカップリング剤としては、一般にエポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等を任意の割合で用いることができる。また、上記(F)カップリング剤の種類や処理条件は、特に限定されないが、その配合量は、樹脂組成物全体に対して、5重量%以下とすることが好ましい。   Although it does not specifically limit as said (F) coupling agent, For example, a silane coupling agent and a titanate coupling agent can be used. As the silane coupling agent, generally, epoxy silane, amino silane, cationic silane, vinyl silane, acryl silane, mercapto silane, and composites thereof can be used at an arbitrary ratio. Moreover, although the kind and process conditions of said (F) coupling agent are not specifically limited, It is preferable that the compounding quantity shall be 5 weight% or less with respect to the whole resin composition.

また、本発明の樹脂組成物には、上記成分(A)〜(F)に加え、必要に応じて、公知の酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   In addition to the above components (A) to (F), the resin composition of the present invention may contain additives such as known antioxidants, mold release agents, and ion supplementing agents as necessary. Good.

以上のような成分を含有する本発明の熱硬化性光反射用樹脂組成物は、熱硬化前、室温(0〜30℃)において加圧成型(タブレット成型)可能であることが望ましく、また、熱硬化後の、波長350nm〜800nmにおける光反射率が80%以上であることが望まれる。上記光反射率が80%未満であると、光半導体装置の輝度向上に十分に寄与できない傾向がある。より好ましい光反射率は90%以上である。なお、上記加圧成型は、例えば、室温において、5〜50MPa、1〜5秒程度の条件下で成型を行うことができればよい。また、加圧成型(タブレット成型)時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料等からなる臼型と杵型との一対または凹部を有する上金型と下金型との一対等で構成されるものを用いることが好ましい。また、タブレット着色の恐れがない白色の材料からなる金型を用いることが好ましい。   The thermosetting light reflecting resin composition of the present invention containing the components as described above is preferably capable of being pressure-molded (tablet molding) at room temperature (0 to 30 ° C.) before thermosetting. It is desirable that the light reflectance at a wavelength of 350 nm to 800 nm after thermosetting is 80% or more. If the light reflectance is less than 80%, there is a tendency that the light semiconductor device cannot sufficiently contribute to the improvement of the luminance of the optical semiconductor device. A more preferable light reflectance is 90% or more. In addition, the said press molding should just be able to perform shaping | molding on the conditions of 5-50 MPa and about 1-5 second at room temperature, for example. The mold used for pressure molding (tablet molding) is not particularly limited. For example, a pair of a mortar mold and a bowl mold made of a ceramic material, a fluorine resin material, or the like, or an upper mold having a recess and a lower mold are used. It is preferable to use what is comprised of a pair with a mold. Moreover, it is preferable to use the metal mold | die consisting of a white material which does not have a fear of tablet coloring.

また、本発明の熱硬化性光反射用樹脂組成物は、上記した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されないが、一般的な手法として、所定配合量の成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって(溶融)混練し、さらに、冷却、粉砕する方法を挙げることができる。(溶融)混練の条件は、成分の種類や配合量により適宜決定すればよく、特に限定されないが、15〜100℃の範囲で5〜40分間(溶融)混練することが好ましく、20〜100℃の範囲で10〜30分間(溶融)混練することがより好ましい。(溶融)混練温度が15℃未満であると、各成分を(溶融)混練させることが困難であり、分散性も低下する傾向にあり、100℃よりも高温であると、樹脂組成物の高分子量化が進行し、樹脂組成物が硬化してしまう恐れがある。   Further, the thermosetting light reflecting resin composition of the present invention can be obtained by uniformly dispersing and mixing the various components described above, and means and conditions thereof are not particularly limited. Examples include a method in which components of a predetermined blending amount are sufficiently uniformly stirred and mixed by a mixer or the like, then (melted) kneaded by a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and further cooled and pulverized. . The conditions for (melting) kneading may be appropriately determined depending on the type and blending amount of the components, and are not particularly limited, but are preferably (melting) kneading in the range of 15 to 100 ° C for 5 to 40 minutes, and 20 to 100 ° C. It is more preferable to perform kneading (melting) for 10 to 30 minutes within the above range. When the (melting) kneading temperature is less than 15 ° C., it is difficult to (melt) kneading each component, and the dispersibility tends to decrease. When the temperature is higher than 100 ° C., the resin composition has a high temperature. There is a possibility that the molecular weight proceeds and the resin composition is cured.

本発明の光半導体素子搭載用基板は、本発明の熱硬化性光反射用樹脂組成物を用いてなるものであり、例えば、光半導体素子搭載領域となる凹部が1つ以上形成されており、少なくとも上記凹部の内周側面が本発明の熱硬化性光反射用樹脂組成物からなることを特徴とする。図2は、本発明の光半導体素子搭載用基板の一実施形態を示すものであり、(a)は斜視図、(b)は側面断面図である。図2に示す本発明の光半導体素子搭載用基板110は、リフレクター103と、Ni/Agめっき104および金属配線105の含む配線パターン(リードフレーム)とが一体化され、光半導体素子搭載領域となる凹部200が形成された構造を有し、少なくとも凹部200の側壁を形成するリフレクターの内周側面が本発明の熱硬化性光反射用樹脂組成物から構成されることを特徴とする。   The substrate for mounting an optical semiconductor element of the present invention is formed using the thermosetting light reflecting resin composition of the present invention, and, for example, one or more recesses to be an optical semiconductor element mounting region are formed, At least the inner peripheral side surface of the recess is made of the thermosetting light reflecting resin composition of the present invention. 2A and 2B show an embodiment of a substrate for mounting an optical semiconductor element of the present invention, wherein FIG. 2A is a perspective view and FIG. 2B is a side sectional view. The optical semiconductor element mounting substrate 110 of the present invention shown in FIG. 2 is an optical semiconductor element mounting region in which the reflector 103 and the wiring pattern (lead frame) including the Ni / Ag plating 104 and the metal wiring 105 are integrated. It has the structure where the recessed part 200 was formed, and the inner peripheral side surface of the reflector which forms the side wall of the recessed part 200 is comprised from the thermosetting light reflecting resin composition of this invention, It is characterized by the above-mentioned.

本発明の光半導体素子搭載用基板の製造方法は、特に限定されないが、例えば、本発明の熱硬化性光反射用樹脂組成物をトランスファー成型によって製造することが好ましい。図3は、本発明の光半導体素子搭載用基板の製造方法を説明する概略図であり、図3(a)〜(c)はトランスファー成型によって基板を製造する場合の各工程に対応する。より具体的には、光半導体素子搭載用基板は、図3(a)に示すように、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、次いで該金属配線105を所定形状の金型301に配置し(図3(b))、金型301の樹脂注入口300から本発明の熱硬化性光反射用樹脂組成物を注入する。次いで、注入した樹脂組成物を、好ましくは金型温度170〜190℃、成形圧力2〜8MPaで60〜120秒にわたって硬化させた後に金型301を外し、アフターキュア温度120℃〜180℃で1〜3時間にわたって熱硬化させる。次いで、硬化した熱硬化性光反射用樹脂組成物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)(図2の参照符号200)の所定位置に、電気めっきによりNi/銀めっき104を施すことで製造することができる(図3(c))。   Although the manufacturing method of the optical semiconductor element mounting substrate of this invention is not specifically limited, For example, it is preferable to manufacture the thermosetting light reflection resin composition of this invention by transfer molding. FIG. 3 is a schematic view for explaining a method for manufacturing a substrate for mounting an optical semiconductor element according to the present invention, and FIGS. 3A to 3C correspond to respective steps in manufacturing a substrate by transfer molding. More specifically, as shown in FIG. 3A, the substrate for mounting an optical semiconductor element is formed with a metal wiring 105 by a known method such as punching or etching from a metal foil. The thermosetting light reflecting resin composition of the present invention is injected from the resin injection port 300 of the mold 301 by placing it in the shaped mold 301 (FIG. 3B). Subsequently, the injected resin composition is preferably cured at a mold temperature of 170 to 190 ° C. and a molding pressure of 2 to 8 MPa for 60 to 120 seconds, then the mold 301 is removed, and the after cure temperature is 120 to 180 ° C. Heat cure for ~ 3 hours. Next, Ni / is deposited by electroplating on a predetermined position of the optical semiconductor element mounting region (recessed portion) (reference numeral 200 in FIG. 2) surrounded by the reflector 103 made of the cured thermosetting light reflecting resin composition. It can manufacture by giving silver plating 104 (FIG.3 (c)).

また、本発明の光半導体素子搭載用基板を用いた光半導体装置は、例えば、本発明の光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部底面に搭載される光半導体素子と、光半導体素子を覆うように凹部内に形成される蛍光体含有透明封止樹脂層とを少なくとも備える。図4(a)および図4(b)は、それぞれ本発明の光半導体装置の一実施形態を示す側面断面図である。より具体的には、図4に示した光半導体装置では、本発明の光半導体素子搭載用基板110の光半導体素子搭載領域における底部(凹部)の所定位置に光半導体素子100が搭載され、該光半導体素子100と金属配線105とがボンディングワイヤ102やはんだバンプ107等の公知の方法によりNi/銀メッキ104を介して電気的に接続され、該光半導体素子100が公知の蛍光体106を含む透明封止樹脂101により覆われている。   An optical semiconductor device using the optical semiconductor element mounting substrate of the present invention includes, for example, an optical semiconductor element mounting substrate of the present invention, an optical semiconductor element mounted on the bottom surface of the recess of the optical semiconductor element mounting substrate, And a phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element. FIG. 4A and FIG. 4B are side cross-sectional views showing an embodiment of the optical semiconductor device of the present invention. More specifically, in the optical semiconductor device shown in FIG. 4, the optical semiconductor element 100 is mounted at a predetermined position of the bottom (concave portion) in the optical semiconductor element mounting region of the optical semiconductor element mounting substrate 110 of the present invention. The optical semiconductor element 100 and the metal wiring 105 are electrically connected through a Ni / silver plating 104 by a known method such as a bonding wire 102 or a solder bump 107, and the optical semiconductor element 100 includes a known phosphor 106. Covered with a transparent sealing resin 101.

以下、本発明を実施例により詳述するが、本発明は以下の記載に限定されるものではない。   EXAMPLES Hereinafter, although an Example explains in full detail this invention, this invention is not limited to the following description.

(実施例1〜5、比較例1〜3)
1.熱硬化性光反射用樹脂組成物の調製
表1に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例1〜5および比較例1〜3の熱硬化性光反射用樹脂組成物を調製した。なお、表中の各成分の配合量の単位は重量部であり、空欄は配合無しを表す。
(Examples 1-5, Comparative Examples 1-3)
1. Preparation of Thermosetting Light Reflecting Resin Composition After blending each component according to the blending table shown in Table 1, sufficiently kneading with a mixer, melt-kneading under a predetermined condition with a mixing roll, cooling and grinding, Examples Thermosetting light reflecting resin compositions of 1 to 5 and Comparative Examples 1 to 3 were prepared. In addition, the unit of the compounding quantity of each component in a table | surface is a weight part, and a blank represents no compounding.

2.熱硬化性光反射用樹脂組成物の評価
各実施例及び各比較例の樹脂組成物について、下記試験方法により硬化物の光反射性とタブレット成型性を評価した。結果を表1に示す。
2. Evaluation of Thermosetting Light Reflective Resin Composition The resin composition of each Example and each Comparative Example was evaluated for the light reflectivity and tablet moldability of the cured product by the following test methods. The results are shown in Table 1.

(光反射性試験)
各実施例及び各比較例の樹脂組成物を、成型型温度180℃、成型圧力6.9MPa、キュア時間90秒の条件でトランスファー成型した後、150℃で2時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計V−750型(日本分光株式会社製)にて波長400nmにおける光反射率を測定し、下記の評価基準により各テストピースの光反射性を評価した。
・評価基準
○:光波長400nmにおいて光反射率80%以上
△:光波長400nmにおいて光反射率70%以上80%未満
×:光波長400nmにおいて光反射率70%未満
(Light reflectivity test)
The resin composition of each example and each comparative example was formed by transfer molding under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and then post-cured at 150 ° C. for 2 hours to obtain a thickness of 1 A test piece of 0.0 mm was produced. Next, the light reflectance at a wavelength of 400 nm was measured with an integrating sphere type spectrophotometer V-750 type (manufactured by JASCO Corporation), and the light reflectivity of each test piece was evaluated according to the following evaluation criteria.
・ Evaluation criteria ○: Light reflectance of 80% or more at a light wavelength of 400 nm
Δ: Light reflectance of 70% or more and less than 80% at a light wavelength of 400 nm
×: Light reflectance of less than 70% at a light wavelength of 400 nm

(タブレット成型試験)
材質がアルミナで樹脂との接触表面が超硬合金である杵型と臼型の一対から構成された成型金型を用い(図1を参照)、各実施例及び各比較例の樹脂組成物を、室温(25℃)、成型圧力5MPa、10MPa、30MPa、3秒間の各条件下で加圧成型し、タブレットを作製した。
その後、樹脂組成物の杵表面への張り付きおよびそれによるタブレットの破壊、ならびに得られたタブレットのひび割れを下記の評価基準により評価した。
・樹脂組成物の張り付き、タブレットの破壊の評価基準
○:目視にて張り付き、タブレットの破壊が確認できない。
×:目視にて張り付き、タブレットの破壊が認められる。
・タブレットのひび割れの評価基準
○:目視にてタブレットのひび割れが確認できない。
×:目視にてタブレットのひび割れが認められる。
(Tablet molding test)
Using a molding die composed of a pair of a saddle type and a mortar type whose material is alumina and whose contact surface with the resin is a cemented carbide (see FIG. 1), the resin compositions of the examples and comparative examples are used. , Under pressure, at room temperature (25 ° C.), under a molding pressure of 5 MPa, 10 MPa, 30 MPa, and 3 seconds to produce a tablet.
Thereafter, the resin composition was adhered to the wrinkle surface and the tablet was broken, and cracks of the obtained tablet were evaluated according to the following evaluation criteria.
・ Evaluation criteria for resin composition sticking and tablet breakage ○: Sticking by visual observation, tablet breakage cannot be confirmed.
X: Sticking by visual observation, destruction of the tablet is observed.
-Evaluation criteria for tablet cracks ○: Tablet cracks cannot be confirmed visually.
X: The crack of a tablet is recognized visually.

Figure 0005727977
Figure 0005727977

(注記)
表1における各成分の詳細は以下のとおりである。
(Note)
Details of each component in Table 1 are as follows.

(1)トリグリシジルイソシアヌレート:エポキシ当量100、日産化学工業株式会社製、商品名「TEPIC−S」
(2)ヘキサヒドロ無水フタル酸:和光純薬株式会社製、エポキシ基と反応可能な活性基当量154
(3)テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート:日本化学工業株式会社製、商品名「PX−4ET」
(4)トリメトキシエポキシシラン:東レダウコーニング株式会社製、商品名「A−187」
(5)脂肪酸エステル(クラリアント株式会社製、商品名「ヘキストワックスE」)
(6)脂肪族エーテル(東洋ペトロライト株式会社製、商品名「ユニトックス420」)
(7)溶融球状シリカ1(電気化学工業株式会社製、商品名「FB−950」)
(8)溶融球状シリカ2(電気化学工業株式会社製、商品名「FB−301」)
(9)結晶破砕状シリカ(電気化学工業株式会社製、商品名「FS30」
(10)中空粒子(住友3M株式会社製、商品名「S60−HS」、ホウ珪酸ガラス)
(11)アルミナ(アドマテックス株式会社製、商品名「AO−25R」)
(12)多孔質球状シリカ(富士シリシア化学株式会社製、商品名「サイロスフィアC−1504」、平均粒径3μm、見掛け密度0.58g/ml、比表面積300m/g)
(13)多孔質無定形状シリカ(富士シリシア化学株式会社製、商品名「サイロホービック702」、平均粒径4μm、見掛け密度0.48g/ml、比表面積300m/g)
(14)多孔質無定形状シリカ(富士シリシア化学株式会社製、商品名「サイリシア435」、平均粒径4μm、見掛け密度0.48g/ml、比表面積300m/g)
(1) Triglycidyl isocyanurate: epoxy equivalent 100, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-S”
(2) Hexahydrophthalic anhydride: manufactured by Wako Pure Chemical Industries, Ltd., active group equivalent 154 capable of reacting with an epoxy group
(3) Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate: Nippon Chemical Industry Co., Ltd., trade name “PX-4ET”
(4) Trimethoxyepoxysilane: Toray Dow Corning Co., Ltd., trade name “A-187”
(5) Fatty acid ester (manufactured by Clariant Co., Ltd., trade name “Hoechst Wax E”)
(6) Aliphatic ether (trade name “Unitox 420” manufactured by Toyo Petrolite Co., Ltd.)
(7) Fused spherical silica 1 (trade name “FB-950”, manufactured by Denki Kagaku Kogyo Co., Ltd.)
(8) Fused spherical silica 2 (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “FB-301”)
(9) Crushed silica (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “FS30”)
(10) Hollow particles (manufactured by Sumitomo 3M Co., Ltd., trade name “S60-HS”, borosilicate glass)
(11) Alumina (manufactured by Admatechs Co., Ltd., trade name “AO-25R”)
(12) Porous spherical silica (manufactured by Fuji Silysia Chemical Co., Ltd., trade name “Syrosphere C-1504”, average particle size 3 μm, apparent density 0.58 g / ml, specific surface area 300 m 2 / g)
(13) Porous amorphous silica (manufactured by Fuji Silysia Chemical Ltd., trade name “Silo Hovic 702”, average particle diameter 4 μm, apparent density 0.48 g / ml, specific surface area 300 m 2 / g)
(14) Porous amorphous silica (manufactured by Fuji Silysia Chemical Ltd., trade name “Silysia 435”, average particle size 4 μm, apparent density 0.48 g / ml, specific surface area 300 m 2 / g)

表1に示したように、実施例1〜5の本発明による熱硬化性光反射用樹脂組成物は、硬化物の光反射特性に優れ、タブレット打錠時に杵、臼に付着することがなく、得られるタブレットの機械的強度にも優れていることがわかる。トランスファー成型を行う場合においては、今後、成型自動化と連続成型を行うためにロボットアーム等の装置を用いることが想定されるが、本発明の熱硬化性光反射用樹脂組成物を用いることで、アームがタブレットをグリップする際にタブレットを破壊してしまう等の不具合が発生することなく、自動連続成型することが可能になる。その結果、光半導体素子搭載用基板及び光半導体装置の製造工程において、歩留まりが大幅に改善され、コストや製造時間等生産性の面で非常に有利となる。   As shown in Table 1, the thermosetting light reflecting resin compositions according to the present invention of Examples 1 to 5 are excellent in light reflecting properties of the cured product, and do not adhere to the pestle and die during tableting. It can be seen that the tablet obtained has excellent mechanical strength. In the case of performing transfer molding, in the future, it is assumed that an apparatus such as a robot arm is used to perform molding automation and continuous molding, but by using the thermosetting light reflecting resin composition of the present invention, Automatic continuous molding can be performed without causing problems such as destruction of the tablet when the arm grips the tablet. As a result, in the manufacturing process of the optical semiconductor element mounting substrate and the optical semiconductor device, the yield is greatly improved, which is very advantageous in terms of productivity such as cost and manufacturing time.

1 臼型
2 上杵型
3 下杵型
4 タブレット(樹脂組成物)
5 杵型に付着した樹脂組成物
100 光半導体素子(LED素子)
101 透明封止樹脂
102 ボンディングワイヤ
103 熱硬化性光反射用樹脂組成物からなるリフレクター
104 Ni/Agめっき
105 金属配線
106 蛍光体
107 はんだバンプ
110 光半導体素子搭載用基板
200 光半導体素子搭載領域(凹部)
300 樹脂注入口
301 トランスファー成型用金型
400 LED素子
401 ボンディングワイヤ
402 透明封止樹脂
403 リフレクター
404 リード
405 蛍光体
406 ダイボンド材
1 mortar type 2 upper mold type 3 lower mold type 4 tablet (resin composition)
5 Resin composition attached to bowl-shaped 100 Photonic semiconductor element (LED element)
DESCRIPTION OF SYMBOLS 101 Transparent sealing resin 102 Bonding wire 103 Reflector 104 Ni / Ag plating 105 Metal wiring 106 Phosphor 107 Solder bump 110 Optical semiconductor element mounting substrate 200 Optical semiconductor element mounting area (recessed part) )
300 Resin injection port 301 Transfer mold 400 LED element 401 Bonding wire 402 Transparent sealing resin 403 Reflector 404 Lead 405 Phosphor 406 Die bond material

Claims (10)

光半導体素子搭載領域となる凹部が1つ以上形成され、少なくとも前記凹部の内周側面が光反射用熱硬化性樹脂組成物からなる光半導体素子搭載用基板と、
前記光半導体素子搭載用基板の凹部底面に搭載された光半導体素子と、
前記光半導体素子を覆うように前記凹部内に形成された蛍光体含有透明封止樹脂層と、
を少なくとも備える光半導体装置であって、
前記光反射用熱硬化性樹脂組成物が、エポキシ樹脂、硬化剤、無機充填剤、および白色顔料を含み、前記無機充填剤および前記白色顔料の少なくとも一方の成分として、多孔質充填剤または吸油性を有する化合物を含み、前記多孔質充填剤または吸油性を有する化合物が多孔質構造または吸油性を有するシリカを含むことを特徴とする光半導体装置。
One or more recesses to be an optical semiconductor element mounting region is formed, and at least an inner peripheral side surface of the recess is an optical semiconductor element mounting substrate made of a light-reflective thermosetting resin composition;
An optical semiconductor element mounted on the bottom of the recess of the optical semiconductor element mounting substrate;
A phosphor-containing transparent sealing resin layer formed in the recess so as to cover the optical semiconductor element;
An optical semiconductor device comprising at least
The light-reflective thermosetting resin composition includes an epoxy resin, a curing agent, an inorganic filler, and a white pigment, and at least one component of the inorganic filler and the white pigment is a porous filler or an oil-absorbing property. look-containing compounds having the porous filler or a compound having an oil absorbing silica optical semiconductor device according to claim containing Mukoto a having a porous structure or oil absorbing.
前記多孔質充填剤または吸油性を有する化合物の形状が、真球状、破砕状、円盤状、棒状、および繊維状からなる群の中から選ばれる少なくとも1種であることを特徴とする請求項1に記載の光半導体装置。 The shape of the porous filler or the compound having oil absorbency is at least one selected from the group consisting of a spherical shape, a crushed shape, a disc shape, a rod shape, and a fiber shape. An optical semiconductor device according to 1. 前記多孔質充填剤または吸油性を有する化合物の表面が、疎水化処理または親水化処理されていることを特徴とする請求項1又は2に記載の光半導体装置。 3. The optical semiconductor device according to claim 1, wherein a surface of the porous filler or the oil-absorbing compound is subjected to a hydrophobic treatment or a hydrophilic treatment. 4. 前記多孔質充填剤または吸油性を有する化合物の見掛け密度が、0.4g/cm以上であることを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The apparent density of the porous filler or a compound having an oil absorption property, an optical semiconductor device according to any one of claims 1 to 3, characterized in that 0.4 g / cm 3 or more. 前記無機充填剤および前記白色顔料の合計量を基準として、前記多孔質充填剤または吸油性を有する化合物の含有量が、0.1体積%〜20体積%の範囲であることを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The content of the porous filler or an oil-absorbing compound is in the range of 0.1% by volume to 20% by volume based on the total amount of the inorganic filler and the white pigment. the optical semiconductor device according to any one of clauses 1-4. 前記無機充填剤が、多孔質構造または吸油性を持たない、シリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、および炭酸バリウムからなる群の中から選ばれる少なくとも1種を含むことを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The inorganic filler contains at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, and barium carbonate, which has no porous structure or oil absorption. the optical semiconductor device according to any one of claims 1 to 5, wherein. 前記白色顔料が、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、および無機中空粒子からなる群の中から選ばれる少なくとも1種を含むことを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The white pigment, alumina, magnesium oxide, antimony oxide, titanium oxide, any one of the claims 1-6, characterized in that it comprises at least one selected from the group consisting of zirconium oxide and inorganic hollow particles, An optical semiconductor device according to item . 前記白色顔料の平均粒径が、0.1〜50μmの範囲にあることを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The average particle size of the white pigment, the optical semiconductor device according to any one of claims 1 to 7, characterized in that in the range of 0.1 to 50 [mu] m. 前記無機充填剤と前記白色顔料の合計含有量が、樹脂組成物全体に対して、10体積%〜85体積%の範囲であることを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The total content of the inorganic filler and the white pigment, relative to the entire resin composition, according to any one of claims 1 to 8, characterized in that in the range of 10 vol% to 85 vol% Optical semiconductor device. 少なくとも前記凹部が光反射用熱硬化性樹脂組成物を用いたトランスファー成型により形成されたことを特徴とする請求項1〜のいずれか1項に記載の光半導体装置。 The optical semiconductor device according to any one of claims 1 to 9, characterized in that at least the recess is formed by transfer molding using a light reflecting thermosetting resin composition.
JP2012188760A 2007-03-13 2012-08-29 Optical semiconductor device Active JP5727977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188760A JP5727977B2 (en) 2007-03-13 2012-08-29 Optical semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007063425 2007-03-13
JP2007063425 2007-03-13
JP2012188760A JP5727977B2 (en) 2007-03-13 2012-08-29 Optical semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007307292A Division JP5125450B2 (en) 2007-03-13 2007-11-28 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014122392A Division JP6247599B2 (en) 2007-03-13 2014-06-13 Tablet and method of manufacturing LED device using the same

Publications (2)

Publication Number Publication Date
JP2013021342A JP2013021342A (en) 2013-01-31
JP5727977B2 true JP5727977B2 (en) 2015-06-03

Family

ID=39979220

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007307292A Active JP5125450B2 (en) 2007-03-13 2007-11-28 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device
JP2012188760A Active JP5727977B2 (en) 2007-03-13 2012-08-29 Optical semiconductor device
JP2014122392A Active JP6247599B2 (en) 2007-03-13 2014-06-13 Tablet and method of manufacturing LED device using the same
JP2016214418A Active JP6341256B2 (en) 2007-03-13 2016-11-01 Tablet and method for manufacturing optical semiconductor device using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007307292A Active JP5125450B2 (en) 2007-03-13 2007-11-28 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014122392A Active JP6247599B2 (en) 2007-03-13 2014-06-13 Tablet and method of manufacturing LED device using the same
JP2016214418A Active JP6341256B2 (en) 2007-03-13 2016-11-01 Tablet and method for manufacturing optical semiconductor device using the same

Country Status (1)

Country Link
JP (4) JP5125450B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009008947A1 (en) * 2009-02-13 2010-08-19 Dagmar Bettina Kramer Method for producing an LED light
JP5359349B2 (en) * 2009-02-18 2013-12-04 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
EP2472578B1 (en) * 2010-12-28 2020-06-03 Nichia Corporation Light emitting device
JP5803541B2 (en) * 2011-10-11 2015-11-04 コニカミノルタ株式会社 LED device, manufacturing method thereof, and phosphor dispersion used therefor
JP5831424B2 (en) * 2012-10-17 2015-12-09 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
WO2014068804A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Light emitting apparatus and method for manufacturing same
KR102213602B1 (en) * 2014-12-23 2021-02-05 주식회사 두산 Thermosetting resin composition and plate body comprising the same
JP5949976B2 (en) * 2015-02-18 2016-07-13 日立化成株式会社 Method for producing powdery thermosetting resin composition, method for producing thermosetting resin composition tablet, and method for producing optical semiconductor device
JP6191705B2 (en) * 2016-01-04 2017-09-06 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
WO2017138779A1 (en) 2016-02-12 2017-08-17 엘지이노텍(주) Light emitting device package and lighting apparatus comprising same
WO2019003600A1 (en) * 2017-06-28 2019-01-03 京セラ株式会社 Sealing resin composition, electronic component, and electronic component manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199649A (en) * 1998-01-07 1999-07-27 Toray Ind Inc Epoxy resin composition and semiconductor device
JP4614214B2 (en) * 1999-12-02 2011-01-19 信越化学工業株式会社 Hollow package for semiconductor device elements
JP2002322345A (en) * 2001-04-24 2002-11-08 Matsushita Electric Works Ltd Resin composition for photosemiconductor device and photosemiconductor device
JP2003007744A (en) * 2001-06-21 2003-01-10 Sumitomo Bakelite Co Ltd Method for molding semiconductor package
JP4421228B2 (en) * 2003-07-03 2010-02-24 京セラケミカル株式会社 Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3816910B2 (en) * 2003-09-04 2006-08-30 吉川工業株式会社 Package for storing semiconductor elements
JP4308731B2 (en) * 2004-08-10 2009-08-05 セイコーインスツル株式会社 Near-field optical head and information reproducing apparatus using the near-field optical head
JP5060707B2 (en) * 2004-11-10 2012-10-31 日立化成工業株式会社 Thermosetting resin composition for light reflection
JP2006265370A (en) * 2005-03-24 2006-10-05 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2006298973A (en) * 2005-04-15 2006-11-02 Matsushita Electric Works Ltd Resin composition for sealing optical semiconductor and optical semiconductor device
JP4753624B2 (en) * 2005-05-24 2011-08-24 富士電機株式会社 Flame-retardant processed resin products
JP5422121B2 (en) * 2005-08-04 2014-02-19 日亜化学工業株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, MOLDED BODY, AND SEALING MEMBER

Also Published As

Publication number Publication date
JP2013021342A (en) 2013-01-31
JP2014225675A (en) 2014-12-04
JP6247599B2 (en) 2017-12-13
JP2008255327A (en) 2008-10-23
JP2017022424A (en) 2017-01-26
JP6341256B2 (en) 2018-06-13
JP5125450B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP6341256B2 (en) Tablet and method for manufacturing optical semiconductor device using the same
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP6365606B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5303097B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP5838636B2 (en) Thermosetting resin powder composition, thermosetting resin tablet, optical semiconductor element mounting substrate, and optical semiconductor device
JP5967135B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP6056925B2 (en) Thermosetting resin powder composition, thermosetting resin tablet, optical semiconductor element mounting substrate, and optical semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5727977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350