JP5726399B2 - 有機レーザー - Google Patents

有機レーザー Download PDF

Info

Publication number
JP5726399B2
JP5726399B2 JP2008324625A JP2008324625A JP5726399B2 JP 5726399 B2 JP5726399 B2 JP 5726399B2 JP 2008324625 A JP2008324625 A JP 2008324625A JP 2008324625 A JP2008324625 A JP 2008324625A JP 5726399 B2 JP5726399 B2 JP 5726399B2
Authority
JP
Japan
Prior art keywords
layer
laser
mirror
electrode
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008324625A
Other languages
English (en)
Other versions
JP2009065215A (ja
Inventor
フォレスト,スチーブン,アール.
ブロブイック,ブラディミール
バーロウズ,ポール
コズロブ,ブラディミール
Original Assignee
ザ、トラスティーズ オブ プリンストン ユニバーシティ
ザ、トラスティーズ オブ プリンストン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/859,468 external-priority patent/US6111902A/en
Priority claimed from US09/010,594 external-priority patent/US6160828A/en
Priority claimed from US09/073,843 external-priority patent/US6330262B1/en
Application filed by ザ、トラスティーズ オブ プリンストン ユニバーシティ, ザ、トラスティーズ オブ プリンストン ユニバーシティ filed Critical ザ、トラスティーズ オブ プリンストン ユニバーシティ
Publication of JP2009065215A publication Critical patent/JP2009065215A/ja
Application granted granted Critical
Publication of JP5726399B2 publication Critical patent/JP5726399B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0635Thin film lasers in which light propagates in the plane of the thin film provided with a periodic structure, e.g. using distributed feed-back, grating couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は発光デバイスの分野、特に有機物質を含有するレーザー発光デバイスに関する。
最近の幾つかの刊行物は、例えば共役ポリマーのような、ポリマーの有機発光物質における、例えばスーパールミネセンス及び増幅された自然発光のような現象を報告している(N.Tessler等、Nature、382,695(1996);F.Hide等、Science、273,1833(1996)、これらの両方が本明細書に援用される)。このようなエミッタ(emitter)に用いられる物質はポリマー又はその化学的先駆体の溶液からスピン塗装される。不活性なスピン塗装ポリマー又はゲル中に導入された有機レーザー染料からの光ポンプ(optically-pumped)刺戟発光が文献に述べられている(R.E.Hermes等、Appl.Phys.Lett.63,877(1993);M.N.Weiss等、Appl.Phys.Lett.69、3653(1996);H.Kogelnik等、Appl.Phys.Lett.18,152(1971);M.Canva等、Appl.Opt.、34,428(1995)、これらの各々は本明細書に援用される)。
しかし、他のエレクトロルミネセンス物質に比べると、スピン塗装ポリマー物質は特に良好な厚さ均一性、極めて高い物質純度を得る可能性、作用寿命、及び他の慣用的な半導体製造プロセスによる集積(integration)の容易さを示さない。フラットパネルディスプレイ用途向けの有機発光デバイス(OLEDs)の分野では、現在、例えば小分子OLEDsがそれらのスピン塗装ポリマー類似体に比べると一桁の大きさだけ良好な作用寿命を生じている(L.J.Rochberg等、“有機エレクトロルミネセンスの現況と展望”、J.Mater.Re s.,1996、11:3174;N.C.Greenham等、“共役ポリマーの半導体物理学”、Solid State Physic s 1995,49:1、これらの両方は本明細書に援用される)。
有機半導体レーザー(OSLs)としての小分子量有機半導体及びポリマーの薄膜におけるレイジング作用(lasing action)と刺戟発光に最近非常に関心が寄せられている。有機物質が低コストであることと、OSLsを準エピタキシャル及び非エピタキシャル薄膜として成長させうることがOSLsの、他の光電子工学デバイスによる集積を容易にして、OSLsを多くの用途のために魅力的にしている。有機半導体の特別な光学的及び電子工学的性質が、慣用的な無機レーザーダイオードに比べて有意に大きく温度安定性であるOSL性能を生じて、光通信及びセンサー用途に可能な利益をもたらす。例えば、小分子量有機半導体の真空蒸着薄膜の光ポンピングされたスラブ導波路構造のレイジング作用が最近実証されている(V.G.Kozlov等、Conf.on Lasers and Electro−optics CLEO ’97、CPD−18、Opt.Soc.Am.、Baltimore、MD、May 1997、本明細書に援用、を参照のこと)。これらの有機半導体レーザー(OSLs)の出力、示差量子効率及び発光波長は、慣用的な無機レーザーダイオードに比べて、温度の変化に対して有意に大きく安定である。有機レーザー構造のこの利点を、例えば低コスト、準エピタキシャル及び非エピタキシャル成長のような有機半導体の固有の利点(S.R.Forrest等、Phys.Rev.B49、11309(1994)、本明細書に援用)及び他の光電子工学デバイスによる集積の容易さと組み合わせると、さらなる研究への強い欲求が生ずる。現在、例えば狭帯域発光、活性有機物質の最少の使用、及び波長チューニングと電気ポンピングとの促進のような、望ましいOSL性質をもたらすOSL構造の開発に関心が寄せられている。
Nature、382,695(1996 Science、273,1833(1996) Appl.Phys.Lett.63,877(1993) Appl.Phys.Lett.69、3653(1996) Appl.Phys.Lett.18,152(1971) Appl.Opt.、34,428(1995) J.Mater.Re s.,1996、11:3174 Solid State Physic s 1995,49:1 Phys.Rev.B49、11309(1994)
本発明は、ポンピングされたときにレーザー発振する(lase)ことによって、レーザー光を生じる有機物質を包含するレーザーデバイスに関する。
本発明は、特有の構造及び有機レーザー物質の光ポンピングと電気ポンピングの両方の実施態様に関する。スピン塗装ポリマー物質とは対照的に、本発明に用いる有機物質は優れた厚さ均一性、極めて高い物質純度、及び慣用的な製造方法による集積の容易さを提供する。さらに、本発明のレーザーデバイスは出力の明確な閾値、明確なレーザービーム、キャビティモード及びスペクトル線狭幅化を提供する。
本発明はミラー層と、ミラー層上の活性有機物質層とを含むレーザーを包含する。活性有機物質はポンピングされたときにレーザー発振することによって、レーザー光を生じる。ミラー層は第1活性有機物質によって生じた光の少なくとも一部を反射する。
1つの態様において、本発明は活性有機物質をポンピングするための光ポンプエネルギーソースを包含する光ポンプレーザー(optically-pumped laser)に関する。
別の態様では、本発明は、活性有機物質がエレクトロルミネセンス性であり、1対の電極の間に配置された電気ポンプレーザー(electrically-pumped laser) に関する。電流が電極間を通過するときに、活性有機物質はポンピングされる。
本発明の光ポンプレーザーデバイス100の1実施態様を図1に示す。レーザーデバイス100は第1ミラー層110と、活性有機物質層112とを包含する。第1ミラー層110は、有機物質層112から放出される光の少なくとも一部を反射することができる点で“ミラー”である。例えば、本発明のデバイスに用いられるミラー層の多くは例えば波長、配向、帯幅、光沢等のような好ましい特徴のレーザー光を伝達し、好ましくない特徴を有する光を反射するために用いられる。本発明に用いられるミラー層は、例えば、ガラス、石英、サファイア又はプラスチックの基体、研磨されたInP層、分布Bragg反射体、金属ミラー等を包含する。
本発明に用いられる有機物質は、それらが例えば光エネルギー又は電気エネルギーによるような、任意の適当な手段によってポンピングされたときにレーザー発振して、それによってレーザー光を生じる点で“活性”である。活性有機物質はホスト物質とドーパント物質とを包含し、これらは任意の適当な方法によって第1ミラー層110上に付着される。層112の有機物質よりも小さい屈折率を有する物質を含むクラッド層111によって、第1ミラー層110を場合により予備被覆する。層112を例えば窒素レーザー118のようなソースからの光ポンプエネルギーによってポンピングすると、レーザーデバイス100は予め定められた色のレーザービーム116を生じる。
層111と112は任意の適当な厚さである。例えば、図1に示した実施態様では、層111と112はそれぞれ約2μmと120nmである。不透明なミラー層110から層112を光学的に単離させるように、クラッド層111の厚さを選択することが好ましい。層112の厚さは、均一なポンピングを生じ、この層がクラッド層111と周囲環境との間で光学的導波路として機能する能力を最適化するように選択される。例えば、層112がCBPを含む場合には、120nmの厚さがポンプエネルギーの約60%の吸収と=485nmにおいて約59%の導波路コンファインメント・ファクター(waveguide confinement factor)を生じる。層112の導波路能力をさらに強化するために、クラッド層111は層112よりも小さい屈折率を有することによって、デバイスの表面に垂直な方向における層112内の光学的コンファインメントを増強するために役立つ。例として、層112がホスト有機物質としてCBP(n〜1.8)を含む場合に、クラッド層111はSiO(屈折率、“n”約1.5)を含む。例えば、第1ミラー層110がそれを通してのレーザー発光を目的とする場合には、クラッド層111は不要でありうる。しかし、レーザー発光が層112の側面113から生じる図1に示した実施態様では、クラッド層111が好ましい。さらに、層112は、相互に実質的に平行であることによって、層112中に光学的共鳴器を形成する2つの反射面113と114を包含する。
層111と112は第1ミラー層110上に、それぞれ、例えばプラズマ強化化学蒸着及び真空熱蒸発によるような、任意の適当な方法によって付着される。層112中のドーパントの濃度は典型的に10質量%未満であるが、0.01%程度の低さであることもできる。層112はホスト物質とドーパント物質との約100:1の各質量比率での熱同時蒸発によって付着させることが、一般に好ましい。 有機層112が付着するミラー層であって、好ましくは有機層物質よりも低い屈折率(n)を有する任意のミラー層上に、本発明のレーザーデバイスを成長させることが好ましい。受容されるミラー層物質はSiOによって被覆されたプラスチック、ガラス及びシリコンを包含する。好ましい第1ミラー層物質は研磨されたInPである。本発明によるデバイスの典型的な長さは5mmであるが、例えば0.5mmのような、さらに短い長さのデバイスも可能である。
層112の向かい合った縁における光学的に平滑で、シャープな切子面113と114の形成は真空蒸着膜の自然の利点である。切子面113と114の形状は、下方の第1ミラー層110(又は用いる場合のクラッド層111)の対応切子面の形状を模倣する。このようなものとして、第1ミラー層110の側面は平滑であり、相互に平行であることが好ましい。層112の真空蒸着によって、7%の切子面反射能が得られ、これは必要な光フィードバックを与えるために充分である。光フィードバックは例えば有機膜の光ポンピングされる領域の下方に配置され、それによって分布フィードバック構造を形成する光学的格子のような、他の構造によっても得られる。層112の真空蒸着によって切子面113と114を形成することの代替手段として、層112を第1ミラー層110(又は用いる場合のクラッド層111)上に任意の他の方法によって付着させて、次にこの複合体を他の適当な方法によって切断して、平滑でシャープな切子面を形成することができる。
層112のホスト物質分子種によって吸収されうる光を放射する光源を用いて、例えばデバイス100のような、本発明の任意の光ポンプ実施態様をホンピングする。例えば、50Hz反復率において337nmの波長で500psecパルスを発生する窒素レーザー118によって、デバイス100をポンピングする。図1に示すように、ポンプビームは例えば円筒形レンズ117によって切子面113と114に対して垂直に配向した膜表面上のストリップ115中に集束する。ストリップ115の幅は例えば100μmのような任意の適当なサイズである。ポンプビームは層112中に導かれ、それによってレーザービーム116を生じ、レーザービーム116はデバイス100の切子面113及び/又は114から放出される。さらに、ゲイン−ガイディング効果(gain-guiding effect)によって、有機層112の照射部分115の屈折率は非照射部分の屈折率よりも大きくなるので、垂直方向における光学的モード(optical mode)のコンファインメントを生じる。
図2は、層112上にストリップ115を形成することを必要としない、本発明による光ポンプレーザーの実施態様200を示す。この実施態様では、クラッド層111が第1ミラー層110上にリッジ(ridge)を形成し、その上に有機物質の層112が付着する。したがって、この実施態様では、光学的モードはZ方向とY方向の両方に制限される。層111と112の幅は好ましくは、単一の側方光学的モードのみを支持するほどの狭さ(例えば、1〜10μm)であるべきである。活性有機層112の厚さは、デバイスをポンピングする光の波長におけるホスト物質の吸収係数の逆数にほぼ等しくあるべきである。反射層(図示せず)を層111と第1ミラー層110との間に設置する場合には、有機層112の厚さはデバイスをポンピングする光の波長におけるホスト物質の吸収係数の逆数の約1/2であるべきである。図2のレーザーデバイスを保護するために、これを層112の屈折率よりも低い屈折率を有する透過性物質(図示せず)によって場合によりオーバーコートする。
デバイス100のピーク出力のポンプエネルギー密度に対する依存性の例を図3に示す。この関係から、レーザー閾値が明確に判明される。図3のグラフにおける各ライン区分は経験的測定点に直線的に適合する。2つのライン区分の勾配は0.2%(レーザー閾値未満)から10%(レーザー閾値を超える)までの示差量子効率の変化を強調する。しかし、光ポンピングされるゲイン−ガイデッド・デバイス(gain-guided device)のレイジング領域がポンピングされる物質のごく小部分に過ぎないので、測定される示差量子効率がかなり過少評価されたものであることに注目すべきである。それ故、ポンプ出力の大部分は非レーザー発振領域において失われる。示差量子効率は、4Wを超えるピーク出力に相当する10J/cmを超える励起レベルにおいて7%にまで低下する。
図4(図3に挿入)は偏光子を通過するときのデバイス100からの発光の強度を、膜表面に直交する面と偏光子面との間の角度の関数として示す。レーザー発光に関して予想されるように、発光は強度に直線的に偏光する。測定された偏光度は15dBであるが、この結果が測定装置によって限定されることに注目すべきである。経験的な測定点に適合する実線は、偏光子角度であるsin()に従う。
上記光ポンプ実施態様の他に、本発明は電気ポンプ有機半導体レーザー実施態様をも提供する。このような実施態様は、電流によって励起されるときに光を発生するエレクトロルミネセンス性物質を利用する。
図5aは、本発明の電気ポンプレーザーデバイス実施態様の断面図を示す。デバイス300は第1電極31、底部クラッド層32、活性有機物質層33、頂部クラッド層34及び第2電極35を包含し、これらは第1ミラー層30上に順次付着する。活性層33中への光学的コンファインメントの程度は例えばクラッド層32と34の屈折率のような要因に依存する。
活性有機物質の層33は例えばドープされたAlqのような、任意の適当な有機エレクトロルミネセンス性物質を含む。クラッド層32,34のいずれか一方は例えば、10%のTPDによってドープされたMgFのような正孔伝導性物質から構成される。クラッド層の他方は例えば、Alq又はAlqによってドープされたMgFのような電子伝導性物質から構成される。クラッド層32又は34のいずれかに関して、MgFを例えばLiF,KF若しくはKIのような他のアルカリハロゲン化物によって又は透過性の、屈折率の低い導電性有機物質によって置換することができる。電極31と35との間に電流を通すと、電子と正孔(hole)とが活性層33に注入され、そこでエネルギーがホスト物質からドーパント物質に移されて、ドーパント物質が光を発生する。
デバイス300の縁、即ち、ミラー切子面M1とM2によって光学的共鳴器が形成される。電極31と35の少なくとも一方はX方向に配向したストリップにパターン化される。電気的にポンピングされる活性物質部分は、光学的ゲインの変化を経験して、横方向に導波路を形成する(即ち、ゲイン−ガイディング効果)。
図5aに示した電気ポンプレーザーデバイスでは、活性層33の屈折率はクラッド層32と34の屈折率よりも高いことが好ましい。このことはモード(mode) の大部分がゲイン層とオーバーラップすることを保証する。クラッド層32と34の屈折率が実質的に等しくて、層33内への最適の光学的コンファインメントを生じることが好ましい。
クラッド層32と34は電極31と35における光学的モードの吸収を実質的に阻止して、効果的な電流注入を可能にするために充分な厚さであるべきである。単一モード操作では、活性層の厚さは活性層の屈折率の2倍によって除したレーザー発振波長(lasing wavelength)に実質的に等しくあるべきである。より高度なモードに関しては、活性層33の厚さを対応して大きくすべきである。
層33中への光学的コンファインメントは、例えば層33をフォト−ブリーチング(photo-bleaching)して、層33中に導波路を画定することによっても得られる。この方法を用いる場合には、活性層33がひと度付着したならば、部分的に活性層33を被覆するフォトレジストを貼付して、この層をO2雰囲気下で強いUV光に暴露させる。これによって、活性層33の非遮蔽部分はブリーチされて、それらの屈折率を低下させる。活性層33の遮蔽部分はその本来のより高い屈折率を維持するので、その中への光学的コンファインメントを生じる。
別の例として、屈折率ガイディング(index-guiding)を得るように、第1ミラー層又は底部クラッド層をパターン化することによって光学的コンファインメントが達成される。例えば、底部クッラド層32上にフォト−ブリーチングを用いて、屈折率調節分布Bragg反射体(index modulated distributed Bragg ref lector)を活性層33の下方に形成することができる。
光学的共鳴器がZ方向に光学的に形成される。この場合には、頂部及び第1電極は光学的ミラーとしても役立つ、又は電極が光に対して透過性である場合には、構造体の両側に高反射能ミラーを加える。この構造体の光学的モードの最大値は光学的層の位置に空間的に適合すべきである。さらに、光学的モードの波長はドーパント物質のゲイン・スペクトルとオーバーラップすべきである。
図5bは本発明による電気ポンプレーザーデバイスの他の実施態様を示す。この実施態様では、第1電極31は接触面を生じるようにレーザー構造体を超えて伸びる。さらに、レーザー構造体の側面に絶縁体37を与えて、第2電極35から第1ミラー層30の表面に達する接点36をこの絶縁体に付着させる。
本発明は有機垂直−キャビティ表面−発光レーザー(OVCSEL)構造体を包含する、これらの構造体ではレーザーキャビティを用いて、出力の明確な閾値、明確なレーザービーム、キャビティモード及び1未満への、閾値を超える発光のスペクトル線狭幅化を得ている。これらの膜における高いゲインは500nm未満の厚さの活性領域においてもレーザー発振を発生させて、それによって操作のために必要な活性有機物質量を最少にするために充分である。
図6は本発明の実施態様によるレーザーキャビティ構造1100の断面を示す。この構造では、活性有機物質層1110が第1ミラー層1111と第2ミラー層1112との間に配置されて、厚さtのキャビティを形成する。層1110の有機物質は、光学的又は電気的手段によってポンピングされたときにレーザー発振して、レーザー光を発生する点で“活性”である。第1及び第2ミラー層1111,1112はそれぞれ、層1110によって発生した光の実質的な量を反射するので、コヒーレントレーザー光、望ましい波長を有し、狭い帯幅を特徴とするレーザー光のみが層1111、1112を通過する。第1及び第2ミラー層1111,1112はそれぞれ、層1110のポンピングによって生ずる光の好ましくは90%、より好ましくは95%、最も好ましくは98%を反射する。第1及び第2ミラー層1111,1112が層1110によって発生される光の実質的に同じ割合を反射するならば、第1及び第2ミラー層1111,1112の両方を通る光の通過は、図6に示すように、実質的に等しくなる。例えば、第2ミラー層1112が第1ミラー層1111よりも大きい割合の光を反射するならば、第1及び第2ミラー層の吸収特性が等しい限り、光の通過は主として第1ミラー層1111を通して生ずる。
図7は本発明の実施態様による光ポンプOVCSEL構造1200を示す。第1ミラー層1111、活性有機物質層1110及び第2ミラー層1112が実質的に透過性の基体1113上に配置される。活性有機物質層1110は入射光ポンプエネルギー1115によってポンピングされる。光ポンプエネルギーのソース(図示せず)は、例えば窒素レーザーのような、強い光の任意の適当なソースである。
第1及び第2ミラー層1111,1112は任意の適当な反射性物質又は構造である。第1ミラー層1111のために好ましい構造は、分布Bragg反射体(“DBR”)誘電ミラー堆積である。DBRミラーは商業的に入手可能であり、/4厚さの誘電層から成り、この場合はDBRミラー反射停止帯(reflective st opband)の波長である。したがって、DBRミラーはOVCSEL出力スペクトルを制御する能力を有し、これが次にこのような出力の線幅を狭くする。DBRミラーは典型的に99%を超える反射能を特徴とする。第2ミラー1112は好ましくはDBRミラー又は例えば銀、白金、アルミニウム、マグネシウム−アルミニウム合金又はこれらの組み合わせのような、反射性金属若しくは合金の層である。金属ミラーは典型的に、90%を超える反射能を有するが、DBRミラーよりも多くの光を吸収する。第2ミラー1112が金属を含む場合には、OVCSEL構造が層1110中に層1112との有機物質/金属界面における有機物質のクエンチを減ずるために有機バッファー層1114を包含することが好ましい。図7に示す実施態様では、第2ミラー層1112の反射能と吸収との組み合わせは、第1ミラー層1111の同じ組み合わせよりも大きいので、第1ミラー層1111を通してのレーザー発光1116を生じる。
基体1113は例えば石英、ガラス、サファイア又はプラスチックのような、任意の適当な透明基体である。基体1113は入射光ポンピングエネルギーの波長及び層1110によって生じるレーザー光の波長に対して透過性であるような物質に限定される。
本発明の全ての実施態様では、活性有機物質はホスト分子とドーパント分子とを含む。層1110に与えられるポンプエネルギーはホスト分子によって吸収され、双極子−双極子遷移によって非放射性にドーパント分子に移される。これが生ずるためには、ホストの発光スペクトルがドーパントの吸収スペクトルにオーバーラップすべきである。生ずる有効な“Foerster”エネルギー転移は、低濃度のドーパント分子のみを必要とし、これはこの結果としてレイジング閾値を低減し、レーザー効率を高め、作用寿命を延長させる。本発明に用いられるホスト物質は、良好な電荷移送を生じ、Foersterエネルギー転移又はキャリアー捕捉を介してドーパント物質にエネルギーを転移することができる任意の物質から選択される。さらに、ドーパントへのエネルギー転移速度はホストにおける非放射性再結合よりも迅速でなければならない。本発明に用いられるドーパント物質は、ホスト:ドーパント系の透過性領域(transparency region)と同じスペクトル領域にルミネセンス(レイジング)発光を有する任意の高効率ルミネセンス性分子である。本発明に活性有機物質として用いるための具体的なホスト−ドーパント系と、それらの関連レイジング特性を表1に記載する。DCM(オハイオ州、DaytonのExciton社)として知られる化学物質、Alq、CBP、DCM2(オハイオ州、DaytonのExciton社)、ローダミン−60G、クマリン−47,ペリレン及びピロメタン−546の式を図8A−8Hにそれぞれ示す。本発明に用いる有機物質は例えば真空熱蒸発のような、任意の適当な方法によって付着させる。
表1.本発明のOVCSELsに用いるための具体的な活性有機物質
Figure 0005726399
本発明は、レーザー発光が特定の波長にチューニング可能である実施態様を包含する。図9は本発明の実施態様による光ポンプ・チューニング可能なOVCSEL1250の例を示す。この実施態様では、活性有機物質の層1110の厚さ、tは構造の左縁1117から右縁1118まで単調に変化する。代替え実施態様では、層1110の厚さは不連続な波長の発光のために段階的に変化する。OVCSELキャビティの厚さを変えることによって、発光波長は層中のレイジング物質の幅広いゲインスペクトルのために50nm以上程度だけチューニング可能である。このような厚さの変化は、例えば、層1110の成長中にスライディング・シャドーマスクで基体を遮蔽することによって、達成される。或いは、基体をポンプビーム・ソースに対して傾けることによって、効果的な厚さ変化が得られる。チューニング可能なOVCSELをポンプビーム1115によってポンピングする、ポンプビーム1115は右縁1118から距離dにある点Xoにおいて層1110の活性有機物質を励起させる。レーザー発光1116の波長はキャビティ厚さtと、層110中の有機物質の屈折率との関数である。点Xoの位置を変えることによって、異なる厚さt1を有するOVCSEL構造1250の異なる区分がポンプビーム1115によって励起されて、異なる波長の発光1116を生じる。dを変えることによるXoの位置の変化は、例えば、OVCSEL構造1250の移動、ポンプビーム1115の位置若しくは角度又は両方の移動によって達成される。例として、本発明者は層1110の厚さを430nmから500nmに変えることによって本発明の電気ポンプAlq3:DCMレーザーのレーザー発光を598nmから635nmに変化させている。
図10は本発明の実施態様による電気ポンプOVCSEL構造1300を示す。第1ミラー層1111、活性有機物質層1110(亜層1110a、1110b及び1110cを含む)及び第2ミラー層1112を実質的に透過性の(trans parent)基体1113上に配置する。第1及び第2ミラー層1111、1112が電極として機能することができないか、或いは別の電極を有することが好ましいならば、第1電極1120を第1ミラー層1111と活性有機物質層1110との間に配置し、第2電極1121を活性有機物質層1110と第2ミラー層1112との間に配置する。この実施態様では、層1110の有機物質は、電流がそれを通過するときにポンピングされてレーザー発光するような、エレクトロルミネセンス性である。当該技術分野で知られているように、層1110における (及び本発明の他の全ての電気ポンプ実施態様における)有機物質は典型的に3種類の亜層:正孔伝導層(“HTL”)1110a、放射層(“EL”)1110b及び電子伝導層(“ETL”)1110cから成る。第1電極と第2電極1120,1121(図10に示した実施態様では、第1及び第2電極はそれぞれ陽極と陰極である)は層1110bによって放射される光に対して実質的に透過性であり、好ましくは酸化スズインジウム(indium-tin-oxide)又は他の任意の透過性導電性物質を含む。
本発明の1実施態様では、種々な色のレーザー光を放射するために、図11に示すように、多重電気ポンプOVCSEL構造を堆積配置1350に配置する。堆積配置1350は図10に示すような構造1300を包含するが、第3ミラー層1211、第3電極1220、第2活性有機物質の亜層(サブレイヤー)1210a、1210b及び亜層1210c(それぞれ、HTL、EL及びETL層に対応)、第4電極1221並びに第4ミラー層1212をも図11に示すように包含する。OVCSEL構造1300におけるように、電極1120,1121,1220及び1221は堆積配置(stacked arrangement)1350において、各ミラー構造1111,1112,1211及び1212が電極として機能することができないか、或いはミラー構造とは別に電極を有することが好ましい場合にのみ必要である。2個のOVCSEL構造のみを堆積構造1350に示すが、本発明は3個以上のOVCSELが一体構造として堆積される実施態様をも包含する。OVCSEL構造の堆積は、それぞれが単独又は任意の組み合わせの各OVCSELからである多重色のレイジングを容易にする。
本発明は、特定の波長にチューニング可能である電気ポンプOVCSELを包含する。図12は本発明の実施態様による、このようなチューニング可能なOVCSEL1351の例を示す。光ポンプ・チューニング可能なOVCSEL1250に関して述べたように、OVCSEL1351のレーザー発光波長はOVCSELのキャビティの厚さtを変えることによって、チューニング可能である。tの変化は第2電極1121と第2ミラー層1112との間の距離t1を調節することによって達成される。距離t1は第2電極1121の方向へ又は第2電極から離れて第2ミラー層を制御移動させることによって、又はこの逆によって変化させる。光学的レンズ1130を第2電極1121と第2ミラー層1112との間に配置して、層1110bから放射されるレーザー光の調節を失うことなく、t1の変化を可能にする。
本発明の全ての実施態様は場合により、有機層中の導波路損失(waveguiding losses)を容易に最少にするために有機層の周囲にガイディング層及びクラッド層を包含する。例えば、厚さ150nmの有機層における導波路の光学的損失(waveguide optical losses)は、金属電極をエレクトロルミネセンス・デバイスに用いる場合には、しばしば、1000cm-1以上程度の大きさである。このような損失を最少にするために、図13に示すような構造1400が用いられる。構造1400は有機層(単数又は複数)1110に直接隣接したガイディング層1161と1162と、ガイディング層1161と1162とにそれぞれ直接隣接したクラッド層1160と1163を包含する。当該技術分野において知られ、既述されているように、層1110がエレクトロルミネセンス性物質を含む場合には、層1110は実際に複数の亜層(即ち、HTL、EL及びETL層)を含むことができる。ガイディング層1161,1162は光学的損失を最少にするために高度に光に対して透過性であり、高い屈折率を特徴とする。クラッド層1160,1163も光に対して透過性であるが、ガイディング層1161、1162よりも低い屈折率を有する。クラッド層1160,1163の主要な目的の1つは電流を導くことであるので、クラッド層1160,1163は一般にガイディング層1161、1162よりも高度に導電性でもある。構造1400は有機層(単数又は複数)1110中への発光のコンファインメントを減ずるので、光学的損失を10cm-1以下程度に減ずる。構造1400は場合により、本発明の光ポンプ実施態様又は電気ポンプ実施態様のいずれかに対して用いられる。例えば、本発明の光ポンプ実施態様1200に対して用いられる場合には、構造1400は図7の活性有機物質層1110の代りに用いられる。同様に、電気ポンプ実施態様1300に対して用いられる場合には、構造1400は亜層1110a、1110b及び1110cの代りに、構造1400が電極1120と1121とによって挟まれるように用いられる。電気ポンプ実施態様1300に対して用いられる場合には、ガイディング層とクラッド層1160,1161,1162、1163は電極1120、1121から導電性層(単数又は複数)1110に電荷キャリヤーを供給するために充分に導電性でなければならない。しかし、ガイディング層1161,1162の導電率は、周囲電極の電極1120,1121の導電率よりも小さい導電率を有するクラッド層1160,1163の導電率よりも小さいことが好ましい。ガイディング層とクラッド層1160,1161,1162、1163のために好ましい物質は、その屈折率、導電率及び透過性が例えば酸素含量の変化によって変化する酸化スズ・インジウムである。
下記非限定的実施例に関連して、本発明をさらに説明する。
実施例1

図1に示すレーザーデバイスを形成した。AlqとDCM(約50:1の分子比率)をガラススライド上に高真空(5×10-7Torr)下で同時蒸着させた。得られた3000厚さの、屈折率(n)1.7を有するAlq/DCM層112は片面ではクラッド層としてのガラス(n=1.4)と共に、他方の面では空気(n=1)と共にスラブ光学的導波路を形成する。このスラブ光学的導波路は、層112の反射性切子面113、114と共に、光学的共鳴器を形成する。
50Hzの反復率において337nmの波長によって500psecパルスで作用する窒素レーザー118を用いて、光ポンプビームを発生させた。光学的モードの横方向コンファインメントは、光ポンプビームによって誘導されるゲイン・ガイディングによって達成された。輝赤色レーザー発光が縁113から明らかに目視可能であった。出力ビームの回折は微弱に観察された。出力レーザービームは、デバイス表面に直交する方向に分岐した、幾つかの横方向ビームを包含した。出力切子面における赤色レーザー発光のピーク強度は200μJ/cmのポンプレベルにおいて10W/cm(30Wを超える実測ピーク出力に対応)である。数時間の作用(少なくとも10レーザーパルスに対応)後に、Alq/DCM膜の劣化は観察されなかった。このことは,Alq/DCM膜が高度な光化学安定性を有し、電気ポンプ有機レーザーへの使用に良好に適する。
実施例2

研磨されたInP第1ミラー層の(100)結晶組織学的表面上に、ペリレンドープしたCBPを含有する120nm有機膜を真空蒸着させることによって、レーザーを形成した。第1ミラー層を、プラズマ強化化学蒸着によって付着させたSiOの2μm層によって予備被覆した。50Hz反復率で=337nmの窒素レーザーによって発生した500psecパルスによって、このレーザーを光学的にポンピングした。このポンプビームを有機膜上の50μm幅領域に集束させて、ゲイン領域を形成した。
図14は閾値(4nJ)未満及び閾値をちょうど超えた(5nJ)ポンプレベルにおける光ポンプレーザーの縁発光スペクトルを示す。レイジングは=485nmにおけるスペクトルの狭い(2nm、FWHM)ピークとして出現する。図14の挿入図はポンプパルス・エネルギーの関数としてのレーザーの出力パルスエネルギーを示し、5nJのポンプパルス・エネルギー(5μJ/cmのエネルギー密度に対応)におけるレイジング閾値の存在を明確に示す。さらに、このレーザーは10レーザーパルスを超える作用寿命を示した。
実施例3

研磨されたInP第1ミラー層の(100)結晶組織学的表面上に、クマリン−47ドープしたCBPを含有する有機膜を真空蒸着させることによって、レーザーを形成した。第1ミラー層を、プラズマ強化化学蒸着によって付着させたSiOの2μm層によって予備被覆した。50Hz反復率で=337nmの窒素レーザーによって発生した500psecパルスによって,このレーザーを光学的にポンピングした。このポンプビームを有機膜上の50μm幅領域に集束させて、ゲイン領域を形成した。 この光ポンプレーザーは約455nmのレイジング波長と15μJ/cmのレイジング閾値を生じた。さらに、このレーザーは103レーザーパルスのオーダーの作用寿命を示した。
実施例4

研磨されたInP第1ミラー層の(100)結晶組織学的表面上に、クマリン−30ドープしたCBPを含有する有機膜を真空蒸着させることによって、レーザーを形成した。第1ミラー層を、プラズマ強化化学蒸着によって付着させたSiOの2μm層によって予備被覆した。50Hz反復率で=337nmの窒素レーザーによって発生した500psecパルスによって、このレーザーを光学的にポンピングした。このポンプビームを有機膜上の50μm幅領域に集束させて、ゲイン領域を形成した。 この光ポンプレーザーは約510nmのレイジング波長と13μJ/cmのレイジング閾値を生じた。さらに、このレーザーは10レーザーパルスのオーダーの作用寿命を示した。
実施例5

研磨されたInP第1ミラー層上に、DCM2ドープしたAlqを含有する有機膜を真空蒸着させることによって、レーザーを形成した。第1ミラー層を、プラズマ強化化学蒸着によって付着させたSiOの2μm層によって予備被覆した。50Hz反復率で〜337nmの窒素レーザーによって発生した500psecパルスによって、このレーザーを光学的にポンピングした。 この光ポンプレーザーは約670nmのレイジング波長と2.5μJ/cmのレイジング閾値を生じた。さらに、このレーザーは10レーザーパルスを超える作用寿命と約30%の示差量子効率を示した。
実施例6

研磨されたInP第1ミラー層上に、DCMドープしたAlqを含有する有機膜を真空蒸着させることによって、レーザーを形成した。第1ミラー層を、プラズマ強化化学蒸着によって付着させたSiOの2μm層によって予備被覆した。50Hz反復率で=337nmの窒素レーザーによって発生した500psecパルスによって,このレーザーを光学的にポンピングした。 この光ポンプレーザーは約650nmのレイジング波長と約3μJ/cmのレイジング閾値を生じた。さらに、このレーザーは10レーザーパルスを超える作用寿命と約30%の示差量子効率を示した。
実施例7

図7に示した実施態様の1例として、DCMレーザー染料によってドープされたトリス−(8−ヒドロキシキノリン)アルミニウム(“Alq”)の活性層1110を含むOVCSEL1200を形成した。この活性層1110の厚さは500nmであった。層1110中のDCMレーザー染料の濃度は3重量%であった。活性層1110を5×10-7Torrにおける熱蒸発によって第1ミラー層1111(この実施例ではDBRミラー)上に付着させた。バッファー層1114はAlqを含み、活性層1110上に付着し、このバッファー層1114上に銀ミラー層1112を付着させた。バッファー層1114とDBRミラー層1111との厚さは、それぞれ、20nmと200nmであった。DBRミラー層1111は600nmと700nmとの間に>99%反射停止帯を有し、銀ミラーの反射能は91%であると計算された。
50Hzの反復率で500psパルスを発生させる窒素レーザー(〜337nm)を用いて、OVCSEL1200を光学的にポンピングした。ポンプビームはDBRミラー1111を通して入射するように定められ、有機膜面上を約100m横切った点に集束させた。励起レーザーの波長(即ち、=337nm)において、DBRミラー1111は約80%の透過度(transmittance)を示した。この実施例では、基体は=337nmを特徴とするポンプビームに対して透過性である石英を含むものであった。
基体法線方向における発光スペクトル(15全角度受け入れコーン(15 full an gle acceptance cone)による)を1Åの波長解像度を有する荷電結合素子カメラを用いてスペクトログラフによって分析した。物質の劣化を回避するために、全ての測定は乾燥した窒素環境下で行った。
図15はレイジング閾値直前のOVCSEL1200の自然発光スペクトルを示す。=635nmにおいてキャビティ・モードが観察された。観察された幅広いサテライトピークを生じるDBR透過スペクトルの調節によって、<600nm及び>700nmにおいて、自然発光を濾過する。ETH=300J/cmのエネルギーに相当するレイジング閾値を超えるスペクトルは、図16に示すように、高いゲイン、スペクトル的に狭いレーザー発光を完全に特徴とする。
図17はレイジング閾値近くの上昇励起レベルにおいてOVCSEL1200からの高解像度発光スペクトルを示す。ポンプエネルギーと1/2最大値のスペクトル全幅とが示される。閾値未満のマイクロキャビティによってスペクトル的に濾過された12Å幅自然発光ピークから、解像度限定された、閾値を超えるレーザー発光による<1Å全幅スペクトル線までの転移が明確に観察される。閾値未満のピークのスペクトル幅はマイクロキャビティの微細さ(単一モード線幅に対するマイクロキャビティ・モード間隔の比率)に関連し、幾つかの横方向モードの存在のための付加的な拡大を伴う。閾値を超えるモード競合はレイジングを幾つかの横方向モードのみに制限し、同時に発光線幅の縮小を生ずることになる。図17の左挿入図は475nmのキャビティ厚さによるOVSELの(0.4+/−0.1)幅広い発光線を示す。(0.2+/−0.1)機器解像度を考慮すると、レイジング線のGaussianの1/2最大値における全幅(full- width-at-half-maximum)は(0.2+/−0.1)であると算出される。
図18は、明らかにETH=300J/cmのポンプエネルギー密度における閾値を示唆する、入力励起へのレーザー出力の依存性を示す。この閾値は、マイクロキャビティ構造における大きい光学的損失(500cm-1)と短いゲイン長さ(500nm)の結果として、同様な縁発光有機半導体レーザーの閾値よりも二桁大きい。OVCSELsの閾値におけるAlq:DCM物質ゲインはgTH =500cm-1であると見積もられ、これはInGaAs/GaAs量子井戸構造における内部ゲインに匹敵する。
本発明のレーザーは電気通信、印刷、光学的周波数逓降変換(optical downcon version)、半導体回路エッチング、熱加工(例えば、マーキング、はんだ付け及び溶接)、分光法、乗り物の制御とナビゲイション、測定デバイス、光学的メモリデバイス、ディスプレイ、スキャナー、ポインター、ゲームと娯楽システム、及びセンサーを包含する、非常に多様な用途に適用可能である。
本発明は例えば狭い帯幅発光、活性有機物質の最少の使用、及び波長チューニングと電気的ポンピングとの容易さのような望ましい性質を備えた有機半導体を提供する。本発明の垂直−キャビティ面−発光構造は、出力の明確な閾値、明確なレーザービーム、キャビティ・モード、及び閾値を超えた発光の1Å未満までのスペクトル線狭幅化を付随する、小分子量有機半導体マイクロキャビティ構造におけるレイジング作用の最初に知られる上首尾な実証を表す。当業者は、本明細書に述べ、例証した本発明の実施態様に対する種々な改変を認識すると考えられる。このような改変は添付請求項の要旨及び範囲によって包括されるように意図される。
図1は本発明によるレーザーデバイスの実施態様を包含する配置を示す。 図2は本発明によるレーザーデバイスの実施態様を包含する配置を示す。 図3は本発明の実施態様に関するピーク出力とポンプエネルギー密度との関係の説明図である。 図4(図3の挿入図)は膜表面に直交する面と、偏光子(polarizer)面との間の角度の関数としての、本発明の実施態様の発光の偏りを示す。 図5Aと5Bは本発明の電気ポンプレーザーデバイス実施態様を示す。 図6は本発明の実施態様によるレーザーキャビティ構造の断面を示す。 図7は本発明の実施態様による光ポンプレーザーの断面を示す。 図8a〜cは、それぞれ、DCM、Alq及びCBPの化学式を示す。 図8d〜8hは、それぞれ、DCM2、ローダミン−6G、クマリン−47、ペリレン及びピロメタン−546の化学式を示す。 図9は本発明の実施態様によるチューニング可能な(tunable)光ポンプレーザーの断面を示す。 図10は本発明の実施態様による電気ポンプレーザーの断面を示す。 図11は堆積した多色電気ポンプレーザーの断面を示す。 図12は本発明の実施態様によるチューニング可能な電気ポンプレーザーの断面を示す。 図13は本発明の実施態様による導波路減衰構造(waveguide reducing struct ure)の断面を示す。 図14は本発明の実施態様による光ポンプレーザーデバイスの発光スペクトルを示す。 図15は本発明によるOVCSELの具体的実施態様からの基体法線方向における自然発光スペクトルを示す。 図16は本発明のOVCSELの具体的実施態様からの高い励起レベルにおける発光スペクトルを示す。 図17はレイジング閾値近くの励起の関数としての、本発明のOVCSELの具体的実施態様からの高解像度発光スペクトルを示す。 図18は本発明のOVCSELの具体的実施態様に関するレイジング閾値近くでの出力エネルギーの、入力ポンプエネルギーへの依存性を示す。

Claims (12)

  1. 透明基体と、
    前記基体より上の、Bragg反射体誘電ミラー堆積を含む第1ミラー層状体と、
    前記第1ミラー層状体より上の第1電極と、
    前記第1電極より上の、ホスト物質としてのトリス−(8−ヒドロキシキノリン)アルミニウム及びドーパント物質としての[2−[2−[4−(ジメチルアミノ)フェニル]エテニル]−6−メチル−4H−ピラン−4−イリデン]−プロパンジニトリルを含む活性有機物質層と、
    前記活性有機物質層より上の第2電極と、
    前記第2電極より上の、Bragg反射体誘電ミラー堆積を含む第2ミラー層状体と
    を備えており、
    前記活性有機物質がポンピングされたときにレーザー発振し、それによってレーザー光を発生させ、
    前記活性有機物質層が真空熱蒸発法によって付着されており、
    前記第1電極と前記第2電極との間を電流が通過するときに前記活性有機物質がポンピングされるように、前記活性有機物質がエレクトロルミネセンス性であり、
    前記第1電極及び第2電極の各々が実質的に透過性である、レーザー。
  2. 前記ホスト物質に与えられたエネルギーが非放射的に前記ドーパント物質に移動する、請求項1記載のレーザー。
  3. 前記第1ミラー層状体と前記第2ミラー層状体とがそれぞれ、前記第1活性有機物質によって発生される光の少なくとも約95%を反射する、請求項1記載のレーザー。
  4. 前記第1ミラー層状体と前記第2ミラー層状体とが前記第1活性有機物質によって発生される光の異なる割合を反射する、請求項1記載のレーザー。
  5. 前記第1電極と前記第2電極の両方が酸化スズインジウムを含む、請求項1記載のレーザー。
  6. 通信デバイスの光源として用いられる、請求項1記載のレーザー。
  7. プリンターの光源として用いられる、請求項1記載のレーザー。
  8. エッチングシステムの光源として用いられる、請求項1記載のレーザー。
  9. 測定デバイスの光源として用いられる、請求項1記載のレーザー。
  10. 光学的メモリデバイスの光源として用いられる、請求項1記載のレーザー。
  11. ディスプレイデバイスの光源として用いられる、請求項1記載のレーザー。
  12. センサーデバイスの光源として用いられる、請求項1記載のレーザー。
JP2008324625A 1997-05-09 2008-12-19 有機レーザー Expired - Lifetime JP5726399B2 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US4606197P 1997-05-09 1997-05-09
US60/046,061 1997-05-09
US08/859,468 US6111902A (en) 1997-05-09 1997-05-19 Organic semiconductor laser
US08/859,468 1997-05-19
US5317697P 1997-07-18 1997-07-18
US60/053,176 1997-07-18
US09/010,594 US6160828A (en) 1997-07-18 1998-01-22 Organic vertical-cavity surface-emitting laser
US09/010,594 1998-01-22
US09/073,843 US6330262B1 (en) 1997-05-09 1998-05-07 Organic semiconductor lasers
US09/073,843 1998-05-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54855798A Division JP4289512B2 (ja) 1997-05-09 1998-05-08 有機レーザー

Publications (2)

Publication Number Publication Date
JP2009065215A JP2009065215A (ja) 2009-03-26
JP5726399B2 true JP5726399B2 (ja) 2015-06-03

Family

ID=27533411

Family Applications (2)

Application Number Title Priority Date Filing Date
JP54855798A Expired - Lifetime JP4289512B2 (ja) 1997-05-09 1998-05-08 有機レーザー
JP2008324625A Expired - Lifetime JP5726399B2 (ja) 1997-05-09 2008-12-19 有機レーザー

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP54855798A Expired - Lifetime JP4289512B2 (ja) 1997-05-09 1998-05-08 有機レーザー

Country Status (5)

Country Link
EP (1) EP0980595B1 (ja)
JP (2) JP4289512B2 (ja)
AT (1) ATE281011T1 (ja)
DE (1) DE69827246T2 (ja)
WO (1) WO1998050989A2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
EP1074054A2 (en) * 1998-12-17 2001-02-07 Seiko Epson Corporation Light-emitting device
JP2000277260A (ja) 1999-03-23 2000-10-06 Seiko Epson Corp 発光装置
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
JP2001059923A (ja) 1999-06-16 2001-03-06 Seiko Epson Corp 光モジュール及びその製造方法、半導体装置並びに光伝達装置
AU6643800A (en) 1999-08-16 2001-03-13 University Of Southern California Synthesis of cyclooctatetraene derivatives and their use as electron transporters in organic light emitting diodes
US6506505B1 (en) 1999-08-16 2003-01-14 The University Of Southern California Cyclooctatetraenes as electron transporters in organic light emitting diodes
US6363096B1 (en) * 1999-08-30 2002-03-26 Lucent Technologies Inc. Article comprising a plastic laser
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
EP1933395B2 (en) 1999-12-01 2019-08-07 The Trustees of Princeton University Complexes of form L2IrX
GB0008378D0 (en) * 2000-04-06 2000-05-24 Queen Mary & Westfield College Light-emitting systems
US6658037B2 (en) * 2001-04-11 2003-12-02 Eastman Kodak Company Incoherent light-emitting device apparatus for driving vertical laser cavity
US6879618B2 (en) * 2001-04-11 2005-04-12 Eastman Kodak Company Incoherent light-emitting device apparatus for driving vertical laser cavity
DE10162783A1 (de) * 2001-12-19 2003-07-10 Univ Dresden Tech Elektrisch gepumpter Laser mit organischen Schichten
JP3944405B2 (ja) * 2002-03-19 2007-07-11 独立行政法人科学技術振興機構 可変波長固体色素レーザー装置
US6690697B1 (en) * 2002-08-20 2004-02-10 Eastman Kodak Company Vertical cavity light-producing device with improved power conversion
JP4094386B2 (ja) 2002-09-02 2008-06-04 株式会社半導体エネルギー研究所 電子回路装置
US6963594B2 (en) 2002-10-16 2005-11-08 Eastman Kodak Company Organic laser cavity device having incoherent light as a pumping source
US6845114B2 (en) * 2002-10-16 2005-01-18 Eastman Kodak Company Organic laser that is attachable to an external pump beam light source
US20040076204A1 (en) * 2002-10-16 2004-04-22 Kruschwitz Brian E. External cavity organic laser
US6869185B2 (en) * 2002-10-16 2005-03-22 Eastman Kodak Company Display systems using organic laser light sources
US6970488B2 (en) * 2002-10-16 2005-11-29 Eastman Kodak Company Tunable organic VCSEL system
JP4574118B2 (ja) 2003-02-12 2010-11-04 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
US7082147B2 (en) * 2003-03-24 2006-07-25 Eastman Kodak Company Organic fiber laser system and method
JP2004327634A (ja) 2003-04-23 2004-11-18 Semiconductor Energy Lab Co Ltd レーザ発振器
US6836495B2 (en) * 2003-05-07 2004-12-28 Eastman Kodak Company Vertical cavity laser including inorganic spacer layers
US8283679B2 (en) 2003-06-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having light-emitting element and light-receiving element for transmitting among circuits formed over the plurality of substrates
US6790696B1 (en) * 2003-06-30 2004-09-14 Eastman Kodak Company Providing an organic vertical cavity laser array device with etched region in dielectric stack
US20050008052A1 (en) 2003-07-01 2005-01-13 Ryoji Nomura Light-emitting device
JP5062952B2 (ja) * 2004-12-06 2012-10-31 株式会社半導体エネルギー研究所 レーザ発振器
DE112006002405B4 (de) * 2005-09-06 2014-09-25 Japan Science And Technology Agency Organischer Festkörper-Farbstofflaser

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395769A (en) * 1981-03-03 1983-07-26 Bell Telephone Laboratories, Incorporated Tunable semiconductor laser
US5206872A (en) * 1991-11-01 1993-04-27 At&T Bell Laboratories Surface emitting laser
US5343050A (en) * 1992-01-07 1994-08-30 Kabushiki Kaisha Toshiba Organic electroluminescent device with low barrier height
JPH05327109A (ja) * 1992-03-26 1993-12-10 Idemitsu Kosan Co Ltd 有機光学利得素子およびその励起方法
US5405710A (en) * 1993-11-22 1995-04-11 At&T Corp. Article comprising microcavity light sources
US5739545A (en) * 1997-02-04 1998-04-14 International Business Machines Corporation Organic light emitting diodes having transparent cathode structures
US6111902A (en) * 1997-05-09 2000-08-29 The Trustees Of Princeton University Organic semiconductor laser

Also Published As

Publication number Publication date
DE69827246D1 (de) 2004-12-02
JP2009065215A (ja) 2009-03-26
DE69827246T2 (de) 2006-01-26
WO1998050989A2 (en) 1998-11-12
WO1998050989A3 (en) 1999-02-18
JP2002500823A (ja) 2002-01-08
EP0980595A2 (en) 2000-02-23
JP4289512B2 (ja) 2009-07-01
WO1998050989A9 (en) 1999-03-25
EP0980595B1 (en) 2004-10-27
ATE281011T1 (de) 2004-11-15
EP0980595A4 (en) 2002-10-16

Similar Documents

Publication Publication Date Title
JP5726399B2 (ja) 有機レーザー
US6160828A (en) Organic vertical-cavity surface-emitting laser
US6111902A (en) Organic semiconductor laser
US6658037B2 (en) Incoherent light-emitting device apparatus for driving vertical laser cavity
US6879618B2 (en) Incoherent light-emitting device apparatus for driving vertical laser cavity
Kozlov et al. Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films
US6330262B1 (en) Organic semiconductor lasers
US5068868A (en) Vertical cavity surface emitting lasers with electrically conducting mirrors
Kozlov et al. Laser action in organic semiconductor waveguide and double-heterostructure devices
Kozlov et al. Temperature independent performance of organic semiconductor lasers
US5881089A (en) Article comprising an organic laser
US7804873B2 (en) Electrically pumped surface emitting organic laser device with coupled microcavity
US20090058274A1 (en) Organic Electroluminescence Device and Organic Laser Diode
JP2003234528A (ja) 有機垂直キャビティ位相固定レーザ・アレー装置
Persano et al. Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors
US7065115B2 (en) External cavity organic laser
JPH077200A (ja) 微小レーザー
TW381363B (en) Organic lasers
Schulzgen et al. A vertical cavity surface emitting polymer laser
Yamaoka et al. Lasing characteristics of optically pumped edge-emitting organic semiconductor laser
Kozlov et al. Unique optical properties of organic semiconductor lasers
Rennie et al. Vertical-cavity surface-emitting lasers constructed with AlQ3 active regions employing a DBR structure
Peyghambarian et al. AASERT-97 Development of New Diode Lasers
Liu et al. Electrically-pumped organic laser device with a coupled microcavity structure
JP2014192419A (ja) 窒化物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130917

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term