JP5720191B2 - アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 - Google Patents

アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 Download PDF

Info

Publication number
JP5720191B2
JP5720191B2 JP2010253872A JP2010253872A JP5720191B2 JP 5720191 B2 JP5720191 B2 JP 5720191B2 JP 2010253872 A JP2010253872 A JP 2010253872A JP 2010253872 A JP2010253872 A JP 2010253872A JP 5720191 B2 JP5720191 B2 JP 5720191B2
Authority
JP
Japan
Prior art keywords
group
ring
layer
substituent
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253872A
Other languages
English (en)
Other versions
JP2012102286A (ja
Inventor
達志 馬場
達志 馬場
飯田 宏一朗
宏一朗 飯田
延軍 李
延軍 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2010253872A priority Critical patent/JP5720191B2/ja
Publication of JP2012102286A publication Critical patent/JP2012102286A/ja
Application granted granted Critical
Publication of JP5720191B2 publication Critical patent/JP5720191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はアリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機EL表示装置及び有機EL照明に関する。
有機電界発光素子における有機層の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。真空蒸着法は積層化が容易であるため、陽極及び/又は陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。一方で、湿式成膜法は真空プロセスが要らず、大面積化が容易で、様々な機能をもった複数の材料を混合した塗布液を用いることにより、容易に、様々な機能をもった複数の材料を含有する層を形成できる等の利点がある。
しかしながら、湿式成膜法は積層化が困難であるため、真空蒸着法による素子に比べて駆動安定性に劣り、一部を除いて実用レベルに至っていないのが現状である。
そこで、素子の特性を向上させるために、電荷輸送能を有するポリマー材料の開発が行われている。例えば、特許文献1及び2には、アリールアミンポリマーを含有し、湿式成膜法で形成される正孔注入輸送層を有する有機電界発光素子が開示されている。しかしながら、これらの素子は、駆動電圧が高いという問題点があった。
特開平10―308280号公報 特開平2008―69367号公報
本発明は、電荷注入輸送能が高く、且つ有機溶剤に対する溶解性に優れ、新規なアリールアミンポリマーと、該アリールアミンポリマーを含む有機電界発光素子用組成物を提供することを課題とする。
本発明はまた、駆動電圧が低く、また駆動寿命が長い有機電界発光素子、並びに高品質の有機EL表示装置及び有機EL照明を提供することを課題とする。
本発明者らは、鋭意検討した結果、特定の繰り返し単位を含むポリマーを用いることで、上記課題を解決することを見出して、本発明に到達した。
即ち、本発明は、ポリマーの繰り返し単位が下記式(1)で表される繰り返し単位のみからなることを特徴とする、アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機EL表示装置及び有機EL照明に存する。
Figure 0005720191
(式中、nは2〜3の整数を表し、
Arは、置換基を有していてもよい芳香族炭化水素環及び/又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基を表し、
Ar〜Ar4は、各々独立に、置換基を有していてもよい芳香族炭化水素環基、置換
基を有していてもよい芳香族複素環基、並びに該芳香族炭化水素環及び/又は該芳香族複素環を2〜5個連結してなる基を表す。
尚、上記式中のベンゼン環は、置換基を有していてもよい。)
本発明のアリールアミンポリマーは、電荷注入輸送能が高く、且つ有機溶剤に対する溶解性に優れる。
その為、本発明のアリールアミンポリマーを用いて形成された素子は、駆動電圧が低く、駆動安定性に優れ、また駆動寿命が長い。
また、本発明のアリールアミンポリマーは、電気化学的安定性に優れる為、該アリールアミンポリマーを用いて形成された層を含む素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない
[アリールアミンポリマー]
本発明のアリールアミンポリマーは、下記式(1)で表される繰り返し単位を含むポリマーである。
Figure 0005720191
(式中、nは2〜3の整数を表し、
Arは、置換基を有していてもよい芳香族炭化水素環及び/又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基を表し、
Ar〜Ar4は、各々独立に、置換基を有していてもよい芳香族炭化水素環基、置換
基を有していてもよい芳香族複素環基、並びに該芳香族炭化水素環及び/又は該芳香族複素環を2〜5個連結してなる基を表す。
尚、上記式中のベンゼン環は、置換基を有していてもよい。)
[Ar〜Ar]
式(1)中、Arは、置換基を有していてもよい芳香族炭化水素環及び/又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基を表す。
置換基を有していてもよい芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環などの、ベンゼン環の単環又は2〜5縮合環が挙げられる。
置換基を有していてもよい芳香族複素環としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環などの、5又は6員環の単環又は2〜4縮合環由来の基が挙げられる。
前記芳香族炭化水素環及び芳香族複素環は、後述の[置換基群Z]に挙げられる基を有していてもよく、又置換基同士が結合して環を形成していてもよい。
例えば、フルオレン基は、ビフェニレン基において、2つのベンゼン環が有する置換基同士が結合してメチレン基を形成した構造とする。
Arは、正孔の注入性が高くなり、得られる素子の駆動電圧が低くなる点で、前記芳香族炭化水素環及び/又は芳香族複素環を、通常2〜5個、また2〜3個連結してなる基であることが好ましい。
また、特に、有機電界発光素子として、より具体的には、発光層と陽極との間に含まれる層として用いられた場合、発光層や正孔輸送層への正孔注入性が高く、これにより得られる素子の駆動電圧が低い点で、ビフェニレン基、ターフェニレン基、及びフルオレン基のいずれかであることが好ましい。
また、Ar〜Arは、各々独立に、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基、並びに該芳香族炭化水素環及び芳香族複素環を2〜5個連結してなる基である。
前記芳香族炭化水素基及び芳香族複素環基としては、前記Arにおけると同義である。
アリールアミンポリマーの有機溶剤に対する溶解性、及び耐熱性の点から、Ar〜Arにおける芳香族炭化水素環及び芳香族複素環は、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環からなる群より選ばれる環由来の基が好ましい。
また、Ar〜Arとしては、前記群から選ばれる1種又は2種以上の環を直接結合により連結した2価の基も好ましく、ビフェニレン基、ターフェニレン基及びフルオレン
基がさらに好ましい。
Ar〜Arにおける芳香族炭化水素環及び芳香族複素環基が有していてもよい置換基としては、特に制限はないが、例えば、下記[置換基群Z]から選ばれる基が挙げられる。
[置換基群Z]
メチル基、エチル基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のアルキル基;
ビニル基等の好ましくは炭素数2〜12、更に好ましくは炭素数2〜6のアルケニル基;
エチニル基等の好ましくは炭素数2〜12、更に好ましくは炭素数2〜6のアルキニル基;
メトキシ基、エトキシ基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のアルコキシ基;
フェノキシ基、ナフトキシ基、ピリジルオキシ基等の好ましくは炭素数4〜16、更に好ましくは炭素数5〜10のアリールオキシ基;
メトキシカルボニル基、エトキシカルボニル基等の好ましくは炭素数2〜12、更に好ましくは炭素数2〜6のアルコキシカルボニル基;
ジメチルアミノ基、ジエチルアミノ基等の好ましくは炭素数2〜12、更に好ましくは炭素数2〜6のジアルキルアミノ基;
ジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の好ましくは炭素数10〜24、更に好ましくは炭素数12〜24のジアリールアミノ基;
フェニルメチルアミノ基等の好ましくは炭素数7〜36、更に好ましくは炭素数7〜24のアリールアルキルアミノ基;
アセチル基、ベンゾイル基等の好ましくは炭素数2〜24、好ましくは炭素数2〜12のアシル基;
フッ素原子、塩素原子等のハロゲン原子;
トリフルオロメチル基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のハロアルキル基;
メチルチオ基、エチルチオ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキルチオ基;
フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールチオ基;
トリメチルシリル基、トリフェニルシリル基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシリル基;
トリメチルシロキシ基、トリフェニルシロキシ基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシロキシ基;
シアノ基;
フェニル基、ナフチル基等の好ましくは炭素数6〜36、更に好ましくは炭素数6〜24の芳香族炭化水素環基;
チエニル基、ピリジル基等の好ましくは炭素数3〜36、更に好ましくは炭素数4〜24の芳香族複素環基。
上記各置換基は、さらに置換基を有していてもよく、その例としては前記[置換基群Z]に例示した基が挙げられる。
Ar〜Arにおける芳香族炭化水素基及び芳香族複素環基が有してもよい置換基の分子量としては、さらに置換した基を含めて500以下が好ましく、250以下がさらに好ましい。
溶解性の点から、Ar〜Arにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、各々独立に、炭素数1〜12のアルキル基及び炭素数1〜
12のアルコキシ基が好ましい。
なお、前記式(1)で表される繰り返し単位中は、2又は3個以上のArを有することになる。その場合、2又は3個以上のArは、各々、同じでもよく、異なっていてもよい。
(nについて)
前記式(1)中、nは、2又は3の整数を表す。
隣接する、正孔輸送層や発光層への正孔の注入性が高くなり、得られる素子の駆動電圧が低くなる点で、nは2であることが好ましい。
また ラジカルカチオンを安定に生成し、電極からの正孔注入性が高く、得られる素子の駆動電圧が低くなる点で、nは3であることが好ましい。
[架橋性基について]
本発明のアリールアミンポリマーは、前記式(1)で表される繰り返し単位中、置換基として、架橋性基を含むことが好ましい。
ここで、架橋性基とは、熱及び/又は活性エネルギー線の照射により近傍に位置するほかの分子の同一又は異なる基と反応して、新規な化学結合を生成する基のことをいう。
中でも、架橋性基としては、架橋しやすいという点から、下記<架橋性基群T>が挙げられる。
<架橋性基群T>
Figure 0005720191
(前記式中、R21〜R23は、各々独立に、水素原子又は置換基を有していてもよいアルキル基を表し、Ar21は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
尚、ベンゾシクロブテン環は、置換基を有していてもよく、また置換基同士が互いに結合して環を形成してもよい。)
架橋性基としては、例えばエポキシ基、オキセタン基等の環状エーテル基、ビニルエーテル基等のカチオン重合によって架橋する基が好ましい。反応性が高く、溶剤に対する溶解性を容易に低下できるためである。中でも、カチオン重合の速度を制御しやすい点ではオキセタン基が特に好ましく、カチオン重合の際に素子の劣化を招く可能性のあるヒドロキシル基が生成しにくい点では、酸素原子を介してビニル基が結合するビニルエーテル基が特に好ましい。
また、例えばシンナモイル基などのアリールビニルカルボニル基、ベンゾシクロブテン環由来の基等の環化付加反応する基は、電気化学的安定性をさらに向上させる点では好ましい。
架橋性基として、電気化学的安定性に優れる点から、下記式で表される基が特に好ましい。
Figure 0005720191
(上記式中のベンゾシクロブテン環は、置換基を有していてもよい。また、置換基同士が、互いに結合して環を形成してもよい。)
尚、本発明のアリールアミンポリマーが有する架橋性基の種類は、1種類であってもよく、2種類以上が任意の組み合わせ及び任意の比率で併用されていてもよい。
式(1)で表される繰り返し単位中、成膜した後の未反応架橋性基が少なく、得られる素子の駆動寿命に影響を及ぼし難いという点で、Ar〜Arのうち少なくとも一つに置換基として架橋性基を含む基を有することが好ましい。
分子内において、架橋性基はAr〜Arの芳香族炭化水素環基又は芳香族複素環基に直接結合していてもよいが、適切な2価の基を介して結合していてもよい。この2価の基としては、−O−基、−C(=O)−基又は置換基を有していてもよい−CH−基からなる群より選ばれる基を任意の組み合わせ、比率及び順番で1〜30個連結してなる2価の基が好ましい。
(架橋性基の割合)
本発明のアリールアミンポリマーが有する架橋性基の数は、分子量1000あたりの数で表すことができる。
本発明のアリールアミンポリマーが有する架橋性基の数を、分子量1000あたりの数で表した場合、分子量1000あたり、通常3.0個以下、好ましくは2.0個以下、さらに好ましくは1.0以下、また通常0.01以上、好ましくは0.05以上である。
上記範囲内であると、クラックによって平坦な膜が形成しにくくなることがなく、また架橋した後の膜中に残る未反応架橋性基が少なく、得られる素子の駆動寿命に影響を及ぼし難い。
更に、架橋した後の膜において、溶剤に対する溶解性の低下が十分で、湿式成膜による多層積層構造の形成がし易い点で好ましい。
ここで、アリールアミンポリマーの分子量1000あたりの架橋性基の数は、アリールアミンポリマーからその末端基を除いて、合成時の仕込みモノマーのモル比と、構造式から算出する。
例えば、後述の合成例1で合成した目的ポリマー1の場合で説明する。
Figure 0005720191
目的ポリマー1において、末端基を除いた繰り返し単位の分子量は平均1601.6であり、また架橋性基は、1繰り返し単位当たり平均1.6016個である。これを単純比例により計算すると、分子量1000あたりの架橋性基の数は、1.0個と算出される。
(式(1)で表される繰り返し単位を含む割合)
本発明のアリールアミンポリマーは、前記式(1)で表される繰り返し単位以外の繰り返し単位(以下、「その他の繰り返し単位」と称する)を含んでいてもよい。
本発明のアリールアミンポリマーにおいて、その他の繰り返し単位に対する前記式(1
)で表される繰り返し単位を含む割合{前記式(1)で表される繰り返し単位/その他の繰り返し単位}は、仕込みモル比で、通常0.01倍モル以上、好ましくは50モル倍以上、さらに好ましくは80モル倍以上である。
上記範囲内であると、本発明の効果が良好に得られる点で好ましい。
またアリールアミンの電荷注入輸送能に特に優れる点から、本発明のアリールアミンポリマーは、式(1)で表される繰り返し単位からなるポリマーであることが好ましい。
以下に、本発明のアリールアミンポリマーの好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<具体例>
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
Figure 0005720191
[本発明のアリールアミンポリマーが効果を奏する理由]
前記式(1)で表される繰り返し単位を含むアリールアミンを用いることで、得られる素子の駆動電圧が低く、また駆動寿命が長いとの効果を奏する理由について、以下の通り推測する。
前記式(1)で表される繰り返し単位中、フェニレンジアミンの部分構造を複数含むことで、繰り返し単位中のラジカルカチオンが発生し易くなる。
その為、電極、より具体的には、陽極と接する層を形成する材料として用いられた場合、電極からの正孔の注入がしやすくなる。
また、フェニレンジアミンの部分構造からなるポリマーは、ラジカルカチオンが安定化してしまい、取り込んだ正孔を離し難い。一方、前記式(1)中のArとして置換基を有していてもよい芳香族炭化水素環及び/又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基とすることで、部分的にイオン化ポテンシャルを深くして、ラジカルカチオンを不安定化することで、アリールアミンポリマーから正孔を離し易くしている。
つまり、本発明のアリールアミンポリマーを有機電界発光素子の正孔注入層として用いた場合、陽極から正孔が注入し易く、また該正孔注入層に隣接して形成される正孔輸送層又は発光層に良好に正孔を輸送しやすくなる。
この為、本発明のアリールアミンポリマーを用いて形成された層を有する有機電界発光素子は、駆動電圧が低く、駆動安定性に優れ、また駆動寿命が長い、との効果を奏するものである。
[分子量範囲]
本発明のアリールアミンポリマーの重量平均分子量(Mw)は、通常3,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下、さらに好ましくは200,000以下であり、また通常1,000以上、好ましくは2,50
0以上、より好ましくは5,000以上、さらに好ましくは20,000以上である。
上記範囲内であると、アリールアミンポリマーの有機溶剤に対する溶解性、及び成膜性が良好である。また、ガラス転移温度、融点及び気化温度が良好であるため耐熱性が十分である点で好ましい。
また、数平均分子量(Mn)は、通常3,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下、さらに好ましくは2,00,000以下であり、また通常15,000以上、好ましくは、20,000以上である。
上記範囲内であると、アリールアミンポリマーの有機溶剤に対する溶解性、及び成膜性が良好である。また、ガラス転移温度、融点及び気化温度が良好であるため耐熱性が十分である点で好ましい。
また、本発明のアリールアミンポリマーの分散度(Mw/Mn:Mwは重量平均分子量を表し、Mnは数平均分子量を表す)は、通常2.4以下、好ましくは2.0以下である。また、分散度は小さければ小さいほどよいため、下限値については、理想的には1.0以上である。
上記範囲内であると、精製が容易で、また、有機溶剤に対する溶解性及び電荷輸送能が良好であるため好ましい。
以下に、重量平均分子量及び数平均分子量の測定方法を示す。
重量平均分子量は、SEC(サイズ排除クロマトグラフィー)測定によって決定される。
ここで、SEC測定条件を示す。
カラムは、TSKgel(東ソー社製)GMHXL×2本又は同等以上の分離能を示すもの、即ち、
粒子径:9mm
カラムサイズ:7.8mm内径×30cm長さ×2本
保証理論段数:14000TP/30cm程度
のものを用い、カラム温度は40℃とする。
移動層はテトラヒドロフラン、クロロホルムのうち充填材への吸着のないものを選択し、流量は1.0ml/分とする。インジェクション濃度は0.1重量%とし、インジェクション量は0.10mlとする。検出器としてはUV/Vis(SPD−20AV,島津
製作所製)を用いる。
SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することで分子量分布が決定され、これより数平均分子量が算出される。
尚、測定機器は、上記と同等の測定が可能であれば、特に限定されるものではなく、その他の測定機器を用いてもよいが、上記の測定機器を用いることが好ましい。
[物性]
本発明のアリールアミンポリマーのガラス転移温度は、通常70℃以上、好ましくは100℃以上、さらに好ましくは120℃以上、また通常400℃以下、好ましくは300℃以下、更に好ましくは250℃以下である。
上記範囲内であると、耐熱性が良好であるため、素子とした場合の駆動寿命が長い点で好ましい。
また、本発明のアリールアミンポリマーは、有機溶剤に対する溶解度が高い方が、膜を
均一に成膜できる点で好ましい。
本発明のアリールアミンポリマーのイオン化ポテンシャルは、通常4.50〜5.70eV、好ましくは4.90〜5.50eV、さらに好ましくは5.00〜5.40eVである。上記範囲内であると、正孔を生成しやすく、電極からの正孔注入性が優れるため、素子とした場合の駆動電圧が低い点で好ましい。
[合成方法]
本発明のアリールアミンポリマーは、目的とするポリマーの構造に応じて原料を選択し、公知の手法を用いて合成することができる。例えば、Ullmann反応による重合方法、Buchwald−Hartwig反応による重合方法等などによって製造できる。
Figure 0005720191
Ullmann反応による重合方法及びBuchwald−Hartwig反応による重合方法の場合、式(Va)で表されるジハロゲン化アリールモノマーにアリールアニリンをそれぞれ反応させる。これにより、二級アミン化合物が得られる。そして、得られた二級アミン化合物を式(Vb)で表されるジハロゲン化合物X−Ar−Xを反応させることにより、本発明のアリールアミンポリマーが合成される。
尚、前記の重合方法において、通常、各工程における、N−Ar結合、N−Ar結合、及びN−Ar結合を形成する反応は、例えば炭酸カリウム、tert−ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。また、必要に応じて、例えば銅やパラジウム錯体等の遷移金属触媒存在下で行うこともできる。
本発明のアリールアミンポリマーの合成に用いるジハロゲン化アリールモノマーは、ジフェニルフェニレンジアミン化合物などを出発材料としてC-Nカップリング反応、又はハ
ロゲン化反応することで合成できる。
Figure 0005720191
(C-Nカップリング反応)
ジフェニルフェニレンジアミンなどの反応基質と炭化水素芳香族基を有するハロゲン化物又はトリフルオロメタンスルホン酸エステル試薬を、遷移金属元素触媒を用いて、塩基存在下で反応させることにより基質のカップリングした混合物を得ることができる。混合物からの精製は、蒸留、濾過、抽出、再結晶、再沈殿、懸濁洗浄、クロマトグラフィーの操作を組み合わせることにより精製することができる。
遷移金属元素触媒の例としては、パラジウム触媒や銅触媒が挙げられ、反応の簡便さや反応収率の高さからパラジウム触媒が望ましい。
塩基は、特に限定しないが、例えば炭酸カリウム、炭酸セシウム、tert−ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。
溶剤としては、パラジウム触媒を用いる場合には、トルエンが好ましく、銅触媒を用いる場合には、ピリジンやN,N―ジメチルホルムアミド、ジメチルスルホキシドなどが好ましい。
(ハロゲン化反応)
反応基質とハロゲン化試薬を、反応させることによりジハロゲン化アリールモノマーを得ることができる。混合物からの精製は、蒸留、濾過、抽出、再結晶、再沈殿、懸濁洗浄、クロマトグラフィーの操作を組み合わせることにより精製することができる。
ハロゲン化試薬としては、特に限定しないが、例えばハロゲン、ハロゲンピリジニウム塩、ハロゲンアンモニウム塩、ハロゲン金属塩、ハロゲン置換イミド等を用いる。
アリールアミンポリマーの分子量分布は、重合反応時の濃度条件を変えることにより制御できる。アリールアミンポリマーの分子量分布をそろえるためには、分子内反応によって生じる環化体ポリマーの生成を抑制しなければならないため、分子間反応が起こりやすいように高濃度条件で重合反応を行うほうが好ましい。
また、重合したポリマーは、精製操作によっても分子量分布を小さくすることができる。GPCやサイズ排除クロマトグラフィーにおいては、ポリマーの分子量によってカラムへの保持時間が異なるため、これらの精製法によっても分子量分布を小さくすることができる。また、分子量が大きなポリマーは、有機溶剤に対して溶けにくく、分子量の小さなポリマーは、有機溶剤に対して高い溶解性を示すため、ポリマーの溶解性差を利用し、再沈殿操作などによっても分子量分布を制御できる。
<電荷輸送材料>
本発明のアリールアミンポリマーは、電荷輸送材料として用いられることが好ましく、特に有機電界発光素子材料として用いられることが好ましい。有機電界発光素子材料として用いられる場合は、有機電界発素子における正孔注入層及び/又は正孔輸送層を形成する材料として用いることが好ましい。
また、有機電界発光素子を簡便に製造できることから、本発明のアリールアミンポリマーは、湿式成膜法で形成される有機層に用いることが好ましい。
<有機電界発光素子用組成物>
本発明の有機電界発光素子用組成物は、本発明のアリールアミンポリマーを少なくとも1種含有する。なお、本発明の有機電界発光素子用組成物は、本発明のアリールアミンポリマーを1種類含有するものであってもよく、2種類以上を任意の組み合わせ及び任意の比率で含有するものであってもよい。
本発明の有機電界発光素子用組成物が含有する本発明のアリールアミンポリマーの含有量は、通常0.01〜70重量%、好ましくは0.1〜60重量%、さらに好ましくは0
.5〜50重量%である。
上記範囲内であると、形成した有機層に欠陥が生じ難く、また膜厚ムラが生じ難いため好ましい。
(溶剤)
本発明の有機電界発光素子用組成物は、通常、溶剤を含有する。この溶剤は、本発明のアリールアミンポリマーを溶解するものが好ましい。具体的には、本発明のアリールアミンポリマーを、通常0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する溶剤が好適である。
溶剤の例を挙げると、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族系溶剤;1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の含ハロゲン溶剤;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等のエーテル系溶剤;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル等のエステル系溶剤;などの有機溶剤が挙げられる。なお、溶剤は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
中でも、本発明の有機電界発光素子用組成物に含有される溶媒としては、20℃における表面張力が、通常40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である溶媒が好ましい。
本発明の有機電界発光素子用組成物を塗布後、アリールアミンポリマーを架橋して層を形成する場合、下地との親和性が高いことが好ましい。膜質の均一性は有機電界発光素子の発光の均一性及び安定性に大きく影響するためである。したがって、湿式成膜法に用いる有機電界発光素子用組成物には、よりレベリング性が高く均一な塗膜を形成しうるように表面張力が低いことが求められる。そこで前記のような低い表面張力を有する溶剤を使用することにより、本発明のアリールアミンポリマーを含有する均一な層を形成することができ、ひいては均一な架橋層を形成できるようにすることが好ましいのである。
低表面張力の溶剤の具体例としては、前述したトルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族系溶剤、安息香酸エチル等のエステル系溶剤、アニソール等のエーテル系溶剤、トリフルオロメトキシアニソール、ペンタフルオロメトキシベンゼン、3−(トリフルオロメチル)アニソール、エチル(ペンタフルオロベンゾエート)等が挙げられる。
また一方で、本発明の有機電界発光素子用組成物に含有される溶媒としては、25℃における蒸気圧が、通常10mmHg以下、好ましくは5mmHg以下であり、通常0.1mmHg以上であるものが好ましい。このような溶媒を使用することにより、有機電界発光素子を湿式成膜法により製造するプロセスに好適で、本発明の共役ポリマーの性質に適した有機電界発光素子用組成物を調製することができるからである。
このような溶剤の具体例としては、前述したトルエン、キシレン、メチシレン等の芳香族系溶剤、エーテル系溶剤及びエステル系溶剤が挙げられる。
ところで、水分は有機電界発光素子の性能劣化を引き起こす可能性があり、中でも特に連続駆動時の輝度低下を促進する可能性がある。そこで、湿式成膜中に残留する水分をで
きる限り低減するために、前記の溶剤の中でも、25℃における水の溶解度が1重量%以下であるものが好ましく、0.1重量%以下である溶剤がより好ましい。
本発明の有機電界発光素子用組成物に含有される溶剤の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは80重量%以上である。これにより形成される層の平坦さ及び均一さを良好にすることができる。
さらに、本発明の有機電界発光素子用組成物は、形成しようとする有機層の種類等に応じて、本発明のアリールアミンポリマー以外のポリマー、発光材料、正孔輸送性化合物、電子輸送性化合物、電子受容性化合物などを含有していてもよい。
なお、本発明の有機電界発光素子用組成物は、その他の成分を、1種類だけ含有していてもよく、2種類以上を任意の組み合わせ及び任意の比率で含有していてもよい。
<有機電界発光素子>
本発明の有機電界発光素子は、陽極及び陰極、及び該陽極と該陰極の間に有機層を有するものであり、該有機層が、本発明の有機電界発光素子用組成物を用いて、湿式成膜法で形成された層を有する有機電界発光素子である。
本発明においては、上記の湿式成膜法で形成された有機層は、特に正孔注入層又は正孔輸送層であることが好ましい。
また、本発明においては、特に有機層の中でも正孔注入層、正孔輸送層、又は発光層を、湿式成膜により形成することが好ましい。
<有機電界発光素子の構成>
以下に、本発明の有機電界発光素子の層構成及びその形成方法等について、図1を参照して説明する。
図1は本発明にかかる有機電界発光素子の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
(基板)
基板は有機電界発光素子の支持体となるものであり、例えば石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらは1種類のみ用いてもよく、また2種類以上を任意の組み合わせで用いてもよい。上記の中でも特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化する可能性があるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
(陽極)
陽極は発光層側の層への正孔注入の役割を果たすものである。
この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。これらは1種類のみ用いてもよく、また2種類以上を任意の比率及び組み合わせで用いてもよい。
陽極の形成は通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液
に分散させて、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極の厚みは任意であり、陽極は基板と同一でもよい。また、さらには、上記の陽極の上に異なる導電材料を積層することも可能である。
陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。
(正孔注入層)
正孔注入層は、陽極から発光層へ正孔を輸送する層であり、通常、陽極上に形成される。
また、正孔注入層は、本発明のアリールアミンポリマーを用いて形成された層であることが好ましい。
本発明における正孔注入層の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔注入層を湿式成膜法により形成することが好ましい。
正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
<湿式成膜法による正孔注入層の形成>
湿式成膜により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層を形成する。
(正孔輸送性化合物)
正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶剤を含有する。
正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、高分子化合物であっても、低分子化合物であってもよい。本発明においては、正孔輸送性化合物として前述の本発明のアリールアミンポリマーを用いることが好ましいが、その他の正孔輸送性化合物を用いることができる。
その他の正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV〜6.0eVのイオン化ポテンシャルを有する化合物が好ましい。
より具体的には、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導
体、ポリキノキサリン誘導体、カーボン等が挙げられる。
尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することが好ましい。
上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure 0005720191
(式(I)中、Ar1a及びAr2aは、各々独立して、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基を表す。Ar3a〜Ar5aは、各々独立して、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基を表す。X1aは、下記の連結基群の中から選ばれる連結基を表す。また、Ar1a〜Ar5aのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。
Figure 0005720191
(上記各式中、Ar6a〜Ar16aは、各々独立して、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環基を表す。R及びRは、各々独立して、水素原子又は任意の置換基を表す。)
Ar1a〜Ar16aの芳香族炭化水素環基及び芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
Ar1a〜Ar16の芳香族炭化水素環基及び芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素環基、芳香族複素環基などが好ましい。
及びRが任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のものが挙げられる。
また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端を
メタクリレート等でキャップしたものであってもよい。
正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。
(電子受容性化合物)
正孔注入層形成用組成物は正孔注入層の構成材料として、電子受容性化合物を含有していることが好ましい。
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号パンフレット);塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸ア
ンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素等が挙げられる。
これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層の導電率を向上させることができる。
正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
(その他の構成材料)
正孔注入層の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(溶剤)
湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層の構成材料を溶解しうる化合物であることが好ましい。また、この溶剤の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶剤の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶剤の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル、等が挙げられる。
エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル、等が挙げられる。
芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イロプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジ
イソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
アミド系溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、等が挙げられる。
その他、ジメチルスルホキシド、等も用いることができる。
これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
(成膜方法)
正孔注入層形成用組成物を調製後、この組成物を湿式成膜により、正孔注入層の下層に該当する層(通常は、陽極)上に塗布し、乾燥することにより正孔注入層を形成する。
成膜工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましくい。
成膜工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常相対湿度80%以下である。
塗布後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。乾燥させる方法としては、通常、加熱工程が行なわれる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。中でも、膜全体に均等に熱を与えるためには、クリーンオーブン及びホットプレートが好ましい。
加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶剤の沸点以上の温度で加熱することが好ましい。また、正孔注入層中に本発明の有機電界発光素子材料が含有される場合、熱解離可溶性基が解離する温度以上の温度で加熱することが好ましい。また、正孔注入層形成用組成物に用いた溶剤が2種類以上含まれている混合溶剤の場合、少なくとも1種類がその溶剤の沸点以上の温度で加熱されるのが好ましい。溶剤の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
加熱工程において、加熱温度が正孔注入層形成用組成物の溶剤の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回にわけて行ってもよい。
<真空蒸着法による正孔注入層の形成>
真空蒸着により正孔注入層を形成する場合には、正孔注入層の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10−4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板の陽極上に正孔注入層を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層を形成することもできる。
蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10−6Torr(0.13×10−4Pa)以上、通常9.0×10−6Torr(12.0×10−4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上で
、好ましくは50℃以下で行われる。
[正孔輸送層]
本発明に係る正孔輸送層の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層を湿式成膜法により形成することが好ましい。
正孔輸送層は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。 また、本発明の有機電界発光素子は、正孔
輸送層を省いた構成であってもよい。
正孔輸送層を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、発光層に接するため、発光層からの発光を消光したり、発光層との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
このような正孔輸送層の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p−フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Figure 0005720191
(式(II)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基を表す。)
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベン
ズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環由来の基及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環由来の基及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
有機溶剤に対する溶解性及び耐熱性の点から、Ar及びArは、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基やターフェニル基)が好ましい。
中でも、ベンゼン環由来の基(フェニル基)、ベンゼン環が2環連結してなる基(ビフェニル基)及びフルオレン環由来の基(フルオレニル基)が好ましい。
Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
ポリアリーレン誘導体としては、前記式(II)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。
ポリアリーレン誘導体としては、下記式(III−1)及び/又は下記式(III−2)からなる繰り返し単位を有する重合体が好ましい。
Figure 0005720191
(式(III−1)中、Ra、Rb、R及びRは、各々独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。t及びsは、各々独立に、0〜3の整数を表す。t又はsが2以上の場合、一分子中に含まれる複数のRa又はRbは同一であっても異なっていてもよ
く、隣接するRa又はRbどうしで環を形成していてもよい。)
Figure 0005720191
(式(III−2)中、R及びRは、各々独立に、上記式(III−1)におけるRa、Rb、R又はRと同義である。r及びuは、各々独立に、0〜3の整数を表す。r又はuが2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。Xは、5員環又は6員環を構成する原子又は原子群を表す。)
Xの具体例としては、酸素原子、置換基を有していてもよいホウ素原子、置換基を有していてもよい窒素原子、置換基を有していてもよいケイ素原子、置換基を有していてもよいリン原子、置換基を有していてもよいイオウ原子、置換基を有していてもよい炭素原子又はこれらが結合してなる基である。
また、ポリアリーレン誘導体としては、下記式(III−1)及び/又は下記式(III−2)からなる繰り返し単位に加えて、さらに下記式(III−3)で表される繰り返し単位を有することが好ましい。
Figure 0005720191
(式(III−3)中、Ar〜Arは、各々独立に、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。v及びwは、各々独立に0又は1を表す。)Ar〜Arの具体例としては、前記式(II)における、Ar及びArと同様である。
上記式(III−1)〜(III−3)の具体例及びポリアリーレン誘導体の具体例等は、特開2008―98619号公報に記載のものなどが挙げられる。
湿式成膜法で正孔輸送層を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。
正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。
真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層
3の形成の場合と同様である。
正孔輸送層は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
正孔輸送層はまた、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。
この架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。
架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。 架橋性
化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられ、これら正孔輸送性化合物に対して、架橋性基が主鎖又は側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。また、特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(II)や式(III−1)〜(III−3)に架橋性基が直接又は連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体、シロール誘導体、縮合多環芳香族誘導体、金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
架橋性化合物を架橋して正孔輸送層を形成するには、通常、架橋性化合物を溶剤に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。正孔輸送層形成用組成物には、架橋性化合物の他、架橋反応を促進する添加物を含んでいてもよい。架橋反応を促進する添加物の例を挙げると、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩等の重合開始剤及び重合促進剤;縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物等の光増感剤;などが挙げられる。
また、さらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂;などを含有していてもよい。
正孔輸送層形成用組成物は、架橋性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
このような濃度で架橋性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱及び/又は光などの電磁エネルギー照射により、架橋性化合物を架橋させて網目状高分子化合物を形成する。
成膜時の温度、湿度などの条件は、前記正孔注入層3の湿式成膜時と同様である。
成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。
加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるい

は前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の電磁エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。
加熱及び光などの電磁エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
このようにして形成される正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
[発光層]
正孔注入層の上、又は正孔輸送層を設けた場合には正孔輸送層の上には発光層が設けられる。発光層は、電界を与えられた電極間において、陽極から注入された正孔と、陰極から注入された電子との再結合により励起されて、主たる発光源となる層である。
<発光層の材料>
発光層は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。更に、発光層は、本発明の効果を著しく損なわない範囲で、その他の成分を含有していてもよい。なお、湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
(発光材料)
発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また本発明の有機電界発光素子材料を発光材料として用いてもよい。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。
なお、溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。
以下、発光材料のうち蛍光色素の例を挙げるが、蛍光色素は以下の例示物に限定されるものではない。
青色発光を与える蛍光色素(青色蛍光色素)としては、例えば、ナフタレン、クリセン、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
緑色発光を与える蛍光色素(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
黄色発光を与える蛍光色素(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
赤色発光を与える蛍光色素(赤色蛍光色素)としては、例えば、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。
周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
燐光発光材料として、具体的には、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。
発光材料として用いる化合物の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機電界発光素子材料の精製が困難となってしまったり、溶剤に溶解させる際に時間を要したりする傾向がある。
なお、上述した発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層における発光材料の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.05重量%以上、通常35重量%以下である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
(正孔輸送性化合物)
発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の本発明の有機電界発光素子材料や、正孔注入層における(低分子量の正孔輸送性化合物)として例示した各種の化合物のほか、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニル
アミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence,1997年,Vol.72−74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications,1996年,pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synthetic Metals,1997年,Vol.91,pp.209)等が挙げられる。
なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層における正孔輸送性化合物の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
(電子輸送性化合物)
発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)や、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)や、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等が挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層における電子輸送性化合物の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
<発光層の形成>
本発明に係る湿式成膜法により発光層を形成する場合は、上記材料を適切な溶剤に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。この際、本発明の有機電界発光素子用組成物を用いてもよい。
発光層を本発明に係る湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶剤としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶剤の好適な例は、上記正孔注入層形成用組成物で説明した溶剤と同様である。
発光層を形成するための発光層形成用組成物に対する発光層用溶剤の比率は、本発明の効果を著しく損なわない限り任意であるが、通常99.9重量%以下、である。なお、発光層用溶剤として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにする。
また、発光層形成用組成物中の発光材料、正孔輸送性化合物、電子輸送性化合物等の固
形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。
発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶剤を除去することにより、発光層が形成される。具体的には、上記正孔注入層の形成において記載した方法と同様である。湿式成膜法の方式は、本発明の効果を著しく損なわない限り限定されず、前述のいかなる方式も用いることができる。
発光層の膜厚は本発明の効果を著しく損なわない限り任意であるが、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
[正孔阻止層]
発光層と後述の電子注入層との間に、正孔阻止層を設けてもよい。正孔阻止層は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。
この正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。
正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)などが挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。
なお、正孔阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正孔阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
[電子輸送層]
発光層と後述の電子注入層の間に、電子輸送層を設けてもよい。
電子輸送層は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
電子輸送層に用いられる電子輸送性化合物としては、通常、陰極又は電子注入層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8−ヒド
ロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子輸送層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
電子輸送層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
[電子注入層]
電子注入層は、陰極から注入された電子を効率よく発光層へ注入する役割を果たす。電子注入を効率よく行なうには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子注入層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
[陰極]
陰極は、発光層側の層(電子注入層又は発光層など)に電子を注入する役割を果たすものである。
陰極の材料としては、前記の陽極に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
なお、陰極の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
陰極の膜厚は、通常、陽極と同様である。
さらに、低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高
く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[その他の層]
本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極と陰極との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。例えば、後述の実施例で作製した有機電界発光素子は、図1の有機電界発光素子に対して、正孔阻止層、及び電子輸送層が省略されている。
[電子阻止層]
上記各層以外に有機電界発光素子が有していてもよい層としては、例えば、電子阻止層が挙げられる。
電子阻止層は、正孔注入層又は正孔輸送層と発光層との間に設けられ、発光層から移動してくる電子が正孔注入層に到達するのを阻止することで、発光層内で正孔と電子との再結合確率を増やし、生成した励起子を発光層内に閉じこめる役割と、正孔注入層から注入された正孔を効率よく発光層の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8−TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号パンフレット記載)等が挙げられる。
なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
[その他]
さらに陰極と発光層又は電子輸送層との界面に、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、酸化リチウム(Li2O)、炭酸セシウム(II)(CsCO3)等で形成された極薄絶縁膜(0.1〜5nm)を挿入することも、素子 の効率を向上させる有効な方法である(Applied Physics Letters, 1997年, Vol.70, pp.152;特開平10−74586号公報;IEEE
Transactions on Electron Devices, 1997年,Vol.44, pp.1245;SID 04 Digest, pp.154等参照)。
また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板上に他の構成要素を陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に設けてもよい。

更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V25)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX−Yマトリックス状に配置された構成に適用してもよい。
また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
<有機EL表示装置>
本発明の有機EL表示装置は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
<有機EL照明>
本発明の有機EL照明は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
[モノマーの合成]
(参考合成例1)
Figure 0005720191
200 mL四つ口フラスコにビフェニルフェニレンジアミ(2.0g)、ブロモジヘキシルフルオレン (10.16g)、ナトリウム-tert-ブトキシド(4.73 g、3.4MR)、トルエン(60 m)
を加え、系内を十分に窒素置換して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(159mg)のトルエン溶液(5ml)に、トリ−t−ブチルホスフィン(248mg)を加え、6
5℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.5時間、加熱還流反応した。反応溶液に、活性白土を加え、濾過したのち、エバポレータにより濃縮した。得られた祖生成物をシリカゲルクロマトグラフィーにて精製し、化合物1(5.3g)を
得た。
(参考合成例2)
Figure 0005720191
500mlフラスコに化合物1(4.6g)、DMF(60 ml)、クロロホルム(60 ml)を加え
、氷浴中で攪拌した。溶液にNBS (1.77g,2MR) のDMF溶液 30mLを加え0℃で1時間、室
温で2時間反応した。次いで、反応溶液にクロロホルム(100ml)を加え、炭酸ナトリ
ウム水溶液で3回、水で2回洗浄した。クロロホルム層を硫酸マグネシウムで乾燥したのち、エバポレートした。
得られた固体を、シリカゲルカラムにて精製し、化合物2 (4.8g)を得た。
(合成例3)
Figure 0005720191
200 mL四つ口フラスコにビフェニルフェニレンジアミ(4.0g)、ブロモブチルベンゼン
(10.47g、3.2MR) 、ナトリウム-tert-ブトキシド(9.45 g、3.4MR)、トルエ
ン(60ml)を加え、系内を十分に窒素置換して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(318mg)のトルエン溶液(7ml)に、トリ−t−ブチルホスフィン(497mg)を加え、65℃まで加温した(溶液B)。
窒素気流中、溶液Aに溶液Bを添加し、1.5時間、加熱還流反応した。反応溶液に活性白土を加え、濾過したのち、減圧乾固した。得られた祖生成物をアセトン/MeOHで再結
晶し、化合物3(7.5g)を得た。
(合成例4)
Figure 0005720191
500mlフラスコに原料(7.5g)、DMF(80ml)、クロロホルム(80 ml)を加え、
氷浴中で攪拌した。溶液にNBS (5.08g,2MR) のDMF溶液 30mLを加え0℃で1時間、室温
で2時間反応した。
反応溶液にクロロホルム(120ml)を加え、炭酸水素ナトリウム水溶液で3回、水で2回洗浄した。クロロホルム層を硫酸マグネシウムで乾燥したのち、エバポレートした。
粗生成物を、アセトン/MeOHで再結晶し、化合物4を得た。
[ポリマーの合成]
(合成例1)
Figure 0005720191
化合物2(2.0g)、アニリン(0.069g)、化合物5(0.577g)、tert−ブトキシナトリウム(1.21 g)、及びトルエン(30ml)を仕込み、系内を十分に窒素置換
して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(40mg)のトルエン溶液(3ml)に、トリ−t−ブチルホスフィン60mgを加え、65℃まで加温
した(溶液B)。
窒素気流中、溶液Aに溶液Bを添加し、1.5時間加熱還流反応した。反応溶液にジブロモジヘキシルフルオレン0.899gを加え、1時間加熱還流した。
反応液を放冷して、反応液をエタノール500mL中に滴下し、粗ポリマー1を晶出させた。
得られた粗ポリマー1をトルエン40mLに溶解させ、ブロモベンゼン0.12g、tert−ブトキシナトリウム1.21gを仕込み、系内を十分に窒素置換して、65℃まで加温した(溶液C)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体40mgのトルエン溶液3mLに、トリ−t−ブチルホスフィン60mgを加え、65℃まで加温した(溶液D)。
窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン0.62gを添加し、さらに、4時間、加熱還流反応した。反応液を放冷し、エタノール(500ml)に滴下し、エンドキャップした粗ポリマー3を得た。
このエンドキャップした粗ポリマー1をトルエン200mLに溶解し、希塩酸80mLにて1回洗浄、水100mLにて3回洗浄し、エタノール500mLにて再沈殿した。得
られたポリマーをアセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、目的ポリマー1(1.1g)を得た。なお、
化合物の重量平均分子量及び数平均分子量を測定したところ、以下の通りであった。
重量平均分子量(Mw)=56900
分散度(Mw/Mn)=1.57
(合成例2)
Figure 0005720191
化合物2(3.0g)、アミノジヘキシルフルオレン(0.3874g)、化合物5 (0.8
65g)、tert−ブトキシナトリウム(1.8g)、及びトルエン(12mL)を仕込み
、系内を十分に窒素置換して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(58mg)のトルエン溶液(4ml)に、トリ−t−ブチルホスフィン89.7mgを加え、65℃まで加温した(溶液B)。
窒素気流中、溶液Aに溶液Bを添加し、2.5時間加熱還流反応した。反応溶液にジブロモターフェニル1.04gを加え、1時間加熱還流した。
反応液を放冷して、反応液をエタノール500mL中に滴下し、粗ポリマー2を晶出させた。
得られた粗ポリマー2をトルエン50mLに溶解させ、ブロモベンゼン0.17g、tert−ブトキシナトリウム1.44gを仕込み、系内を十分に窒素置換して、65℃まで加温した(溶液C)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体50mgのトルエン溶液3mLに、トリ−t−ブチルホスフィン80mgを加え、65℃まで加温した(溶液D)。
窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン0.94gを添加し、さらに、4時間、加熱還流反応した。反応液を放冷し、エタノール(500ml)に滴下し、エンドキャップした粗ポリマー2を得た。
このエンドキャップした粗ポリマー2をトルエン(200mL)に溶解し、希塩酸(40mL)にて1回洗浄、水(100mL)にて4回洗浄し、エタノール(500mL)に
て再沈殿した。得られたポリマーをアセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、目的ポリマー2(2.2g)を得た。なお、化合物の重量平均分子量及び数平均分子量を測定したところ、以下の通りであった。
重量平均分子量(Mw)=32000
分散度(Mw/Mn)=1.70
(合成例3)
Figure 0005720191
化合物4(3.0g)、ブチルアニリン(0.888g)、化合物5 (0.55g)、tert−ブト
キシナトリウム(2.87 g)、及びトルエン(30ml)を仕込み、系内を十分に窒素置
換して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(90mg)のトルエン溶液(3ml)に、トリ−t−ブチルホスフィン142mgを加え、65℃まで加温した(溶液B)。
窒素気流中、溶液Aに溶液Bを添加し、2時間加熱還流反応した。反応溶液にジブロモターフェニル1.56gを加え、1時間加熱還流した。
反応液を放冷して、反応液をエタノール(1000mL)中に滴下し、粗ポリマー3を晶出させた。
得られた粗ポリマー3をトルエン(150mL)に溶解させ、ブロモベンゼン(0.276g)、tert−ブトキシナトリウム(2.87g)を仕込み、系内を十分に窒素置換して、65℃まで加温した(溶液C)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(45mg)のトルエン溶液(6mL)に、トリ−t−ブチルホスフィン(71mg)を加え、65℃まで加温した(溶液D)。
窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン(0.744g)を添加し、さらに、4時間、加熱還流反応した。反応液を放冷し、エタノール(1000ml)に滴下し、エンドキャップした粗ポリマー3を得た。
このエンドキャップした粗ポリマー3をトルエン(400mL)に溶解し、希塩酸(200mL)にて3回洗浄、水150mLにて6回洗浄し、エタノール(1000mL)に
て再沈殿した。得られたポリマーをアセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、目的ポリマー3(1.4g)を得た。なお、化合物の重量平均分子量及び分散度を測定したところ、以下の通りであった。
重量平均分子量(Mw)=76000
分散度(Mw/Mn)=1.69
(合成例4)
Figure 0005720191
化合物4(3.0g)、ブチルアニリン(0.920g)、化合物5 (0.513g)、tert−ブトキシナトリウム(2.87 g)、及びトルエン(30ml)を仕込み、系内を十分に窒素置
換して、65℃まで加温した(溶液A)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(90mg)のトルエン溶液(4ml)に、トリ−t−ブチルホスフィン142mgを加え、65℃まで加温した(溶液B)。
窒素気流中、溶液Aに溶液Bを添加し、2時間加熱還流反応した。反応溶液にジブロモビフェニル1.26gを加え、1時間加熱還流した。
反応液を放冷して、反応液をエタノール(1000mL)中に滴下し、粗ポリマー4を晶出させた。
得られた粗ポリマー4をトルエン180mLに溶解させ、ブロモベンゼン(0.276g)、tert−ブトキシナトリウム(2.87g)を仕込み、系内を十分に窒素置換して、65℃まで加温した(溶液C)。
一方、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体45mgのトルエン溶液6mLに、トリ−t−ブチルホスフィン71mgを加え、65℃まで加温した(溶液D)。
窒素気流中、溶液Cに溶液Dを添加し、2時間、加熱還流反応した。この反応液に、N,N−ジフェニルアミン0.744gを添加し、さらに、4時間、加熱還流反応した。反応液を放冷し、エタノール(1000ml)に滴下し、エンドキャップした粗ポリマー4を得た。
このエンドキャップした粗ポリマー4をトルエン(450mL)に溶解し、希塩酸(200mL)にて3回洗浄、水(150mL)にて6回洗浄し、エタノール(1000mL
)にて再沈殿した。得られたポリマーをアセトンに再沈殿し、析出したポリマーを濾別した。濾取したポリマーをカラムクロマトグラフィーにより精製し、目的ポリマー4(0.6g)を得た。
なお、化合物の重量平均分子量及び分散度を測定したところ、以下の通りであった。
重量平均分子量(Mw)=66000
分散度(Mw/Mn)=1.99
<実施例1〜4:アリールアミンポリマーの電気化学特性>
目的ポリマー1〜4について、下記の測定方法で、アリールアミンポリマーの電気化学特性を測定した(実施例1〜4)。結果を表1に示す。
[測定方法]
目的ポリマー・1wt%トルエンの溶液をスピンコーティングにより成膜し、それぞれの有機膜が230℃で加熱乾燥を行った。その後、蛍光分光光度計F4500(日立製作所
社製)、分光光度計U−3500(日立製作所社製)、光電子分光装置(PCR−101、Optel製)によりイオン化ポテンシャル(I)の測定を行った。
この結果を、表1に纏めた。
<有機膜の成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 窒素中 230℃ 1時間
Figure 0005720191
表1に示すが如く、本発明のアリールアミンは、従来のアリールアミンポリマーと違い、イオン化ポテンシャルが適度に小さい。これより、本発明のアリールアミンポリマーは、ラジカルカチオンを発生させ易いことがわかる。
<実施例5〜8:吸収スペクトル測定>
各目的ポリマー(10mg)にTHF(4g)を加え、溶液Aを調製した。溶液Aに酸化剤
であるトリス(4−ブロモフェニル)アンモニウム ヘキサクロロアンチモネー(3mg
)を加えた。
この後、溶液Aを、THFで10倍に希釈してサンプル組成物を調製した。
調製したサンプル組成物を用いて、分光光度計U-3500(日立社製)にて吸収スペクトル測定を行った(実施例5〜8)。この結果を表2に示す。
Figure 0005720191
表2に示すが如く、本発明のアリールアミンポリマーを含有するサンプル組成物は、いずれもラジカルカチオンに由来する吸収スペクトルが観測された。
つまり、組成物中でも、安定してラジカルカチオン種が存在していることが分かる。
以上より、本発明のアリールアミンポリマーは、イオン化ポテンシャルが適度に小さいことからラジカチオンを発生させ易く(表1)、また極大吸収波長から、発生したカチオンラジカルが安定に存在しているため(表2)、正孔注入輸送能に優れる。
これより、本発明のアリールアミンポリマーを用いて形成される層を含む有機電界発光素子は、駆動電圧が低く、また駆動寿命に優れる。
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極

Claims (13)

  1. 下記式(Va)で表されるジハロゲン化アリールモノマーに
    Figure 0005720191
    Figure 0005720191
    Figure 0005720191
    上記式(a)び(b)で表されるアリールアニリンを反応させ、下記式(c)で表される二級アミン化合物を得た後、
    Figure 0005720191
    下記式(Vb)で表されるジハロゲン化合物を反応させることによって得られる、
    Figure 0005720191
    ポリマーの繰り返し単位が下記式(1)で表される繰り返し単位のみからなることを特徴とする、アリールアミンポリマー。
    Figure 0005720191
    (式中、nは2〜3の整数を表し、
    Arは、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基を表し、Ar〜Ar4は、各々独立に、置換
    基を有していてもよい芳香族炭化水素環基、又は置換基を有していてもよい芳香族複素環基、並びに該芳香族炭化水素環及び/又は該芳香族複素環を2〜5個連結してなる基を表す。また、Xはハロゲン基を表す。
    尚、上記式中のベンゼン環は、置換基を有していてもよい。)
  2. ポリマーの繰り返し単位が下記式(5)及び/又は(6)で表される繰り返し単位のみからなることを特徴とする、アリールアミンポリマー。
    Figure 0005720191
    Figure 0005720191
    (式中、Arは、置換基を有していてもよい芳香族炭化水素環基又は置換基を有していてもよい芳香族複素環を2〜5個連結してなる基を表し、Ar〜Ar4は、各々独立に
    、置換基を有していてもよい芳香族炭化水素環基、又は置換基を有していてもよい芳香族複素環基、並びに該芳香族炭化水素環及び/又は該芳香族複素環を2〜5個連結してなる基を表す。また、Xはハロゲン基を表す。
    尚、上記式中のベンゼン環は、置換基を有していてもよい。)
  3. 前記Arが、ビフェニレン基、ターフェニレン基及びフルオレン基のいずれかであることを特徴とする、請求項1又は2に記載のアリールアミンポリマー。
  4. 分散度(Mw/Mn)が2.4以下であることを特徴とする、請求項1〜3のいずれか一項に記載のアリールアミンポリマー。
    (但し、Mwは重量平均分子量、Mnは数平均分子量を表す。)
  5. 前記Ar〜Arのうち少なくとも一つは、置換基として架橋性基を含む基を有することを特徴とする、請求項1〜4のいずれか一項に記載のアリールアミンポリマー。
  6. 前記架橋性基が、下記架橋性基群Tの中から選ばれることを特徴とする、請求項5に記載のアリールアミンポリマー。
    <架橋性基群T>
    Figure 0005720191
    (前記式中、R21〜R23は、各々独立に、水素原子又は置換基を有していてもよいアルキル基を表し、Ar21は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
    尚、ベンゾシクロブテン環は、置換基を有していてもよく、また置換基同士が互いに結合して環を形成していてもよい。)
  7. 請求項1〜6のいずれか一項に記載のアリールアミンポリマーからなることを特徴とする、電荷輸送材料。
  8. 請求項1〜6のいずれか一項に記載のアリールアミンポリマー及び溶剤を含有することを特徴とする、有機電界発光素子用組成物。
  9. 基板上に、陽極、陰極、及び該陽極と該陰極の間に有機層を有する有機電界発光素子において、
    該有機層が、請求項8に記載の有機電界発光素子用組成物を用いて、湿式成膜法で形成された層を含むことを特徴とする、有機電界発光素子。
  10. 前記湿式成膜で形成された層が、正孔注入層及び/又は正孔輸送層であることを特徴とする、請求項9に記載の有機電界発光素子。
  11. 前記有機層として、正孔注入層、正孔輸送層及び発光層を有し、
    該正孔注入層、該正孔輸送層、及び該発光層のいずれもが湿式成膜法で形成されることを特徴とする、請求項9又は10に記載の有機電界発光素子。
  12. 請求項9〜11のいずれか一項に記載の有機電界発光素子を含むことを特徴とする、有機EL表示装置。
  13. 請求項9〜11のいずれか一項に記載の有機電界発光素子を含むことを特徴とする、有機EL照明。
JP2010253872A 2010-11-12 2010-11-12 アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 Active JP5720191B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253872A JP5720191B2 (ja) 2010-11-12 2010-11-12 アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253872A JP5720191B2 (ja) 2010-11-12 2010-11-12 アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Publications (2)

Publication Number Publication Date
JP2012102286A JP2012102286A (ja) 2012-05-31
JP5720191B2 true JP5720191B2 (ja) 2015-05-20

Family

ID=46393046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253872A Active JP5720191B2 (ja) 2010-11-12 2010-11-12 アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Country Status (1)

Country Link
JP (1) JP5720191B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191137A1 (ja) * 2012-06-18 2013-12-27 三菱化学株式会社 高分子化合物、電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
US9074043B2 (en) 2012-08-17 2015-07-07 Harvatek Corporation Compound for carrier transport, element and electronic device using the same
WO2016136847A1 (ja) 2015-02-25 2016-09-01 三菱化学株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
CN106157581B (zh) * 2015-04-14 2023-01-10 安徽精卓光显技术有限责任公司 太阳能式触控遥控器
JP6866737B2 (ja) * 2016-04-20 2021-04-28 Jsr株式会社 重合体、組成物及び成形体
JP6996240B2 (ja) * 2017-11-10 2022-01-17 東ソー株式会社 アリールアミンポリマー、および電荷輸送材料
WO2020027014A1 (ja) 2018-08-01 2020-02-06 日産化学株式会社 重合体及びその利用
CN111180599B (zh) * 2020-01-03 2023-01-24 宁波卢米蓝新材料有限公司 一种混合物、包含其的有机电致发光器件及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504342A (ja) * 2003-05-30 2007-03-01 メルク パテント ゲーエムベーハー ポリマー
KR101323557B1 (ko) * 2008-02-15 2013-10-29 미쓰비시 가가꾸 가부시키가이샤 공액 폴리머, 불용화 폴리머, 유기 전계 발광 소자 재료, 유기 전계 발광 소자용 조성물, 폴리머의 제조 방법, 유기 전계 발광 소자, 유기 el 디스플레이, 및 유기 el 조명
CN101981086A (zh) * 2008-04-02 2011-02-23 三菱化学株式会社 高分子化合物、由该高分子化合物交联而得到的网状高分子化合物、有机场致发光元件用组合物、有机场致发光元件、有机el显示器及有机el照明
JP5491796B2 (ja) * 2008-08-11 2014-05-14 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5685838B2 (ja) * 2010-06-22 2015-03-18 東ソー株式会社 新規トリアリールアミンポリマー、その製造方法及びその用途
JP5716392B2 (ja) * 2010-07-09 2015-05-13 東ソー株式会社 新規アリールアミンデンドリマー状化合物、その製造方法およびその用途
JP5549879B2 (ja) * 2010-10-25 2014-07-16 東ソー株式会社 ランダム共重合体

Also Published As

Publication number Publication date
JP2012102286A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5793878B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP4935952B2 (ja) 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5343832B2 (ja) アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5644063B2 (ja) 有機電界発光素子用組成物、高分子膜、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5720191B2 (ja) アリールアミンポリマー、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2008248241A (ja) 有機デバイス用組成物、高分子膜および有機電界発光素子
KR102157997B1 (ko) 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
JP5343818B2 (ja) アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2023025007A (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
JP2017002287A (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP6593432B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5573697B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5750916B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5609726B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2013125662A1 (ja) 重合体及び有機電界発光素子
JP5423064B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5387030B2 (ja) 共役ポリマー、ポリマー組成物、電荷輸送材料、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5699684B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2021166900A1 (ja) 有機電界発光素子、有機el表示装置及び有機el照明
JP5966422B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP7367574B2 (ja) 芳香族化合物
JP2022136017A (ja) 芳香族化合物
JP2010126480A (ja) ベンゾジチオフェン系化合物、該化合物を含有する組成物および有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350