JP5716916B2 - フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置 - Google Patents

フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置 Download PDF

Info

Publication number
JP5716916B2
JP5716916B2 JP2011232057A JP2011232057A JP5716916B2 JP 5716916 B2 JP5716916 B2 JP 5716916B2 JP 2011232057 A JP2011232057 A JP 2011232057A JP 2011232057 A JP2011232057 A JP 2011232057A JP 5716916 B2 JP5716916 B2 JP 5716916B2
Authority
JP
Japan
Prior art keywords
fluorine
gas
waste
cleaning water
containing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011232057A
Other languages
English (en)
Other versions
JP2013087267A (ja
Inventor
史洋 三好
史洋 三好
孝行 安井
孝行 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011232057A priority Critical patent/JP5716916B2/ja
Publication of JP2013087267A publication Critical patent/JP2013087267A/ja
Application granted granted Critical
Publication of JP5716916B2 publication Critical patent/JP5716916B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、フッ素含有廃棄物を効率よく経済的に処理できるフッ素含有廃棄物の処理方法及びフッ素含有廃棄物の処理装置に関する。
フッ素系有機化合物は化学的に非常に安定な性質を持つため、界面活性剤、撥水剤、表面処理剤、コーティング剤等様々な用途で広く使用されている。
<PFOS>
フッ素系有機化合物のうち、特に、パーフルオロカルボン酸類(PFCA類)やペルフルオロオクタンスルホン酸(PFOS)等のパーフルオロアルキルスルホン酸類は、撥水撥油剤や界面活性剤として、半導体、金属メッキの表面処理剤や消火剤など多くの産業で使用されている。しかし、化学的な安定性ゆえに自然環境中で分解されにくく、自然界や社会など環境中に広く存在し、生物への蓄積性も明らかになり、新たな環境汚染物質として注目されるようになった。
残留性有機汚染物質に関するストックホルム条約(環境中に残留する生物に蓄積しやすい等の有害な物質を廃絶するための国際条約)の対象物質として、PFOSを含む9物質が2009年に新たに追加採択され、製造・使用・輸出入を制限する勧告が採択された。この勧告を受け、国内でも、PFOSが「化学物質の審査及び製造等の規制に関する法律」(化審法)における第1種特定化学物質に指定され、PFOSの製造・輸入が原則禁止され、PFOS含有製品の製造も禁止された。
このような規制が行われる前に製造されたPFOS含有製品は消火薬剤や半導体用レジスト液などとして存在しており、PFOS含有製品を廃棄する際の処理が問題となっている。この問題に対処すべく、PFOS含有物の廃棄は、「PFOS含有廃棄物の処理に関する技術的留意事項」(環境省2011年3月)に則って処理予定の廃棄物を用いて実証試験を行い、適正に分解処理できる事が確認できた事業所で行われることとなっている。
上記「PFOS含有廃棄物の処理に関する技術的留意事項」では、PFOS含有廃棄物の分解処理時に達成すべき分解率及び排出目標が下記のように定められている。
PFOS分解率:99.999%以上
分解処理に伴い生じる排水中のPFOS又はその塩の残存濃度:2μg/L以下
分解処理に伴い生じる残渣中のPFOS又はその塩の残存濃度:3mg/kg以下
分解処理に伴い生じる排ガス中のフッ化水素濃度:5mg/mN以下
分解処理に伴い生じる排水中のフッ化水素濃度:8mg/L以下(海域以外)
15mg/L以下(海域)
<フロンガス>
また、他のフッ素系有機化合物である、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC)等のフロンガスは、冷媒や発泡剤として用いられていたが、オゾン層破壊や温室効果ガスなど地球環境を汚染する物質であることが明らかになり、フロンガスの回収、分解処理が求められている。発泡ウレタン材などの断熱材には、発泡剤として用いられたフロンガスが含まれており、発泡ウレタン廃棄物の処理時にはフロンガスを確実に分解処理することが規制されている。
非特許文献1には、PFOS含有廃棄物をロータリーキルン炉により焼却する分解処理法が開示されている。
DOWAエコシステム株式会社、PFOS(ピーフォス)含有廃棄物の処理、[online]、[平成23年10月5日検索]、インターネット、<http://www.dowa-eco.co.jp/business/waste/pfos.html>
非特許文献1による方式では、フッ素含有廃棄物を焼却し分解処理することができる。しかしながら、ロータリーキルン炉内を加熱するために燃料が必要であり、処理コストが嵩むという問題がある。また、該ロータリーキルン炉は焼却炉であるので、フッ素含有廃棄物を他の廃棄物とともに焼却する場合には、該他の廃棄物から燃料ガスを回収し有効に利用することができないという問題がある。
このような事情に鑑みて、本発明は、フッ素含有廃棄物を別に燃料を必要とすることなく効率よく経済的に処理でき、また、フッ素含有廃棄物を他の廃棄物とともに処理する場合に該他の廃棄物から燃料ガスを回収し有効に利用することができるフッ素含有廃棄物の処理方法及びフッ素含有廃棄物の処理装置を提供することを目的とする。
<第一発明>
本発明に係るフッ素含有廃棄物の処理方法は、フッ素含有廃棄物を、竪型ガス化溶融炉により無害化するとともに他の廃棄物をガス化し燃料ガスとして回収する。
かかるフッ素含有廃棄物の処理方法において、本発明では、フッ素含有廃棄物を他の廃棄物とともに竪型ガス化溶融炉の熱分解部に供給して熱分解・ガス化し、発生したガスを上記竪型ガス化溶融炉のガス改質部でガス改質し、不燃物を上記竪型ガス化溶融炉の溶融部で溶融し排出するガス化溶融工程と、ガス改質した改質ガスを洗浄水で洗浄して精製し燃料ガスとして回収するガス精製工程と、ガス精製工程で改質ガスを洗浄した洗浄水からフッ素を除去する洗浄水処理工程とを備え、洗浄水にはシリカが含まれており、洗浄水処理工程は、カリウム化合物を洗浄水に添加しケイフッ化カリウムを析出分離してフッ素を除去する第一フッ素除去工程と、第一フッ素除去工程にて処理された洗浄水にカルシウム化合物を添加しフッ化カルシウムを析出分離してフッ素を除去する第二フッ素除去工程とを有することを特徴としている。
<第二発明>
本発明に係るフッ素含有廃棄物の処理装置は、フッ素含有廃棄物を無害化するとともに他の廃棄物をガス化し燃料ガスとして回収する。
かかるフッ素含有廃棄物の処理装置において、本発明は、フッ素含有廃棄物と他の廃棄物の供給を受け熱分解・ガス化する熱分解部と、発生したガスをガス改質するガス改質部及び不燃物を溶融し排出する溶融部を有する竪型ガス化溶融炉と、上記ガス改質部でガス改質された改質ガスを洗浄水で洗浄して精製し燃料ガスとして回収するガス精製装置と、ガス精製装置で改質ガスを洗浄した洗浄水からフッ素を除去する洗浄水処理装置とを備え、洗浄水処理装置は、フッ素とシリカを含む洗浄水にカリウム化合物を添加しケイフッ化カリウムを析出分離してフッ素を除去する第一フッ素除去装置と、第一フッ素除去装置にて処理された洗浄水にカルシウム化合物を添加しフッ化カルシウムを析出分離してフッ素を除去する第二フッ素除去装置とを有することを特徴としている。
第一発明および第二発明において、ガス改質とは、少なくとも、熱分解・ガス化し発生したガス中に含まれる炭化水素ガスを水蒸気と反応させ燃料ガスとして有用な水素および一酸化炭素を生成すること、及び発生ガス中に含まれるタール分を熱分解することをいう。
第一発明および第二発明では、他の廃棄物に含まれる可燃物が燃焼して生じる熱エネルギーがフッ素含有廃棄物を熱分解するのに利用されるので、フッ素含有廃棄物を熱分解するための燃料を別途用意する必要がない。また、上記他の廃棄物が熱分解そしてガス化されて発生したガスは、ガス改質された後、精製されて燃料ガスとして回収される。
本発明では、フッ素含有廃棄物を別に燃料を必要とすることなく効率よく経済的に処理できるとともに、他の廃棄物から燃料ガスを回収して有効利用することができる。
本発明の実施形態に係るフッ素含有液状廃棄物の処理装置の構成の概略を示すブロック図である。 本発明の実施形態に係るガス精製および洗浄水処理の工程を示すブロック図である。 ケイフッ化カリウムおよびケイフッ化ナトリウムの溶解度を示すグラフである。
本実施形態では、処理対象であるフッ素含有廃棄物がフッ素含有液状廃棄物である場合の実施形態について説明する。フッ素含有液状廃棄物としては、例えば、ペルフルオロオクタンスルホン酸(PFOS)等のパーフルオロアルキルスルホン酸類やパーフルオロカルボン酸類(PFCA類)が挙げられる。本実施形態に係る処理装置の具体的な構成を説明する前に、まず、該処理装置によるフッ素含有液状廃棄物の処理の概略を説明する。
処理装置は、フッ素含有液状廃棄物を無害化するとともに他の廃棄物をガス化し燃料ガスとして回収するための装置である。該処理装置では、上記他の廃棄物とともにフッ素含有液状廃棄物を竪型ガス化溶融炉の熱分解部に供給する。上記他の廃棄物としては、固定炭素を含む廃棄物(以下、「固定炭素含有廃棄物」という)が好ましい。ここで、「固定炭素」とは、加熱しても揮発しない炭素のことをいう。上記熱分解部では、酸素含有ガスが導入され、固定炭素含有廃棄物とフッ素含有液状廃棄物とが熱分解され一酸化炭素、水素等にガス化される。
また、上記竪型ガス化溶融炉のガス改質部にて、酸素含有ガスが導入され、上記熱分解部で発生したガスをガス改質し、ガス精製装置で改質ガスを洗浄、精製し燃料ガスとして回収する。また、溶融部にて、固定炭素含有廃棄物とフッ素含有液状廃棄物の不燃物とを溶融し、溶融スラグ、溶融金属として排出する。
図1は、本実施形態に係るフッ素含有液状廃棄物の処理装置1の構成の概略を示すブロック図である。以下、図1にもとづいて処理装置1の構成について説明する。
図1に示されているように、処理装置1には、後述の竪型ガス化溶融炉50(以下、「ガス化溶融炉50」という)内へ上記固定炭素含有廃棄物を投入する廃棄物投入装置10が設けられている。
また、処理装置1は、ガス化溶融炉50内にフッ素含有液状廃棄物を供給するための供給装置40が設けられている。該供給装置40は、フッ素含有液状廃棄物を貯留するタンク41と、該タンク41からフッ素含有液状廃棄物を送液するポンプ42とを有している。本実施形態では、該フッ素含有液状廃棄物は該ポンプ42によってガス化溶融炉50の装入口51に送液されるようになっている。後述するように、送液されたフッ素含有液状廃棄物は固定炭素含有廃棄物とともにガス化溶融炉50内に供給される。
ガス化溶融炉50は、その略下半部が熱分解部52および該熱分解部52よりも下方に位置する溶融部54として形成されており、略上半部がガス改質部53として形成されている。
上記熱分解部52では、固定炭素含有廃棄物とフッ素含有液状廃棄物が堆積して廃棄物堆積層Qが形成され、該廃棄物堆積層Qを形成する、固定炭素含有廃棄物とフッ素含有液状廃棄物が熱分解によりガス化されるともに不燃分が溶融されるようになっている。ガス化溶融炉50の側壁の下部には、上記廃棄物堆積層Q内に酸素含有ガスを供給する第一酸素含有ガス供給口55が設けられている。上記熱分解部52でフッ素含有液状廃棄物が熱分解されると、水素、一酸化炭素(CO)が発生するとともにフッ化水素が発生する。
上記ガス改質部53では、後述するように、上記熱分解部52で廃棄物堆積層Qから発生したガスが改質されて改質ガスが生成される。ガス化溶融炉50の側壁の上部側には、ガス改質部53内に酸素含有ガスを供給する複数の第二酸素含有ガス供給口56が設けられている。
上記溶融部54では、上記熱分解部52で生成された溶融物がさらに加熱されて該溶融物に含まれる炭素等がガス化されて除去される。該溶融部54には、上記溶融物を外部へ排出するための溶融物排出口58がガス化溶融炉50の底部から下方へ延びて設けられている。
ガス化溶融炉50の頂部には、該頂部に形成された改質ガス排出口59から延びガス改質部53で生成された改質ガスを炉外へ排出するためのガスダクト60が設けられている。ガスダクト60の下流側には、上記改質ガスを冷却洗浄するための冷却洗浄水循環装置70が設けられている。該冷却洗浄水循環装置70は、該ガスダクト60に連結され上記改質ガスを冷却洗浄水によって冷却するとともに該改質ガスから水溶性成分、ダスト、炭素微粒子等を除去する冷却洗浄装置71と、該冷却洗浄装置71で上記改質ガスの冷却洗浄に使用された冷却洗浄水を貯留して、該冷却洗浄水に含まれる固形物を沈殿分離する沈殿槽72と、該固形物が分離された冷却洗浄水を冷却する熱交換器73とを有している。冷却された冷却洗浄水は再び上記冷却洗浄装置71に戻される。
また、冷却洗浄装置71の下流側には、該冷却洗浄装置71で冷却そして洗浄された改質ガスを精製して、燃料ガスとして利用可能な精製ガスを生成するガス精製装置80が設けられている。該ガス精製装置80は、上記冷却洗浄装置71で冷却そして洗浄された改質ガスから酸洗浄水により重金属類を溶解して除去する酸洗浄装置81と、アルカリ洗浄水により上記改質ガスから塩化水素とフッ化水素を除去するアルカリ洗浄装置82と、該改質ガスから硫化水素を除去する脱硫装置83と、該改質ガスから水分を除去する除湿装置84とを有している。
上記ガス精製装置80の酸洗浄装置81およびアルカリ洗浄装置82は、洗浄水処理装置90と接続されている。該洗浄水処理装置90は、図2にもとづいて後述するように、改質ガスの洗浄に使用された酸洗浄水の一部およびアルカリ洗浄水の一部をそれぞれ上記酸洗浄装置81およびアルカリ洗浄装置82から受け入れ、上記酸洗浄装置81およびアルカリ洗浄装置82で溶解捕捉された成分を上記酸洗浄水およびアルカリ洗浄水から除去する。
上記洗浄水処理装置90にて除去される成分としては、例えば、フッ素、ケイ素、鉄、亜鉛、鉛、カルシウム、カリウム、マグネシウム等があるが、図1には、フッ素を除去するための第一フッ素除去装置91および該第一フッ素除去装置91に接続された第二フッ素除去装置92が図示されており、他の成分を除去するための装置の図示は省略されている。上記第一フッ素除去装置91は、フッ素やシリカ等を含む洗浄水にカリウム化合物を添加しケイフッ化カリウムを析出分離してフッ素を除去する。また、第二フッ素除去装置92は、第一フッ素除去装置91にて処理された洗浄水にカルシウム化合物を添加しフッ化カルシウムを析出分離してフッ素を除去する。
以下、処理装置1によるフッ素含有液状廃棄物の処理について説明する。
廃棄物投入装置10によって固定炭素含有廃棄物がガス化溶融炉50内への装入口51へ投入されるとともに、ポンプ42によってフッ素含有液状廃棄物がタンク41から上記装入口51に送液される。そして、上記固定炭素含有廃棄物およびフッ素含有液状廃棄物は、上記装入口51から上記ガス化溶融炉50の熱分解部52内へ供給される。
上記熱分解部52内へ供給された固定炭素含有廃棄物およびフッ素含有液状廃棄物は、廃棄物堆積層Qを形成する。該廃棄物堆積層Qでは、熱分解部52の下部に設けられた第一酸素含有ガス供給口55から該廃棄物堆積層Q中へ酸素含有ガスが供給される。この結果、固定炭素含有廃棄物中の固定炭素などの可燃物が燃焼して、その熱エネルギーによって、固定炭素含有廃棄物とフッ素含有液状廃棄物が熱分解される。この熱分解により、一酸化炭素、水素、炭化水素、二酸化炭素等へのガス化が行われる。また、上記固定炭素含有廃棄物とフッ素含有液状廃棄物の熱分解により、含まれていた塩素分から塩化水素が、硫黄分から硫化水素が、フッ素分からフッ化水素が発生する。PFOS等難分解性フッ素有機物は1100℃以上で2秒以上加熱することにより分解されることが確認されている。
本実施形態では、上述のように、固定炭素含有廃棄物に含まれる固定炭素などの可燃物が燃焼して生じる熱エネルギーがフッ素含有液状廃棄物を熱分解するのに利用されるので、フッ素含有液状廃棄物を熱分解するための燃料を別途用意する必要がなく、効率よく経済的に処理できる。
また、固定炭素含有廃棄物およびフッ素含有液状廃棄物の不燃分(金属、灰分など)が溶融して溶融物が生成される。熱分解部52の下部に位置する溶融部54では、上記溶融物がさらに加熱され、該溶融物に含まれる微量の炭素などがガス化して除去され、該溶融物は溶融物排出口58から溶融スラグ、溶融金属として排出される。
ガス化溶融炉50のガス改質部53では、第二酸素含有ガス供給口56から酸素含有ガスが供給されており、廃棄物堆積層Qからの発生ガスの一部が燃焼されて温度雰囲気を1000℃以上にされた領域で該発生ガスが滞留され、以下のガス改質がなされる。
熱分解部52の廃棄物堆積層Qにおいて、固定炭素含有廃棄物とフッ素含有液状廃棄物とが熱分解して生成された上記発生ガスに含まれる炭化水素(メタン等)と一酸化炭素は、ガス改質部53にて、該発生ガスに含まれる水蒸気と下記(1)、(2)のように反応し、燃料ガスとして有用な一酸化炭素と水素を多く含むように改質される。
CH+HO→CO+3H (1)
CO+ HO→H+CO (2)
また、廃棄物堆積層Qからの発生ガスは、ガス改質部53にて、ガス温度を1100℃以上にした領域で滞留されて、該発生ガスに含まれるタール分のクラッキングが行われる。タール分のクラッキングとは、タール分の高分子量成分が低分子量の炭化水素や一酸化炭素に熱分解されることをいい、タール分を除去することにより改質ガスを燃料ガスとして利用する際にタールによるトラブルを回避することができる。また、クラッキングにより生成した炭化水素は、さらに水蒸気と反応して燃料ガスとして有用な一酸化炭素と水素に改質される。
また、ガス改質部53において、廃棄物堆積層Qから発生したガスは、ガス温度を1100℃以上にした領域で滞留されて、この発生ガス中にフッ素含有液状廃棄物が含まれていても、該フッ素含有液状廃棄物は分解され、フッ化水素が生成される。該フッ化水素は、後述するガス精製装置80にて改質ガスから除去される。
ガス改質部53で生成された改質ガスは、ガス化溶融炉50の炉頂部の改質ガス排出口59からガスダクト60に排出され冷却洗浄装置71で冷却洗浄水により冷却されるとともに、水溶性成分、ダスト、炭素微粒子等の固形物が該冷却洗浄水によって洗浄除去される。上記改質ガスの冷却洗浄に使用された冷却洗浄水は、沈殿槽72に導かれ上記固形物が沈殿分離される。該固形物が分離された冷却洗浄水は、熱交換器73により冷却され再び冷却洗浄装置71へ導入される。
冷却洗浄装置71で冷却洗浄された改質ガスは、ガス精製装置80へ導かれ、酸洗浄装置81で酸洗浄水により該改質ガスから重金属類が溶解され除去される。改質ガス中には、フッ素含有廃棄物に含まれるフッ素分が分解して生成したフッ化水素が含まれているが、該フッ化水素は、アルカリ洗浄装置82でアルカリ洗浄水により吸収され除去される。また、該改質ガスには、廃棄物に含まれていた塩素分から廃棄物のガス化の際に生成した塩化水素が改質ガス中に含まれているが、この塩化水素もアルカリ洗浄装置82でアルカリ洗浄水により除去される。さらに脱硫装置83で改質ガス中の硫化水素が除去される。そして、除湿装置84で改質ガス中の水分が除去される。この結果、燃料ガスとして利用可能な精製ガスが回収される。
上記酸洗浄装置81およびアルカリ洗浄装置82で改質ガスの洗浄に使用された酸洗浄水およびアルカリ洗浄水は、それぞれ洗浄水処理装置90へ導かれ、該洗浄水処理装置90にて、上記酸洗浄装置81およびアルカリ洗浄装置82で溶解捕捉された成分が上記酸洗浄水およびアルカリ洗浄水から除去される。上記ガス精製装置80でのガス精製の工程および上記洗浄水処理装置90での洗浄水処理の工程の詳細については、図2にもとづいて後述する。
フッ素含有液状廃棄物とともにガス化溶融炉50に供給する固定炭素含有廃棄物としては、廃棄物中の固定炭素の重量比が3重量%以上のものを用いることが好ましい。熱分解部52において廃棄物中の固定炭素が酸素含有ガスにより燃焼して生じる熱エネルギー量がフッ素含有液状廃棄物を熱分解するのに十分な量とすることができるからである。また、廃棄物中の固定炭素の重量比が5重量%以上のものを用いることにより、フッ素含有液状廃棄物を熱分解するとともに上記廃棄物を熱分解するのに十分な熱エネルギー量を得ることができるので、より好ましい。
次に、ガス精製装置80での改質ガスの精製とガス精製に用いた洗浄水の洗浄水処理装置90での処理について説明する。
図2は、本実施形態における改質ガスの精製とガス精製に用いた洗浄水の処理の工程を示すブロック図である。図2には、改質ガスを酸洗浄水及びアルカリ洗浄水によって洗浄して精製ガスを生成するガス精製工程と、該ガス精製工程で使用された酸洗浄水及びアルカリ洗浄水を処理する洗浄水処理工程とが示されている。
[改質ガス]
ガス化溶融炉50のガス改質部53で生成される改質ガスには、水素、一酸化炭素、炭化水素の可燃ガス、硫化水素(HS)、塩化水素(HCl)、フッ化水素(HF)、鉄(Fe)、亜鉛(Zn)、鉛(Pb)の重金属、廃棄物の灰成分に由来するカルシウム(Ca)、カリウム(K)、マグネシウム(Mg)、シリカ(SiO)等が含まれている。
[ガス精製工程]
ガス精製工程は、上記改質ガスを酸洗浄水により洗浄する酸洗浄工程と、該酸洗浄工程からの改質ガスをアルカリ洗浄水により洗浄するアルカリ洗浄工程と、該アルカリ洗浄工程からの改質ガスに脱硫液による脱硫処理を施す脱硫工程と、水分を除去する除湿工程とを有している。
<酸洗浄工程>
酸洗浄工程は、上記改質ガスに酸洗浄水を噴霧するなどして接触させ、該改質ガスを洗浄する酸洗浄を行い、改質ガス中の鉄及び亜鉛、鉛などの重金属類、そしてカルシウム、カリウム、マグネシウム、シリカを酸洗浄水に溶解あるいは捕捉させて、該改質ガス中から除去し、洗浄後の酸洗浄水にこの除去成分を溶解含有せしめる。改質ガスの洗浄に先立ち該酸洗浄水は塩酸が添加されることにより、そのpHは7未満とされ、さらに好ましくは5未満とされる。このように、酸洗浄水のpHを7未満さらに好ましくは5未満とすることによって、改質ガス中の亜鉛などの重金属を効果的に酸洗浄水中に溶解することが可能となる。酸洗浄水のpHの下限は特に限定されるものではないが、酸洗浄工程のための酸洗浄装置(図示せず)の腐食抑制の面からpHを2以上とすることが好ましい。
酸洗浄工程でのガス洗浄に使用された酸洗浄水は回収され、再度、該酸洗浄工程に供給されることにより該酸洗浄水が循環されて使用されている。上記ガス洗浄に使用された酸洗浄水には、改質ガスから除去した上記除去成分が蓄積される。該酸洗浄水は一部が抜き出されて洗浄水処理工程へ送られ、後述するように、除去処理が行われる。
<アルカリ洗浄工程>
アルカリ洗浄工程は、上記酸洗浄工程で洗浄された改質ガスにアルカリ洗浄水を噴霧するなどして接触させ、該改質ガスを洗浄するアルカリ洗浄を行い、該改質ガス中の塩化水素(HCl)、フッ化水素(HF)をアルカリ洗浄水に溶解させて該改質ガスから除去し、洗浄後のアルカリ洗浄水にこの除去成分を塩素イオン、フッ素イオンの形態で溶解含有せしめる。
アルカリ洗浄工程でのガス洗浄に使用されたアルカリ洗浄水は回収され、再度、該アルカリ洗浄工程に供給されることにより該アルカリ洗浄水が循環されて使用されている。上記アルカリ洗浄工程に供給されるアルカリ洗浄水は、改質ガスの洗浄に先立ち水酸化ナトリウム(NaOH)が添加されることによりpHが調整されている。また、上記アルカリ洗浄工程でのガス洗浄に使用されたアルカリ洗浄水には、改質ガスから除去した塩化水素が水酸化ナトリウムと反応して生成された塩化ナトリウム(Na、Cl)と、フッ化水素が水酸化ナトリウムと反応して生成されたフッ化ナトリウム(Na、F)が蓄積される。アルカリ洗浄水は一部が抜き出されて洗浄水処理工程へ送られ、後述するように、除去処理が行われる。
<脱硫工程>
脱硫工程は、アルカリ洗浄工程で洗浄された改質ガスに鉄キレート剤(鉄キレート錯体)を含む脱硫液を接触させ、該改質ガスから硫化水素(HS)を除去する。脱硫液として鉄キレート剤を使用する脱硫方法は公知であるので、ここでは説明を省略する。本実施形態では、鉄キレート剤を用いて脱硫することとしたが、脱硫方法はこれに限られず、例えば、ナフトキノンスルホン酸ナトリウムを用いる脱硫、ピクリン酸を用いる脱硫などの方法を適用することができる。
<除湿工程>
上記脱硫工程で硫化水素が除去された改質ガスは、除湿工程にて水分を除去され、精製ガスとして送り出される。
このように、上記改質ガスは、上記酸洗浄工程、アルカリ洗浄工程、脱硫工程そして除湿工程を経て精製される。精製された精製ガスは燃料用ガスなどとして利用される。
[洗浄水処理工程]
次に、ガス精製工程にて使用された酸洗浄水およびアルカリ洗浄水から溶解捕捉した成分を除去するための洗浄水処理工程について説明する。ガス精製工程で改質ガスの洗浄に使用された酸洗浄水およびアルカリ洗浄水には、該改質ガスから除去した成分が蓄積されており、洗浄水処理工程では、上記酸洗浄水およびアルカリ洗浄水から、該改質ガスから除去した成分を除去する。
洗浄水処理工程は、酸洗浄水の固液分離工程、混合工程、第一フッ素除去工程、第二フッ素除去工程、鉄除去工程、亜鉛・鉛除去工程、カルシウム・マグネシウム除去工程、濃縮工程、晶析工程を有している。以下、各工程について説明する。
<酸洗浄水の固液分離工程>
酸洗浄水の固液分離工程では、酸洗浄工程から抜き出した酸洗浄水を固液分離し、上澄み水を酸洗浄工程の酸洗浄水として循環使用し、残部の酸洗浄水を混合工程へ供給する。固液分離装置の形態は特に制限を受けるものではなく、比重沈降分離装置、遠心分離装置、ろ過装置、精密ろ過膜装置、限外ろ過膜装置などを用いた膜分離装置などを用いることができる。また、後述の工程で用いる固液分離装置についても同様である。また、図1に示すように酸洗浄装置81から抜き出した酸洗浄水を、冷却洗浄装置71から抜き出した冷却洗浄水から固形物を分離する沈殿槽72に供給し固液分離してもよい。
<混合工程>
混合工程では、上記固液分離工程で固液分離処理された酸洗浄水と、アルカリ洗浄工程から一部抜き出したアルカリ洗浄水とを混合して混合洗浄水とする。既述したように、上記アルカリ洗浄水には塩化ナトリウム、フッ素イオンが蓄積されている。上記混合洗浄水は、副生塩である塩化ナトリウムを主成分とし、鉄、亜鉛、鉛などの重金属、カルシウム、マグネシウム、フッ素イオンなどを含んでいる。また、上記混合工程において、酸洗浄水に含まれるシリカ(SiO)とアルカリ洗浄水に含まれるフッ素とが混合されて、フッケイ酸(SiF 2−)が生成される。
<第一フッ素除去工程>
第一フッ素除去装置91は、第一フッ素除去工程のための反応槽(図示せず)および固液分離装置(図示せず)を有している。第一フッ素除去工程では、上記反応槽にて、混合洗浄水にカリウム化合物(例えば水酸化カリウム(KOH))が添加されて、フッケイ酸イオンとの反応によりケイフッ化カリウム(K(SiF))が生成され析出される。そして、上記固液分離装置にて上記ケイフッ化カリウムが固形分として分離除去される。第一フッ素除去工程では、混合洗浄水のpHを2〜6に調整することが好ましい。pHをこの範囲とすることによりケイフッ化カリウムの析出量を高めることができるからである。
上記第一フッ素除去工程でフッケイ酸(SiF 2-)と反応させ固形物を析出させ沈殿させる化合物としてカリウム化合物を用いることが好ましい。この理由は、ナトリウム化合物(例えば水酸化ナトリウム(NaOH)))を添加しケイフッ化ナトリウム(Na(SiF))を析出させるよりも、図3に示されるように、K(SiF)の溶解度がNa(SiF)の溶解度の1/4程度と小さく析出しやすく、それだけカリウム化合物を用いる方が、フッ素を除去する効果が高いためである。ここで、図3は、ケイフッ化カリウムおよびケイフッ化ナトリウムの溶解度を示すグラフであり、横軸に溶液の温度が示されており、そして縦軸に溶解度がsv(g/cc%)とw(g/g%)とで示されている。
第一フッ素除去工程でカリウム化合物を添加する際に、混合洗浄水中のフッケイ酸イオン量に対して、化学量論量の1〜3倍のカリウム量となるようにカリウム化合物を添加することが好ましい。その時、酸洗浄水には廃棄物から由来するカリウムが含まれているので、酸洗浄水に含まれるカリウム量も含めたカリウム量が化学量論量の1〜3倍となるようにする。1倍より少ないとフッ素が未反応のまま残留し、3倍より多いと不要なカリウムイオンが多くなり不適である。
<第二フッ素除去工程>
第二フッ素除去装置92は、第二フッ素除去工程のための反応槽(図示せず)および固液分離装置(図示せず)を有している。上記第一フッ素除去工程の後段に設けられる第二フッ素除去工程では、上記反応槽にて、第一フッ素除去工程でケイフッ化カリウムの析出によりフッ素の大部分が除去された混合洗浄水に塩化カルシウムが添加されて、残存するフッ素イオンとの反応によりフッ化カルシウムが生成され析出される。そして、上記固液分離装置にて上記フッ化カルシウムが固形分として分離除去される。該固形分が分離された混合洗浄水は鉄除去工程へ供給される。
本実施形態では、第一フッ素除去工程にてフッ素の大部分を除去し、第二フッ素除去工程にて残存するフッ素を除去するので、洗浄水中のフッ素をより確実に除去することができ、また、第二フッ素除去工程にて添加する塩化カルシウム量を大幅に低減できるので、固形分として排出されるフッ化カルシウム量を低減でき処理費用を低減できる。
第二フッ素除去工程で供給するカルシウムとしては、消石灰より塩化カルシウムが好ましい。消石灰を添加すると混合洗浄水のpHが高くなりすぎるだけでなく、固形物を多量に発生させるため不適である。
カルシウムとの反応により発生したフッ化カルシウムは微粒子であるため、沈殿除去に時間がかかる。フッ化カルシウムの沈殿除去の促進のために、第二フッ素除去工程においてカルシウムを過剰に添加し、後述するカルシウム・マグネシウム除去工程において、過剰に入れたカルシウムを炭酸カルシウムとして析出させ、フッ化カルシウム微粒子を共沈させることにより、除去が容易になる。このように共沈除去させるためには、カルシウムとフッ素の化学量論比は1.5以上であることが好ましい。
<鉄除去工程>
洗浄前の改質ガスには鉄分が含まれており、また、該ガス化溶融炉でのガス化は還元雰囲気で行われるので、酸洗浄工程にて酸洗浄水に溶解される鉄分、換言すれば、鉄除去工程に供給される混合洗浄水に含まれる鉄分は、主として2価の第一鉄イオン(Fe2+)になっている。
鉄除去工程のための反応槽(図示せず)には、第一鉄イオンを含む原塩水に過酸化水素(H)などの酸化剤が添加される。混合洗浄水に含まれる2価の第一鉄イオン(Fe2+)がこの酸化剤により酸化されて3価の第二鉄イオン(Fe3+)が生成される。酸化剤としては、過酸化水素だけでなく、次亜塩素酸、オゾンなどを用いることもできる。
次に、水酸化ナトリウム(NaOH)を添加することにより、第二鉄イオン(Fe3+)を該水酸化ナトリウムと反応させ水酸化鉄(Fe(OH))を析出させる。該水酸化鉄が析出した混合洗浄水は、鉄除去工程のための固液分離装置(図示せず)に供給され、該水酸化鉄が固形分として分離除去される。該固形分が分離された混合洗浄水は亜鉛・鉛除去工程へ供給される。
<亜鉛・鉛除去工程>
亜鉛・鉛除去工程では、該亜鉛・鉛除去工程のための反応槽(図示せず)にて、混合洗浄水に水酸化ナトリウムが添加されて該混合洗浄水のpHが7.5〜10に調整され、混合洗浄水中の亜鉛イオン、鉛イオンが水酸化物すなわち水酸化亜鉛(Zn(OH))および水酸化鉛(Pb(OH))として析出される。そして、亜鉛・鉛除去工程のための固液分離装置(図示せず)にてこれらの水酸化物が固形分として分離除去される。該固形分が分離された混合洗浄水はカルシウム・マグネシウム除去工程へ供給される。
<カルシウム・マグネシウム除去工程>
カルシウム・マグネシウム除去工程では、該カルシウム・マグネシウム除去工程のための反応槽(図示せず)にて、混合洗浄水に二酸化炭素、炭酸水素ナトリウム、炭酸ナトリウム及び炭酸イオンのいずれかの炭酸源を添加して、さらに水酸化ナトリウムを添加して混合洗浄水のpHをさらに高めることにより、混合洗浄水中に含まれているカルシウムが炭酸カルシウム(CaCO)として、また、マグネシウムが炭酸マグネシウム(MgCO)として析出される。そして、カルシウム・マグネシウム除去工程のための固液分離装置(図示せず)にて炭酸カルシウムと炭酸マグネシウムが固形分として分離除去される。該固形分が除去された混合洗浄水は濃縮工程に供給される。また、既述したように、このカルシウム・マグネシウム除去工程では、第二フッ素除去工程において十分に沈殿除去できず残存するフッ化カルシウムを炭酸カルシウムと共沈させることにより除去することができる。
ガス化溶融炉にて生成された改質ガスには二酸化炭素ガスが含まれているので、カルシウム・マグネシウム除去工程で混合洗浄水に二酸化炭素を添加する場合には、二酸化炭素源として、上記改質ガスを混合洗浄水中に吹き込んで二酸化炭素ガスを供給してもよい。また、副生塩を工業塩として回収する場合、工業塩の純度を下げないために、炭酸源として使用する炭酸塩としては、炭酸水素ナトリウム、あるいは炭酸ナトリウムなどナトリウム塩が好ましい。
<濃縮工程>
濃縮工程では、混合洗浄水から水分を低減させて濃縮することにより濃縮水を生成する。該濃縮水は晶析工程に供給される。濃縮方法としては、多重効用缶により混合洗浄水を加熱して水分を蒸発させる方法、逆浸透膜、電気透析などを用いることができる。
<晶析工程>
晶析工程では、濃縮水を蒸発缶によって蒸発濃縮するか、冷却することにより、該濃縮水中に溶解している塩の濃度を飽和溶解度以上に高くして塩結晶を析出させ、塩化ナトリウムを晶析させて塩スラリーとして取り出す。該塩スラリーは脱水される。既述した鉄、亜鉛、鉛、カルシウム、マグネシウムの除去工程により不純物成分の大部分は除去されているが、晶析工程を行うことにより、残存する不純物を分離して、純度の高い塩化ナトリウムを副生塩として得ることができ、工業塩として有効利用できる。晶析工程の前に炭酸源を添加して、さらに水酸化ナトリウムを添加して混合洗浄水のpHをさらに高めることにより、カルシウムを炭酸カルシウムとして析出させ除去するカルシウム除去工程を再度施すことが好ましい。濃縮水にカルシウムが残存していると、晶析して得る塩結晶中にフッ化カルシウムが析出しやすくなり副生塩の純度が低くなるため好ましくないためである。また、晶析する前の濃縮水中のカルシウム濃度を10mg/L以下に低減しておくことが好ましい。
本実施形態では、フッ素含有液状廃棄物を、固定炭素含有廃棄物とともにガス化溶融炉に供給することとしたが、これに代えて、処理対象としてのフッ素含有廃棄物がフッ素含有固形廃棄物である場合には、該フッ素含有固形廃棄物および固定炭素含有廃棄物をガス化溶融炉の熱分解部へ供給し、本実施形態と同様に燃料ガスを生成することができる。フッ素含有固形廃棄物としては、例えば、フロンガスが含まれている発泡ウレタン廃棄物などが挙げられる。
1 処理装置
20 圧縮装置
40 供給装置
50 ガス化溶融炉
52 熱分解部
53 ガス改質部
54 溶融部
80 ガス精製装置
90 洗浄水処理装置
91 第一フッ素除去装置
92 第二フッ素除去装置

Claims (2)

  1. フッ素含有廃棄物を、竪型ガス化溶融炉により無害化するとともに他の廃棄物をガス化し燃料ガスとして回収するフッ素含有廃棄物の処理方法において、
    フッ素含有廃棄物を他の廃棄物とともに竪型ガス化溶融炉の熱分解部に供給して熱分解・ガス化し、発生したガスを上記竪型ガス化溶融炉のガス改質部でガス改質し、不燃物を上記竪型ガス化溶融炉の溶融部で溶融し排出するガス化溶融工程と、
    ガス改質した改質ガスを洗浄水で洗浄して精製し燃料ガスとして回収するガス精製工程と、
    ガス精製工程で改質ガスを洗浄した洗浄水からフッ素を除去する洗浄水処理工程とを備え、
    洗浄水にはシリカが含まれており、洗浄水処理工程は、カリウム化合物を洗浄水に添加しケイフッ化カリウムを析出分離してフッ素を除去する第一フッ素除去工程と、第一フッ素除去工程にて処理された洗浄水にカルシウム化合物を添加しフッ化カルシウムを析出分離してフッ素を除去する第二フッ素除去工程とを有することを特徴とするフッ素含有廃棄物の処理方法。
  2. フッ素含有廃棄物を無害化するとともに他の廃棄物をガス化し燃料ガスとして回収するフッ素含有廃棄物の処理装置において、
    フッ素含有廃棄物と他の廃棄物の供給を受け熱分解・ガス化する熱分解部と、発生したガスをガス改質するガス改質部及び不燃物を溶融し排出する溶融部を有する竪型ガス化溶融炉と、
    上記ガス改質部でガス改質された改質ガスを洗浄水で洗浄して精製し燃料ガスとして回収するガス精製装置と、
    ガス精製装置で改質ガスを洗浄した洗浄水からフッ素を除去する洗浄水処理装置とを備え、
    洗浄水処理装置は、フッ素とシリカを含む洗浄水にカリウム化合物を添加しケイフッ化カリウムを析出分離してフッ素を除去する第一フッ素除去装置と、第一フッ素除去装置にて処理された洗浄水にカルシウム化合物を添加しフッ化カルシウムを析出分離してフッ素を除去する第二フッ素除去装置とを有することを特徴とするフッ素含有廃棄物の処理装置。
JP2011232057A 2011-10-21 2011-10-21 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置 Active JP5716916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232057A JP5716916B2 (ja) 2011-10-21 2011-10-21 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232057A JP5716916B2 (ja) 2011-10-21 2011-10-21 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置

Publications (2)

Publication Number Publication Date
JP2013087267A JP2013087267A (ja) 2013-05-13
JP5716916B2 true JP5716916B2 (ja) 2015-05-13

Family

ID=48531505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232057A Active JP5716916B2 (ja) 2011-10-21 2011-10-21 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置

Country Status (1)

Country Link
JP (1) JP5716916B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985052B2 (ja) * 2001-06-20 2007-10-03 Jfeエンジニアリング株式会社 ガス化改質方式における廃棄物の処理方法
JP3635643B2 (ja) * 2003-03-24 2005-04-06 西山ステンレスケミカル株式会社 廃液の処理方法
JP2004358445A (ja) * 2003-04-10 2004-12-24 Miyama Kk ホウ素及び/又はフッ素の処理方法
JP5817993B2 (ja) * 2011-10-21 2015-11-18 Jfeエンジニアリング株式会社 フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置

Also Published As

Publication number Publication date
JP2013087267A (ja) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5817993B2 (ja) フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置
JP5623402B2 (ja) ナトリウムとカリウムの分別抽出装置および分別抽出方法
KR20180097644A (ko) 염의 회수를 위한 방법 및 설비
JP2006213535A (ja) 廃棄物をガス化溶融炉で処理する際に発生する塩水からの塩製造方法及び装置
JP3985052B2 (ja) ガス化改質方式における廃棄物の処理方法
JP2008174393A (ja) 塩の製造方法
JP2018030749A (ja) 副生塩の製造方法
JP5716916B2 (ja) フッ素含有廃棄物の処理方法およびフッ素含有廃棄物の処理装置
JP2011025117A (ja) 焼却炉からの焼却灰の処理装置および処理方法
JP2012055851A (ja) 副生塩の精製方法、副生塩及び凍結防止剤
JP2019072678A (ja) アルミニウム含有廃棄物の処理方法
JP2007038164A (ja) 排ガス処理システム
RU2200601C2 (ru) Способ утилизации галогенированных и негалогенированных отходов
JP2005068535A (ja) 鉛、亜鉛を含有するガス又は飛灰の処理方法
JP2000107559A (ja) 飛灰および排煙処理方法
JP6311931B2 (ja) 副生塩の製造方法及び塩水の処理方法
JP2010269975A (ja) ナトリウム抽出装置
JP2004255228A (ja) ハロゲン化合物水溶液、酸性水溶液または酸性ガスの処理方法及びその装置
JP6287773B2 (ja) 副生塩の製造方法
JP2012055545A (ja) ポリ塩化ビフェニル汚染廃油の処理方法、ポリ塩化ビフェニル汚染固形物の処理方法、ポリ塩化ビフェニル汚染廃油の処理装置及びポリ塩化ビフェニル汚染固形物の処理装置
JP2004155872A (ja) ハロゲン含有可燃物とアルカリ含有物質から有用ガスを製造する方法および装置
JP4456899B2 (ja) 廃棄物又は廃棄物の焼却灰を処理する際に発生する塩水からの塩製造方法及び装置
JP4097573B2 (ja) 廃棄物処理用加熱炉の排ガスの処理方法および処理システム
JP3697577B2 (ja) 廃棄物のガス化で生成するガスの洗浄方法
LT4394B (lt) Aukštatemperatūrinio antrinio perdirbimo ir frakcionuoto, specifinio tam tikroms medžiagoms, konvertavimo būdu gautų sintezės nevalytų dujų pilno medžiagų atstatymo ir beatliekinio panaudojimo būdas bei įrenginys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5716916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350