JP5713762B2 - Seaweed onshore aquaculture device and seaweed onshore aquaculture method - Google Patents

Seaweed onshore aquaculture device and seaweed onshore aquaculture method Download PDF

Info

Publication number
JP5713762B2
JP5713762B2 JP2011080383A JP2011080383A JP5713762B2 JP 5713762 B2 JP5713762 B2 JP 5713762B2 JP 2011080383 A JP2011080383 A JP 2011080383A JP 2011080383 A JP2011080383 A JP 2011080383A JP 5713762 B2 JP5713762 B2 JP 5713762B2
Authority
JP
Japan
Prior art keywords
aquaculture
seawater
tank
seaweed
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011080383A
Other languages
Japanese (ja)
Other versions
JP2012213351A (en
Inventor
久和 溝田
久和 溝田
恒雄 相原
恒雄 相原
上田 貴夫
貴夫 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Denki Corp
Original Assignee
JFE Mechanical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mechanical Co Ltd filed Critical JFE Mechanical Co Ltd
Priority to JP2011080383A priority Critical patent/JP5713762B2/en
Publication of JP2012213351A publication Critical patent/JP2012213351A/en
Application granted granted Critical
Publication of JP5713762B2 publication Critical patent/JP5713762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)

Description

本発明は、海藻類の陸上養殖装置および海藻類の陸上養殖方法に関し、詳しくは、地下海水、海洋深層水などの養殖用海水を用いてアオノリ等の海藻類を陸上にて養殖するための装置および方法に関する。   The present invention relates to a seaweed terrestrial aquaculture apparatus and a seaweed terrestrial aquaculture method, and more specifically, an apparatus for culturing seaweeds such as aonori on land using aquaculture seawater such as underground seawater and deep seawater. And methods.

従来、海苔などの海藻類の生産・栽培は、海上で行われていた。しかし、海上での生産・栽培は、天候・気温・海水温・海水中の養分などによる影響を受けやすく、毎年安定した生産・栽培を維持することが困難であった。
一方、陸上養殖では、管理された環境下で海藻類を育成することができ、自然環境の影響を受けにくく安定した生産を期待できる。一方、陸上養殖では、大規模な設備と広い用地を必要とするため、生産コストの面で課題があった。
Conventionally, the production and cultivation of seaweed such as laver has been carried out at sea. However, production and cultivation at sea are easily affected by weather, temperature, seawater temperature, nutrients in the seawater, and it has been difficult to maintain stable production and cultivation every year.
On the other hand, in aquaculture, seaweeds can be cultivated in a controlled environment, and stable production is unlikely to be affected by the natural environment. On the other hand, land farming has a problem in terms of production cost because it requires large-scale equipment and a wide site.

このような課題を解決するために、特許文献1および2で開示されるように、高密度での海藻類の栽培が可能な非着床型栽培方法が提案されている。   In order to solve such a problem, as disclosed in Patent Documents 1 and 2, a non-implantable cultivation method capable of cultivating seaweed at high density has been proposed.

特開2002−176866号公報JP 2002-176866 A 特開平7−203789号公報JP-A-7-203789

特許文献1で提案されている非着床型栽培方法では、水槽内でエアレーションを行うことで、海藻類を流動させ均等な光照射が行われている。
また、特許文献2で提案されている陸上栽培方法では、角型水槽(タテ6.2m×横4m×深さ0.5m)が使用され、水平方向に屈曲した水平噴出部より海水が供給されている。
しかしながら、これらの方法では、海藻類の生産性は必ずしも実用上満足いくものではなく、更なる生産性の改良が必要であった。
In the non-implanted cultivation method proposed in Patent Document 1, seaweeds are caused to flow by performing aeration in a water tank, and uniform light irradiation is performed.
Further, in the land cultivation method proposed in Patent Document 2, a square water tank (vertical 6.2 m × width 4 m × depth 0.5 m) is used, and seawater is supplied from a horizontal ejection portion bent in the horizontal direction. ing.
However, in these methods, the productivity of seaweeds is not always satisfactory in practical use, and further improvement in productivity is necessary.

さらに、海上養殖では海水の流動は自然にもたらされるのに対して、陸上養殖では、通常、海水の供給および流動に対して動力が必要とされる。そのため、製造コストの点では、この動力エネルギを最小化しつつ、海藻類の生長速度を高めて、海藻類の生産性を高める必要がある。   In addition, seawater flow naturally occurs in marine aquaculture, whereas terrestrial aquaculture usually requires power for seawater supply and flow. Therefore, in terms of production cost, it is necessary to increase the growth rate of seaweeds by minimizing the kinetic energy and increase the growth rate of seaweeds.

そこで本発明は、上記実情に鑑みて、海藻類の養殖に必要な動力エネルギを最小化すると共に、海藻類の生長率向上と設備面積軽減により単位面積当たりの海藻類の生産性向上と設備費軽減を図ることができる、海藻類の非着床型栽培に使用される海藻類の陸上養殖装置、および、海藻類の陸上養殖方法を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention minimizes the kinetic energy necessary for seaweed cultivation, improves seaweed productivity per unit area and reduces equipment costs by improving seaweed growth rate and reducing equipment area. It is an object of the present invention to provide a seaweed terrestrial aquaculture apparatus used for non-implanted cultivation of seaweeds and a method for culturing seaweeds on land that can be reduced.

本発明者らは、従来技術の問題点について検討した結果、まず、従来技術では、養殖水槽が深くになるにつれて、光が届きにくい下部にある海藻と、光が強く照射される上部の海藻との位置を置き換える循環が十分には進行しないことを見出した。また、従来技術では、海藻類の表面に酸素の気泡が付着して、海藻類への光合成に必要な二酸化炭素などの供給が十分に行われていないことを見出した。
そこで、本発明者らは、上記知見に基づき検討を行った結果、所定の形状を有する養殖水槽を用いて海藻類の生育に必要な養殖用海水の供給を行うことにより、養殖用海水の供給を養殖水槽内の攪拌エネルギとして利用して攪拌効率を高めることができ、結果として必要な動力エネルギを抑制しつつ海藻類の生長性が高めることができることを見出し、本発明を完成するに至った。
As a result of examining the problems of the prior art, the present inventors firstly, in the prior art, as the aquaculture tank becomes deeper, the seaweed in the lower part where the light is difficult to reach and the seaweed in the upper part where the light is strongly irradiated We found that the circulation to replace the position of did not proceed sufficiently. In addition, in the prior art, it has been found that oxygen bubbles are attached to the surface of seaweeds and carbon dioxide and the like necessary for photosynthesis are not sufficiently supplied to seaweeds.
Therefore, as a result of investigations based on the above knowledge, the present inventors have supplied aquaculture seawater by supplying aquaculture seawater necessary for the growth of seaweed using aquaculture tanks having a predetermined shape. As a result, it was found that the growth efficiency of seaweeds can be increased while suppressing the necessary power energy, and the present invention has been completed. .

すなわち、この発明に係る海藻類の陸上養殖装置は、海藻類を養殖するための養殖用海水を貯留する養殖水槽と、該養殖水槽内に新たな養殖用海水を供給する養殖用海水供給装置とを備え、該養殖水槽は、少なくとも底部に湾曲壁面を有し、横断面形状がU字状または半円状であり、該養殖用海水供給装置は、該養殖水槽内に貯留された該養殖用海水に対し、上方から該新たな養殖用海水を噴流状に流下させることにより、該養殖水槽内の該養殖用海水を該湾曲壁面に沿うように旋回させて攪拌するものである。   That is, the seaweed onshore culture device according to the present invention includes a culture water tank for storing seawater for aquaculture for aquaculture of seaweeds, and a seawater supply device for aquaculture for supplying new culture seawater into the culture water tank. The aquaculture tank has a curved wall surface at least at the bottom and has a U-shaped or semicircular cross-sectional shape, and the aquaculture seawater supply device is used for aquaculture stored in the aquaculture tank The fresh seawater for aquaculture is flowed down from above in a jet, and the seawater for aquaculture in the aquaculture tank is swirled along the curved wall surface to be stirred.

また、養殖水槽は、2つの側壁部と、該2つの側壁部間に位置し、少なくとも該湾曲壁面の一部をなす底壁部とを備え、該養殖用海水供給装置は、該新たな養殖用海水を上方から略垂直方向に噴流状に流下させる注水管を備え、該注水管の先端部は、該養殖水槽内に貯留された該養殖用海水の水面下に配置されることが好ましい。   The aquaculture tank is provided with two side walls and a bottom wall located between the two side walls and at least a part of the curved wall surface. It is preferable that a water injection pipe is provided for causing the sea water to flow down in a substantially vertical direction from above, and that the tip of the water injection pipe is disposed below the surface of the sea water for cultivation stored in the aquaculture tank.

また、注水管は、該養殖水槽の該2つの側壁部の一方または両方の上端部近傍に配置され、該養殖水槽内の該養殖用海水に対し、該新たな養殖用海水を該側壁部に沿って噴流状に流下させることが好ましい。   The water injection pipe is disposed in the vicinity of the upper end of one or both of the two side walls of the aquaculture tank, and the new aquaculture seawater is added to the side walls of the aquaculture seawater in the aquaculture tank. It is preferable to make it flow down in a jet form along.

また、注水管は、該2つの側壁部の略中心位置に配置され、該新たな養殖用海水を該養殖水槽内の該養殖用海水の略中心位置に噴流状に流下させることが好ましい。   Moreover, it is preferable that a water injection pipe is arrange | positioned in the approximate center position of these two side wall parts, and makes this new culture seawater flow down to the approximate center position of this culture seawater in this culture water tank in a jet form.

また、注水管の先端は、該養殖水槽内の該養殖用海水の水面位置から該養殖水槽の最底部までの深さの1/2以内の深さ位置に配置されることが好ましい。   Moreover, it is preferable that the front-end | tip of a water injection pipe is arrange | positioned in the depth position within 1/2 of the depth from the water surface position of this aquaculture seawater in this aquaculture tank to the lowest part of this aquaculture tank.

この発明に係る海藻類の陸上養殖装置は、さらに、該養殖水槽内の該養殖用海水中に、該養殖用海水の攪拌を促進する気泡を供給する気体供給装置を備えることが好ましい。   The seaweed onshore culture device according to the present invention preferably further comprises a gas supply device for supplying bubbles for promoting agitation of the aquaculture seawater into the aquaculture seawater in the aquaculture tank.

また、養殖水槽は、その上部の所定の位置に該養殖水槽内の該養殖用海水をオーバーフローさせるオーバーフロー用開口を備え、該養殖水槽内に貯留された該養殖用海水の水面位置を規定することが好ましい。   The aquaculture tank is provided with an overflow opening for overflowing the aquaculture seawater in the aquaculture tank at a predetermined position above the aquaculture tank, and regulates the water surface position of the aquaculture seawater stored in the aquaculture tank Is preferred.

この発明に係る海藻類の陸上養殖装置は、さらに、該オーバーフロー用開口からオーバーフローした該養殖用海水を該養殖水槽に循環させる養殖用海水循環装置を備えることが好ましい。   The seaweed onshore culture device according to the present invention preferably further includes a culture seawater circulation device for circulating the culture seawater overflowed from the overflow opening to the culture tank.

また、養殖用海水循環装置は、該オーバーフロー用開口からオーバーフローした該養殖用海水を溜めると共に、溜められた養殖用海水と供給された補給用の養殖用海水とを混合して該新たな養殖用海水とする養殖用海水循環槽を備え、該養殖用海水循環槽の該新たな養殖用海水を該養殖水槽に戻すことが好ましい。   The aquaculture seawater circulation device accumulates the aquaculture seawater overflowed from the overflow opening, and mixes the aquaculture seawater stored with the supplied aquaculture seawater for the new aquaculture. It is preferable to provide a seawater circulation tank for aquaculture as seawater, and to return the new culture seawater in the seawater circulation tank for aquaculture to the aquaculture tank.

この発明に係る海藻類の陸上養殖装置は、さらに、該養殖水槽の所定の位置に該養殖水槽内の海藻類を回収するための回収口を備えることが好ましい。   The seaweed onshore culture device according to the present invention preferably further includes a recovery port for recovering the seaweed in the aquaculture tank at a predetermined position of the aquaculture tank.

また、この発明に係る海藻類の陸上養殖方法は、少なくとも底部に湾曲壁面を有し、横断面形状がU字状または半円状である養殖水槽内に貯留された養殖用海水中で海藻類の養殖を行う海藻類の陸上養殖方法であり、予め、該養殖水槽内に該養殖用海水を貯留しておき、該養殖水槽内に貯留された該養殖用海水に対し、上方から新たな養殖用海水を噴流状に流下させ、該養殖水槽内の該養殖用海水を湾曲壁面に沿うように旋回させて攪拌する。   The seaweed onshore culture method according to the present invention includes a seaweed in aquaculture water stored in an aquaculture tank having a curved wall surface at the bottom and a U-shaped or semicircular cross-sectional shape. A method for culturing seaweeds on land, and storing the aquaculture seawater in the aquaculture tank in advance, and a new aquaculture from above with respect to the aquaculture seawater stored in the aquaculture tank The seawater for irrigation is allowed to flow down in the form of a jet, and the seawater for culturing in the aquaculture tank is swirled along the curved wall surface and stirred.

また、本発明の海藻類の陸上養殖方法においては、該養殖水槽内の該養殖用海水を旋回させるための流速は、1〜10cm/sであることが好ましい。   Moreover, in the land culture method of the seaweed of this invention, it is preferable that the flow velocity for turning the seawater for aquaculture in this aquaculture tank is 1-10 cm / s.

また、本発明の海藻類の陸上養殖方法においては、該新たな養殖用海水の流下は、該養殖水槽の2つの側壁部の一方または両方の上端部近傍の該養殖用海水の水面下に、該新たな養殖用海水を、直接供給して、噴流状に流下させるものであることが好ましい。   Moreover, in the seaweed land culture method of the present invention, the flow of the new aquaculture seawater is below the surface of the aquaculture seawater near the upper end of one or both of the two side walls of the aquaculture tank. It is preferable that the fresh seawater for aquaculture is supplied directly and allowed to flow down in the form of a jet.

また、本発明の海藻類の陸上養殖方法においては、該新たな養殖用海水の流下は、該養殖水槽の2つの側壁部の上端部近傍の略中心位置の該養殖用海水の水面下に、該新たな養殖用海水を、直接供給して、該養殖水槽内の該養殖用海水の略中心位置に噴流状に流下させるものであることが好ましい。   Further, in the seaweed land culture method of the present invention, the flow of the new aquaculture seawater is under the surface of the aquaculture seawater at a substantially central position near the upper ends of the two side walls of the aquaculture tank, The fresh aquaculture seawater is preferably supplied directly and allowed to flow down to a substantially central position of the aquaculture seawater in the aquaculture tank.

また、本発明の海藻類の陸上養殖方法においては、該養殖水槽内を旋回している該養殖用海水中に、該養殖用海水の攪拌を促進する気泡を供給することが好ましい。   Moreover, in the seaweed terrestrial culture method of the present invention, it is preferable to supply bubbles for promoting the agitation of the aquaculture seawater into the aquaculture seawater swirling in the aquaculture tank.

また、本発明の海藻類の陸上養殖方法においては、該新たな養殖用海水の供給量(l/min)と、該気泡の供給量(l/min)との比(気泡供給量/養殖用海水供給量)が1〜5であることが好ましい。   Moreover, in the land culture method for seaweed of the present invention, the ratio of the supply amount (l / min) of the new seawater for aquaculture and the supply amount (l / min) of the bubbles (bubble supply amount / aquaculture use) The seawater supply amount) is preferably 1-5.

本発明によれば、養殖水槽の湾曲壁面に沿うように養殖用海水を旋回させて攪拌することにより、養殖に必要な養殖用海水の流入エネルギを効率的に養殖水槽内の攪拌エネルギに変換することができ、低コストでありながら、省エネルギで効率よく海藻類を生産することができる。つまり、本発明においては、養殖水槽内での養殖用海水の効率的な攪拌が行われることにより、養殖水槽内で海藻類が上下に移動して効率的に光吸収を行うことができると共に、攪拌によって海藻類の表面に付着した酸素が洗い流され、結果として海藻類の効率的な光合成を行うことができる。さらに、本発明においては、養殖水槽の深さを深くすることができ、装置設置面積当たりの海藻類の収量を大きくすることもできる。   According to the present invention, the inflow energy of the aquaculture seawater necessary for aquaculture is efficiently converted into the agitation energy in the aquaculture tank by swirling and agitating the aquaculture seawater along the curved wall surface of the aquaculture tank. It is possible to produce seaweed efficiently with energy saving while being low cost. In other words, in the present invention, by efficiently stirring the seawater for aquaculture in the aquaculture tank, seaweeds can move up and down in the aquaculture tank and efficiently absorb light, The oxygen attached to the surface of the seaweed is washed away by stirring, and as a result, efficient photosynthesis of the seaweed can be performed. Furthermore, in the present invention, the depth of the aquaculture tank can be increased, and the yield of seaweed per apparatus installation area can be increased.

この発明の第1の実施形態に係る海藻類の陸上養殖装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the seaweed onshore culture apparatus which concerns on 1st Embodiment of this invention. 養殖水槽中の養殖用海水の流れを示す養殖水槽の横断面図である。It is a cross-sectional view of an aquaculture tank showing the flow of aquaculture seawater in the aquaculture tank. 養殖水槽中の養殖用海水の流れを示す養殖水槽の横断面図である。It is a cross-sectional view of an aquaculture tank showing the flow of aquaculture seawater in the aquaculture tank. この発明の第2の実施形態に係る海藻類の陸上養殖装置の概略構成図である。It is a schematic block diagram of the seaweed onshore culture apparatus which concerns on 2nd Embodiment of this invention.

以下に、本発明の海藻類の陸上養殖装置について、図面を参照して説明する。   Hereinafter, the seaweed onshore culture device of the present invention will be described with reference to the drawings.

<海藻類の陸上養殖装置(第1の実施形態)>
まず、以下に、本発明の海藻類の陸上養殖装置の第1の実施形態を図面を参照して説明する。
図1は、本発明の海藻類の陸上養殖装置10の概略構成図である。
海藻類の陸上養殖装置10は、海藻類の非着床型栽培に使用されるものであって、養殖水槽12と、養殖用海水供給装置14と、気体供給装置16と、オーバーフロー水受け樋20と、回収管22と、回収カゴ24とを備える。養殖水槽12は、オーバーフロー用開口18を備える。
<Seaweed onshore aquaculture device (first embodiment)>
First, a first embodiment of the seaweed onshore culture device of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a seaweed terrestrial aquaculture apparatus 10 according to the present invention.
The seaweed onshore aquaculture apparatus 10 is used for non-implanted cultivation of seaweed, and includes an aquaculture tank 12, an aquaculture seawater supply apparatus 14, a gas supply apparatus 16, and an overflow water receptacle 20. And a collection tube 22 and a collection basket 24. The aquaculture tank 12 includes an overflow opening 18.

陸上養殖装置10で養殖される海藻類の種類は特に制限されないが、例えば、海苔類(なかでも、スジアオノリまたはホソエダアオノリが好ましい)が挙げられる。
なお、海藻類の複数の胞子が連結した胞子集塊、もしくはそれら胞子が発芽した発芽体が絡みあった発芽体集塊を、もしくはそれら発芽体集塊を別の小型水槽で数日間養殖し、適正なサイズに育成させた後、陸上養殖装置10に供給してもよい。該胞子集塊および発芽体集塊は、直径5mm以下の小集塊に粉砕して使用されることが好ましい。なお、該胞子集塊および発芽体集塊は、例えば、特許文献1に記載の方法で製造される。
The type of seaweed cultivated by the land culture device 10 is not particularly limited, and examples thereof include laver (especially, Susioonori or Hosoedaonori are preferred).
In addition, spore agglomerates in which a plurality of spores of seaweeds are connected, or a spore agglomerate entangled with spore germinated by these spores, or cultivate these agglomerate agglomerates in another small aquarium for several days, After growing it to an appropriate size, it may be supplied to the land culture device 10. The spore agglomerates and germinated agglomerates are preferably used after being pulverized into small agglomerates having a diameter of 5 mm or less. The spore agglomerates and germinated agglomerates are produced, for example, by the method described in Patent Document 1.

また、陸上養殖装置10で使用される養殖用海水Wとしては、海藻類の養殖に使用できる海水であれば特にその海水の種類は制限されないが、例えば、地下海水、海洋深層水などが使用される。なお、一般海水も使用することができるが、不純物が多く含まれている場合が多く、海藻類の生長が阻害されるおそれがある。このため、一般海水を使用する場合には、含まれる不純物をろ過して用いるのが好ましい。   In addition, the aquaculture seawater W used in the onshore aquaculture device 10 is not particularly limited as long as it is seawater that can be used for aquaculture, but, for example, underground seawater, deep seawater, and the like are used. The In addition, although general seawater can also be used, there are many cases where many impurities are contained, and there exists a possibility that the growth of seaweed may be inhibited. For this reason, when using general seawater, it is preferable to filter and use the contained impurities.

養殖水槽12は、養殖用海水Wが貯留され、海藻類を養殖するための水槽である。
養殖水槽12は、少なくとも底部に湾曲壁面を有し、その横断面形状がU字状である。より具体的には、養殖水槽12は、平行に対向して配置される2つの平板状の側壁部36と、該2つの側壁部36間に位置し、湾曲壁面をなす断面半円形状の底壁部38と、該2つの側壁部36の両端に配置された2つの端壁部40とから構成される。なお、平板状の側壁部36は、半円筒状の底壁部38から中心軸方向に平行に延びる。また、該養殖水槽12の半円筒状の底壁部38の中心軸に垂直な方向での断面形状を意味し、図1中のyz平面での断面形状を意味する。
The aquaculture tank 12 is a tank in which the aquaculture seawater W is stored and for aquaculture of seaweeds.
The aquaculture tank 12 has a curved wall surface at least at the bottom, and its cross-sectional shape is U-shaped. More specifically, the aquaculture tank 12 has two flat side wall portions 36 arranged in parallel and opposed to each other, and a bottom having a semicircular cross section located between the two side wall portions 36 and forming a curved wall surface. The wall portion 38 and two end wall portions 40 disposed at both ends of the two side wall portions 36 are configured. The flat side wall portion 36 extends in parallel to the central axis direction from the semi-cylindrical bottom wall portion 38. Moreover, the cross-sectional shape in the direction perpendicular | vertical to the central axis of the semi-cylindrical bottom wall part 38 of this aquaculture tank 12 is meant, and the cross-sectional shape in yz plane in FIG.

横断面形状は、以下の理由よりU字状であることが好ましい。まず、横断面形状をU字状にして養殖水槽の高さを高くして容積を増やす方式とすれば、単位面積当たりの養殖用海水の増加につながると共に、海藻類の量も増やすことができ、結果として単位面積当たりの海藻類の生産性を向上させることができる。また、装置の設置面積の減少により、設備費の低減にもつながる。
なお、養殖水槽12の形状は、図1の形状に限られず、その横断面形状が半円状であってもよい。この場合、湾曲壁面の上部側を側壁部、湾曲壁面の底部を底壁部と呼ぶ。
The cross-sectional shape is preferably U-shaped for the following reason. First, if the cross-sectional shape is U-shaped and the aquaculture tank height is increased to increase the volume, the seawater for aquaculture per unit area will increase and the amount of seaweed can also be increased. As a result, the productivity of seaweed per unit area can be improved. In addition, a reduction in equipment installation area leads to a reduction in equipment costs.
In addition, the shape of the aquaculture tank 12 is not limited to the shape of FIG. 1, and the cross-sectional shape thereof may be a semicircular shape. In this case, the upper side of the curved wall surface is referred to as a side wall portion, and the bottom portion of the curved wall surface is referred to as a bottom wall portion.

養殖水槽12の大きさは特に制限されず、使用される養殖用海水Wの透明度、海藻類の密度、養殖期間等に応じて適宜最適な大きさが選択される。例えば、海苔類の養殖を行う場合、光合成の進行のしやすさや、取扱いやすさの点で、端壁部40間の長さは2〜5m程度(好ましくは2〜4m程度)であり、側壁部36の上端部間の長さは10〜30m程度である。また、養殖水槽12内の養殖用海水Wの水面位置から養殖水槽12の最底部までの水深(図1中、深さHに該当)は、通常、1〜2.5m程度である。
また、養殖水槽12の容量は、通常、10〜200t程度(好ましくは20〜200t程度)である。
The size of the aquaculture tank 12 is not particularly limited, and an optimal size is appropriately selected according to the transparency of the seawater W for aquaculture used, the density of seaweeds, the culture period, and the like. For example, when cultivating laver, the length between the end wall portions 40 is about 2 to 5 m (preferably about 2 to 4 m) from the viewpoint of ease of photosynthesis and ease of handling. The length between the upper ends of the part 36 is about 10 to 30 m. Moreover, the water depth (corresponding to the depth H in FIG. 1) from the water surface position of the aquaculture seawater W in the aquaculture tank 12 to the bottom of the aquaculture tank 12 is usually about 1 to 2.5 m.
Moreover, the capacity | capacitance of the aquaculture tank 12 is about 10-200 t normally (preferably about 20-200 t).

なお、通常、養殖用海水中における光合成のための光の深さ方向への到達度は、水深1m程度までであり、それ以降の水深には光が効率的に到達できない。特に、海藻類が密集する場合、水深の浅い位置にある海藻類が光を遮るため、水深の深い位置にある海藻には光が届きにくい。つまり、水深1m超にある海藻には光が届きにくく、光合成が進行しにくい。
一方、本発明においては、上記のように養殖水槽12内の養殖用海水Wの水深を深くした場合でも、養殖用海水の旋回による攪拌によって、海藻類を光が到達できる範囲まで移動させることができ、海藻類に均等に光照射を行うことができる。結果として、養殖水槽12の設置面積を小さくしつつ、養殖水槽12中の養殖用海水Wの水深を高め、海藻類の収穫量を増大させることができる。
In addition, the reach | attainment degree to the depth direction of the light for the photosynthesis in the seawater for aquaculture is normally about 1 m of water depth, and light cannot reach the water depth after that efficiently. In particular, when seaweeds are densely packed, the seaweeds at shallow depths block light, making it difficult for the seaweeds at deep water depths to reach. That is, it is difficult for light to reach seaweeds at a depth of more than 1 m, and photosynthesis does not proceed easily.
On the other hand, in the present invention, even when the depth of the aquaculture seawater W in the aquaculture tank 12 is increased as described above, the algae can be moved to a range where light can reach by agitation by turning the aquaculture seawater. It is possible to irradiate the seaweed with light evenly. As a result, while reducing the installation area of the aquaculture tank 12, the water depth of the aquaculture seawater W in the aquaculture tank 12 can be increased, and the yield of seaweed can be increased.

養殖水槽12の湾曲壁部の曲率半径の大きさは、養殖される海藻類の種類や養殖水槽12の大きさなどにより適宜選択されるが、後述する注水管28からの噴流の有効流速到達距離、および、養殖水槽12深さの点から、1〜2.5m程度が好ましく、1〜2m程度がより好ましい。   The radius of curvature of the curved wall portion of the aquaculture tank 12 is appropriately selected according to the type of seaweed to be cultivated, the size of the aquaculture tank 12, etc., but the effective flow velocity reach distance of the jet from the water injection pipe 28 to be described later From the viewpoint of the depth of the aquaculture water tank 12, about 1 to 2.5 m is preferable, and about 1 to 2 m is more preferable.

養殖用海水給水装置14は、上記養殖水槽12内に新たな養殖用海水Wを供給する装置であって、給水配管26と注水管28とを備える。給水配管26は図示しない養殖用海水供給源と注水管28とを接続し、養殖用海水供給源から供給される養殖用海水Wは、給水配管26を通って注水管28に送液され、注水管28の先端部より養殖水槽12内に貯留されている養殖用海水Wに噴出される。なお、養殖用海水Wは、通常、図示しない給水用ポンプにより、給水配管26を通って送液される。
養殖用海水供給装置14は、新たな養殖用海水Wを供給する機能と共に、養殖水槽12内の養殖用海水Wを攪拌する機能を有する。なお、本発明の攪拌とは、養殖水槽12内で養殖用海水Wを全体として旋回させることを意味する。
The aquaculture seawater water supply device 14 is a device for supplying new aquaculture seawater W into the aquaculture tank 12, and includes a water supply pipe 26 and a water injection pipe 28. The water supply pipe 26 connects an aquaculture seawater supply source (not shown) and a water injection pipe 28, and the aquaculture seawater W supplied from the aquaculture seawater supply source is sent to the water supply pipe 28 through the water supply pipe 26, The water pipe 28 is ejected from the tip of the water pipe 28 to the aquaculture seawater W stored in the aquaculture tank 12. The aquaculture seawater W is usually fed through the water supply pipe 26 by a water supply pump (not shown).
The aquaculture seawater supply device 14 has a function of supplying the aquaculture seawater W and a function of stirring the aquaculture seawater W in the aquaculture tank 12. The agitation in the present invention means that the aquaculture seawater W is swirled as a whole in the aquaculture tank 12.

注水管28は、養殖水槽12内の養殖用海水Wに対して、新たな養殖用海水Wを上方から略垂直方向に噴流状に流下させる管である。
図1中、注水管28の先端部は、養殖水槽12内に貯留された養殖用海水Wの水面下に配置される。
なお、注水管28の先端部は、養殖水槽12内に貯留された養殖用海水Wの水面上に配置されていてもよいが、水面上から新たな養殖用海水Wを噴出すると水面での衝突による波動や跳ね返り等によりエネルギ損失が生じるためやや不利となる。
The water injection pipe 28 is a pipe that causes the new aquaculture seawater W to flow downward in a substantially vertical direction with respect to the aquaculture seawater W in the aquaculture tank 12.
In FIG. 1, the tip of the water injection pipe 28 is disposed below the surface of the aquaculture seawater W stored in the aquaculture tank 12.
In addition, although the front-end | tip part of the water injection pipe | tube 28 may be arrange | positioned on the water surface of the aquaculture seawater W stored in the aquaculture tank 12, if a new aquaculture seawater W is ejected from the water surface, it will collide on a water surface. This is somewhat disadvantageous because energy loss occurs due to vibrations and rebounds caused by.

注水管28の先端部の好ましい配置高さとしては、注水管28の先端部が養殖水槽12内の養殖用海水Wの水面位置から養殖水槽12の最底部までの深さ(図1中、深さHに該当)の1/2以内の深さ範囲が挙げられる。注水管28の先端部の位置が深さHの1/2超の範囲の場合、攪拌速度がやや低下する。これは先端部の位置が深すぎると、注入流による流れが周辺の幅方向にも拡大して養殖水槽12の湾曲壁面に沿って加速していく過程で、加速距離が短くなるので攪拌エネルギを有効に使用できず、攪拌速度が低下してしまうためと推測される。   As a preferable arrangement height of the tip of the water injection pipe 28, the depth from the water surface position of the aquaculture seawater W in the aquaculture tank 12 to the bottom of the culture water tank 12 (the depth in FIG. And a depth range within 1/2 of H). When the position of the tip of the water injection pipe 28 is in a range exceeding 1/2 of the depth H, the stirring speed is slightly reduced. This is because if the position of the tip is too deep, the flow by the injection flow also expands in the width direction of the periphery and accelerates along the curved wall surface of the aquaculture tank 12, so the acceleration distance is shortened, so stirring energy is reduced. It is presumed that it cannot be used effectively and the stirring speed decreases.

注水管28の配置位置は、図1においては、養殖水槽12の一方の側壁部36の上端部近傍に配置されているが、その配置位置は特に制限されない。
例えば、2つの側壁部36の両方の上端部近傍に配置されていてもよく、また、2つの側壁部36の略中心位置に配置されていてもよい。なお、2つの側壁部36の略中心位置の場合、養殖水槽12への光を遮ることがあるため、側壁部36の上端部近傍に注水管28が配置されることが好ましい。
In FIG. 1, the arrangement position of the water injection pipe 28 is arranged in the vicinity of the upper end portion of the one side wall portion 36 of the aquaculture water tank 12, but the arrangement position is not particularly limited.
For example, the two side wall portions 36 may be disposed in the vicinity of both upper end portions, or may be disposed at substantially the center position of the two side wall portions 36. In addition, in the case of the approximate center position of the two side wall portions 36, the water injection pipe 28 is preferably disposed in the vicinity of the upper end portion of the side wall portion 36 because the light to the aquaculture tank 12 may be blocked.

図1において、注入管28は3つ使用されているが、注水管28の本数は特に制限されず、4つ以上の注水管28を配置してもよい。なお、養殖水槽12内の養殖用海水Wの攪拌流速をより均一にする点で、0.5〜1m程度の間隔をあけて注入管28を配置することが好ましい。
注入管28からの新たな養殖用海水Wの吐出流速は、養殖水槽12内の養殖用海水Wの流速を海藻生育に適正な流速に制御する点で、0.2〜1.5m/s程度が好ましい。
注入管28の先端開口のサイズは、注入管28からの新たな養殖用海水Wの吐出流速の点で、直径10〜20mm程度が好ましく、直径12〜15mm程度がより好ましい。
注入管28の1本当たりの単位時間当たりの注水量(l/min)は、注入管28からの新たな養殖用海水Wの吐出流速の点で、2〜20が好ましい。
注入管28から供給される新たな養殖用海水Wの供給量は、養殖される海藻の種類や海水の栄養分によって異なるが、通常、一日当たり養殖水槽12容量の2〜5倍/日(2〜5回転/日)程度である。
Although three injection pipes 28 are used in FIG. 1, the number of water injection pipes 28 is not particularly limited, and four or more water injection pipes 28 may be arranged. In addition, it is preferable to arrange | position the injection | pouring pipe | tube 28 at intervals of about 0.5-1m at the point which makes the stirring flow rate of the seawater W for culture in the culture water tank 12 more uniform.
The discharge flow rate of the new aquaculture seawater W from the injection pipe 28 is about 0.2 to 1.5 m / s in that the flow rate of the aquaculture seawater W in the aquaculture tank 12 is controlled to a flow rate suitable for seaweed growth. Is preferred.
The size of the opening at the tip of the injection tube 28 is preferably about 10 to 20 mm in diameter and more preferably about 12 to 15 mm in terms of the discharge flow rate of new aquaculture seawater W from the injection tube 28.
The amount of water injected per unit time (l / min) per injection tube 28 is preferably 2 to 20 in terms of the discharge flow rate of fresh aquaculture seawater W from the injection tube 28.
The amount of new aquaculture seawater W supplied from the injection pipe 28 varies depending on the type of seaweed to be cultivated and the nutrients of the seawater, but usually 2 to 5 times the daily capacity of the aquaculture tank 12 (2 to 2 times per day) 5 rotations / day).

気体供給装置16は、養殖水槽12内の養殖用海水W中に、該養殖用海水Wの攪拌を促進する気泡を供給する装置である。気体供給装置16は、エアポンプ30と、エア配管32と、気体吹込管34とを備える。該装置16では、エアポンプ30からエア配管32を通って気体吹込み管34に送られる気体が、気体吹込管34の放出孔から気泡として放出される。
上述した注水管28からの新たな養殖用海水Wの噴出だけにより養殖水槽12内の養殖用海水Wの攪拌を行う場合、海藻類の生長に有効な攪拌速度を得るために、海藻類の生長に必要な栄養分に相当する水量の数倍以上の水量が必要となり、エネルギ面から必ずしも効率的でない。そこで、気体供給装置16から気体を養殖水槽12内の養殖用海水W中に供給することにより、新たな養殖用海水Wの供給量を海藻類の生長に必要最小限の量としつつ、養殖用海水Wの攪拌速度を高めることができ、好ましい。
The gas supply device 16 is a device that supplies bubbles that promote stirring of the aquaculture seawater W into the aquaculture seawater W in the aquaculture tank 12. The gas supply device 16 includes an air pump 30, an air pipe 32, and a gas blowing pipe 34. In the device 16, the gas sent from the air pump 30 through the air pipe 32 to the gas blowing pipe 34 is discharged from the discharge hole of the gas blowing pipe 34 as bubbles.
In the case where the aquaculture seawater W in the aquaculture tank 12 is agitated only by ejecting new aquaculture seawater W from the water injection pipe 28 described above, in order to obtain an agitation rate effective for the growth of the seaweed, This requires an amount of water that is several times the amount of water corresponding to the nutrients required for this, and is not necessarily efficient in terms of energy. Therefore, by supplying a gas from the gas supply device 16 into the aquaculture seawater W in the aquaculture tank 12, the supply amount of the new aquaculture seawater W is reduced to a minimum amount necessary for the growth of seaweeds. The stirring speed of the seawater W can be increased, which is preferable.

気体供給装置16より供給される気体は、通常、エアが使用される。海藻類の光合成をより促進する目的で、エアとCO2とを混合して使用することが好ましい。 As the gas supplied from the gas supply device 16, air is usually used. For the purpose of further promoting the photosynthesis of seaweeds, it is preferable to use a mixture of air and CO 2 .

気体吹込管34は、気泡を供給することができる放出孔(図示しない)を有する管であれば、その形状は特に制限されない。なお、放出孔は気体吹込管34上に複数(2以上)設けられていてもよい。また、養殖用海水Wの均一な攪拌効果を得るためには、気体吹込管34上に細孔(直径1〜2mm)を多数設けることが好ましい。
気体吹込管34以外にも気泡を供給することができるバブリング部であれば、本発明で用いることができる。例えば、気体吹込管34の代わりに、エアストーンのような多孔質物質を使用してもよい。
The shape of the gas blowing pipe 34 is not particularly limited as long as it is a pipe having a discharge hole (not shown) through which bubbles can be supplied. Note that a plurality (two or more) of discharge holes may be provided on the gas blowing pipe 34. In order to obtain a uniform stirring effect of the seawater W for aquaculture, it is preferable to provide a large number of pores (diameter 1 to 2 mm) on the gas blowing pipe 34.
Any bubbling part that can supply bubbles other than the gas blowing pipe 34 can be used in the present invention. For example, instead of the gas blowing pipe 34, a porous substance such as air stone may be used.

気体吹込管34より供給される気体圧力は養殖水槽12の水圧以上が必要であり、養殖用海水Wの水深が1〜2.5mの場合、0.1〜0.25気圧以上であることが好ましい。
また、気体吹込管34より供給される気泡供給量(l/min)と、上記注水管28より供給される養殖用海水Wの供給量(l/min)とは、攪拌効果と消費エネルギの点から、その比(気泡供給量/養殖用海水Wの供給量)が1〜5であることが好ましい。
The gas pressure supplied from the gas blowing pipe 34 needs to be equal to or higher than the water pressure of the aquaculture tank 12, and when the water depth of the aquaculture seawater W is 1 to 2.5 m, it should be 0.1 to 0.25 atm or more. preferable.
The bubble supply amount (l / min) supplied from the gas blowing pipe 34 and the supply amount (l / min) of the aquaculture seawater W supplied from the water injection pipe 28 are the points of stirring effect and energy consumption. Therefore, it is preferable that the ratio (the supply amount of air bubbles / the supply amount of seawater W for aquaculture) is 1 to 5.

オーバーフロー用開口18は、養殖水槽12の上部の所定の位置に配置され、養殖水槽12内の養殖用海水Wをオーバーフローさせる開口である。該開口18を養殖水槽12に設けることにより、養殖水槽12内に貯留された養殖用海水Wの水面位置を所定の位置に規定することができ、好ましい。
図1において、オーバーフロー用開口18は2つの側壁部36上に設けられているが、その配置位置は特に制限されず、端壁面40上であってもよい。
The overflow opening 18 is an opening that is disposed at a predetermined position above the aquaculture tank 12 and overflows the aquaculture seawater W in the aquaculture tank 12. By providing the opening 18 in the aquaculture tank 12, the water surface position of the aquaculture seawater W stored in the aquaculture tank 12 can be defined at a predetermined position, which is preferable.
In FIG. 1, the overflow opening 18 is provided on the two side wall portions 36, but the arrangement position is not particularly limited, and may be on the end wall surface 40.

図1において、オーバーフロー用開口18の形状は矩形状であるが、その形状は特に制限されない。なお、オーバーフロー用開口18下端が養殖水槽12内の養殖用海水Wの水位を決めるため、該開口18の下部形状は直線状が好ましい。
図1において、オーバーフロー用開口18は一方の側壁部36上に3個ずつ合計6個設けられているが、その数は特に制限されず7個以上であってもよい。また、それぞれ側壁部36には、異なる数のオーバーフロー用開口18が設けられていてもよい。なお、養殖水槽12内の養殖用水槽Wの流動を乱さないように、オーバーフロー用開口18の数および位置を決めることが好ましい。例えば、多くの該開口18を集中させずに、分散して配置することが好ましい。
オーバーフロー用開口18の大きさは特に制限されないが、養殖水槽12内の養殖用海水Wの噴流状態を乱さないためにも大きい方が好ましい。より具体的には、養殖水槽12の強度を確保する点から、数100mm程度の幅の矩形状のオーバーフロー用開口を複数設けることが好ましい。
In FIG. 1, the shape of the overflow opening 18 is rectangular, but the shape is not particularly limited. In addition, since the lower end of the overflow opening 18 determines the water level of the culture seawater W in the aquaculture tank 12, the lower shape of the opening 18 is preferably linear.
In FIG. 1, six overflow openings 18 are provided in total on the one side wall 36, but the number is not particularly limited, and may be seven or more. Further, each of the side wall portions 36 may be provided with a different number of overflow openings 18. It is preferable to determine the number and position of the overflow openings 18 so as not to disturb the flow of the aquaculture tank W in the aquaculture tank 12. For example, it is preferable to disperse and arrange many openings 18 without concentrating them.
The size of the overflow opening 18 is not particularly limited, but is preferably larger so as not to disturb the jet state of the aquaculture seawater W in the aquaculture tank 12. More specifically, it is preferable to provide a plurality of rectangular overflow openings having a width of about several hundred mm from the viewpoint of securing the strength of the aquaculture tank 12.

オーバーフロー水受け樋20は、オーバーフロー用開口18よりオーバーフローした養殖用海水Wを回収する樋である。オーバーフロー水受け樋20を設けることにより、該水受け樋20で回収された養殖用海水を後述する養殖用海水循環槽46などに送液して、再利用することができ、好ましい。
図1において、オーバーフロー水受け樋20は、オーバーフロー用開口18の下部で側壁部36上の全幅にわたって設けられ、その底部に該水受け樋20内の養殖用海水を排出する排水配管42が接続している。なお、オーバーフローした養殖用海水Wは、排水配管42を通って後述する養殖用海水循環槽46内に供給されてもよい。
なお、通常、養殖水槽12内の養殖用海水Wの栄養分は、該栄養分の成分と海藻類によっては大部分が吸収されるため、オーバーフロー水受け樋20を設けずに、オーバーフロー用開口18よりオーバーフローした養殖用海水Wをそのまま排水してもよい。
The overflow water receiving rod 20 is a rod that collects the aquaculture seawater W that has overflowed from the overflow opening 18. By providing the overflow water receiving tank 20, it is preferable that the aquaculture seawater collected by the water receiving tank 20 can be sent to the aquaculture seawater circulation tank 46 described later and reused.
In FIG. 1, the overflow water receiving tub 20 is provided over the entire width on the side wall 36 below the overflow opening 18, and a drain pipe 42 for discharging the seawater for aquaculture in the water receiving tub 20 is connected to the bottom thereof. ing. The aquaculture seawater W that has overflowed may be supplied through a drainage pipe 42 into an aquaculture seawater circulation tank 46 described later.
Normally, most of the nutrients of the aquaculture seawater W in the aquaculture tank 12 are absorbed depending on the nutrient components and seaweeds, and therefore overflow from the overflow opening 18 without providing the overflow water catch 20. The aquaculture seawater W may be drained as it is.

回収管22は、養殖水槽12の所定の位置に配置され、養殖水槽12内の海藻類を回収するための管である。該回収管22は、本発明の回収口を構成している。
海藻類の回収・収穫は、網等を用いて行うこともできるが、効率的ではない。また、養殖水槽12の壁面に付着する異種の海藻類を除去するためには、定期的に養殖水槽12を空にして清掃を行う必要がある。そこで、この回収管22を用いることにより、養殖水槽12内の養殖用海水Wを排出しつつ、海藻類を効率よく回収することができ、好ましい。
The collection pipe 22 is a pipe that is disposed at a predetermined position of the aquaculture tank 12 and collects seaweed in the aquaculture tank 12. The collection pipe 22 constitutes a collection port of the present invention.
Seaweeds can be collected and harvested using a net or the like, but it is not efficient. Further, in order to remove different kinds of seaweeds adhering to the wall surface of the aquaculture tank 12, it is necessary to periodically empty the aquaculture tank 12 and perform cleaning. Therefore, it is preferable to use the recovery pipe 22 because the seaweed can be efficiently recovered while discharging the seawater W for aquaculture in the aquaculture tank 12.

図1においては、回収管22は端壁部40の最底部近傍に配置されているが、養殖用海水Wおよび海藻類を全量抜き取るために、養殖水槽12の最底部近傍に設けられることが好ましい。
また、回収管22は、図1に示すように、開閉弁を有している。
In FIG. 1, the recovery pipe 22 is disposed in the vicinity of the bottom of the end wall portion 40, but is preferably provided in the vicinity of the bottom of the aquaculture tank 12 in order to extract all of the seawater for aquaculture W and seaweed. .
Further, as shown in FIG. 1, the recovery pipe 22 has an on-off valve.

回収カゴ24は、回収管22の先端部付近に配置され、養殖水槽12内から回収管22を通って出てくる海藻類を回収するカゴである。該回収カゴ24を使用することにより、効率よく回収管22より出てくる海藻類を回収することができ、好ましい。なお、回収カゴ24は、図1に示すように、養殖用海水W中の海藻類を効率よく分離回収できることから、メッシュ状であることが好ましい。   The collection basket 24 is a basket that is disposed near the tip of the collection tube 22 and collects seaweed that comes out of the aquaculture water tank 12 through the collection tube 22. Use of the collection basket 24 is preferable because the seaweed that comes out of the collection tube 22 can be collected efficiently. As shown in FIG. 1, the recovery basket 24 is preferably in a mesh shape because seaweeds in the aquaculture seawater W can be efficiently separated and recovered.

次に、上記陸上養殖装置10を用いた養殖方法について詳述する。
まず、養殖水槽12内に、海藻類(例えば、海苔類)を含む養殖用海水Wを貯留する。図1に示すように、オーバーフロー用開口18が設けられている場合、該開口18が設けられている高さまで養殖用海水Wが予め貯留される。
Next, the aquaculture method using the land culture apparatus 10 will be described in detail.
First, the aquaculture seawater W including seaweeds (for example, laver) is stored in the aquaculture tank 12. As shown in FIG. 1, when the overflow opening 18 is provided, the aquaculture seawater W is stored in advance up to the height at which the opening 18 is provided.

次に、養殖水槽12内に貯留された養殖用海水Wに対して、養殖用海水供給装置14を用いて上方から新たな養殖用海水Wを噴流状に流下させることにより、養殖水槽12内の養殖用海水Wを養殖水槽12の湾曲壁面に沿うように旋回させて攪拌する。養殖水槽12内の養殖用海水Wを湾曲壁部に沿うように旋回させることにより、流動抵抗が低下し、養殖用海水Wの供給エネルギを効率よく攪拌力に変換することができ、少ないエネルギで効率よく養殖水槽12内を攪拌することができる。結果として、効率的に海藻類を養殖水槽12内で上下移動させ、含まれる海藻類に満遍なく光を照射することができ、海藻類の生産性向上がもたらされる。   Next, with respect to the aquaculture seawater W stored in the aquaculture tank 12, the aquaculture seawater W is caused to flow downward from above using the aquaculture seawater supply device 14, so that the aquaculture seawater W The aquaculture seawater W is swirled along the curved wall surface of the aquaculture tank 12 and stirred. By turning the aquaculture seawater W in the aquaculture tank 12 along the curved wall portion, the flow resistance is reduced, and the supply energy of the aquaculture seawater W can be efficiently converted into a stirring force, with less energy. The aquaculture tank 12 can be efficiently stirred. As a result, the seaweed can be efficiently moved up and down in the aquaculture tank 12, and the contained seaweed can be uniformly irradiated with light, thereby improving the productivity of seaweed.

より具体的には、図1に示される養殖水槽12内における養殖用海水Wの噴流状態について図2(A)に示す。図2(A)に示されるように、一方の側壁部36の上端部近傍に配置された注水管28の先端部より新たな養殖用海水Wを略垂直方向に側壁部36に沿って噴流状に流下させることにより、矢印に示すように、養殖水槽12内の養殖用海水Wが養殖水槽12の湾曲壁面に沿って旋回する。結果として、1つの攪拌渦が養殖水槽12内で生じ、養殖水槽12内の養殖用海水Wが効率よく攪拌される。   More specifically, FIG. 2 (A) shows a jet state of the seawater W for aquaculture in the aquaculture tank 12 shown in FIG. As shown in FIG. 2 (A), fresh aquaculture seawater W is jetted along the side wall 36 in a substantially vertical direction from the tip of the water injection pipe 28 disposed in the vicinity of the upper end of one side wall 36. As shown by the arrows, the aquaculture seawater W in the aquaculture tank 12 turns along the curved wall surface of the aquaculture tank 12. As a result, one agitation vortex is generated in the aquaculture tank 12, and the aquaculture seawater W in the aquaculture tank 12 is efficiently agitated.

また、他の例として、両方の側壁部36の上端部近傍に注水管28を設けた場合の養殖水槽12内における養殖用海水Wの噴流状態について図2(B)に示す。
図2(B)に示されるように、それぞれの注水管28の先端部より新たな養殖用海水Wを略垂直方向に側壁部36に沿って噴流状に流下させることにより、矢印に示すように、養殖水槽12内の養殖用海水Wが養殖水槽12の湾曲壁面に沿って旋回する。結果として、2つの攪拌渦が養殖水槽12内に生じる。
As another example, FIG. 2B shows a jet state of the aquaculture seawater W in the aquaculture water tank 12 when the water injection pipe 28 is provided in the vicinity of the upper end portions of both side wall portions 36.
As shown in FIG. 2 (B), as a new aquaculture seawater W flows down from the tip of each water injection pipe 28 in the form of a jet along the side wall 36 in a substantially vertical direction, as shown by the arrows. The aquaculture seawater W in the aquaculture tank 12 swirls along the curved wall surface of the aquaculture tank 12. As a result, two stirring vortices are generated in the aquaculture tank 12.

さらに、他の例として、側壁部36間の略中心位置に注水管28を設けた場合の養殖水槽12内における養殖用海水Wの噴流状態について図2(C)に示す。
図2(C)に示されるように、注水管28の先端部より新たな養殖用海水Wを養殖水槽12内の養殖用海水Wの略中心位置に噴流状に流下させることにより、矢印に示すように、反転流により2つの対称形攪拌渦が養殖水槽12内に生じる。
Furthermore, as another example, FIG. 2 (C) shows a jet state of the aquaculture seawater W in the aquaculture tank 12 when the water injection pipe 28 is provided at a substantially central position between the side wall portions 36.
As shown in FIG. 2 (C), a new aquaculture seawater W is caused to flow from the tip of the water injection pipe 28 into a substantially central position of the aquaculture seawater W in the aquaculture tank 12 in the form of a jet. Thus, two symmetrical stirring vortices are generated in the aquaculture tank 12 by the reverse flow.

攪拌効率の点では、上記図2(A)または図2(B)に示すような攪拌渦を生じさせることが好ましく、図2(A)に示すような攪拌渦を生じさせることが特に好ましい。   In terms of stirring efficiency, it is preferable to generate a stirring vortex as shown in FIG. 2A or 2B, and it is particularly preferable to generate a stirring vortex as shown in FIG.

また、気体供給装置16を使用する場合は、養殖水槽12内の養殖用海水Wの攪拌をより効率的に行える点から、養殖水槽12内で生じる養殖用海水Wの旋回流(流動)が上昇流になる位置近傍(位置P)で気泡を供給することが好ましい。つまり、位置P近傍の養殖水槽12の壁面上に、気体吹込管34を設置することが好ましい。
より具体的には、図2(A)に示した攪拌渦が生じている場合は、図3(A)に示すように、養殖水槽12の最底部を通る鉛直面で分けられた養殖水槽12内の2つ壁面のうち、注水管28が設けられていない側の養殖水槽12の壁面上に気体吹込管34を設置することが好ましい。
In addition, when the gas supply device 16 is used, the swirling flow (flow) of the aquaculture seawater W generated in the aquaculture tank 12 is increased because the aquaculture seawater W in the aquaculture tank 12 can be more efficiently stirred. It is preferable to supply air bubbles in the vicinity of the position (position P) where the flow occurs. That is, it is preferable to install the gas blowing pipe 34 on the wall surface of the aquaculture tank 12 near the position P.
More specifically, when the stirring vortex shown in FIG. 2 (A) is generated, as shown in FIG. 3 (A), the aquaculture tank 12 divided by the vertical plane passing through the bottom of the aquaculture tank 12 It is preferable to install the gas blowing pipe 34 on the wall face of the aquaculture water tank 12 on the side where the water injection pipe 28 is not provided among the two wall faces.

また、図2(B)に示した攪拌渦が生じている場合は、図3(B)に示すように、養殖水槽12の最底部近傍に気体吹込管34を設置することが好ましい。
さらに、図2(C)に示した攪拌渦が生じている場合は、図3(C)に示すように、養殖水槽12の最底部よりも高い位置の養殖水槽12の壁面上に気体吹込管34を設置することが好ましい。図3(C)中では、2つの気体吹込管34が、養殖水槽12の最底部を通る鉛直面を挟んで配置されている。
なお、より少ないエネルギで養殖水槽12内の養殖用海水Wを攪拌でき、海藻類の生長がより優れる点から、上記図3(A)に示すように攪拌渦を生じさせることが好ましい。
Moreover, when the stirring vortex shown in FIG. 2 (B) is generated, it is preferable to install a gas blowing pipe 34 in the vicinity of the bottom of the aquaculture tank 12 as shown in FIG. 3 (B).
Furthermore, when the stirring vortex shown in FIG. 2 (C) is generated, as shown in FIG. 3 (C), the gas blowing pipe is placed on the wall surface of the aquaculture tank 12 at a position higher than the bottom of the aquaculture tank 12. 34 is preferably installed. In FIG. 3C, two gas blowing pipes 34 are arranged with a vertical plane passing through the bottom of the aquaculture tank 12 interposed therebetween.
In addition, it is preferable to produce a stirring vortex as shown in FIG. 3A from the viewpoint that the aquaculture seawater W in the aquaculture tank 12 can be agitated with less energy and the growth of seaweeds is more excellent.

養殖水槽12内における養殖用海水Wを旋回させるための流速は、海藻類の生長の点から、1〜10cm/sであることが好ましく、3〜5cm/sであることがより好ましい。流速が遅すぎると、養殖水槽12内の養殖用海水Wの攪拌が遅くなり、海藻類に光が均等に照射されにくくなり海藻の成長率が低下し、流速が速すぎると、無駄なエネルギ消費により生産コストをあげ、また海藻類に余分なストレスを与え生長が阻害される場合がある。   From the viewpoint of the growth of seaweeds, the flow rate for turning the aquaculture seawater W in the aquaculture tank 12 is preferably 1 to 10 cm / s, and more preferably 3 to 5 cm / s. If the flow rate is too slow, the agitation of the aquaculture seawater W in the aquaculture tank 12 will be slow, light will not be evenly irradiated to seaweeds, the growth rate of seaweed will be reduced, and if the flow rate is too fast, wasteful energy consumption will occur. May increase production costs and may cause excessive stress on seaweeds and hinder growth.

<海藻類の陸上養殖装置(第2の実施形態)>
以下に、本発明の海藻類の陸上養殖装置の第2の実施形態を図面を参照して説明する。
図4は、本発明の海藻類の陸上養殖装置100の概略構成図である。
図4に示すように、海藻類の陸上養殖装置100は、養殖水槽12と、養殖用海水供給装置14と、気体供給装置16と、オーバーフロー水受け樋20と、回収管22と、回収カゴ24と、養殖用海水循環装置44とを備える。養殖水槽12は、オーバーフロー用開口18を備える。
図4に示す海藻類の陸上養殖装置100は、養殖用海水循環装置44を備える点を除いて、図1に示す海藻類の陸上養殖装置10と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、主として養殖用海水循環装置44について説明する。
養殖用海水循環装置44は、養殖用海水循環槽46と、循環配管48と、流量調節弁50と、循環ポンプ52とを備える。
<Onshore aquaculture device for seaweed (second embodiment)>
Below, 2nd Embodiment of the seaweed land culture apparatus of this invention is described with reference to drawings.
FIG. 4 is a schematic configuration diagram of the seaweed onshore culture device 100 of the present invention.
As shown in FIG. 4, the seaweed terrestrial aquaculture apparatus 100 includes an aquaculture tank 12, an aquaculture seawater supply apparatus 14, a gas supply apparatus 16, an overflow water receptacle 20, a recovery pipe 22, and a recovery basket 24. And an aquaculture seawater circulation device 44. The aquaculture tank 12 includes an overflow opening 18.
The seaweed onshore aquaculture device 100 shown in FIG. 4 has the same configuration as the seaweed onshore aquaculture device 10 shown in FIG. Constituent elements are denoted by the same reference numerals, description thereof is omitted, and the aquaculture seawater circulation device 44 will be mainly described.
The aquaculture seawater circulation device 44 includes an aquaculture seawater circulation tank 46, a circulation pipe 48, a flow control valve 50, and a circulation pump 52.

養殖用海水循環装置44は、オーバーフロー用開口18からオーバーフローした養殖用海水Wを養殖水槽12に循環させる装置である。養殖用海水循環装置44を設けることにより、養殖用海水Wの使用量をより少なくすることができ、より低コストで海藻類の養殖を行うことができる。   The aquaculture seawater circulation device 44 is a device that circulates the aquaculture seawater W overflowed from the overflow opening 18 to the aquaculture tank 12. By providing the aquaculture seawater circulation device 44, the amount of aquaculture seawater W used can be reduced, and seaweed can be cultivated at a lower cost.

養殖用海水循環槽46は、オーバーフロー用開口18からオーバーフローした養殖用海水Wを溜める槽である。図4に示すように、オーバーフロー用開口18からオーバーフローした養殖用海水Wは、オーバーフロー水受け樋20の底部に接続した排出配管42を通って、養殖用海水循環槽46に戻される。
なお、通常、養殖用海水W中の栄養分は海藻類によって一部吸収される。そこで、オーバーフローした養殖用海水Wの栄養分の減少分を補うために、図1に示すように、新たな補給用の新海水を給水配管26から養殖用海水循環槽46に供給し、オーバーフローした養殖用海水Wと新海水とを混合して新たな養殖用海水Wとしてもよい。
The aquaculture seawater circulation tank 46 is a tank for accumulating the aquaculture seawater W that has overflowed from the overflow opening 18. As shown in FIG. 4, the aquaculture seawater W overflowed from the overflow opening 18 is returned to the aquaculture seawater circulation tank 46 through the discharge pipe 42 connected to the bottom of the overflow water receiving tank 20.
Normally, nutrients in the aquaculture seawater W are partially absorbed by seaweeds. Therefore, in order to compensate for the decrease in nutrients in the overflowing aquaculture seawater W, as shown in FIG. 1, a new supply of fresh seawater is supplied from the water supply pipe 26 to the aquaculture seawater circulation tank 46, and the aquaculture that has overflowed. The fresh seawater W and the fresh seawater W may be mixed to form a new aquaculture seawater W.

養殖用海水循環槽46は、その上部の所定の位置に養殖用海水循環槽46内の養殖用海水Wをオーバーフローさせるオーバーフロー用開口54を備える。オーバーフロー用開口54が設けられることにより、養殖用海水循環槽46内に貯留された養殖用海水Wの水面位置を所定の位置に規定することができ、好ましい。   The aquaculture seawater circulation tank 46 is provided with an overflow opening 54 for overflowing the aquaculture seawater W in the aquaculture seawater circulation tank 46 at a predetermined position in the upper part thereof. By providing the overflow opening 54, the water surface position of the aquaculture seawater W stored in the aquaculture seawater circulation tank 46 can be defined at a predetermined position, which is preferable.

養殖用海水循環槽46は、その底部に開閉弁56を有する排水配管58を備える。開閉弁56の開閉状態を制御することにより、養殖用海水循環槽46内の養殖用海水の量を調整することができ、好ましい。
なお、該排水配管58は、図4に示すように、上述したオーバーフロー用開口54に接続している。
The aquaculture seawater circulation tank 46 includes a drainage pipe 58 having an opening / closing valve 56 at the bottom thereof. By controlling the open / close state of the on / off valve 56, the amount of the aquaculture seawater in the aquaculture seawater circulation tank 46 can be adjusted, which is preferable.
The drain pipe 58 is connected to the above-described overflow opening 54 as shown in FIG.

循環配管48は、養殖用海水循環槽46から養殖水槽12へ養殖用海水Wを送液するための配管である。図1では、循環配管48は給水配管26に接続しているが、直接養殖水槽12に接続していてもよい。
また、循環配管48は、その途中に流量調整弁50を備える。該流量調整弁50によって、循環される養殖用海水の量を調整でき、好ましい。
さらに、循環配管50は、その途中に循環ポンプ52を備える。該循環ポンプ52により、養殖用海水Wが送液される。
The circulation pipe 48 is a pipe for sending the aquaculture seawater W from the aquaculture seawater circulation tank 46 to the aquaculture tank 12. In FIG. 1, the circulation pipe 48 is connected to the water supply pipe 26, but it may be directly connected to the aquaculture tank 12.
The circulation pipe 48 includes a flow rate adjustment valve 50 in the middle thereof. The flow rate adjusting valve 50 is preferable because it can adjust the amount of the circulating seawater.
Furthermore, the circulation pipe 50 includes a circulation pump 52 in the middle thereof. The circulating seawater W is fed by the circulation pump 52.

本発明を、以下の実施例および比較例により詳細に説明する。   The present invention will be described in detail by the following examples and comparative examples.

本発明の実施例および比較例の実施条件と結果を表1にまとめて示す。
本実施例では、図1に示す陸上養殖装置10を使用した。
具体的には、養殖水槽の横断面形状はU字状であり、その容量は15tであり、側壁部の高さが1mであり、円筒状の底壁部の曲率半径は1.5mであった。また、図3(A)に示すように、気体供給装置より気泡を供給した(表1中、パターンA’と表記)。また、注水管の先端は水深0.3mの位置に配置した。
The implementation conditions and results of the examples and comparative examples of the present invention are summarized in Table 1.
In the present example, the onshore culture apparatus 10 shown in FIG. 1 was used.
Specifically, the aquaculture tank has a U-shaped cross section, a capacity of 15 t, a side wall height of 1 m, and a cylindrical bottom wall radius of curvature of 1.5 m. It was. Further, as shown in FIG. 3A, air bubbles were supplied from a gas supply device (indicated as pattern A ′ in Table 1). Moreover, the tip of the water injection pipe was disposed at a position with a water depth of 0.3 m.

一方、従来例(1)で使用した陸上養殖装置の養殖水槽は、実施例で使用した養殖水槽とほぼ同じ開口面積を有し、養殖水槽内の養殖用海水の水深が1mである、角型水槽を用いた。また、従来例(1)においては、気体吹込管を角型水槽の底部に配置して気泡を供給することのみによって、養殖水槽の攪拌を行った。なお、従来例(1)においては、養殖水槽の端部に注水管を配置し、養殖用海水を供給した。
従来例(2)で使用した陸上養殖装置は、従来例(1)の陸上養殖装置と比較して、養殖水槽内の養殖用海水の水深が2.5mである点で相違する。
On the other hand, the aquaculture tank of the land culture device used in the conventional example (1) has substantially the same opening area as the aquaculture tank used in the example, and the water depth of the aquaculture seawater in the aquaculture tank is 1 m. A water bath was used. Moreover, in the prior art example (1), the aquaculture tank was stirred only by arranging the gas blowing tube at the bottom of the square tank and supplying air bubbles. In addition, in the conventional example (1), the water injection pipe was arrange | positioned at the edge part of the aquaculture tank, and the seawater for aquaculture was supplied.
The onshore aquaculture apparatus used in the conventional example (2) is different from the onshore aquaculture apparatus in the conventional example (1) in that the depth of the aquaculture seawater in the aquaculture tank is 2.5 m.

実施例並びに従来例(1)および(2)において、養殖する海藻としてはスジアオノリを用いた。具体的には、種苗(複数の胞子が連結した胞子集塊)を別途小型水槽にて1週間培養した後、養殖水槽で養殖するのに適したサイズとして養殖水槽に投入した。   In the examples and the conventional examples (1) and (2), Sugioonori was used as the seaweed to be cultured. Specifically, seedlings and seedlings (spore clusters in which a plurality of spores were connected) were separately cultured in a small aquarium for 1 week, and then put into the aquaculture tank as a size suitable for cultivation in the aquaculture tank.

Figure 0005713762
Figure 0005713762

上記表1中、「海水供給量」は、上段に時間当たりの海水供給量(L/min)を、下段に一日当たりの海水供給量(回転/日、t/日)を表す。なお、「回転/日」は一日に水槽容量の何倍の水を供給したかを表す。
「バブリング風量」は、左側に時間当たりの気泡供給量(L/min)を、右側に供給した気体の種類を表す。
In Table 1 above, “seawater supply amount” represents the seawater supply amount per hour (L / min) in the upper row and the seawater supply amount per day (rotation / day, t / day) in the lower row. “Rotation / day” represents how many times the water tank capacity was supplied per day.
“Bubbling air volume” represents the amount of bubble supply per hour (L / min) on the left side and the type of gas supplied on the right side.

上記表1中、「海藻収穫量(湿重量)」は、養殖期間経過後に収穫された海藻類の全収穫量を表す。「海藻生長量(湿重量)」は、左側に養殖期間の間に生長した海藻類の量(kg)を表し(「海藻収穫量」から「海藻投入量」を引いた量に該当)、右側に生長した海藻類の量(kg)を「養殖期間」で除して得られる、一日当たりの海藻類の生長量(kg/日)を表す。
表1中の「生産能力(単位面積当たり)」は、一日当たりの海藻類の生長量(kg/日)を使用した養殖水槽の設置面積で除して得られる数値(kg/m2・日)である。実施例の場合の「設置面積」は、幅3m×長さ2.34m≒7m2であり、従来例(1)および(2)の場合の「設置面積」は、幅1m×長さ7m=7m2である。
「生産能力従来比」は、左側に実施例と従来例(1)との生産能力比(実施例の生産能力(単位面積当たり)/従来例(1)の生産能力(単位面積当たり))、右側に実施例と従来例(2)との生産能力比(実施例の生産能力(単位面積当たり)/従来例(2)の生産能力(単位面積当たり))を表す。
In Table 1 above, “seaweed yield (wet weight)” represents the total yield of seaweed harvested after the cultivation period. “Seaweed growth (wet weight)” represents the amount (kg) of seaweed grown during the cultivation period on the left side (corresponding to “seaweed harvest” minus “seaweed input”), right side The amount of seaweed grown per day (kg / day) obtained by dividing the amount of seaweed grown (kg) by the “culture period”.
“Production capacity (per unit area)” in Table 1 is the value obtained by dividing the growth amount of seaweeds per day (kg / day) by the aquaculture tank installation area (kg / m 2 · day) ). The “installation area” in the example is 3 m wide × 2.34 m≈7 m 2 , and the “installation area” in the conventional examples (1) and (2) is 1 m wide × 7 m long = 7 m 2 .
"Production capacity conventional ratio" is the production capacity ratio between the embodiment and the conventional example (1) on the left side (production capacity of the embodiment (per unit area) / production capacity of the conventional example (1) (per unit area)), On the right side, the production capacity ratio between the embodiment and the conventional example (2) (the production capacity of the embodiment (per unit area) / the production capacity of the conventional example (2) (per unit area)) is shown.

表1中、「海水ポンプの消費動力」「エアポンプの消費動力」は、それぞれポンプを一日使用した際の消費動力を表す。「合計(消費動力)」は、「海水ポンプの消費動力」と「エアポンプの消費動力」とを足した値である。
なお、表1中の「エネルギ原単位」は、「合計(消費動力)」を「一日当たりの海藻類の生長量(kg/日)」で除して得られる数値(kwh/kg)である。
「エネルギ従来比」は、左側に実施例と従来例(1)とのエネルギ原単位比(実施例のエネルギ原単位/従来例(1)のエネルギ原単位)、右側に実施例と従来例(2)とのエネルギ原単位比(実施例のエネルギ原単位/従来例(2)のエネルギ原単位)を表す。
In Table 1, “power consumption of seawater pump” and “power consumption of air pump” represent power consumption when the pump is used for one day. “Total (consumption power)” is a value obtained by adding “consumption power of seawater pump” and “consumption power of air pump”.
“Energy unit” in Table 1 is a numerical value (kwh / kg) obtained by dividing “total (power consumption)” by “amount of seaweed growth per day (kg / day)”. .
“Energy conventional ratio” is the energy unit ratio of the example and the conventional example (1) on the left side (energy unit of the example / energy unit of the conventional example (1)), and the example and the conventional example on the right side ( 2) and the energy intensity ratio (energy intensity in the embodiment / energy intensity in the conventional example (2)).

表1の生産性の結果を参照すると、単位面積当たりの生産能力に関して、実施例では0.303kg/m2・日であるのに対して、従来例(1)では0.145kg/m2・日、従来例(2)では0.156kg/m2・日であった。該結果より、本発明の陸上養殖装置を使用すると、養殖水槽内における海藻類の上下入れ替えが円滑に行われるので、より生産性よく海藻類を養殖できることが確認された。 Referring to Table 1 of productivity results, with respect to production capacity per unit area, whereas in the embodiment is a two-day 0.303kg / m, 0.145kg / m 2 · In the conventional example (1) In the conventional example (2), it was 0.156 kg / m 2 · day. From the results, it was confirmed that seaweeds can be cultivated with higher productivity because the seaweeds in the aquaculture tank can be switched up and down smoothly when the land culture device of the present invention is used.

なお、養殖水槽内における海藻類の密度が所定の値に達すると、海藻類の生長が鈍る。そのため、養殖水槽の容量は、海藻類の収穫時に海藻類の密度が所定の値になるように選定される。
そのため、従来例(1)の養殖水槽にスジアオノリを2倍入れても、スジアオノリの密度が過大となり、スジアオノリの生長性が劣り、結果として単位面積当たりの生産能力が落ちる。
また、従来例(1)と(2)との比較から分かるように、従来例(2)で水位が2.5mとより深い角型水槽を使用して、スジアオノリの密度を実施例と等価にしても、養殖水槽内の養殖用海水の攪拌・循環が不十分なため、大きな生産能力の向上は見られなかった。
In addition, when the density of the seaweed in the aquaculture tank reaches a predetermined value, the growth of the seaweed becomes dull. Therefore, the capacity of the aquaculture tank is selected so that the density of the seaweed becomes a predetermined value when the seaweed is harvested.
For this reason, even if the Sujionori is doubled in the aquaculture tank of the conventional example (1), the density of the Sujionori becomes excessive, resulting in poor growth of the Sujionori, resulting in a decrease in production capacity per unit area.
Further, as can be seen from the comparison between the conventional examples (1) and (2), in the conventional example (2), the water level is 2.5 m and a deeper square water tank is used, and the density of the swallow is equal to that of the example. However, there was no significant improvement in production capacity due to insufficient agitation and circulation of the aquaculture seawater in the aquaculture tank.

また、表1の消費エネルギの結果を参照すると、エネルギ原単位に関して、実施例では4.33kwh/kgであるのに対して、従来例(1)では10.5kwh/kg、従来例(2)では24.2kwh/kgであった。該結果より、本発明の陸上養殖装置を使用すると、より省エネルギで海藻類を養殖できることが確認された。   Further, referring to the results of energy consumption shown in Table 1, the energy intensity is 4.33 kwh / kg in the embodiment, while 10.5 kwh / kg in the conventional example (1), the conventional example (2). Then, it was 24.2 kwh / kg. From the results, it was confirmed that seaweeds can be cultivated with more energy saving by using the land culture device of the present invention.

10,100 海藻類の陸上養殖装置
12 養殖水槽
14 養殖用海水供給装置
16 気体供給装置
18,54 オーバーフロー用開口
20 オーバーフロー水受け樋
22 回収管
24 回収カゴ
26 給水配管
28 注水管
30 エアポンプ
32 エア配管
34 気体吹込管
36 側壁部
38 底壁部
40 端壁部
42,58 排水配管
44 養殖用海水循環装置
46 養殖用海水循環槽
48 循環配管
50 流量調節弁
52 循環ポンプ
56 開閉弁
W 養殖用海水
DESCRIPTION OF SYMBOLS 10,100 Onshore aquaculture equipment 12 Aquaculture tank 14 Aquaculture seawater supply equipment 16 Gas supply equipment 18,54 Overflow opening 20 Overflow water receptacle 22 Collection pipe 24 Collection basket 26 Water supply pipe 28 Water injection pipe 30 Air pump 32 Air pipe 34 Gas Blow Pipe 36 Side Wall 38 Bottom Wall 40 End Wall 42, 58 Drain Piping 44 Aquaculture Sea Circulation Device 46 Aquaculture Sea Circulation Tank 48 Circulation Piping 50 Flow Control Valve 52 Circulation Pump 56 Open / Close Valve W Aquaculture Seawater

Claims (16)

海藻類を養殖するための養殖用海水を貯留する養殖水槽と、
前記養殖水槽内に新たな養殖用海水を供給する養殖用海水供給装置とを備える海藻類の陸上養殖装置であって、
前記養殖水槽は、少なくとも底部に湾曲壁面を有し、横断面形状がU字状または半円状であり、
前記養殖用海水供給装置は、前記養殖水槽内に貯留された前記養殖用海水に対し、上方から前記新たな養殖用海水を噴流状に流下させることにより、前記養殖水槽内の前記養殖用海水を前記湾曲壁面に沿うように旋回させて攪拌することを特徴とする海藻類の陸上養殖装置。
An aquaculture tank that stores aquaculture seawater for aquaculture of seaweeds,
A seaweed onshore aquaculture device comprising an aquaculture seawater supply device for supplying new aquaculture seawater into the aquaculture tank,
The aquaculture tank has a curved wall surface at least at the bottom, and the cross-sectional shape is U-shaped or semicircular,
The aquaculture seawater supply device causes the aquaculture seawater stored in the aquaculture tank to flow down the new aquaculture seawater in a jet-like form from above, thereby reducing the aquaculture seawater in the aquaculture tank. A seaweed terrestrial aquaculture apparatus, which is swirled along the curved wall surface and stirred.
前記養殖水槽は、2つの側壁部と、前記2つの側壁部間に位置し、少なくとも前記湾曲壁面の一部をなす底壁部とを備え、
前記養殖用海水供給装置は、前記新たな養殖用海水を上方から略垂直方向に噴流状に流下させる注水管を備え、
前記注水管の先端部は、前記養殖水槽内に貯留された前記養殖用海水の水面下に配置される、請求項1に記載の海藻類の陸上養殖装置。
The aquaculture tank includes two side walls and a bottom wall located between the two side walls and forming at least a part of the curved wall surface,
The aquaculture seawater supply device includes a water injection pipe that causes the new aquaculture seawater to flow down in a substantially vertical direction from above.
2. The seaweed onshore culture device according to claim 1, wherein a tip portion of the water injection pipe is disposed below a surface of the aquaculture seawater stored in the aquaculture tank.
前記注水管は、前記養殖水槽の前記2つの側壁部の一方または両方の上端部近傍に配置され、前記養殖水槽内の前記養殖用海水に対し、前記新たな養殖用海水を前記側壁部に沿って噴流状に流下させる、請求項2に記載の海藻類の陸上養殖装置。   The water injection pipe is disposed in the vicinity of the upper end of one or both of the two side walls of the aquaculture tank, and the new aquaculture seawater along the side wall with respect to the aquaculture seawater in the aquaculture tank The seaweed terrestrial aquaculture apparatus according to claim 2, which is caused to flow down in a jet form. 前記注水管は、前記2つの側壁部の略中心位置に配置され、前記新たな養殖用海水を前記養殖水槽内の前記養殖用海水の略中心位置に噴流状に流下させる、請求項2に記載の海藻類の陸上養殖装置。   The said water injection pipe is arrange | positioned in the approximate center position of the said 2 side wall part, and the said new aquaculture seawater is made to flow down to the approximate center position of the said aquaculture seawater in the said aquaculture tank in a jet form. Seaweed onshore aquaculture equipment. 前記注水管の先端は、前記養殖水槽内の前記養殖用海水の水面位置から前記養殖水槽の最底部までの深さの1/2以内の深さ位置に配置される、請求項2〜4のいずれかに記載の海藻類の陸上養殖装置。   The tip of the water injection pipe is arranged at a depth position within ½ of the depth from the water surface position of the aquaculture seawater in the aquaculture tank to the bottom of the aquaculture tank. The aquaculture device for seaweed according to any one of the above. さらに、前記養殖水槽内の前記養殖用海水中に、前記養殖用海水の攪拌を促進する気泡を供給する気体供給装置を備える、請求項1〜5のいずれかに記載の海藻類の陸上養殖装置。   Furthermore, the seaweed onshore culture apparatus of any one of Claims 1-5 provided with the gas supply apparatus which supplies the bubble which accelerates | stimulates stirring of the said seawater for culture in the said culture seawater in the said culture tank . 前記養殖水槽は、その上部の所定の位置に前記養殖水槽内の前記養殖用海水をオーバーフローさせるオーバーフロー用開口を備え、前記養殖水槽内に貯留された前記養殖用海水の水面位置を規定する、請求項1〜6のいずれかに記載の海藻類の陸上養殖装置。   The aquaculture tank is provided with an overflow opening for overflowing the aquaculture seawater in the aquaculture tank at a predetermined position at an upper portion thereof, and defines a water surface position of the aquaculture seawater stored in the aquaculture tank. Item 7. An onshore aquaculture device for seaweed according to any one of Items 1 to 6. さらに、前記オーバーフロー用開口からオーバーフローした前記養殖用海水を前記養殖水槽に循環させる養殖用海水循環装置を備える、請求項7に記載の海藻類の陸上養殖装置。   The seaweed onshore aquaculture apparatus according to claim 7, further comprising an aquaculture seawater circulation device that circulates the aquaculture seawater overflowed from the overflow opening to the aquaculture tank. 前記養殖用海水循環装置は、前記オーバーフロー用開口からオーバーフローした前記養殖用海水を溜めると共に、溜められた養殖用海水と供給された補給用の新海水とを混合して前記新たな養殖用海水とする養殖用海水循環槽を備え、前記養殖用海水循環槽の前記新たな養殖用海水を前記養殖水槽に戻す、請求項8に記載の海藻類の陸上養殖装置。   The aquaculture seawater circulation device accumulates the aquaculture seawater that has overflowed from the overflow opening, and mixes the aquaculture seawater stored with the supplied fresh seawater to supply the new aquaculture seawater. The aquaculture land culture apparatus according to claim 8, further comprising a seawater circulation tank for aquaculture, wherein the new seawater for culture in the aquaculture seawater circulation tank is returned to the aquaculture tank. さらに、前記養殖水槽の所定の位置に前記養殖水槽内の海藻類を回収するための回収口を備える、請求項1〜9のいずれかに記載の海藻類の陸上養殖装置。   Furthermore, the seaweed land culture apparatus in any one of Claims 1-9 provided with the collection | recovery port for collect | recovering the seaweed in the said culture tank in the predetermined position of the said culture tank. 少なくとも底部に湾曲壁面を有し、横断面形状がU字状または半円状である養殖水槽内に貯留された養殖用海水中で海藻類の養殖を行う海藻類の陸上養殖方法であって、
予め、前記養殖水槽内に前記養殖用海水を貯留しておき、
前記養殖水槽内に貯留された前記養殖用海水に対し、上方から新たな養殖用海水を噴流状に流下させ、
前記養殖水槽内の前記養殖用海水を前記湾曲壁面に沿うように旋回させて攪拌することを特徴とする海藻類の陸上養殖方法。
A seaweed onshore culture method for culturing seaweed in aquaculture seawater stored in an aquaculture tank having a curved wall surface at least at the bottom and having a U-shaped or semicircular cross-sectional shape,
In advance, the aquaculture seawater is stored in the aquaculture tank,
With respect to the aquaculture seawater stored in the aquaculture tank, a new aquaculture seawater is caused to flow down in a jet from above.
An aquaculture method for seaweed, wherein the aquaculture seawater in the aquaculture tank is swirled along the curved wall surface and stirred.
前記養殖水槽内の前記養殖用海水を旋回させるための流速は、1〜10cm/sである請求項11に記載の海藻類の陸上養殖方法。   The land culture method for seaweed according to claim 11, wherein a flow rate for swirling the aquaculture seawater in the aquaculture tank is 1 to 10 cm / s. 前記新たな養殖用海水の流下は、前記養殖水槽の2つの側壁部の一方または両方の上端部近傍の前記養殖用海水の水面下に、前記新たな養殖用海水を、直接供給して、噴流状に流下させるものである請求項11または12に記載の海藻類の陸上養殖方法。   The new aquaculture seawater flows down by directly supplying the aquaculture seawater under the surface of the aquaculture seawater near the upper end of one or both of the two side walls of the aquaculture tank. The land culture method for seaweed according to claim 11 or 12, wherein the seaweed is caused to flow downward. 前記新たな養殖用海水の流下は、前記養殖水槽の2つの側壁部の上端部近傍の略中心位置の前記養殖用海水の水面下に、前記新たな養殖用海水を、直接供給して、前記養殖水槽内の前記養殖用海水の略中心位置に噴流状に流下させるものである請求項11〜13のいずれか1項に記載の海藻類の陸上養殖方法。   The new aquaculture seawater flows down by supplying the new aquaculture seawater directly below the surface of the aquaculture seawater at a substantially central position near the upper ends of the two side walls of the aquaculture tank. The land culture method for seaweed according to any one of claims 11 to 13, wherein the seawater for aquaculture is caused to flow down to a substantially central position of the aquaculture seawater in a culture tank. 前記養殖水槽内を旋回している前記養殖用海水中に、前記養殖用海水の攪拌を促進する気泡を供給する、請求項11〜14のいずれか1項に記載の海藻類の陸上養殖方法。   The seaweed onshore culture method according to any one of claims 11 to 14, wherein bubbles for promoting agitation of the aquaculture seawater are supplied into the aquaculture seawater swirling in the aquaculture tank. 前記新たな養殖用海水の供給量(l/min)と、前記気泡の供給量(l/min)との比(気泡供給量/養殖用海水供給量)が1〜5である、請求項15に記載の海藻類の陸上養殖方法。
The ratio of the supply amount (l / min) of the new aquaculture seawater to the supply amount (l / min) of the bubbles (bubble supply amount / aquaculture seawater supply amount) is 1 to 5. A method for aquaculture of seaweed as described in 1.
JP2011080383A 2011-03-31 2011-03-31 Seaweed onshore aquaculture device and seaweed onshore aquaculture method Active JP5713762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080383A JP5713762B2 (en) 2011-03-31 2011-03-31 Seaweed onshore aquaculture device and seaweed onshore aquaculture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080383A JP5713762B2 (en) 2011-03-31 2011-03-31 Seaweed onshore aquaculture device and seaweed onshore aquaculture method

Publications (2)

Publication Number Publication Date
JP2012213351A JP2012213351A (en) 2012-11-08
JP5713762B2 true JP5713762B2 (en) 2015-05-07

Family

ID=47266823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080383A Active JP5713762B2 (en) 2011-03-31 2011-03-31 Seaweed onshore aquaculture device and seaweed onshore aquaculture method

Country Status (1)

Country Link
JP (1) JP5713762B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698158B2 (en) * 2011-03-31 2015-04-08 Jfeメカニカル株式会社 Multi-stage continuous aquaculture equipment for seaweed
CN104126494B (en) * 2013-09-22 2016-04-06 山东大学(威海) The indoor long-period culture method of a kind of Zostera marina and device
KR102085952B1 (en) * 2017-12-12 2020-03-06 유한회사 해양생태과학기술 Management system for the ecological environment of sea farm
KR102084308B1 (en) * 2018-04-25 2020-03-03 문경현 Land aquaculture system for laver
JP7353653B2 (en) * 2018-08-01 2023-10-02 国立大学法人高知大学 Seaweed cell production method
JP6675128B1 (en) * 2018-10-01 2020-04-01 潤司 池田 High pressure water cleaning device for fishing net and method of cleaning fishing net
JP6736067B1 (en) * 2019-04-19 2020-08-05 株式会社日鰻 Algae growing device
JP2021036778A (en) * 2019-08-30 2021-03-11 松田産業株式会社 On-land aquaculture method for red alga pyropia
KR102379717B1 (en) * 2019-12-19 2022-03-28 주식회사 네오엔비즈 Automatic plant production device using bioflock breeding water
CN114081003B (en) * 2021-12-21 2023-06-23 威海泰裕海洋科技有限公司 Sea cucumber seabed aquaculture net case
KR102547100B1 (en) * 2022-06-14 2023-06-26 주식회사 미래바다 Cylindrical breeding tank for mass production of white shrimp intermediate seedlings

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957494U (en) * 1972-09-08 1974-05-21
JPS52116641A (en) * 1976-03-22 1977-09-30 Bioo Kaineteitsukusu Inc Method of and apparatus for purifying waste
JPS6328383A (en) * 1986-07-21 1988-02-06 Hitachi Ltd Cultivation and equipment therefor
JPH0732699B2 (en) * 1991-07-24 1995-04-12 株式会社荏原総合研究所 Photosynthetic microorganism culture device
JPH07203789A (en) * 1994-01-24 1995-08-08 Kyodo Kumiai Marine Retasu Kenkyusho On land cultivation method of sterile ulva pertusa variant
JP3112439B2 (en) * 1997-09-16 2000-11-27 株式会社スピルリナ研究所 Method for producing algae and apparatus for producing the same
JP2002027972A (en) * 2000-07-12 2002-01-29 Kansai Electric Power Co Inc:The Method for cultivating sterile ulva pertusa
JP2004097003A (en) * 2002-09-04 2004-04-02 Mitsubishi Heavy Ind Ltd Method and device for producing sterile seaweed
WO2004093525A2 (en) * 2003-04-23 2004-11-04 Sinaloa Seafields International, Inc. Aquatic surface barriers and methods for culturing seaweed
US8033047B2 (en) * 2007-10-23 2011-10-11 Sartec Corporation Algae cultivation systems and methods
WO2010116946A1 (en) * 2009-04-06 2010-10-14 マイクロリソース株式会社 Microalgae cultivation device
US20100325948A1 (en) * 2009-06-29 2010-12-30 Mehran Parsheh Systems, methods, and media for circulating and carbonating fluid in an algae cultivation pond
JP5549209B2 (en) * 2009-12-11 2014-07-16 株式会社Ihi Adherent cell culture device

Also Published As

Publication number Publication date
JP2012213351A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5713762B2 (en) Seaweed onshore aquaculture device and seaweed onshore aquaculture method
US20220312747A1 (en) Recirculating aquaculture system using biofloc fermenter and aquaponics
CN204949166U (en) Fish, plant intergrowth device
JP6297816B2 (en) Abalone culture method and culture system
CN103283642B (en) A kind of prawn shrimp seedling indoor high-density supports regulating and controlling water quality method temporarily
CN202272773U (en) Net cage type ecological mattress with adjustable sinking position
JP5042585B2 (en) Water purification device and water purification method
CN203860270U (en) Culture storage tank for high-density temporary culture of tubificidae
KR101508055B1 (en) Aquaculture tank for bio-floc, using a bio skimmer
CN106719246A (en) Batch production shrimp ecosystem and method based on air lift circulation
EP4176715A1 (en) Modular aquaculture tank having staged circulation filtration tanks
CN106719270A (en) A kind of aquaculture life-support system and its application method
JP2006289275A (en) Water cleaning apparatus and hydroponic culture apparatus using the same
CN201091152Y (en) Fry hatching net cage of aquatic livestock
CN101935108B (en) Foam separation-oxygenation integrated equipment
CN205161604U (en) Two gas holder oxygen -increasing machines
CN106172166A (en) A kind of three-dimensional aeration system being applicable to biological flocculation breeding way and oxygenation method
CN204742224U (en) Ecological farming systems
JP2016208890A (en) Abalone culturing method and system for same
CN104012456A (en) Water circulation system for fish fry culture pond
CN110407325A (en) A kind of oenanthe stolonifera culture apparatus convenient for quickly harvesting plant
KR20160103838A (en) Eco circulating aquaculture farming device
CN109089981A (en) A kind of complementary warm canopy prawn intensive culture system of fishing light
CN105010213B (en) A kind of ecological cultivation system
CN203781919U (en) Ecological floating bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5713762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250