JP5705180B2 - 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体 - Google Patents

検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体 Download PDF

Info

Publication number
JP5705180B2
JP5705180B2 JP2012184086A JP2012184086A JP5705180B2 JP 5705180 B2 JP5705180 B2 JP 5705180B2 JP 2012184086 A JP2012184086 A JP 2012184086A JP 2012184086 A JP2012184086 A JP 2012184086A JP 5705180 B2 JP5705180 B2 JP 5705180B2
Authority
JP
Japan
Prior art keywords
wafer
substrate
holding
unit
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012184086A
Other languages
English (en)
Other versions
JP2014041957A (ja
Inventor
新二 古閑
新二 古閑
昭徳 宮原
昭徳 宮原
浩 富田
浩 富田
修児 岩永
修児 岩永
田村 武
武 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012184086A priority Critical patent/JP5705180B2/ja
Priority to US13/967,896 priority patent/US9097681B2/en
Publication of JP2014041957A publication Critical patent/JP2014041957A/ja
Application granted granted Critical
Publication of JP5705180B2 publication Critical patent/JP5705180B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、基板同士を接合した重合基板を検査する検査装置、当該検査装置を備えた接合システム、当該検査装置を用いた検査方法、プログラム及びコンピュータ記憶媒体に関する。
近年、半導体デバイスの高集積化が進んでいる。高集積化した複数の半導体デバイスを水平面内で配置し、これら半導体デバイスを配線で接続して製品化する場合、配線長が増大し、それにより配線の抵抗が大きくなること、また配線遅延が大きくなることが懸念される。
そこで、半導体デバイスを3次元に積層する3次元集積技術を用いることが提案されている。この3次元集積技術においては、例えば接合システムを用いて、2枚の半導体ウェハ(以下、「ウェハ」という。)の接合が行われる。例えば接合システムは、基板の接合される表面を親水化する表面親水化装置と、当該表面親水化装置で表面が親水化された基板同士を接合する接合装置と、を有している。この接合システムでは、表面親水化装置において基板の表面に純水を供給して当該基板の表面を親水化した後、接合装置において基板同士をファンデルワールス力及び水素結合(分子間力)によって接合する(特許文献1)。
特開2011−187716号公報
ところで、上述したウェハ同士を適切に接合するためには、接合された2枚のウェハの相対的な位置がずれていないことが必要となる。このウェハの接合状態の検査は、従来、例えば撮像カメラを水平方向及び鉛直方向に移動させ、当該撮像カメラでウェハ上の基準点を計測することで行われていた。しかしながら、この検査で用いられる検査装置には水平方向及び鉛直方向の3軸機械機構が必要となるため、当該検査装置が大型化してしまう。
本発明は、かかる点に鑑みてなされたものであり、基板同士を接合した重合基板を検査する検査装置を小型化しつつ、当該検査装置で重合基板の接合状態を適切に検査することを目的とする。
前記の目的を達成するため、本発明は、基板同士を接合した重合基板を検査する検査装置であって、重合基板を保持して回転させる保持部と、前記保持部に保持された重合基板を回転させながら、当該重合基板を構成する第1の基板と第2の基板の外側面の変位をそれぞれ測定する変位計と、重合基板の裏面を保持し、平面視において重合基板の裏面の一部が露出するように切り欠き部が形成された他の保持部と、前記他の保持部に保持された重合基板の前記切り欠き部から露出した裏面に赤外線を照射する赤外線照射部と、前記赤外線照射部から照射された赤外線を受信し、前記他の保持部に保持された重合基板を前記切り欠き部で露出した裏面毎に分割して撮像する撮像部と、を有することを特徴としている。
本発明によれば、保持部に保持された重合基板を回転させながら、変位計を用いて当該重合基板を構成する第1の基板と第2の基板の外側面の変位をそれぞれ測定し、重合基板の接合状態を適切に検査することができる。しかも、保持部と変位計のみにより重合基板の接合状態の検査を行うことができるので、従来のように大掛かりな3軸機械機構が不要となり、検査装置を小型化することができる。
前記切り欠き部は、重合基板の裏面の1/4が露出するように形成され、前記他の保持部は、重合基板の裏面を保持する4つの支持部材を有し、前記4つの支持部材は、平面視において隣り合う支持部材が互いに直交する方向に延伸していてもよい。
前記検査装置は、前記他の保持部に保持された重合基板の表面に赤外線を照射する他の赤外線照射部を有していてもよい。
前記赤外線の波長は1100nm〜2000nmであってもよい。
参考例として、前記検査装置は、前記保持部に保持された重合基板の表面に光を照射する照明部と、前記照明部から照射された光を受信し、前記保持部に保持された重合基板の表面を撮像する撮像部と、を有していてもよい。
別な観点による本発明は、前記検査装置を備えた接合システムであって、基板同士を接合するために所定の処理を行う複数の処理装置と、前記複数の処理装置に対して接合前の第1の基板、第2の基板、又は接合後の重合基板を搬送するための基板搬送領域と、を備えた処理ステーションと、前記処理ステーションに対して接合前の第1の基板、第2の基板、又は接合後の重合基板を搬入出する搬入出ステーションと、を有し、前記検査装置は、前記処理ステーションにおいて、前記基板搬送領域に隣接し且つ前記搬入出ステーション側に配置されていることを特徴としている。
また別な観点による本発明は、検査装置を用いて、基板同士を接合した重合基板を検査する検査方法であって、前記検査装置は、重合基板を保持して回転させる保持部と、前記保持部に保持された重合基板の外側面の変位を測定する変位計と、重合基板の裏面を保持し、平面視において重合基板の裏面の一部が露出するように切り欠き部が形成された他の保持部と、前記他の保持部に保持された重合基板の前記切り欠き部から露出した裏面に赤外線を照射する赤外線照射部と、前記赤外線照射部から照射された赤外線を受信し、前記他の保持部に保持された重合基板を前記切り欠き部で露出した裏面毎に分割して撮像する撮像部と、を有し、前記検査方法では、前記保持部に保持された重合基板を回転させながら、前記変位計を用いて当該重合基板を構成する第1の基板と第2の基板の外側面の変位をそれぞれ測定し、重合基板の接合状態を検査し、前記検査方法は、前記他の保持部に重合基板が保持された状態で、前記切り欠き部から露出した重合基板の裏面に前記赤外線照射部から赤外線を照射し、前記撮像部において、前記照射された赤外線を受信して、前記切り欠き部から露出した重合基板を撮像する撮像工程と、前記保持部に重合基板が保持された状態で、前記撮像工程で撮像されていない部分の重合基板の裏面が前記切り欠き部から露出するように、前記保持部によって重合基板を回動させる回動工程と、を有し、前記撮像工程と前記回動工程とをこの順で繰り返し行って、重合基板全体を撮像し、当該重合基板の内部を検査することを特徴としている。
前記切り欠き部は、重合基板の裏面の1/4が露出するように形成され、前記撮像工程を4回繰り返し行って、重合基板全体を撮像してもよい。
前記検査装置は、前記他の保持部に保持された重合基板の表面に赤外線を照射する他の赤外線照射部を有し、前記撮像工程において、前記赤外線照射部による前記切り欠き部から露出した重合基板の裏面への赤外線の照射、又は前記他の赤外線照射部による重合基板の表面への赤外線の照射を選択的に行うようにしてもよい。
前記赤外線の波長は1100nm〜2000nmであってもよい。
参考例として、前記検査装置は、前記保持部に保持された重合基板の表面に光を照射する照明部と、前記照明部から照射された光を受信し、前記保持部に保持された重合基板の表面を撮像する撮像部と、を有し、前記検査方法では、前記保持部に重合基板が保持された状態で、前記照明部から重合基板の表面に光を照射し、前記撮像部において、前記照射された光を受信して、前記保持部に保持された重合基板の表面を撮像し、当該重合基板の表面を検査してもよい。
また別な観点による本発明によれば、前記検査方法を検査装置によって実行させるために、当該検査装置を制御する制御部のコンピュータ上で動作するプログラムが提供される。
さらに別な観点による本発明によれば、前記プログラムを格納した読み取り可能なコンピュータ記憶媒体が提供される。
本発明によれば、基板同士を接合した重合基板を検査する検査装置を小型化しつつ、当該検査装置で重合基板の接合状態を適切に検査することができる。
本実施の形態にかかる接合システムの構成の概略を示す平面図である。 本実施の形態にかかる接合システムの内部構成の概略を示す側面図である。 上ウェハと下ウェハの構成の概略を示す側面図である。 表面改質装置の構成の概略を示す縦断面図である。 イオン通過構造体の平面図である。 表面親水化装置の構成の概略を示す縦断面図である。 表面親水化装置の構成の概略を示す横断面図である。 接合装置の構成の概略を示す横断面図である。 接合装置の構成の概略を示す縦断面図である。 位置調節機構の構成の概略を示す側面図である。 反転機構の構成の概略を示す平面図である。 反転機構の構成の概略を示す側面図である。 反転機構の構成の概略を示す側面図である。 保持アームと保持部材の構成の概略を示す側面図である。 上チャックと下チャックの構成の概略を示す縦断面図である。 上チャックを下方から見た平面図である。 下チャックを上方から見た平面図である。 検査装置の構成の概略を示す横断面図である。 検査装置の構成の概略を示す縦断面図である。 第1の保持部の構成の概略を示す平面図である。 赤外線照射部と撮像部との間の赤外線の進行路を示す説明図である。 第1の方向変換部と第2の方向変換部の構成の概略を示す斜視図である。 変位計を用いて上ウェハと下ウェハの外側面の変位を測定する様子を示す説明図である。 上ウェハのノッチ部と下ウェハのノッチ部の位置ずれを測定する様子を示す説明図である。 ウェハ接合処理の主な工程を示すフローチャートである。 上ウェハと下ウェハの水平方向の位置を調節する様子を示す説明図である。 上ウェハと下ウェハの鉛直方向の位置を調節する様子を示す説明図である。 上ウェハの中心部と下ウェハの中心部を当接させて押圧する様子を示す説明図である。 上ウェハを下ウェハに順次当接させる様子を示す説明図である。 上ウェハの表面と下ウェハの表面を当接させた様子を示す説明図である。 上ウェハと下ウェハが接合された様子を示す説明図である。 ウェハ搬送装置から昇降ピンに重合ウェハが受け渡された様子を示す説明図である。 第1の保持部を受渡位置から検査位置まで移動させた様子を示す説明図である。 第1の保持部から第2の保持部に重合ウェハが受け渡された様子を示す説明図である。 第1の保持部を移動させて重合ウェハを撮像する様子を示す説明図である。 分割撮像される重合ウェハを示す説明図である。 他の実施の形態にかかる赤外線照射部と撮像部との間の赤外線の進行路を示す説明図である。 他の実施の形態にかかる検査装置の構成の概略を示す縦断面図である。 他の実施の形態にかかる赤外線照射部と撮像部との間の赤外線の進行路を示す説明図である。 他の実施の形態にかかる赤外線照射部と撮像部との間の赤外線の進行路を示す説明図である。 他の実施の形態にかかる検査装置の構成の概略を示す横断面図である。 他の実施の形態にかかる検査装置の構成の概略を示す縦断面図である。
以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる接合システム1の構成の概略を示す平面図である。図2は、接合システム1の内部構成の概略を示す側面図である。
接合システム1では、図3に示すように例えば2枚の基板としてのウェハW、Wを接合する。以下、上側に配置されるウェハを、第1の基板としての「上ウェハW」といい、下側に配置されるウェハを、第2の基板としての「下ウェハW」という。また、上ウェハWが接合される接合面を「表面WU1」といい、当該表面WU1と反対側の面を「裏面WU2」という。同様に、下ウェハWが接合される接合面を「表面WL1」といい、当該表面WL1と反対側の面を「裏面WL2」という。そして、接合システム1では、上ウェハWと下ウェハWを接合して、重合基板としての重合ウェハWを形成する。
接合システム1は、図1に示すように例えば外部との間で複数のウェハW、W、複数の重合ウェハWをそれぞれ収容可能なカセットC、C、Cが搬入出される搬入出ステーション2と、ウェハW、W、重合ウェハWに対して所定の処理を施す各種処理装置を備えた処理ステーション3とを一体に接続した構成を有している。
搬入出ステーション2には、カセット載置台10が設けられている。カセット載置台10には、複数、例えば4つのカセット載置板11が設けられている。カセット載置板11は、水平方向のX方向(図1中の上下方向)に一列に並べて配置されている。これらのカセット載置板11には、接合システム1の外部に対してカセットC、C、Cを搬入出する際に、カセットC、C、Cを載置することができる。このように、搬入出ステーション2は、複数の上ウェハW、複数の下ウェハW、複数の重合ウェハWを保有可能に構成されている。なお、カセット載置板11の個数は、本実施の形態に限定されず、任意に設定することができる。また、カセットの1つを異常ウェハの回収用として用いてもよい。すなわち、種々の要因で上ウェハWと下ウェハWとの接合に異常が生じたウェハを、他の正常な重合ウェハWと分離することができるカセットである。本実施の形態においては、複数のカセットCのうち、1つのカセットCを異常ウェハの回収用として用い、他のカセットCを正常な重合ウェハWの収容用として用いている。
搬入出ステーション2には、カセット載置台10に隣接してウェハ搬送部20が設けられている。ウェハ搬送部20には、X方向に延伸する搬送路21上を移動自在なウェハ搬送装置22が設けられている。ウェハ搬送装置22は、鉛直方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板11上のカセットC、C、Cと、後述する処理ステーション3の第3の処理ブロックG3の検査装置50、トランジション装置51、52との間でウェハW、W、重合ウェハWを搬送できる。
処理ステーション3には、各種装置を備えた複数例えば3つの処理ブロックG1、G2、G3が設けられている。例えば処理ステーション3の正面側(図1のX方向負方向側)には、第1の処理ブロックG1が設けられ、処理ステーション3の背面側(図1のX方向正方向側)には、第2の処理ブロックG2が設けられている。また、処理ステーション3の搬入出ステーション2側(図1のY方向負方向側)には、第3の処理ブロックG3が設けられている。
例えば第1の処理ブロックG1には、ウェハW、Wの表面WU1、WL1を改質する表面改質装置30が配置されている。本実施の形態では、表面改質装置30において、ウェハW、Wの表面WU1、WL1におけるSiOの結合を切断して単結合のSiOとすることで、その後親水化されやすくするように当該表面WU1、WL1を改質する。
例えば第2の処理ブロックG2には、例えば純水によってウェハW、Wの表面WU1、WL1を親水化すると共に当該表面WU1、WL1を洗浄する表面親水化装置40、ウェハW、Wを接合する接合装置41が、搬入出ステーション2側からこの順で水平方向のY方向に並べて配置されている。
例えば第3の処理ブロックG3には、図2に示すように重合ウェハWの内部を検査する検査装置50、ウェハW、W、重合ウェハWのトランジション装置51、52が下から順に3段に設けられている。
図1に示すように第1の処理ブロックG1〜第3の処理ブロックG3に囲まれた領域には、基板搬送領域としてのウェハ搬送領域60が形成されている。ウェハ搬送領域60には、例えばウェハ搬送装置61が配置されている。
ウェハ搬送装置61は、例えば鉛直方向、水平方向(Y方向、X方向)及び鉛直軸周りに移動自在な搬送アームを有している。ウェハ搬送装置61は、ウェハ搬送領域60内を移動し、周囲の第1の処理ブロックG1、第2の処理ブロックG2及び第3の処理ブロックG3内の所定の装置にウェハW、W、重合ウェハWを搬送できる。
次に、上述した表面改質装置30の構成について説明する。表面改質装置30は、図4に示すように処理容器100を有している。処理容器100の上面は開口し、当該上面開口部に後述するラジアルラインスロットアンテナ120が配置されて、処理容器100は内部を密閉可能に構成されている。
処理容器100のウェハ搬送領域60側の側面には、ウェハW、Wの搬入出口101が形成され、当該搬入出口101にはゲートバルブ102が設けられている。
処理容器100の底面には、吸気口103が形成されている。吸気口103には、処理容器100の内部の雰囲気を所定の真空度まで減圧する吸気装置104に連通する吸気管105が接続されている。
また、処理容器100の底面には、ウェハW、Wを載置する載置台110が設けられている。載置台110は、例えば静電吸着や真空吸着によってウェハW、Wを載置することができる。載置台110には、後述するように載置台110上のウェハW、Wに照射される処理ガスのイオン(酸素イオン)によって生じるイオン電流を測定するイオン電流計111が設けられている。
載置台110には、例えば冷却媒体を流通させる温度調節機構112が内蔵されている。温度調節機構112は、冷却媒体の温度を調節する液温調節部113に接続されている。そして、液温調節部113によって冷媒媒体の温度が調節され、載置台110の温度を制御できる。この結果、載置台110上に載置されたウェハWを所定の温度に維持できる。
なお、載置台110の下方には、ウェハW、Wを下方から支持し昇降させるための昇降ピン(図示せず)が設けられている。昇降ピンは、載置台110に形成された貫通孔(図示せず)を挿通し載置台110の上面から突出可能になっている。
処理容器100の上面開口部には、プラズマ生成用のマイクロ波を供給するラジアルラインスロットアンテナ120(RLSA:Radial Line Slot Antenna)が設けられている。ラジアルラインスロットアンテナ120は、下面が開口したアンテナ本体121を備えている。アンテナ本体121の内部には、例えば冷却媒体を流通させる流通路(図示せず)が設けられている。
アンテナ本体121の下面の開口部には、複数のスロットが形成され、アンテナとして機能するスロット板122が設けられている。スロット板122の材料には、導電性を有する材料、たとえば銅、アルミニウム、ニッケル等が用いられる。アンテナ本体121内のスロット板122の上部には、遅相板123が設けられている。遅相板123の材料には、低損失誘電体材料、例えば石英、アルミナ、窒化アルミニウム等が用いられる。
アンテナ本体121及びスロット板122の下方には、マイクロ波透過板124が設けられている。マイクロ波透過板124は、例えばOリング等のシール材(図示せず)を介して、処理容器100の内部を塞ぐように配置されている。マイクロ波透過板124の材料には、誘電体、例えば石英やAl等が用いられる。
アンテナ本体121の上部には、マイクロ波発振装置125に通じる同軸導波管126が接続されている。マイクロ波発振装置125は、処理容器100の外部に設置されており、ラジアルラインスロットアンテナ120に対し、所定周波数、例えば2.45GHzのマイクロ波を発振できる。
かかる構成により、マイクロ波発振装置125から発振されたマイクロ波は、ラジアルラインスロットアンテナ120内に伝搬され、遅相板123で圧縮され短波長化され、スロット板122で円偏波を発生させた後、マイクロ波透過板124を透過して処理容器100内に向けて放射される。
処理容器100の側面には、当該処理容器100内に処理ガスとしての酸素ガスを供給するガス供給管130が接続されている。ガス供給管130は、後述するイオン通過構造体140の上方に配置され、処理容器100内のプラズマ生成領域R1に酸素ガスを供給する。また、ガス供給管130には、内部に酸素ガスを貯留するガス供給源131に連通している。ガス供給管130には、酸素ガスの流れを制御するバルブや流量調節部等を含む供給機器群132が設けられている。
処理容器100内の載置台110とラジアルラインスロットアンテナ120との間には、イオン通過構造体140が設けられている。すなわち、イオン通過構造体140は、処理容器100の内部を、ガス供給管130から供給された酸素ガスをラジアルラインスロットアンテナ120から放射されたマイクロ波によってプラズマ化するプラズマ生成領域R1と、プラズマ生成領域R1で生成された酸素イオンを用いて載置台110上のウェハW、Wの表面WU1、WL1を改質する処理領域R2に区画するように設けられている。
イオン通過構造体140は、一対の電極141、142を有している。以下、上部に配置された電極を上部電極141といい、下部に配置された電極を下部電極142という場合がある。一対の電極141、142間には、当該一対の電極141、142を電気的に絶縁する絶縁材143が設けられている。
各電極141、142は、図4及び図5に示すように平面視においてウェハW、Wの径よりも大きい円形状を有している。また、各電極141、142には、プラズマ生成領域R1から処理領域R2に酸素イオンが通過する開口部144が複数形成されている。これら複数の開口部144は、例えば格子状に配置されている。なお、複数の開口部144の形状や配置は、本実施の形態に限定されず、任意に設定することができる。
ここで、各開口部144の寸法は、例えばラジアルラインスロットアンテナ120から放射されるマイクロ波の波長よりも短く設定されるのが好ましい。こうすることによって、ラジアルラインスロットアンテナ120から供給されたマイクロ波がイオン通過構造体140で反射され、マイクロ波の処理領域R2への進入を抑制できる。この結果、載置台110上のウェハW、Wがマイクロ波に直接曝されることがなく、マイクロ波によるウェハW、Wの損傷を防止できる。
イオン通過構造体140には、一対の電極141、142間に所定の電圧を印加する電源145が接続されている。この電源145によって印加される所定の電圧は、後述する制御部400によって制御され、最大電圧は例えば1KeVである。また、イオン通過構造体140には、一対の電極141、142間を流れる電流を測定する電流計146が接続されている。
次に、上述した表面親水化装置40の構成について説明する。表面親水化装置40は、図6に示すように内部を密閉可能な処理容器150を有している。処理容器150のウェハ搬送領域60側の側面には、図7に示すようにウェハW、Wの搬入出口151が形成され、当該搬入出口151には開閉シャッタ152が設けられている。
処理容器150内の中央部には、図6に示すようにウェハW、Wを保持して回転させるスピンチャック160が設けられている。スピンチャック160は、水平な上面を有し、当該上面には、例えばウェハW、Wを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハW、Wをスピンチャック160上に吸着保持できる。
スピンチャック160は、例えばモータなどを備えたチャック駆動部161を有し、そのチャック駆動部161により所定の速度に回転できる。また、チャック駆動部161には、例えばシリンダなどの昇降駆動源が設けられており、スピンチャック160は昇降自在になっている。
スピンチャック160の周囲には、ウェハW、Wから飛散又は落下する液体を受け止め、回収するカップ162が設けられている。カップ162の下面には、回収した液体を排出する排出管163と、カップ162内の雰囲気を真空引きして排気する排気管164が接続されている。
図7に示すようにカップ162のX方向負方向(図7の下方向)側には、Y方向(図7の左右方向)に沿って延伸するレール170が形成されている。レール170は、例えばカップ162のY方向負方向(図7の左方向)側の外方からY方向正方向(図7の右方向)側の外方まで形成されている。レール170には、例えばノズルアーム171とスクラブアーム172が取り付けられている。
ノズルアーム171には、図6及び図7に示すようにウェハW、Wに純水を供給する純水ノズル173が支持されている。ノズルアーム171は、図7に示すノズル駆動部174により、レール170上を移動自在である。これにより、純水ノズル173は、カップ162のY方向正方向側の外方に設置された待機部175からカップ162内のウェハW、Wの中心部上方まで移動でき、さらに当該ウェハW、W上をウェハW、Wの径方向に移動できる。また、ノズルアーム171は、ノズル駆動部174によって昇降自在であり、純水ノズル173の高さを調節できる。
純水ノズル173には、図6に示すように当該純水ノズル173に純水を供給する供給管176が接続されている。供給管176は、内部に純水を貯留する純水供給源177に連通している。また、供給管176には、純水の流れを制御するバルブや流量調節部等を含む供給機器群178が設けられている。
スクラブアーム172には、スクラブ洗浄具180が支持されている。スクラブ洗浄具180の先端部には、例えば複数の糸状やスポンジ状のブラシ180aが設けられている。スクラブアーム172は、図7に示す洗浄具駆動部181によってレール170上を移動自在であり、スクラブ洗浄具180を、カップ162のY方向負方向側の外方からカップ162内のウェハW、Wの中心部上方まで移動させることができる。また、洗浄具駆動部181によって、スクラブアーム172は昇降自在であり、スクラブ洗浄具180の高さを調節できる。
なお、以上の構成では、純水ノズル173とスクラブ洗浄具180が別々のアームに支持されていたが、同じアームに支持されていてもよい。また、純水ノズル173を省略して、スクラブ洗浄具180から純水を供給するようにしてもよい。さらに、カップ162を省略して、処理容器150の底面に液体を排出する排出管と、処理容器150内の雰囲気を排気する排気管を接続してもよい。また、以上の構成の表面親水化装置40において、帯電防止用のイオナイザ(図示せず)を設けてもよい。
次に、上述した接合装置41の構成について説明する。接合装置41は、図8に示すように内部を密閉可能な処理容器190を有している。処理容器190のウェハ搬送領域60側の側面には、ウェハW、W、重合ウェハWの搬入出口191が形成され、当該搬入出口191には開閉シャッタ192が設けられている。
処理容器190の内部は、内壁193によって、搬送領域T1と処理領域T2に区画されている。上述した搬入出口191は、搬送領域T1における処理容器190の側面に形成されている。また、内壁193にも、ウェハW、W、重合ウェハWの搬入出口194が形成されている。
搬送領域T1のX方向正方向側には、ウェハW、W、重合ウェハWを一時的に載置するためのトランジション200が設けられている。トランジション200は、例えば2段に形成され、ウェハW、W、重合ウェハWのいずれか2つを同時に載置することができる。
搬送領域T1には、ウェハ搬送機構201が設けられている。ウェハ搬送機構201は、図8及び図9に示すように例えば鉛直方向、水平方向(Y方向、X方向)及び鉛直軸周りに移動自在な搬送アームを有している。そして、ウェハ搬送機構201は、搬送領域T1内、又は搬送領域T1と処理領域T2との間でウェハW、W、重合ウェハWを搬送できる。
搬送領域T1のX方向負方向側には、ウェハW、Wの水平方向の向きを調節する位置調節機構210が設けられている。位置調節機構210は、図10に示すように基台211と、ウェハW、Wを吸着保持して回転させる保持部212と、ウェハW、Wのノッチ部の位置を検出する検出部213と、を有している。そして、位置調節機構210では、保持部212に吸着保持されたウェハW、Wを回転させながら検出部213でウェハW、Wのノッチ部の位置を検出することで、当該ノッチ部の位置を調節してウェハW、Wの水平方向の向きを調節している。
また、搬送領域T1には、上ウェハWの表裏面を反転させる反転機構220が設けられている。反転機構220は、図11〜図13に示すように上ウェハWを保持する保持アーム221を有している。保持アーム221は、水平方向(図11及び図12中のY方向)に延伸している。また保持アーム221には、上ウェハWを保持する保持部材222が例えば4箇所に設けられている。保持部材222は、図14に示すように保持アーム221に対して水平方向に移動可能に構成されている。また保持部材222の側面には、上ウェハWの外周部を保持するための切り欠き223が形成されている。そして、これら保持部材222は、上ウェハWを挟み込んで保持することができる。
保持アーム221は、図11〜図13に示すように例えばモータなどを備えた第1の駆動部224に支持されている。この第1の駆動部224によって、保持アーム221は水平軸周りに回動自在である。また保持アーム221は、第1の駆動部224を中心に回動自在であると共に、水平方向(図11及び図12中のY方向)に移動自在である。第1の駆動部224の下方には、例えばモータなどを備えた第2の駆動部225が設けられている。この第2の駆動部225によって、第1の駆動部224は鉛直方向に延伸する支持柱226に沿って鉛直方向に移動できる。このように第1の駆動部224と第2の駆動部225によって、保持部材222に保持された上ウェハWは、水平軸周りに回動できると共に鉛直方向及び水平方向に移動できる。また、保持部材222に保持された上ウェハWは、第1の駆動部224を中心に回動して、位置調節機構210から後述する上チャック230との間を移動できる。
処理領域T2には、図8及び図9に示すように上ウェハWを下面で吸着保持する上チャック230と、下ウェハWを上面で載置して吸着保持する下チャック231とが設けられている。下チャック231は、上チャック230の下方に設けられ、上チャック230と対向配置可能に構成されている。すなわち、上チャック230に保持された上ウェハWと下チャック231に保持された下ウェハWは対向して配置可能となっている。
上チャック230は、図9に示すように処理容器190の天井面に設けられた支持部材232に支持されている。支持部材232は、上チャック230の上面外周部を支持している。下チャック231の下方には、シャフト233を介してチャック駆動部234が設けられている。このチャック駆動部234により、下チャック231は鉛直方向に昇降自在、且つ水平方向に移動自在になっている。また、チャック駆動部234によって、下チャック231は鉛直軸周りに回転自在になっている。また、下チャック231の下方には、下ウェハWを下方から支持し昇降させるための昇降ピン(図示せず)が設けられている。昇降ピンは、下チャック231に形成された貫通孔(図示せず)を挿通し、下チャック231の上面から突出可能になっている。
上チャック230は、図15に示すように複数、例えば3つの領域230a、230b、230cに区画されている。これら領域230a、230b、230cは、図16に示すように上チャック230の中心部から外周部に向けてこの順で設けられている。そして、領域230aは平面視において円形状を有し、領域230b、230cは平面視において環状形状を有している。各領域230a、230b、230cには、図15に示すように上ウェハWを吸着保持するための吸引管240a、240b、240cがそれぞれ独立して設けられている。各吸引管240a、240b、240cには、異なる真空ポンプ241a、241b、241cがそれぞれ接続されている。したがって、上チャック230は、各領域230a、230b、230c毎に上ウェハWの真空引きを設定可能に構成されている。
なお以下において、上述した3つの領域230a、230b、230cを、それぞれ第1の領域230a、第2の領域230b、第3の領域230cという場合がある。また、吸引管240a、240b、240cを、それぞれ第1の吸引管240a、第2の吸引管240b、第3の吸引管240cという場合がある。さらに、真空ポンプ241a、241b、241cを、それぞれ第1の真空ポンプ241a、第2の真空ポンプ241b、第3の真空ポンプ241cという場合がある。
上チャック230の中心部には、当該上チャック230を厚み方向に貫通する貫通孔242が形成されている。この上チャック230の中心部は、当該上チャック230に吸着保持される上ウェハWの中心部に対応している。そして、貫通孔242には、後述する押動部材250の押動ピン251が挿通するようになっている。
上チャック230の上面には、上ウェハWの中心部を押圧する押動部材250が設けられている。押動部材250は、シリンダ構造を有し、押動ピン251と当該押動ピン251が昇降する際のガイドとなる外筒252とを有している。押動ピン251は、例えばモータなどを備えた駆動部(図示せず)によって、貫通孔242を挿通して鉛直方向に昇降自在になっている。そして、押動部材250は、後述するウェハW、Wの接合時に、上ウェハWの中心部と下ウェハWの中心部とを当接させて押圧することができる。
上チャック230には、下ウェハWの表面WL1を撮像する上部撮像部材253が設けられている。上部撮像部材253には、例えば広角型のCCDカメラが用いられる。なお、上部撮像部材253は、上チャック230上に設けられていてもよい。
下チャック231は、図17に示すように複数、例えば2つの領域231a、231bに区画されている。これら領域231a、231bは、下チャック231の中心部から外周部に向けてこの順で設けられている。そして、領域231aは平面視において円形状を有し、領域231bは平面視において環状形状を有している。各領域231a、231bには、図15に示すように下ウェハWを吸着保持するための吸引管260a、260bがそれぞれ独立して設けられている。各吸引管260a、260bには、異なる真空ポンプ261a、261bがそれぞれ接続されている。したがって、下チャック231は、各領域231a、231b毎に下ウェハWの真空引きを設定可能に構成されている。
下チャック231の外周部には、ウェハW、W、重合ウェハWが当該下チャック231から飛び出したり、滑落するのを防止するストッパ部材262が設けられている。ストッパ部材262は、その頂部が少なくとも下チャック231上の重合ウェハWよりも上方に位置するように鉛直方向に延伸している。また、ストッパ部材262は、図17に示すように下チャック231の外周部に複数個所、例えば5箇所に設けられている。
下チャック231には、図15に示すように上ウェハWの表面WU1を撮像する下部撮像部材263が設けられている。下部撮像部材263には、例えば広角型のCCDカメラが用いられる。なお、下部撮像部材263は、下チャック231上に設けられていてもよい。
次に、上述した検査装置50の構成について説明する。検査装置50は、図18及び図19に示すように処理容器270を有している。処理容器270のウェハ搬送領域60側の側面には、重合ウェハWの搬入出口271が形成され、当該搬入出口271には開閉シャッタ272が設けられている。また処理容器270の搬入出ステーション2側の側面にも、重合ウェハWの搬入出口273が形成され、当該搬入出口273には開閉シャッタ274が設けられている。
処理容器270の内部の搬入出口271、273側(図18及び図19のX方向正方向側)には、外部のウェハ搬送装置61との間で重合ウェハWを受け渡し、さらに後述する第1の保持部290との間で重合ウェハWを受け渡すための昇降ピン280が設けられている。昇降ピン280は、支持部材281上に例えば3箇所に設けられている。また昇降ピン280は、例えばモータなどを備えた昇降駆動部282により昇降自在になっている。
また処理容器270の内部には、重合ウェハWの裏面を保持する、他の保持部としての第1の保持部290が設けられている。第1の保持部290は、図20に示すように平面視略矩形状の4つの支持部材291〜294を有している。これら支持部材291〜294は、平面視において隣り合う支持部材が互いに直交する方向に延伸している。すなわち、支持部材291、293は図20のX方向に延伸し、支持部材292、294は図20のY方向に延伸している。なお以下において、支持部材291〜294を、それぞれ第1の支持部材291、第2の支持部材292、第3の支持部材293、第4の支持部材294という場合がある。
第1の保持部290において重合ウェハWは、その中心Cが第1の支持部材291と第2の支持部材292の間に位置するように保持される。そして第1の支持部材291と第2の支持部材292の間には、重合ウェハWの裏面の1/4が露出するように切り欠き部295が形成されている。図20においては、露出した重合ウェハWを一点鎖線で描図している。以下、切り欠き部295から露出した重合ウェハWを重合ウェハWTn(nは1〜4の整数。)という場合がある。なお、第1の支持部材291と第2の支持部材292の側面には、後述する第2の保持部310の周縁部に沿って湾曲する湾曲部296が形成されている。
また各支持部材291〜294の先端部上には、重合ウェハWの裏面を保持する保持部材297がそれぞれ形成されている。これらの保持部材297は、隣り合う保持部材297、297と重合ウェハWの中心Cとの角度が120度以下になるように配置されている。このため、重合ウェハWは第1の保持部290に安定して保持される。なお保持部材292には、例えば樹脂製のOリングを用いてもよいし、支持ピンを用いてもよい。樹脂製のOリングを用いる場合には、保持部材292と重合ウェハWの裏面との間の摩擦力によって、保持部材292は重合ウェハWの裏面を保持する。
第1の保持部290には、図19に示すように部材300を介して駆動部301が設けられている。駆動部301は、例えばモータ(図示せず)を内蔵している。処理容器270の底面には、図18及び図19のX方向に沿って延伸するレール302が設けられている。レール302には、上記駆動部301が取り付けられている。そして第1の保持部290(駆動部301)は、レール302に沿って、昇降ピン280との間で重合ウェハWの受け渡しを行う受渡位置P1と、後述する変位計350によって重合ウェハWの接合状態を検査する検査位置P2との間で移動できる。
処理容器270の内部には、重合ウェハWを保持して回転(回動)させる第2の保持部310が設けられている。第2の保持部310は、上述した検査位置P2に設けられている。第2の保持部310は水平な上面を有し、当該上面には、例えば重合ウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、重合ウェハWを第2の保持部310上に吸着保持できる。
第2の保持部310は、例えばモータなどを備えた駆動部311が取り付けられている。第2の保持部310は、駆動部311により回転(回動)できる。また駆動部311には、例えばシリンダなどの昇降駆動源が設けられており、第2の保持部310は昇降自在になっている。なお、第1の保持部290が検査位置P2に位置している際に第2の保持部310を昇降させても、第1の保持部290に形成された湾曲部296によって、第2の保持部310は第1の保持部290と干渉することはない。
処理容器270の内部には、第1の保持部290の重合ウェハWにおいて切り欠き部295から露出した裏面(重合ウェハWTn)に赤外線を照射する赤外線照射部320が設けられている。赤外線照射部320は、受渡位置P1と検査位置P2との間であって第1の保持部290及び第2の保持部310の下方に配置されている。また赤外線照射部320は、少なくとも重合ウェハWTnの幅よりも長くY方向に延伸している。赤外線照射部320から照射される赤外線の波長は1100nm〜2000nmである。かかる波長の赤外線は重合ウェハWを透過する。
また処理容器270の内部には、赤外線照射部320から照射された赤外線を受信し、第1の保持部320に保持された重合ウェハWを切り欠き部295で露出した裏面毎に分割して撮像する撮像部330が設けられている。すなわち、撮像部330は重合ウェハWTnを撮像する。撮像部330には、例えば赤外線カメラが用いられる。撮像部330は、検査位置P2よりX方向負方向側、すなわち処理容器270のX方向負方向端部であって、第1の保持部290及び第2の保持部310の上方に配置されている。また撮像部330は支持部材331に支持されている。撮像部330には、後述する制御部400が接続されている。撮像部330で撮像された重合ウェハWTnの画像は制御部400に出力され、制御部400において重合ウェハW全体の画像に合成される。
処理容器270の内部には、赤外線照射部320と撮像部330との間において赤外線の進行路の方向を変更させる方向変換部340、341が設けられている。方向変換部340、341は、赤外線照射部320より受渡位置P1側(図18及び図19のX方向正方向側)において対向して配置されている。第1の方向変換部340は第1の保持部290及び第2の保持部310の下方に配置され、第2の方向変換部341は第1の保持部290及び第2の保持部310の上方に配置されている。また方向変換部340、341は、上述した赤外線照射部320と同様にY方向に延伸して設けられている。なお第2の方向変換部341は、Y方向に延伸する支持部材342に支持されている。
図21に示すように第1の方向変換部340の内部には、第1の反射鏡343が設けられている。第1の反射鏡343は水平方向から45度傾斜して設けられている。そして赤外線照射部320からの赤外線は、第1の反射鏡343で反射して鉛直上方に進行する。また図22に示すように第1の方向変換部340の側面と上面には開口部340a、340bが形成され、当該開口部340a、340bを赤外線が通過できるようになっている。
同様に図21に示すように第2の方向変換部341の内部には、第2の反射鏡344が設けられている。第2の反射鏡344は水平方向から45度傾斜して設けられている。そして第1の方向変換部340からの赤外線は、第2の反射鏡344で反射して水平方向に進行する。また図22に示すように第2の方向変換部341の側面と下面には開口部341a、341bが形成され、当該開口部341a、341bを赤外線が通過できるようになっている。
また、図21に示すように赤外線照射部320と第1の方向変換部340との間には、重合ウェハWに照射される赤外線を集光するシリンドリカルレンズ345が設けられている。さらに第1の方向変換部340の上面には、シリンドリカルレンズ345を重合ウェハWのウェハ面内で均一にする拡散板346が設けられている。
かかる構成により、赤外線照射部320から照射された赤外線は、シリンドリカルレンズ345、第1の反射鏡343、拡散板346を介して重合ウェハWを透過し、さらに第2の反射鏡344を介して撮像部330に取り込まれる。
処理容器270の内部には、図18及び図19に示すように第2の保持部310に保持された重合ウェハWの外側面の変位を計測する変位計350が設けられている。変位計350は、検査位置P2よりX方向負方向側に設けられている。なお、変位計350は重合ウェハWの外側面の変位を計測するものであれば特に限定されないが、本実施の形態では例えばレーザ変位計が用いられる。
変位計350は、図23に示すように重合ウェハWを構成する上ウェハWと下ウェハWの外側面にレーザ光を照射し、その反射光を受信して上ウェハWと下ウェハWの外側面の変位を測定する。そして、第2の保持部310で重合ウェハWを回転させながら、変位計350から上ウェハWと下ウェハWの外側面にレーザ光を照射する。そうすると、上ウェハWと下ウェハWの外側面全周の変位が測定され、上ウェハWと下ウェハWの位置ずれが検査される。
また変位計350は、図24に示すように上ウェハWのノッチ部WUNの下ウェハWのノッチ部WLNの位置ずれも測定する。具体的には、ノッチ部WUN、WLNの頂点の位置ずれを測定する。かかる場合、上ウェハWと下ウェハWの水平方向の位置ずれだけでなく、鉛直軸周りの周方向の位置ずれも検査される。
また処理容器270の内部には、図18及び図19に示すように第2の保持部310に保持された重合ウェハWの位置を検出する位置検出機構351が設けられている。位置検出機構351は、第1の保持部290の第3の支持部材293と第4の支持部材294に沿って設けられている。位置検出機構351は例えばCCDカメラ(図示せず)を有し、第2の保持部310に保持された重合ウェハWのノッチ部の位置を検出する。そして第2の保持部310を回転させながら、位置検出機構351によってノッチ部の位置を検出して、重合ウェハWのノッチ部の位置を調節することができる。
以上の接合システム1には、図1に示すように制御部400が設けられている。制御部400は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、接合システム1におけるウェハW、W、重合ウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、接合システム1における後述のウェハ接合処理を実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部400にインストールされたものであってもよい。
次に、以上のように構成された接合システム1を用いて行われるウェハW、Wの接合処理方法と接合された重合ウェハWの検査方法について説明する。図23は、かかるウェハ接合処理の主な工程の例を示すフローチャートである。
先ず、複数枚の上ウェハWを収容したカセットC、複数枚の下ウェハWを収容したカセットC、及び空のカセットCが、搬入出ステーション2の所定のカセット載置板11に載置される。その後、ウェハ搬送装置22によりカセットC内の上ウェハWが取り出され、処理ステーション3の第3の処理ブロックG3のトランジション装置51に搬送される。
次に上ウェハWは、ウェハ搬送装置61によって第1の処理ブロックG1の表面改質装置30に搬送される。表面改質装置30に搬入された上ウェハWは、ウェハ搬送装置61から載置台110の上面に受け渡され載置される。その後、ウェハ搬送装置61が表面改質装置30から退出し、ゲートバルブ102が閉じられる。なお、載置台110に載置された上ウェハWは、温度調節機構112によって所定の温度、例えば25℃〜30℃に維持される。
その後、吸気装置104を作動させ、吸気口103を介して処理容器100の内部の雰囲気が所定の真空度、例えば67Pa〜333Pa(0.5Torr〜2.5Torr)まで減圧される。そして、後述するように上ウェハWを処理中、処理容器100内の雰囲気は上記所定の真空度に維持される。
その後、ガス供給管130から処理容器100内のプラズマ生成領域R1に向けて、酸素ガスが供給される。また、ラジアルラインスロットアンテナ120からプラズマ生成領域R1に向けて、例えば2.45GHzのマイクロ波が放射される。このマイクロ波の放射によって、プラズマ生成領域R1内において酸素ガスが励起されてプラズマ化され、例えば酸素ガスがイオン化する。このとき、下方に進行するマイクロ波は、イオン通過構造体140で反射し、プラズマ生成領域R1内に留まる。この結果、プラズマ生成領域R1内には、高密度のプラズマが生成される。
続いて、イオン通過構造体140において、電源145により一対の電極141、142に所定の電圧を印加する。そうすると、この一対の電極141、142によって、プラズマ生成領域R1で生成された酸素イオンのみが、イオン通過構造体140の開口部144を通過して処理領域R2に流入する。
このとき、制御部400によって、一対の電極141、142間に印加され電圧を制御することで、当該一対の電極141、142を通過する酸素イオンに付与されるエネルギーが制御される。この酸素イオンに付与されるエネルギーは、上ウェハWの表面WU1のSiOの二重結合を切断して単結合のSiOとするのに十分なエネルギーであって、当該表面WU1が損傷しないエネルギーに設定される。
またこのとき、電流計146によって一対の電極141、142間を流れる電流の電流値を測定する。この測定された電流値に基づいて、イオン通過構造体140を通過する酸素イオンの通過量が把握される。そして、制御部400では、把握された酸素イオンの通過量に基づいて、当該通過量が所定の値になるように、ガス供給管130からの酸素ガスの供給量や、一対の電極141、142間の電圧等、種々のパラメータを制御する。
その後、処理領域R2に導入された酸素イオンは、載置台110上の上ウェハWの表面WU1に照射されて注入される。そして、照射された酸素イオンによって、表面WU1におけるSiOの二重結合が切断されて単結合のSiOとなる。また、この表面WU1の改質には酸素イオンが用いられているため、上ウェハWの表面WU1に照射された酸素イオン自体がSiOの結合に寄与する。こうして、上ウェハWの表面WU1が改質される(図25の工程S1)。
次に上ウェハWは、ウェハ搬送装置61によって第2の処理ブロックG2の表面親水化装置40に搬送される。表面親水化装置40に搬入された上ウェハWは、ウェハ搬送装置61からスピンチャック160に受け渡され吸着保持される。
続いて、ノズルアーム171によって待機部175の純水ノズル173を上ウェハWの中心部の上方まで移動させると共に、スクラブアーム172によってスクラブ洗浄具180を上ウェハW上に移動させる。その後、スピンチャック160によって上ウェハWを回転させながら、純水ノズル173から上ウェハW上に純水を供給する。そうすると、表面改質装置30において改質された上ウェハWの表面WU1に水酸基(シラノール基)が付着して当該表面WU1が親水化される。また、純水ノズル173からの純水とスクラブ洗浄具180によって、上ウェハWの表面WU1が洗浄される(図25の工程S2)。なお、上ウェハWの表面WU1に供給された純水のうち、一部の純水は上述したように表面WU1を親水化するため、すなわち後述するようにウェハW、Wを接合するために用いられるが、残りの余剰分の純水は上ウェハWの表面WU1に残存している。
次に上ウェハWは、ウェハ搬送装置61によって第2の処理ブロックG2の接合装置41に搬送される。接合装置41に搬入された上ウェハWは、トランジション200を介してウェハ搬送機構201により位置調節機構210に搬送される。そして位置調節機構210によって、上ウェハWの水平方向の向きが調節される(図25の工程S3)。
その後、位置調節機構210から反転機構220の保持アーム221に上ウェハWが受け渡される。続いて搬送領域T1において、保持アーム221を反転させることにより、上ウェハWの表裏面が反転される(図25の工程S4)。すなわち、上ウェハWの表面WU1が下方に向けられる。
その後、反転機構220の保持アーム221が、第1の駆動部224を中心に回動して上チャック230の下方に移動する。そして、反転機構220から上チャック230に上ウェハWが受け渡される。上ウェハWは、上チャック230にその裏面WU2が吸着保持される(図25の工程S5)。このとき、すべての真空ポンプ241a、241b、241cを作動させ、上チャック230のすべての領域230a、230b、230cにおいて、上ウェハWを真空引きしている。上ウェハWは、後述する下ウェハWが接合装置41に搬送されるまで上チャック230で待機する。
上ウェハWに上述した工程S1〜S5の処理が行われている間、当該上ウェハWに続いて下ウェハWの処理が行われる。先ず、ウェハ搬送装置22によりカセットC内の下ウェハWが取り出され、処理ステーション3のトランジション装置51に搬送される。
次に下ウェハWは、ウェハ搬送装置61によって表面改質装置30に搬送され、下ウェハWの表面WL1が改質される(図25の工程S6)。なお、工程S6における下ウェハWの表面WL1の改質は、上述した工程S1と同様である。
その後、下ウェハWは、ウェハ搬送装置61によって表面親水化装置40に搬送され、下ウェハWの表面WL1が親水化される共に当該表面WL1が洗浄される(図25の工程S7)。なお、工程S7における下ウェハWの表面WL1の親水化及び洗浄は、上述した工程S2と同様であるので詳細な説明を省略する。また、下ウェハWの表面WL1に供給された純水のうち、一部の純水は表面WL1を親水化するため、すなわち後述するようにウェハW、Wを接合するために用いられるが、残りの余剰分の純水は下ウェハWの表面WL1に残存している。
その後、下ウェハWは、ウェハ搬送装置61によって接合装置41に搬送される。接合装置41に搬入された下ウェハWは、トランジション200を介してウェハ搬送機構201により位置調節機構210に搬送される。そして位置調節機構210によって、下ウェハWの水平方向の向きが調節される(図25の工程S8)。
その後、下ウェハWは、ウェハ搬送機構201によって下チャック231に搬送され、下チャック231に吸着保持される(図25の工程S9)。このとき、すべての真空ポンプ261a、261bを作動させ、下チャック231のすべての領域231a、231bにおいて、下ウェハWを真空引きしている。そして、下ウェハWの表面WL1が上方を向くように、当該下ウェハWの裏面WL2が下チャック231に吸着保持される。
次に、上チャック230に保持された上ウェハWと下チャック231に保持された下ウェハWとの水平方向の位置調節を行う。図26に示すように下ウェハWの表面WL1には予め定められた複数、例えば4点以上の基準点Aが形成され、同様に上ウェハWの表面WU1には予め定められた複数、例えば4点以上の基準点Bが形成されている。これら基準点A、Bとしては、例えばウェハW、W上に形成された所定のパターンがそれぞれ用いられる。そして、上部撮像部材253を水平方向に移動させ、下ウェハWの表面WL1が撮像される。また、下部撮像部材263を水平方向に移動させ、上ウェハWの表面WU1が撮像される。その後、上部撮像部材253が撮像した画像に表示される下ウェハWの基準点Aの位置と、下部撮像部材263が撮像した画像に表示される上ウェハWの基準点Bの位置とが合致するように、下チャック231によって下ウェハWの水平方向の位置(水平方向の向きを含む)が調節される。すなわち、チャック駆動部234によって、下チャック231を水平方向に移動させて、下ウェハWの水平方向の位置が調節される。こうして上ウェハWと下ウェハWとの水平方向の位置が調節される(図25の工程S10)。なお、上部撮像部材256と下部撮像部材263を移動させる代わりに、下チャック230を移動させてもよい。
なお、ウェハW、Wの水平方向きは、工程S3、S8において位置調節機構210によって調節されているが、工程S10において微調節が行われる。また、本実施の形態の工程S10では、基準点A、Bとして、ウェハW、W上に形成された所定のパターンを用いていたが、その他の基準点を用いることもできる。例えばウェハW、Wの外周部とノッチ部を基準点として用いることができる。
その後、チャック駆動部234によって、図27に示すように下チャック231を上昇させ、下ウェハWを所定の位置に配置する。このとき、下ウェハWの表面WL1と上ウェハWの表面WU1との間の間隔が所定の距離、例えば80μm〜200μmになるように下ウェハWを配置する。こうして上ウェハWと下ウェハWとの鉛直方向の位置が調節される(図25の工程S11)。なお、工程S5〜工程S11において、上チャック230のすべての領域230a、230b、230cにおいて、上ウェハWを真空引きしている。同様に工程S9〜工程S11において、下チャック231のすべての領域231a、231bにおいて、下ウェハWを真空引きしている。
その後、第1の真空ポンプ241aの作動を停止して、図28に示すように第1の領域230aにおける第1の吸引管240aからの上ウェハWの真空引きを停止する。このとき、第2の領域230bと第3の領域230cでは、上ウェハWが真空引きされて吸着保持されている。その後、押動部材250の押動ピン251を下降させることによって、上ウェハWの中心部を押圧しながら当該上ウェハWを下降させる。このとき、押動ピン251には、上ウェハWがない状態で当該押動ピン251が70μm移動するような荷重、例えば200gがかけられる。そして、押動部材250によって、上ウェハWの中心部と下ウェハWの中心部を当接させて押圧する(図25の工程S12)。
そうすると、押圧された上ウェハWの中心部と下ウェハWの中心部との間で接合が開始する(図28中の太線部)。すなわち、上ウェハWの表面WU1と下ウェハWの表面WL1はそれぞれ工程S1、S6において改質されているため、先ず、表面WU1、WL1間にファンデルワールス力(分子間力)が生じ、当該表面WU1、WL1同士が接合される。さらに、上ウェハWの表面WU1と下ウェハWの表面WL1はそれぞれ工程S2、S7において親水化されているため、表面WU1、WL1間の親水基が水素結合し(分子間力)、表面WU1、WL1同士が強固に接合される。
その後、図29に示すように押動部材250によって上ウェハWの中心部と下ウェハWの中心部を押圧した状態で、第2の真空ポンプ241bの作動を停止して、第2の領域230bにおける第2の吸引管240bからの上ウェハWの真空引きを停止する。そうすると、第2の領域230bに保持されていた上ウェハWが下ウェハW上に落下する。さらにその後、第3の真空ポンプ241cの作動を停止して、第3の領域230cにおける第3の吸引管240cからの上ウェハWの真空引きを停止する。このように上ウェハWの中心部から外周部に向けて、上ウェハWの真空引きを停止し、上ウェハWが下ウェハW上に順次落下して当接する。そして、上述した表面WU1、WL1間のファンデルワールス力と水素結合による接合が順次拡がる。こうして、図30に示すように上ウェハWの表面WU1と下ウェハWの表面WL1が全面で当接し、上ウェハWと下ウェハWが接合される(図25の工程S13)。
その後、図31に示すように押動部材250を上チャック230まで上昇させる。また、下チャック231において吸引管260a、260bからの下ウェハWの真空引きを停止して、下チャック231による下ウェハWの吸着保持を停止する。
次に上ウェハWと下ウェハWが接合された重合ウェハWは、ウェハ搬送装置61によって搬入出口271を介して検査装置50に搬送される。検査装置50に搬送された重合ウェハWは、図32に示すようにウェハ搬送装置61から予め上昇していた昇降ピン280に受け渡される。このとき、第1の保持部290は、受渡位置P1において昇降ピン280の下方に待機している。その後、昇降ピン280を下降させ、昇降ピン280から第1の保持部290に重合ウェハWが受け渡される。さらにその後、図33に示すように第1の保持部290を受渡位置P1から検査位置P2まで移動させる。
第1の保持部290が検査位置P2まで移動すると、図34に示すように第2の保持部310を上昇させ、第1の保持部290から第2の保持部310に重合ウェハWが受け渡される。
その後、第2の保持部310を回転させながら、変位計350から重合ウェハWの上ウェハWと下ウェハWの外側面にレーザ光を照射する。変位計350では、上ウェハWと下ウェハWの外側面を受信し、当該上ウェハWと下ウェハWの外側面の変位を測定する。なお第2の保持部310によって、重合ウェハWは少なくとも1回転以上回転される。そうすると、上ウェハWと下ウェハWの外側面全周の変位が測定され、上ウェハWと下ウェハWの位置ずれ(重合ウェハWの接合状態)が検査される(図25の工程S14)。
その後、さらに第2の保持部310を回転させながら、位置検出機構351によってノッチ部の位置を検出する。そして、重合ウェハWのノッチ部の位置を調節して、重合ウェハWを所定の位置に配置する(図25の工程S15)。
重合ウェハWのノッチ部が調節されると、第2の保持部310を下降させ、第2の保持部310から第1の保持部290に重合ウェハWが受け渡される。
その後、図35に示すように赤外線照射部320から第1の方向変換部340に向けて赤外線を照射した状態で、第1の保持部290を検査位置P2から受渡位置P1側に移動させる。そして、第1の保持部290に保持された重合ウェハWが第1の方向変換部340の上方を通過する際に、切り欠き部295から露出した重合ウェハWを第1の方向変換部340からの赤外線が透過する。この透過した赤外線は第2の方向変換部341で方向が変換され、撮像部330に取り込まれる。第1の保持部290は、切り欠き部295から露出した重合ウェハWT1(図36参照)に対して赤外線の照射が終了する位置まで、すなわち第2の支持部材292の受渡位置P1側の側面まで移動される。そして撮像部330によって、図36に示すように切り欠き部295から露出した重合ウェハWT1、すなわち重合ウェハWの1/4が撮像される(図25の工程S16)
なお本実施の形態では、工程S16において重合ウェハWを移動させながら撮像する、いわゆるラインセンサ方式を用いている。例えば重合ウェハW全体を一度に撮像するエリアセンサ方式を用いた場合、撮像される画像の画素数が小さく、重合ウェハWの内部の検査に用いることができない。
撮像部330によって重合ウェハWT1が撮像されると、続いて第1の保持部290を検査位置P2に移動させる。そして、図34に示したのと同様に第2の保持部310を上昇させ、第1の保持部290から第2の保持部310に重合ウェハWが受け渡される。その後、図36に示した重合ウェハWT2が切り欠き部295から露出するように第2の保持部310を90度回動させる(図25の工程S17)。
その後、第2の保持部310を下降させ、第2の保持部310から第1の保持部290に重合ウェハWが受け渡される。そして、上述した工程S16を行い、撮像部330によって図36に示した重合ウェハWT2が撮像される。
その後、さらにこれら工程S16及びS17を繰り返し行い、重合ウェハWのうち、図36に示した残りの重合ウェハWT3と重合ウェハWT4が撮像部330によって撮像される。こうして4回に分けて分割撮像された重合ウェハWT1〜WT4の画像は、撮像部330から制御部400に出力される。制御部400では、重合ウェハWT1〜WT4の画像が合成され、重合ウェハW全体の画像が得られる。そして、重合ウェハW全体の画像に基づいて、当該重合ウェハWの内部におけるボイドの検査が行われる(図25の工程S18)。
重合ウェハWの内部の検査が終了すると、当該重合ウェハWを保持した第1の保持部290を受渡位置P2に移動させる。そして、重合ウェハWは第1の保持部290から昇降ピン280に受け渡される。その後、重合ウェハWは昇降ピン280からウェハ搬送装置22に受け渡され、搬入出口273を介して検査装置50から搬出される。
その後、重合ウェハWはウェハ搬送装置22によって所定のカセット載置板11のカセットCに搬送される。こうして、一連のウェハW、Wの接合処理が終了する。
以上の実施の形態によれば、検査装置50内には変位計350が設けられているので、工程S14において第2の保持部310に保持された重合ウェハWを回転させながら、変位計350を用いて当該重合ウェハWの上ウェハWと下ウェハWの外側面の変位をそれぞれ測定し、重合ウェハWの接合状態を適切に検査することができる。しかも、第2の保持部310と変位計350のみにより重合ウェハWの接合状態の検査を行うことができるので、大掛かりな機構が不要となり、検査装置50を小型化することができる。
また、検査装置50内の第1の保持部290には切り欠き部295が形成されている。ここで、重合ウェハを保持する保持部には赤外線が透過しないため、従来、保持部によって保持された部分の重合ウェハを撮像することができなかった。この点、本実施の形態では、第1の保持部290に切り欠き部295が形成されているので、工程S16において第1の保持部290に保持された状態で重合ウェハWの1/4を分割撮像することができる。そして、この工程S16と、第2の保持部290によって重合ウェハWを回動させる工程S17とを繰り返し行い、重合ウェハW全体を適切に撮像することができる。したがって、この重合ウェハW全体の画像に基づいて、重合ウェハWの内部を適切に検査することができる。
そして、このように一の検査装置50内で重合ウェハWの接合状態の検査と重合ウェハWの内部の検査を行うことができるので、当該重合ウェハWを効率よく検査することができる。また、接合システム1の装置構成を簡略化することもできる。
また、第1の保持部290は平面視において隣り合う支持部材が互いに直交する方向に延伸する4つの支持部材291〜294を有しているので、重合ウェハWの裏面の1/4を露出させる切り欠き部295を適切に形成することができる。これにより、工程S16において重合ウェハWの1/4を分割撮像することができる。なお、発明者らが鋭意検討した結果、制御部400において、分割撮像された重合ウェハWの画像の合成を容易に行うためには、本実施の形態のように重合ウェハWを4分割して撮像するのが好ましいことが分かった。
また、赤外線照射部320から照射される赤外線の波長は1100nm〜2000nmであるので、当該赤外線を重合ウェハWに透過させることができる。さらに、赤外線照射部320から照射された赤外線は、シリンドリカルレンズ345によって集光され、さらに拡散板346によって重合基板の基板面内で均一にされる。このため、工程S16における重合ウェハWの撮像を適切に行うことができる。
また、接合システム1は、検査装置50に加えて、ウェハW、Wを接合する際に用いられる表面改質装置30、表面親水化装置40及び接合装置41も備えているので、一のシステム内でウェハW、Wの接合と接合された重合ウェハWの内部の検査を効率よく行うことができる。したがって、ウェハ接合処理のスループットをより向上させることができる。
以上の実施の形態では、赤外線照射部320は第1の方向変換部340の検査位置P2側に設けられていたが、図37に示すように第1の方向変換部340の下面側に当該第1の方向変換部340と一体に設けられていてもよい。赤外線照射部320と第1の方向変換部340の間には、上述したシリンドリカルレンズ345が設けられている。また、第1の反射鏡343には例えばハーフミラーが用いられる。なお、本実施の形態においては第1の反射鏡343を省略してもよい。
そして、赤外線照射部320から照射された赤外線は、シリンドリカルレンズ345、第1の反射鏡343、拡散板346を介して重合ウェハWを透過し、さらに第2の反射鏡344を介して撮像部330に取り込まれる。かかる場合、上記実施の形態と同様に、工程S16において重合ウェハWを適切に分割撮像でき、さらに合成された重合ウェハW全体の画像に基づいて、重合ウェハWの内部を適切に検査することができる。
以上の実施の形態の検査装置50は、図38に示すように第1の保持部290に保持された重合ウェハWの表面に赤外線を照射する他の赤外線照射部500を有していてもよい。他の赤外線照射部500は、図39に示すように第2の方向変換部341の上面側に当該第2の方向変換部341と一体に設けられていている。他の赤外線照射部500と第2の方向変換部340の間には、重合ウェハWに照射される赤外線を集光するシリンドリカルレンズ501が設けられている。さらに第2の方向変換部341の下面には、シリンドリカルレンズ501を重合ウェハWのウェハ面内で均一にする拡散板502が設けられている。なお、第2の反射鏡344には例えばハーフミラーが用いられる。
このような第2の方向変換部341、第2の反射鏡344、他の赤外線照射部500、シリンドリカルレンズ501及び拡散板502の構成は、上記実施の形態の第1の方向変換部340、第2の反射鏡343、赤外線照射部320、シリンドリカルレンズ345及び拡散板346の構成と同様であり、重合ウェハWを挟んで対向するように配置されている。
また、図38に示した撮像部330を支持する支持部材331は、当該撮像部330を昇降させる昇降機構(図示せず)を有している。
かかる場合において、重合ウェハWの裏面から赤外線を照射する場合には、図39に示すように撮像部330を重合ウェハWの上方側に上昇させる。そして、他の赤外線照射部500から照射された赤外線は、赤外線照射部320から照射された赤外線は、シリンドリカルレンズ345、第1の反射鏡343、拡散板346を介して重合ウェハWを透過し、さらに第2の反射鏡344を介して撮像部330に取り込まれる。こうして重合ウェハWが分割撮像される。
一方、重合ウェハWの表面から赤外線を照射する場合には、図40に示すように撮像部330を重合ウェハWの下方側に下降させる。そして、他の赤外線照射部500から照射された赤外線は、シリンドリカルレンズ501、第2の反射鏡344、拡散板502を介して重合ウェハWを透過し、さらに第1の反射鏡343を介して撮像部330に取り込まれる。こうして重合ウェハWが分割撮像される。
以上のように本実施の形態によれば、赤外線照射部320による重合ウェハWの裏面への赤外線の照射、又は他の赤外線照射部500による重合ウェハWの表面への赤外線の照射を選択に行うことができる。したがって、検査装置50に搬送される重合ウェハWの状態によらず、重合ウェハWを適切に撮像して、重合ウェハWの内部を適切に検査することができる。例えば重合ウェハWの特定の面から検査を行いたい場合であっても、重合ウェハWの表裏面を反転させる必要がなく、重合ウェハWを撮像できる。
以上の実施の形態では、第1の保持部290の切り欠き部295は重合ウェハWの裏面の1/4が露出するように形成されていたが、第1の保持部290から露出させる重合ウェハWの大きさはこれに限定されない。例えば重合ウェハWの1/2や1/3が露出するようにしてもよいし、或いは重合ウェハWの1/8が露出するようにしてもよい。いずれにしても撮像部330によって重合ウェハWを複数に分割撮像することで、従来撮像できなかった保持部に保持された部分の重合ウェハを撮像することができ、重合ウェハW全体を適切に撮像することができる。
以上の実施の形態では、変位計350が設けられた検査装置50において、重合ウェハWに赤外線を照射して重合ウェハWの内部を検査していたが、重合ウェハWに光を照射して重合ウェハWの表面を検査してもよい。
図41及び図42に示すように検査装置50の処理容器270の内部には、重合ウェハWを吸着保持する保持部550が設けられている。保持部550は、水平な上面を有し、当該上面には、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWを保持部550上に吸着保持できる。
保持部550には、図42に示すように駆動部551が取り付けられている。駆動部551は、例えばモータ(図示せず)を内蔵している。そして、駆動部551は、保持部550を回転させることができると共に、重合ウェハWの位置を調節することができる。処理容器270の底面には、図41及び図42のX方向に沿って延伸するレール552が設けられている。レール552には、上記駆動部551が取り付けられている。そして保持部550(駆動部551)は、レール552に沿って、検査装置50の外部との間で重合ウェハWの受け渡しを行う受渡位置P1と変位計350によって重合ウェハWの接合状態を検査する検査位置P2との間で移動できる。また保持部550は、駆動部551によって昇降自在になっている。
また処理容器270の内部には、保持部550に保持された重合ウェハWの表面に光を照射する照明部560が設けられている。照明部560は、受渡位置P1と検査位置P2との間であって保持部550の上方に配置されている。また照明部560は、Y方向に延伸している。照明部560の下方には、ハーフミラー561が設けられている。ハーフミラー561は、後述する撮像部570と対向する位置に設けられ、鉛直方向から45度傾斜して設けられている。
処理容器270の内部には、照明部560から照射された光を受信し、保持部550に保持された重合ウェハWの表面を撮像する撮像部570が設けられている。撮像部570には、例えば広角型のCCDカメラが用いられる。撮像部570は、検査位置P2よりX方向負方向側、すなわち処理容器270のX方向負方向端部であって、保持部550の上方に配置されている。また撮像部570は支持部材571に支持されている。撮像部570には、制御部400が接続されている。そして、撮像部330で撮像された重合ウェハWの画像は制御部400に出力さる。
処理容器270の内部には、第2の保持部310に保持された重合ウェハWの外側面の変位を計測する、上述した変位計350が設けられている。変位計350は、検査位置P2よりX方向負方向側に設けられている。
また処理容器270の内部であって検査位置P2には、第2の保持部310に保持された重合ウェハWの位置を検出する、上述した位置検出機構351が設けられている。位置検出機構351は例えばCCDカメラ(図示せず)を有し、第2の保持部310に保持された重合ウェハWのノッチ部の位置を検出する。
かかる場合、検査装置50に搬送された重合ウェハWは、ウェハ搬送装置61から保持部550に受け渡される。その後、保持部550を受渡位置P1から検査位置P2まで移動させる。
その後、工程S14において保持部550を回転させながら、変位計350から重合ウェハWの上ウェハWと下ウェハWの外側面にレーザ光を照射する。変位計350では、上ウェハWと下ウェハWの外側面を受信し、当該上ウェハWと下ウェハWの外側面の変位を測定する。なお保持部550によって、重合ウェハWは少なくとも1回転以上回転される。そうすると、上ウェハWと下ウェハWの外側面全周の変位が測定され、上ウェハWと下ウェハWの位置ずれ(重合ウェハWの接合状態)が検査される。
その後、工程S15においてさらに第2の保持部310を回転させながら、位置検出機構351によってノッチ部の位置を検出する。そして、重合ウェハWのノッチ部の位置を調節して、重合ウェハWを所定の位置に配置する。
その後、保持部550を検査位置P2から受渡位置P1側に移動させ、移動中の重合ウェハWに対して照明部560から光を照射する。照射された光は重合ウェハWの表面で反射して、ハーフミラー561を介して撮像部570に取り込まれる。そして撮像部570において、重合ウェハWの表面が撮像される。撮像された重合ウェハWの画像は制御部400に出力され、当該制御部400において重合ウェハWの表面の欠陥が検査される。その後、さらに重合ウェハWを保持した保持部550を受渡位置P2に移動させる。そして、重合ウェハWは保持部550からウェハ搬送装置22に受け渡され、搬入出口273を介して検査装置50から搬出される。
本実施の形態においても、工程S14において第2の保持部310に保持された重合ウェハWを回転させながら、変位計350を用いて当該重合ウェハWの上ウェハWと下ウェハWの外側面の変位をそれぞれ測定し、重合ウェハWの接合状態を適切に検査することができる。しかも、一の検査装置50内で重合ウェハWの接合状態の検査と重合ウェハWの表面の検査を行うことができるので、当該重合ウェハWを効率よく検査することができる。
以上の実施の形態では、ウェハW、Wをファンデルワールス力と水素結合によって接合した重合ウェハWの内部を検査する場合について説明したが、本発明は種々の方法で接合された重合ウェハWに適用できる。
例えば近年の半導体プロセスでは大口径で薄い被処理ウェハが用いられることがあるが、かかる被処理ウェハをそのまま搬送したり、研磨処理すると、被処理ウェハに反りや割れが生じる恐れがある。このため、例えば被処理ウェハを補強するために、例えば接着剤を介在させて支持ウェハに被処理ウェハを貼り付けることが行われている。なお、被処理ウェハは製品となるウェハであって、例えば支持ウェハとの接合面に複数の電子回路が形成されている。
このような被処理ウェハと支持ウェハを接合した重合ウェハWに対して、検査装置50を用いて重合ウェハWの接合状態の検査を行うことができる。また検査装置50では、重合ウェハWの内部の検査や、重合ウェハWの表面の検査も行うことができる。
また2枚のウェハを接合する際、当該ウェハ表面に結合された金属の接合部同士を接合する場合がある。このように接合された重合ウェハWであっても、検査装置50を用いて重合ウェハWの接合状態の検査を行うことができる。
なお、以上の実施の形態の検査装置50では、重合ウェハWの接合状態の検査と、重合ウェハWの内部の検査又は重合ウェハWの表面の検査とを両方行っていたが、重合ウェハWの接合状態の検査のみを行ってもよい。
以上の実施の形態の接合装置41では、チャック駆動部234によって下チャック231が鉛直方向に昇降自在且つ水平方向に移動自在になっていたが、上チャック230を鉛直方向に昇降自在にし、あるいは水平方向に移動自在に構成してもよい。また、上チャック230と下チャック231の両方が、鉛直方向に昇降自在且つ水平方向に移動自在に構成されていてもよい。
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。
1 接合システム
2 搬入出ステーション
3 処理ステーション
30 表面改質装置
40 表面親水化装置
41 接合装置
50 検査装置
60 ウェハ搬送領域
290 第1の保持部
291〜294 支持部材
295 切り欠き部
310 第2の保持部
320 赤外線照射部
330 撮像部
350 変位計
400 制御部
500 他の赤外線照射部
550 保持部
560 照明部
570 撮像部
上ウェハ
下ウェハ
重合ウェハ

Claims (11)

  1. 基板同士を接合した重合基板を検査する検査装置であって、
    重合基板を保持して回転させる保持部と、
    前記保持部に保持された重合基板を回転させながら、当該重合基板を構成する第1の基板と第2の基板の外側面の変位をそれぞれ測定する変位計と、
    重合基板の裏面を保持し、平面視において重合基板の裏面の一部が露出するように切り欠き部が形成された他の保持部と、
    前記他の保持部に保持された重合基板の前記切り欠き部から露出した裏面に赤外線を照射する赤外線照射部と、
    前記赤外線照射部から照射された赤外線を受信し、前記他の保持部に保持された重合基板を前記切り欠き部で露出した裏面毎に分割して撮像する撮像部と、を有することを特徴とする、検査装置。
  2. 前記切り欠き部は、重合基板の裏面の1/4が露出するように形成され、
    前記他の保持部は、重合基板の裏面を保持する4つの支持部材を有し、
    前記4つの支持部材は、平面視において隣り合う支持部材が互いに直交する方向に延伸することを特徴とする、請求項に記載の検査装置。
  3. 前記他の保持部に保持された重合基板の表面に赤外線を照射する他の赤外線照射部を有することを特徴とする、請求項又はに記載の検査装置。
  4. 前記赤外線の波長は1100nm〜2000nmであることを特徴とする、請求項のいずれかに記載の検査装置。
  5. 請求項1〜のいずれかに記載の検査装置を備えた接合システムであって、
    基板同士を接合するために所定の処理を行う複数の処理装置と、前記複数の処理装置に対して接合前の第1の基板、第2の基板、又は接合後の重合基板を搬送するための基板搬送領域と、を備えた処理ステーションと、
    前記処理ステーションに対して接合前の第1の基板、第2の基板、又は接合後の重合基板を搬入出する搬入出ステーションと、を有し、
    前記検査装置は、前記処理ステーションにおいて、前記基板搬送領域に隣接し且つ前記搬入出ステーション側に配置されていることを特徴とする、接合システム。
  6. 検査装置を用いて、基板同士を接合した重合基板を検査する検査方法であって、
    前記検査装置は、
    重合基板を保持して回転させる保持部と、
    前記保持部に保持された重合基板の外側面の変位を測定する変位計と、
    重合基板の裏面を保持し、平面視において重合基板の裏面の一部が露出するように切り欠き部が形成された他の保持部と、
    前記他の保持部に保持された重合基板の前記切り欠き部から露出した裏面に赤外線を照射する赤外線照射部と、
    前記赤外線照射部から照射された赤外線を受信し、前記他の保持部に保持された重合基板を前記切り欠き部で露出した裏面毎に分割して撮像する撮像部と、を有し、
    前記検査方法では、前記保持部に保持された重合基板を回転させながら、前記変位計を用いて当該重合基板を構成する第1の基板と第2の基板の外側面の変位をそれぞれ測定し、重合基板の接合状態を検査し、
    前記検査方法は、
    前記他の保持部に重合基板が保持された状態で、前記切り欠き部から露出した重合基板の裏面に前記赤外線照射部から赤外線を照射し、前記撮像部において、前記照射された赤外線を受信して、前記切り欠き部から露出した重合基板を撮像する撮像工程と、
    前記保持部に重合基板が保持された状態で、前記撮像工程で撮像されていない部分の重合基板の裏面が前記切り欠き部から露出するように、前記保持部によって重合基板を回動させる回動工程と、を有し、
    前記撮像工程と前記回動工程とをこの順で繰り返し行って、重合基板全体を撮像し、当該重合基板の内部を検査することを特徴とする、検査方法。
  7. 前記切り欠き部は、重合基板の裏面の1/4が露出するように形成され、
    前記撮像工程を4回繰り返し行って、重合基板全体を撮像することを特徴とする、請求項に記載の検査方法。
  8. 前記検査装置は、前記他の保持部に保持された重合基板の表面に赤外線を照射する他の赤外線照射部を有し、
    前記撮像工程において、前記赤外線照射部による前記切り欠き部から露出した重合基板の裏面への赤外線の照射、又は前記他の赤外線照射部による重合基板の表面への赤外線の照射を選択的に行うことを特徴とする、請求項又はに記載の検査方法。
  9. 前記赤外線の波長は1100nm〜2000nmであることを特徴とする、請求項のいずれかに記載の検査方法。
  10. 請求項のいずれかに記載の検査方法を検査装置によって実行させるために、当該検査装置を制御する制御部のコンピュータ上で動作するプログラム。
  11. 請求項10に記載のプログラムを格納した読み取り可能なコンピュータ記憶媒体。
JP2012184086A 2012-08-23 2012-08-23 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体 Expired - Fee Related JP5705180B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012184086A JP5705180B2 (ja) 2012-08-23 2012-08-23 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体
US13/967,896 US9097681B2 (en) 2012-08-23 2013-08-15 Inspection device, bonding system and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184086A JP5705180B2 (ja) 2012-08-23 2012-08-23 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体

Publications (2)

Publication Number Publication Date
JP2014041957A JP2014041957A (ja) 2014-03-06
JP5705180B2 true JP5705180B2 (ja) 2015-04-22

Family

ID=50147155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184086A Expired - Fee Related JP5705180B2 (ja) 2012-08-23 2012-08-23 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体

Country Status (2)

Country Link
US (1) US9097681B2 (ja)
JP (1) JP5705180B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165102B2 (ja) * 2014-05-20 2017-07-19 東京エレクトロン株式会社 接合装置、接合システム、接合方法、プログラム、および情報記憶媒体
KR101656380B1 (ko) * 2015-06-29 2016-09-09 디테크 테크놀로지 주식회사 자동 미세조정 배급 경로를 제공하는 접착제 수평 배급 장치 및 방법
KR20180045666A (ko) * 2016-10-26 2018-05-04 삼성전자주식회사 기판 제조 장치
JP7029914B2 (ja) * 2017-09-25 2022-03-04 東京エレクトロン株式会社 基板処理装置
JP2021103698A (ja) * 2018-04-02 2021-07-15 東京エレクトロン株式会社 基板処理システム
JP7065949B2 (ja) * 2018-04-23 2022-05-12 東京エレクトロン株式会社 測定方法および測定装置
US11721596B2 (en) 2018-08-29 2023-08-08 Tokyo Electron Limited Parameter adjustment method of bonding apparatus and bonding system
JP7390794B2 (ja) * 2019-02-27 2023-12-04 東京エレクトロン株式会社 基板処理装置及び接合方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138837B2 (ja) * 1992-04-27 2001-02-26 富士通株式会社 貼り合わせ基板検査方法
JP2002050749A (ja) * 2000-07-31 2002-02-15 Canon Inc 複合部材の分離方法及び装置
JP4071476B2 (ja) * 2001-03-21 2008-04-02 株式会社東芝 半導体ウェーハ及び半導体ウェーハの製造方法
JP2002353423A (ja) * 2001-05-25 2002-12-06 Canon Inc 板部材の分離装置及び処理方法
US7338569B2 (en) * 2004-09-29 2008-03-04 Agere Systems Inc. Method and system of using offset gage for CMP polishing pad alignment and adjustment
JP4530891B2 (ja) * 2005-03-25 2010-08-25 日東電工株式会社 支持板付き半導体ウエハの位置決め方法およびこれを用いた半導体ウエハの製造方法並びに支持板付き半導体ウエハの位置決め装置
JP4966139B2 (ja) * 2007-09-13 2012-07-04 株式会社東芝 接合材貼付検査装置、実装装置、電気部品の製造方法
SG188094A1 (en) * 2008-01-30 2013-03-28 Rudolph Technologies Inc High resolution edge inspection
JP2011066283A (ja) * 2009-09-18 2011-03-31 Sumco Corp ウェーハ貼り合わせ装置及び貼り合わせウェーハの製造方法
JP5421825B2 (ja) * 2010-03-09 2014-02-19 東京エレクトロン株式会社 接合システム、接合方法、プログラム及びコンピュータ記憶媒体

Also Published As

Publication number Publication date
JP2014041957A (ja) 2014-03-06
US9097681B2 (en) 2015-08-04
US20140054463A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5705180B2 (ja) 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体
JP5626736B2 (ja) 接合装置、接合システム、接合方法、プログラム及びコンピュータ記憶媒体
KR102146633B1 (ko) 접합 장치 및 접합 시스템
JP5521066B1 (ja) 接合装置及び接合システム
JP5389847B2 (ja) 接合方法、プログラム、コンピュータ記憶媒体、接合装置及び接合システム
WO2012114826A1 (ja) 接合装置、接合システム及び接合方法
JP5352609B2 (ja) 接合方法、プログラム、コンピュータ記憶媒体、接合装置及び接合システム
JP2014138136A (ja) 接合方法、プログラム、コンピュータ記憶媒体及び接合システム
JP5674731B2 (ja) 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体
WO2013002012A1 (ja) 表面改質装置、接合システム及び表面改質方法
JP6813816B2 (ja) 接合システムおよび接合方法
JP2014150266A (ja) 接合装置及び接合システム
JP5531123B1 (ja) 接合装置及び接合システム
US20240006207A1 (en) Bonding apparatus and bonding method
JP2021180202A (ja) 検査装置、接合システムおよび検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees