JP5695772B1 - Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus - Google Patents

Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus Download PDF

Info

Publication number
JP5695772B1
JP5695772B1 JP2014054066A JP2014054066A JP5695772B1 JP 5695772 B1 JP5695772 B1 JP 5695772B1 JP 2014054066 A JP2014054066 A JP 2014054066A JP 2014054066 A JP2014054066 A JP 2014054066A JP 5695772 B1 JP5695772 B1 JP 5695772B1
Authority
JP
Japan
Prior art keywords
melting point
superconducting wire
low melting
point metal
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054066A
Other languages
Japanese (ja)
Other versions
JP2015176828A (en
Inventor
正樹 大杉
正樹 大杉
真司 藤田
真司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2014054066A priority Critical patent/JP5695772B1/en
Application granted granted Critical
Publication of JP5695772B1 publication Critical patent/JP5695772B1/en
Publication of JP2015176828A publication Critical patent/JP2015176828A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

【課題】低融点金属のバリの発生を抑制することが可能な超電導線材接続体の製造方法、超電導線材接続体及び超電導線材の接続装置を提供する。【解決手段】複数のテープ状の超電導線材10,10が、低融点金属16を介して接続された超電導線材接続体の製造方法であって、接続される超電導線材10,10を、これらの超電導線材10,10の間に低融点金属16が介在した状態で、基台に設けた溝に配置する配置工程と、溝に配置された超電導線材10,10及び低融点金属16を加圧及び加熱することにより低融点金属16を溶融させる溶融工程と、余分な溶融した低融点金属16を吸い取る吸い取り工程とを有する。吸い取り手段は、例えば金属メッシュテープ17である。【選択図】図5A superconducting wire connecting body manufacturing method, a superconducting wire connecting body, and a superconducting wire connecting apparatus capable of suppressing the occurrence of burrs of low melting point metals are provided. A method of manufacturing a superconducting wire connecting body in which a plurality of tape-shaped superconducting wires 10 and 10 are connected via a low-melting point metal 16, wherein the superconducting wires 10 and 10 to be connected are connected to these superconducting wires. In a state where the low melting point metal 16 is interposed between the wires 10 and 10, the placement step of placing in the groove provided in the base, and the superconducting wires 10 and 10 and the low melting point metal 16 placed in the groove are pressurized and heated. Thus, there are a melting step for melting the low melting point metal 16 and a sucking step for sucking off the excessive molten low melting point metal 16. The sucking means is, for example, a metal mesh tape 17. [Selection] Figure 5

Description

本発明は、複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法、超電導線材接続体及び超電導線材の接続装置に関する。   The present invention relates to a method for manufacturing a superconducting wire connecting body in which a plurality of tape-shaped superconducting wires are connected via a low melting point metal, a superconducting wire connecting body, and a superconducting wire connecting apparatus.

超電導線材は、超電導コイルや超電導ケーブル等における導体として利用されている。比較的短い超電導線材を用いる場合、2本またはそれ以上の本数の超電導線材を直列接続することにより、コイルやケーブルの導体に必要な長さの線材が得られる。特許文献1,2には、2本の超電導線材の端末部分の間に半田を配置し、これらの端末部分を互いに重ね合わせ加圧した状態で、半田を加熱して2本の超電導線材を接続する技術が記載されている。   Superconducting wires are used as conductors in superconducting coils and superconducting cables. When a relatively short superconducting wire is used, a wire having a length necessary for a coil or cable conductor can be obtained by connecting two or more superconducting wires in series. In Patent Documents 1 and 2, solder is disposed between the terminal portions of two superconducting wires, and the two superconducting wires are connected by heating the solder while these terminal portions are overlapped and pressed together. The technology to do is described.

国際公開第01/033580号International Publication No. 01/033580 特開2011−003382号公報JP 2011-003382 A

超電導線材を半田やろう材等の低融点金属で接続する際、超電導線材の加圧が不足すると、超電導線材の変位、分離、位置ずれ等により接続不良が発生するおそれがある。しかし、重ね合わせた超電導線材を加圧すると、超電導線材の間の低融点金属が溶融したときに、余分な低融点金属が超電導線材の幅方向の側方に漏れ、低融点金属が凝固したときにバリが発生する問題が生じる。   When the superconducting wire is connected with a low melting point metal such as solder or brazing material, if the superconducting wire is not sufficiently pressurized, connection failure may occur due to displacement, separation, displacement, etc. of the superconducting wire. However, when the superconducting wires are superposed, when the low melting point metal between the superconducting wires is melted, excess low melting point metal leaks to the side in the width direction of the superconducting wire and the low melting point metal solidifies. This causes a problem of burrs.

本発明は、上記事情に鑑みてなされたものであり、低融点金属によるバリの発生を抑制することが可能な超電導線材接続体の製造方法、超電導線材接続体及び超電導線材の接続装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a superconducting wire connecting body manufacturing method, a superconducting wire connecting body, and a superconducting wire connecting apparatus capable of suppressing the occurrence of burrs due to low melting point metals. This is the issue.

本発明は、前記課題を解決するため、複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法であって、接続される超電導線材を、これらの超電導線材の間に低融点金属が介在した状態で、基台に設けた溝に配置する配置工程と、前記溝に配置された前記超電導線材及び前記低融点金属を加圧及び加熱することにより前記低融点金属を溶融させる溶融工程と、余分な溶融した前記低融点金属を吸い取る吸い取り工程と、を有し、前記配置工程において、前記溶融工程にて、前記低融点金属を溶融させる前に、前記超電導線材および前記低融点金属とともに、金属メッシュテープを前記溝の内部に配置するかまたは前記超電導線材に重ね合わせて配置することを特徴とする超電導線材接続体の製造方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a superconducting wire connecting body in which a plurality of tape-shaped superconducting wires are connected via a low melting point metal, and the superconducting wires to be connected are connected to these superconducting wires. With the low melting point metal interposed between the wires, the placement step of placing in the groove provided on the base, and pressurizing and heating the superconducting wire and the low melting point metal placed in the groove a melting step of melting a refractory metal, wherein the extra melted possess a step blotter soak up low melting point metal, a, in the disposing step, by said melting step prior to melt the low melting point metal, said superconducting with wire and the low melting point metal, Hisage a method of manufacturing a superconducting wire connector characterized that you arranged by overlapping metal mesh tape or the superconducting wire is disposed inside the groove To.

前記吸い取り工程の後、前記低融点金属が溶融している状態で、余分な溶融した前記低融点金属を吸い取った前記金属メッシュテープを取り外すことが好ましい
前記金属メッシュテープは、フラックスを含む銅メッシュテープであってもよい。
本発明は、複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法であって、接続される超電導線材を、これらの超電導線材の間に低融点金属が介在した状態で、基台に設けた溝に配置する配置工程と、前記溝に配置された前記超電導線材及び前記低融点金属を加圧及び加熱することにより前記低融点金属を溶融させる溶融工程と、余分な溶融した前記低融点金属を吸い取る吸い取り工程と、を有し、前記基台は、前記溝の底面または側面の少なくとも1箇所に排気口を有し、前記排気口は、ポンプに接続され、前記吸い取り工程において、前記ポンプの吸引により、余分な溶融した前記低融点金属を前記排気口から吸い取ることを特徴とする超電導線材接続体の製造方法を提供する
前記超電導線材が、スズまたはスズ合金により接合された安定化層を有する場合、前記低融点金属は、前記安定化層を接合する前記スズまたは前記スズ合金の融点より低いことが好ましい。
After the sucking step, it is preferable to remove the metal mesh tape from which excess molten low melting point metal has been sucked in a state where the low melting point metal is melted .
The metal mesh tape may be a copper mesh tape containing a flux.
The present invention relates to a method of manufacturing a superconducting wire connecting body in which a plurality of tape-shaped superconducting wires are connected via a low melting point metal, and the superconducting wire connected is a low melting point metal between these superconducting wires. In a state where the metal is interposed in a groove provided in the base, and a melting step in which the superconducting wire and the low melting point metal placed in the groove are pressurized and heated to melt the low melting point metal. And a sucking step of sucking off the excessive molten low melting point metal, and the base has an exhaust port at least at one of the bottom surface or the side surface of the groove, and the exhaust port is connected to a pump. In the sucking step, a superconducting wire connecting body manufacturing method is provided in which excess molten low melting point metal is sucked from the exhaust port by suction of the pump.
When the superconducting wire has a stabilization layer joined by tin or a tin alloy, the low melting point metal is preferably lower than the melting point of the tin or the tin alloy joining the stabilization layer.

また、本発明は、本発明の超電導線材接続体の製造方法によって製造された超電導線材接続体であって、少なくとも2本の超電導線材が、その間に低融点金属が介在した状態で重なり合い、かつ互いに接続された超電導線材接続体であって、前記超電導線材接続体の側面に前記低融点金属のバリが存在しないことを特徴とする超電導線材接続体を提供する。 Further, the present invention is a superconducting wire connector manufactured by the method of manufacturing a superconducting wire connector of the present invention, wherein at least two superconducting wires overlap with each other with a low melting point metal interposed therebetween, and Provided is a connected superconducting wire, wherein the low-melting-point metal burrs are not present on the side surface of the superconducting wire connecting.

また、本発明は、前記課題を解決するため、複数のテープ状の超電導線材を、低融点金属を介して接続する超電導線材の接続装置であって、接続される超電導線材を配置する溝を有する基台と、前記溝に配置された前記超電導線材を加圧及び加熱する手段と、低融点金属の溶融時に余分な溶融した低融点金属を吸い取る吸い取り手段と、を有し、前記吸い取り手段は、前記基台において前記溝の底面または側面の少なくとも1箇所に設けられた排気口を備え、前記排気口はポンプに接続されたことを特徴とする超電導線材の接続装置を提供する。 In order to solve the above-mentioned problem, the present invention is a superconducting wire connecting device for connecting a plurality of tape-shaped superconducting wires via a low melting point metal, and has a groove for arranging the superconducting wires to be connected. a base, means for arranged the superconducting wire of the pressure and heat to said groove, a blotter means sucks a low-melting-point metal that extra melted during melting of the low melting point metal, have a, the wicking means, A superconducting wire connecting device is provided , comprising an exhaust port provided in at least one position on a bottom surface or a side surface of the groove in the base, wherein the exhaust port is connected to a pump .

前記吸い取り手段は、さらに金属メッシュテープを備えてもよい。
前記金属メッシュテープは、フラックスを含む銅メッシュテープであってもよい
The wicking means may further comprise a metal mesh tape.
The metal mesh tape may be a copper mesh tape containing a flux .

本発明によれば、余分な低融点金属を吸い取ることにより、バリの発生を抑制することができる。   According to the present invention, the generation of burrs can be suppressed by sucking off the extra low melting point metal.

溝を備えた基台の一例を示す斜視図である。It is a perspective view which shows an example of the base provided with the groove | channel. 超電導線材を加圧及び加熱する手段の一例を示す斜視図である。It is a perspective view which shows an example of a means to pressurize and heat a superconducting wire. 超電導線材の片面に低融点金属を配置した一例を示す断面図である。It is sectional drawing which shows an example which has arrange | positioned the low melting metal to the single side | surface of a superconducting wire. 超電導線材の間に低融点金属が介在した状態の一例を示す断面図である。It is sectional drawing which shows an example of the state which the low melting-point metal intervened between the superconducting wires. 超電導線材に金属メッシュテープを重ね合わせた一例を示す断面図である。It is sectional drawing which shows an example which piled up the metal mesh tape on the superconducting wire. 比較例1の接続結果における線幅分布の一例を示すグラフである。10 is a graph showing an example of a line width distribution in the connection result of Comparative Example 1. 接続した超電導線材の両側にバリが生じた一例を示す平面図である。It is a top view which shows an example which the burr | flash produced on both sides of the connected superconducting wire. 実施例1の接続結果における線幅分布の一例を示すグラフである。6 is a graph showing an example of a line width distribution in the connection result of Example 1. 排気口を備えた基台の一例を示す斜視図である。It is a perspective view which shows an example of the base provided with the exhaust port.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1に、超電導線材を配置する溝21を有する基台20の一例を示す。図2には、超電導線材を加圧及び加熱により圧着する手段として、圧着治具25の一例を示す。本明細書において「加圧及び加熱」とは、超電導線材が加熱された状態で加圧される時期があればよく、加圧と加熱の開始時期や終了時期が同時である場合に限定するものではない。
Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.
In FIG. 1, an example of the base 20 which has the groove | channel 21 which arrange | positions a superconducting wire is shown. FIG. 2 shows an example of a crimping jig 25 as means for crimping the superconducting wire by pressure and heating. In this specification, “pressurization and heating” is only necessary when there is a time when the superconducting wire is heated, and it is limited to when the pressurization and heating start timing and end timing are simultaneous. is not.

基台20は、溝21の側面を形成する一対の側壁22,22と、溝21の下面を形成する底壁23を有する。底壁23は平面視で略長方形であり、この長方形の長辺は、溝21の長手方向と平行である。溝21の長手方向の両端は、閉鎖されることなく、基台20の両端に達している。溝21の深さは、接続しようとする一対の超電導線材及び低融点金属の厚さの総和と略同じかそれ以上であることが望ましい。溝21の幅W1は、超電導線材の幅と同程度である。超電導線材を溝21に挿入し、及び溝21から取り外す作業を容易にするため、溝21の幅W1は、超電導線材の幅より若干大きくしてもよい。溝21の底面と底壁23の下面が平行であると、基台20を水平面上に配置したときに、溝21に配置された超電導線材を水平に維持しやすくなるので、好ましい。   The base 20 has a pair of side walls 22, 22 that form the side surfaces of the groove 21, and a bottom wall 23 that forms the lower surface of the groove 21. The bottom wall 23 is substantially rectangular in plan view, and the long side of the rectangle is parallel to the longitudinal direction of the groove 21. Both ends in the longitudinal direction of the groove 21 reach both ends of the base 20 without being closed. The depth of the groove 21 is preferably substantially the same as or greater than the sum of the thicknesses of the pair of superconducting wires and low melting point metal to be connected. The width W1 of the groove 21 is approximately the same as the width of the superconducting wire. In order to facilitate the operation of inserting and removing the superconducting wire from the groove 21, the width W1 of the groove 21 may be slightly larger than the width of the superconducting wire. It is preferable that the bottom surface of the groove 21 and the bottom surface of the bottom wall 23 are parallel because the superconducting wire disposed in the groove 21 can be easily maintained horizontally when the base 20 is disposed on a horizontal plane.

基台20は、溝21の長手方向の両端部近傍に、溝21に配置された超電導線材を保持するクランプ機構(図示略)を備えてもよい。クランプ機構は、溝21の長手方向における超電導線材の位置ずれを抑制できることが好ましく、さらに溝21の幅方向における超電導線材の位置ずれを抑制できることが好ましい。基台20を構成する材料は、熱伝導率が低く、断熱性の高いことが好ましい。これにより、超電導線材の加熱時に基台20の温度上昇が抑制され、低融点金属の溶融を妨げることがなく、作業効率を向上することができる。基台20の材料としては、セラミックスが挙げられる。側壁22,22と底壁23を別体で作製したものを組み合わせてもよいが、側壁22,22と底壁23を一体で形成してもよい。   The base 20 may include a clamping mechanism (not shown) that holds the superconducting wire disposed in the groove 21 in the vicinity of both ends in the longitudinal direction of the groove 21. It is preferable that the clamping mechanism can suppress the positional deviation of the superconducting wire in the longitudinal direction of the groove 21, and it is preferable that the positional deviation of the superconducting wire in the width direction of the groove 21 can be suppressed. The material constituting the base 20 preferably has a low thermal conductivity and a high heat insulating property. Thereby, the temperature rise of the base 20 is suppressed when the superconducting wire is heated, and the working efficiency can be improved without preventing the melting of the low melting point metal. Examples of the material of the base 20 include ceramics. The side walls 22 and 22 and the bottom wall 23 manufactured separately may be combined, but the side walls 22 and 22 and the bottom wall 23 may be integrally formed.

圧着治具25は、板部27と、板部27から突出した凸部26を有する。板部27は平面視で略長方形であり、この長方形の長辺は、凸部26の長手方向と平行である。凸部26の先端面の形状は略長方形であり、板部27の長辺方向に連続した一つの突起である。板部27の寸法は、基台20の平面寸法と同程度でもよく、一回り小さくでもよい。板部27の上面は、平坦に形成されている。圧着治具25の板部27は面積が広く、厚さが薄いことが好ましい。これにより、体積に比して表面積を大きくすることができ、加熱後の放熱性を向上することができる。   The crimping jig 25 has a plate portion 27 and a convex portion 26 protruding from the plate portion 27. The plate portion 27 is substantially rectangular in plan view, and the long side of the rectangle is parallel to the longitudinal direction of the convex portion 26. The shape of the front end surface of the convex portion 26 is substantially rectangular, and is a single protrusion that is continuous in the long side direction of the plate portion 27. The dimension of the plate part 27 may be approximately the same as the planar dimension of the base 20 or may be slightly smaller. The upper surface of the plate part 27 is formed flat. The plate portion 27 of the crimping jig 25 preferably has a large area and a small thickness. Thereby, a surface area can be enlarged compared with a volume, and the heat dissipation after a heating can be improved.

溝21に配置した超電導線材(図示せず)を圧着治具25で加圧するときには、圧着治具25の凸部26が、基台20の溝21の中に挿入される。凸部26を溝21に挿入し、及び溝21から取り外す作業を容易にするため、溝21の幅W1は、凸部26の幅W2より若干大きくしてもよい。圧着治具25は、内部に加熱手段(図示せず)を有するか、あるいは外部の加熱手段(図示せず)から得た熱を凸部26の先端面に伝導させることが可能な構造であることが好ましい。   When a superconducting wire (not shown) disposed in the groove 21 is pressed by the crimping jig 25, the convex portion 26 of the crimping jig 25 is inserted into the groove 21 of the base 20. In order to facilitate the operation of inserting the convex portion 26 into the groove 21 and removing it from the groove 21, the width W1 of the groove 21 may be slightly larger than the width W2 of the convex portion 26. The crimping jig 25 has a heating means (not shown) inside or a structure capable of conducting heat obtained from an external heating means (not shown) to the tip surface of the convex portion 26. It is preferable.

圧着治具25の内部に加熱手段を設けることなく、外部の加熱手段を用いる場合、加熱後に外部の加熱手段を圧着治具25から引き離すことで、さらなる熱の流入を抑制し、超電導線材及び低融点金属の冷却を効率よく行うことができる。外部の加熱手段は、例えばブロック状の加熱体の下面を板部27の上面に押し当てたときに、加熱体から圧着治具25に熱が流入する構成とすることもできる。加熱方法は、低融点金属を融点以上に加熱できれば特に限定されないが、電熱ヒーターを用いる方法が挙げられる。   When an external heating means is used without providing a heating means inside the crimping jig 25, the external heating means is separated from the crimping jig 25 after heating, thereby suppressing further inflow of heat, and superconducting wire and low The melting point metal can be cooled efficiently. The external heating means may be configured such that heat flows from the heating body into the crimping jig 25 when the lower surface of the block-shaped heating body is pressed against the upper surface of the plate portion 27, for example. The heating method is not particularly limited as long as the low melting point metal can be heated to the melting point or higher, and a method using an electric heater can be mentioned.

圧着治具25を構成する材料は、超電導線材を加圧することが可能な強度と、加熱手段からの熱を超電導線材に伝導させる機能を有することが望ましい。この点から、ステンレス、アルミニウム、銅、アルミニウム合金、銅合金など、熱伝導率及び熱伝達率の高い金属材料が好適である。   The material constituting the crimping jig 25 desirably has a strength capable of pressurizing the superconducting wire and a function of conducting heat from the heating means to the superconducting wire. In this respect, a metal material having a high thermal conductivity and a high heat transfer coefficient such as stainless steel, aluminum, copper, an aluminum alloy, and a copper alloy is preferable.

圧着治具25の上下動には、シリンダーやモーター等の駆動手段(図示せず)を用いてもよいし、ボールねじやスライダー等の案内手段(図示せず)を用いてもよい。圧着治具25に対して外部の加熱体を上下させる場合も同様である。温度を管理するため、圧着治具25や加熱体の温度測定手段や、測定した温度の表示手段等(図示せず)を接続装置に設けることもできる。   For the vertical movement of the crimping jig 25, driving means (not shown) such as a cylinder or a motor may be used, or guide means (not shown) such as a ball screw or a slider may be used. The same applies to the case where an external heating body is moved up and down with respect to the crimping jig 25. In order to manage the temperature, a temperature measuring means for the crimping jig 25 and the heating body, a means for displaying the measured temperature (not shown), etc. (not shown) can also be provided in the connecting device.

図3に超電導線材10の一例を示す。図3には、後述する低融点金属16も図示されているが、この低融点金属16は超電導線材10の一部ではない。超電導線材10は、テープ基板11、中間層12、超電導層13、保護層14、安定化層15等を有し、イットリウム(Y)系の超電導体が用いられた多層複合構造となっている。テープ基板11は、例えばニッケル合金等の金属からなるテープ状の基材である。   FIG. 3 shows an example of the superconducting wire 10. FIG. 3 also shows a low melting point metal 16 to be described later, but this low melting point metal 16 is not a part of the superconducting wire 10. The superconducting wire 10 has a tape substrate 11, an intermediate layer 12, a superconducting layer 13, a protective layer 14, a stabilizing layer 15, etc., and has a multilayer composite structure using yttrium (Y) based superconductor. The tape substrate 11 is a tape-like base material made of a metal such as a nickel alloy.

テープ基板11と超電導層13との間に設けられる中間層12は、下地層、配向性中間層、キャップ層等の複数層から構成されてもよい。下地層は例えばYからなり、耐熱性が高く、界面反応性を低減するため設けられる。テープ基板と下地層との間には、Al等の拡散防止層を介在させてもよい。配向性中間層はGdZr、MgO、ZrO−Y(YSZ)、SrTiO等の金属酸化物からなり、2軸配向する物質から選択される。キャップ層は、CeO、Y、Al、Gd、Zr、Ho、Nd等、結晶粒が面内方向に選択成長するものが好ましい。 The intermediate layer 12 provided between the tape substrate 11 and the superconducting layer 13 may be composed of a plurality of layers such as a base layer, an orientation intermediate layer, and a cap layer. The underlayer is made of, for example, Y 2 O 3 and has high heat resistance and is provided to reduce interface reactivity. A diffusion prevention layer such as Al 2 O 3 may be interposed between the tape substrate and the base layer. The orientation intermediate layer is made of a metal oxide such as Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), or SrTiO 3 and is selected from materials that are biaxially oriented. The cap layer, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, Zr 2 O 3, Ho 2 O 3, Nd 2 O 3 , etc., those crystal grains are selectively grown in the in-plane direction preferable.

超電導層13は、RE123(REBaCu7−δ)等の酸化物超電導体からなる。RE123のREは、Y、La、Nd、Sm、Er、Gd等の希土類元素を表す。RE123として、Y123(YBaCu7−δ)、Gd123(GdBaCu7−δ)などが挙げられる。 The superconducting layer 13 is made of an oxide superconductor such as RE123 (REBa 2 Cu 3 O 7-δ ). RE in RE123 represents a rare earth element such as Y, La, Nd, Sm, Er, or Gd. Examples of RE123 include Y123 (YBa 2 Cu 3 O 7-δ ) and Gd123 (GdBa 2 Cu 3 O 7-δ ).

保護層14は、Agや貴金属等からなる。安定化層15は、銅、黄銅(Cu−Zn合金)のような銅合金等、良導電性の金属材料からなることが好ましい。安定化層15は、保護層14の上にCu等の金属テープをSnはんだ等のはんだで接合したものであってもよい。   The protective layer 14 is made of Ag, a noble metal, or the like. The stabilization layer 15 is preferably made of a highly conductive metal material such as copper or a copper alloy such as brass (Cu—Zn alloy). The stabilization layer 15 may be formed by joining a metal tape such as Cu on the protective layer 14 with solder such as Sn solder.

超電導線材10の別の例として、Bi2212(BiSrCaCu8+δ)、Bi2223(BiSrCaCu10+δ)等のビスマス系超電導体を用いたビスマス系超電導線材が挙げられる。ビスマス系超電導線材は、Agなどのテープ状の安定化材からなるシースの内部に酸化物超電導層を内包した構造が主体である。 As another example of the superconducting wire 10, and a Bi2212 (Bi 2 Sr 2 CaCu 2 O 8 + δ), Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ) bismuth using bismuth-based superconductors such as superconducting wires . The bismuth-based superconducting wire mainly has a structure in which an oxide superconducting layer is included in a sheath made of a tape-like stabilizing material such as Ag.

本実施形態による超電導線材の接続方法は、複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法として利用できる。複数の超電導線材10,10を接続する際には、図4に示すように、それぞれの超電導線材10,10の端末部を重ね合わせ、その間に低融点金属16を配置する。低融点金属16は、はんだやろう材等である。低融点金属16の融点は、超電導線材10を低融点金属16の融点以上に加熱しても超電導体の劣化を避けることができる程度に低いことが好ましい。また、超電導線材10の一部にはんだやろう材等の溶融可能な接合材料が含まれる場合は、低融点金属16の融点が、超電導線材10の接合材料の融点より低いことが好ましい。例えば、超電導線材が、スズまたはスズ合金により接合された安定化層を有する場合は、低融点金属の融点は、安定化層を接合する前記スズまたはスズ合金の融点より低いことが好ましい。   The superconducting wire connecting method according to the present embodiment can be used as a method of manufacturing a superconducting wire connecting body in which a plurality of tape-like superconducting wires are connected via low-melting point metals. When connecting a plurality of superconducting wires 10, 10, as shown in FIG. 4, the end portions of the respective superconducting wires 10, 10 are overlapped, and the low melting point metal 16 is disposed therebetween. The low melting point metal 16 is a solder or a brazing material. The melting point of the low melting point metal 16 is preferably low enough to avoid deterioration of the superconductor even if the superconducting wire 10 is heated to a temperature higher than the melting point of the low melting point metal 16. When a part of the superconducting wire 10 includes a meltable joining material such as solder or brazing material, the melting point of the low melting point metal 16 is preferably lower than the melting point of the joining material of the superconducting wire 10. For example, when the superconducting wire has a stabilization layer joined by tin or a tin alloy, the melting point of the low melting point metal is preferably lower than the melting point of the tin or tin alloy joining the stabilization layer.

低融点金属16の溶融前の形態は、超電導線材10,10の間に低融点金属16が配置された状態を維持しやすいように、線状、テープ状、シート状、ペースト状等が好ましい。はんだは、従来公知のものを使用可能であり、例えば、Inを主成分とするInはんだ、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなるSnはんだ、Pb−Sn系合金はんだ、共晶はんだ、低温はんだなどが挙げられる。また、1種のはんだのみを使用してもよく、2種以上のはんだを組み合わせて使用することもできる。環境問題に対応する観点からは、Pb等の規制対象物質を使用せず、これらの含有量が規制値未満であることが好ましい。   The form before melting of the low melting point metal 16 is preferably a linear shape, a tape shape, a sheet shape, a paste shape, or the like so that the low melting point metal 16 can be easily maintained between the superconducting wires 10 and 10. A conventionally well-known thing can be used for a solder, for example, In solder which has In as a main component, Sn, Sn-Ag type alloy, Sn-Bi type alloy, Sn-Cu type alloy, Sn-Zn type alloy etc. Sn solder made of an alloy containing Sn as a main component, Pb—Sn alloy solder, eutectic solder, low-temperature solder, and the like. Moreover, only 1 type of solder may be used and it can also be used combining 2 or more types of solder. From the viewpoint of dealing with environmental problems, it is preferable not to use regulated substances such as Pb, and the content thereof is less than the regulated value.

本実施形態の接続方法は、第1の工程として、接続される超電導線材10,10及び低融点金属16を、基台20の溝21に配置する配置工程を有する。超電導線材10,10及び低融点金属16を溝21に配置する順序や方法として、次の(1)〜(5)を例示するが、接続される超電導線材10,10の間に低融点金属16が介在した状態となればよく、配置工程が下記に限定されるものではない。   The connection method of the present embodiment includes a placement step of placing the superconducting wires 10 and 10 and the low melting point metal 16 to be connected in the groove 21 of the base 20 as a first step. The following (1) to (5) are exemplified as the order and method of arranging the superconducting wires 10 and 10 and the low melting point metal 16 in the groove 21, but the low melting point metal 16 is connected between the superconducting wires 10 and 10 to be connected. The arrangement process is not limited to the following.

(1)溝21に一方(下側)の超電導線材10を配置し、次いで、超電導線材10の上に低融点金属16を配置し、次いで、その上に他方(上側)の超電導線材10を配置する。
(2)溝21の外で一方の超電導線材10の上に低融点金属16を配置し、次いで、これらを溝21に配置し、次いで、その上に他方の超電導線材10を配置する。
(3)溝21の外で一方の超電導線材10の上に低融点金属16を配置し、次いで、その上に他方の超電導線材10を配置し、次いで、これらをまとめて溝21に配置する。
(4)溝21に両方の超電導線材10,10を重ね合わせて配置し、次いで、上側の超電導線材10の端末部を持ち上げた状態で、超電導線材10,10の間に低融点金属16を配置する。
(5)溝21に一方の超電導線材10を配置し、これとは別に、溝21の外で他方の超電導線材10に低融点金属16を配置し(はんだペーストのように加熱しなくても付着性のある接合材料を付着させ)、次いで、低融点金属16を付着させた他方の超電導線材10を一方の超電導線材10の上に配置する。
(1) One (lower) superconducting wire 10 is disposed in the groove 21, then the low melting point metal 16 is disposed on the superconducting wire 10, and then the other (upper) superconducting wire 10 is disposed thereon. To do.
(2) The low melting point metal 16 is disposed on one superconducting wire 10 outside the groove 21, then these are disposed in the groove 21, and then the other superconducting wire 10 is disposed thereon.
(3) The low melting point metal 16 is disposed on one superconducting wire 10 outside the groove 21, then the other superconducting wire 10 is disposed thereon, and then these are collectively disposed in the groove 21.
(4) Arrange both superconducting wires 10 and 10 in the groove 21 and then place the low melting point metal 16 between the superconducting wires 10 and 10 in a state where the end of the upper superconducting wire 10 is lifted. To do.
(5) One superconducting wire 10 is disposed in the groove 21, and separately from this, the low melting point metal 16 is disposed on the other superconducting wire 10 outside the groove 21 (attached without heating as in solder paste) Next, the other superconducting wire 10 to which the low melting point metal 16 is attached is disposed on the one superconducting wire 10.

図4では、超電導線材10の安定化層15が低融点金属16に接触するように、超電導線材10を配置している。安定化層15がCuからなる場合、安定化層15が低融点金属16に接触するように配置すると、溶融した低融点金属16が安定化層15の表面を濡らしやすく、超電導線材10の強固に接合しやすいので、好ましい。   In FIG. 4, the superconducting wire 10 is arranged so that the stabilization layer 15 of the superconducting wire 10 is in contact with the low melting point metal 16. When the stabilization layer 15 is made of Cu, if the stabilization layer 15 is disposed so as to contact the low melting point metal 16, the molten low melting point metal 16 tends to wet the surface of the stabilization layer 15, and the superconducting wire 10 is strengthened. Since it is easy to join, it is preferable.

本実施形態の接続方法は、第2の工程として、溝21に配置された超電導線材10,10及び低融点金属16を加圧及び加熱することにより低融点金属16を溶融させる溶融工程を有する。溶融工程においては、超電導線材10,10及び低融点金属16を基台20の溝21と圧着治具25の凸部26との間に挟み込むことにより、超電導線材10,10と低融点金属16とが分離しないように加圧する。超電導線材10に加える圧力は、超電導線材10の損傷、特に超電導体の結晶構造の変化がない程度に制御される。加熱方法は、上述したように、圧着治具25の内部または外部に設けた加熱手段(図示せず)から超電導線材10に熱を伝導させる方法が挙げられる。   The connection method of the present embodiment includes a melting step of melting the low melting point metal 16 by pressurizing and heating the superconducting wires 10 and 10 and the low melting point metal 16 disposed in the groove 21 as the second step. In the melting step, the superconducting wires 10, 10 and the low melting point metal 16 are sandwiched between the groove 21 of the base 20 and the convex portion 26 of the crimping jig 25, thereby Pressurize so that does not separate. The pressure applied to the superconducting wire 10 is controlled to such an extent that the superconducting wire 10 is not damaged, particularly, the crystal structure of the superconductor is not changed. Examples of the heating method include a method of conducting heat from the heating means (not shown) provided inside or outside the crimping jig 25 to the superconducting wire 10 as described above.

本実施形態の接続方法は、第3の工程として、余分な溶融した低融点金属16を吸い取る吸い取り工程を有する。余分な溶融した低融点金属を吸い取る吸い取り手段として、図5では、金属メッシュテープ17を用いた場合を例示する。金属メッシュテープ17は、金属の細線を編んでテープ状にしたメッシュ材である。金属メッシュテープ17は、溶融した低融点金属に接触すると、毛細管現象により低融点金属を吸引することができる。金属メッシュテープ17を構成する金属は、銅(Cu)やその合金が挙げられる。   The connection method of the present embodiment includes a sucking step of sucking off the excessive molten low melting point metal 16 as a third step. FIG. 5 illustrates a case where a metal mesh tape 17 is used as a sucking means for sucking off an excessive molten low melting point metal. The metal mesh tape 17 is a mesh material formed by knitting metal thin wires into a tape shape. When the metal mesh tape 17 comes into contact with the molten low melting point metal, the low melting point metal can be sucked by a capillary phenomenon. Examples of the metal constituting the metal mesh tape 17 include copper (Cu) and alloys thereof.

金属メッシュテープ17を吸い取り手段とする場合、配置工程において、基台20の溝21を配置するとき、超電導線材10,10及び低融点金属16とともに金属メッシュテープ17を溝21の内部または超電導線材10の上に配置することが好ましい。また、超電導線材10の上に金属メッシュテープ17を重ね合わせて配置した場合は、溶融工程において、超電導線材10と圧着治具25の凸部26との間に金属メッシュテープ17を挟み込むことが好ましい。この場合は、超電導線材10及び低融点金属16とともに金属メッシュテープ17も、圧着治具25により加圧及び加熱される。   When the metal mesh tape 17 is used as the sucking means, when the groove 21 of the base 20 is arranged in the arranging step, the metal mesh tape 17 is placed inside the groove 21 or the superconducting wire 10 together with the superconducting wires 10 and 10 and the low melting point metal 16. It is preferable to arrange on top of. Further, when the metal mesh tape 17 is placed on the superconducting wire 10 in an overlapping manner, it is preferable to sandwich the metal mesh tape 17 between the superconducting wire 10 and the convex portion 26 of the crimping jig 25 in the melting step. . In this case, the metal mesh tape 17 as well as the superconducting wire 10 and the low melting point metal 16 are also pressurized and heated by the crimping jig 25.

低融点金属16が溶融する前から金属メッシュテープ17を超電導線材10の近傍に配置した場合、超電導線材10の側方からはみ出した余分な低融点金属16を直ちに金属メッシュテープ17で吸い取らせることができる。つまり、溶融工程を行う最中で、低融点金属16が溶融した直後から、吸い取り工程を自動的に開始することができる。余分な低融点金属を吸い取ることにより、バリの発生を抑制することができる。   When the metal mesh tape 17 is arranged in the vicinity of the superconducting wire 10 before the low melting point metal 16 is melted, the excess low melting point metal 16 protruding from the side of the superconducting wire 10 can be immediately sucked by the metal mesh tape 17. it can. That is, during the melting process, the sucking process can be automatically started immediately after the low melting point metal 16 is melted. The generation of burrs can be suppressed by sucking off the extra low melting point metal.

金属メッシュテープ17は、低融点金属の吸引を促進するため、フラックスを含むことが好ましい。金属メッシュテープの金属が銅である銅メッシュテープを用いると、低融点金属の吸引性とともに、熱伝導性も優れる。このため、超電導線材10と圧着治具25との間に金属メッシュテープ17を挟み込んだときでも、圧着治具25の熱を超電導線材10に良好に伝導させることができる。   The metal mesh tape 17 preferably contains a flux in order to promote suction of the low melting point metal. When a copper mesh tape in which the metal of the metal mesh tape is copper is used, the thermal conductivity is excellent as well as the low melting point metal suction. For this reason, even when the metal mesh tape 17 is sandwiched between the superconducting wire 10 and the crimping jig 25, the heat of the crimping jig 25 can be conducted well to the superconducting wire 10.

溶融工程及び吸い取り工程が終了した後は、余分な低融点金属を吸い取った金属メッシュテープ17を除去することが好ましい。この除去の際には圧着治具25を上昇させ、加圧を停止した状態で、金属メッシュテープ17を超電導線材10の上から取り除く。金属メッシュテープ17の取り外しは、ピンセット等の治具を用いて手動でもよく、自動でもよい。また、最終的には、超電導線材10,10の間の低融点金属16が冷却されて凝固することにより、超電導線材10,10が接続される。吸い取り工程後の手順として、次の(A)〜(C)を例示するが、金属メッシュテープ17を用いた本実施形態の接続方法が下記に限定されるものではない。   After the melting step and the sucking step are completed, it is preferable to remove the metal mesh tape 17 that has sucked off the excessive low melting point metal. In this removal, the crimping jig 25 is raised, and the metal mesh tape 17 is removed from the superconducting wire 10 with the pressurization stopped. The removal of the metal mesh tape 17 may be performed manually or automatically using a jig such as tweezers. Finally, the low-melting point metal 16 between the superconducting wires 10 and 10 is cooled and solidified to connect the superconducting wires 10 and 10. The following (A) to (C) are exemplified as procedures after the blotting process, but the connection method of the present embodiment using the metal mesh tape 17 is not limited to the following.

(A)低融点金属16が溶融している状態で圧着治具25を上昇させ、余分な低融点金属を吸い取った金属メッシュテープ17を取り外す。超電導線材10,10の間の溶融した低融点金属16が凝固しないうちに、再び圧着治具25を下降させて超電導線材10,10に対する加圧及び加熱を継続する。その後、圧着治具25の加熱を終了し、圧着した状態を継続したまま低融点金属16の融点以下まで冷却する。低融点金属16が凝固した後に圧着治具25を上昇させ、接続が済んだ超電導線材10,10を取り出す。 (A) The crimping jig 25 is raised in a state where the low melting point metal 16 is melted, and the metal mesh tape 17 that has absorbed excess low melting point metal is removed. Before the molten low melting point metal 16 between the superconducting wires 10 and 10 solidifies, the crimping jig 25 is lowered again to continue pressurization and heating on the superconducting wires 10 and 10. After that, the heating of the crimping jig 25 is finished, and it is cooled to below the melting point of the low melting point metal 16 while the crimped state is continued. After the low melting point metal 16 is solidified, the crimping jig 25 is raised, and the superconducting wires 10, 10 having been connected are taken out.

(B)低融点金属16が溶融している状態で圧着治具25を上昇させ、余分な低融点金属を吸い取った金属メッシュテープ17を取り外す。超電導線材10,10の間の溶融した低融点金属16の一部または全部が凝固した後で再び圧着治具25を下降させ、超電導線材10,10を加圧しながら再加熱する。超電導線材10,10の間の低融点金属16が溶融した後で圧着治具25の加熱を終了し、圧着した状態を継続したまま低融点金属16の融点以下まで冷却する。低融点金属16が凝固した後に圧着治具25を上昇させ、接続が済んだ超電導線材10,10を取り出す。 (B) The crimping jig 25 is raised in a state where the low melting point metal 16 is melted, and the metal mesh tape 17 that has absorbed excess low melting point metal is removed. After a part or all of the molten low melting point metal 16 between the superconducting wires 10 and 10 is solidified, the crimping jig 25 is lowered again, and the superconducting wires 10 and 10 are reheated while being pressurized. After the low melting point metal 16 between the superconducting wires 10 and 10 is melted, the heating of the crimping jig 25 is finished, and the melt is cooled to below the melting point of the low melting point metal 16 while continuing the crimped state. After the low melting point metal 16 is solidified, the crimping jig 25 is raised, and the superconducting wires 10, 10 having been connected are taken out.

(C)余分な低融点金属を吸い取った金属メッシュテープ17とともに超電導線材10を加圧したまま、圧着治具25の加熱を終了し、低融点金属16が凝固した後に圧着治具25を上昇させた後、余分な低融点金属を吸い取った金属メッシュテープ17を取り外し、さらに接続が済んだ超電導線材10,10を取り出す。 (C) The heating of the crimping jig 25 is terminated while the superconducting wire 10 is pressed together with the metal mesh tape 17 that has absorbed excess low melting point metal, and the crimping jig 25 is raised after the low melting point metal 16 is solidified. After that, the metal mesh tape 17 that has absorbed excess low-melting point metal is removed, and the superconducting wires 10 that have been connected are taken out.

上記(A)または(B)の手順は、余分な低融点金属を吸い取った金属メッシュテープ17を取り外す際、低融点金属が溶融した状態であり、金属メッシュテープ17が超電導線材10に付着しにくいので好ましい。再び圧着治具25を下降させる前に、超電導線材10と圧着治具25の凸部26との間に緩衝材を配置することもできる。緩衝材は、メッシュやスポンジのように、加圧に対して圧縮される耐熱性の部材である。緩衝材を用いることにより、圧着治具25による加圧が均等に超電導線材10に加わり、平衡度(バランス)をとることができる。緩衝材は、低融点金属を吸い取ることが可能な金属メッシュテープであってもよい。低融点金属を吸い取っていない新しい金属メッシュテープを再び超電導線材10の上に配置することにより、以後の工程で溶融した低融点金属のはみ出しがあったとしても、はみ出した低融点金属を金属メッシュテープで吸い取ることができる。   The above procedure (A) or (B) is a state in which the low melting point metal is melted when the metal mesh tape 17 that has absorbed excess low melting point metal is removed, and the metal mesh tape 17 is unlikely to adhere to the superconducting wire 10. Therefore, it is preferable. Before the crimping jig 25 is lowered again, a buffer material can be disposed between the superconducting wire 10 and the convex portion 26 of the crimping jig 25. The cushioning material is a heat-resistant member that is compressed against pressure, such as a mesh or a sponge. By using the buffer material, the pressure applied by the crimping jig 25 is applied to the superconducting wire 10 evenly, and the balance (balance) can be obtained. The cushioning material may be a metal mesh tape that can absorb low melting point metal. By placing a new metal mesh tape that has not absorbed low melting point metal on the superconducting wire 10 again, even if the low melting point metal melted in the subsequent process is protruded, the protruding low melting point metal is removed from the metal mesh tape. Can be sucked out.

上記(B)のように、余分な低融点金属を吸い取った金属メッシュテープ17を取り除いている間に低融点金属16が凝固した場合、一旦は超電導線材10,10が接続された状態となる。しかし、幅方向の位置ズレが生じることもあるので、最初の接続を仮接続工程とし、再び超電導線材10,10の加圧及び加熱により超電導線材10,10の間の低融点金属16を再び溶融させ、幅方向の位置ズレを修正した後で、冷却により超電導線材10,10を接続すること(本接続工程)も可能である。   As in (B) above, when the low melting point metal 16 solidifies while removing the metal mesh tape 17 that has absorbed excess low melting point metal, the superconducting wires 10 and 10 are once connected. However, since positional deviation in the width direction may occur, the first connection is set as a temporary connection process, and the low melting point metal 16 between the superconducting wires 10 and 10 is melted again by pressurizing and heating the superconducting wires 10 and 10 again. Then, after correcting the positional deviation in the width direction, it is possible to connect the superconducting wires 10 and 10 by cooling (this connection process).

本実施形態の接続方法の効果を確認するため、金属メッシュテープ17を用いないで超電導線材10,10を接続する比較例1と、金属メッシュテープ17を用いて超電導線材10,10を接続する実施例1を、次のように実施した。   In order to confirm the effect of the connection method of the present embodiment, Comparative Example 1 in which the superconducting wires 10 and 10 are connected without using the metal mesh tape 17 and the superconducting wires 10 and 10 are connected using the metal mesh tape 17. Example 1 was carried out as follows.

本実施形態の比較例1では、図1における溝21の幅W1が5.2mmである基台20と、図2における凸部26の幅W2が5.0mmである圧着治具25を使用した。圧着治具25は、ヒーターによる温度制御が可能である。超電導線材10の幅は5.02mm、長さは30cmである。接続する2本の超電導線材10,10のうち1本の超電導線材10の接続箇所に、図3に示すように低融点金属16として、長さ20cmにわたってはんだを塗布した。基台20の溝21の中で図4に示すように2本の超電導線材10,10を組み合わせ、200℃に加熱して圧着した。圧着した状態でエアブローを用いてはんだを融点以下まで冷却し、はんだが凝固した後、接続が済んだ超電導線材10,10を溝21から取り出した。   In Comparative Example 1 of the present embodiment, the base 20 in which the width W1 of the groove 21 in FIG. 1 is 5.2 mm and the crimping jig 25 in which the width W2 of the convex portion 26 in FIG. 2 is 5.0 mm are used. . The crimping jig 25 can be controlled by a heater. Superconducting wire 10 has a width of 5.02 mm and a length of 30 cm. Solder was applied over a length of 20 cm as a low melting point metal 16 as shown in FIG. In the groove 21 of the base 20, two superconducting wires 10, 10 were combined as shown in FIG. The solder was cooled to below the melting point using an air blow in the crimped state, and after the solder solidified, the superconducting wires 10, 10 having been connected were taken out from the groove 21.

図6に、比較例1において、接続が済んだ超電導線材10,10の幅を測定したグラフを示す。この幅は、超電導線材10,10の接続箇所の長さ方向に対して2cm間隔で測定した。幅の平均値は約5.3mmであり、もとの超電導線材10の幅である5.02mmと比較すると、2本の超電導線材10,10を接続したことによる幅ずれと、はんだによるバリの影響で幅が増加している。図7に、接続が済んだ超電導線材10の幅方向(図7では上下方向)の両側に多数のバリ18が生じた様子を例示する。   In FIG. 6, the graph which measured the width | variety of the superconducting wire 10 which completed the connection in the comparative example 1 is shown. This width was measured at intervals of 2 cm with respect to the length direction of the connecting portion of the superconducting wires 10 and 10. The average value of the width is about 5.3 mm. Compared to 5.02 mm which is the width of the original superconducting wire 10, the width deviation caused by connecting the two superconducting wires 10, 10 and the burrs caused by solder The width has increased due to the influence. FIG. 7 illustrates a state in which a large number of burrs 18 are generated on both sides in the width direction (vertical direction in FIG. 7) of the superconducting wire 10 that has been connected.

本実施形態の実施例1では、基台20、圧着治具25及び超電導線材10は、比較例1と同様であるが、図5に示すように、圧着前に金属メッシュテープ17を超電導線材10の上に重ね合わせ、密着させた。金属メッシュテープ17の長さは29cmであり、長さ25cmの溝21の両端から外にそれぞれ2cm程度突出させた。また、温度200℃にして圧着した後、はんだが凝固する前にはんだを吸収した金属メッシュテープ17を取り除き、さらに緩衝材としてはんだを吸収していない新しい金属メッシュテープ17を超電導線材10の上に乗せ、再び圧着した。圧着した状態ではんだを融点以下まで冷却し、はんだが凝固した後、接続が済んだ超電導線材10,10を溝21から取り出した。   In Example 1 of the present embodiment, the base 20, the crimping jig 25, and the superconducting wire 10 are the same as in Comparative Example 1, but the metal mesh tape 17 is attached to the superconducting wire 10 before crimping as shown in FIG. On top of each other and brought into close contact. The length of the metal mesh tape 17 was 29 cm, and the metal mesh tape 17 was protruded by about 2 cm from both ends of the groove 21 having a length of 25 cm. Further, after crimping at a temperature of 200 ° C., the metal mesh tape 17 that has absorbed the solder is removed before the solder solidifies, and a new metal mesh tape 17 that does not absorb the solder as a buffer material is placed on the superconducting wire 10. Placed and crimped again. After the solder was cooled to the melting point or lower in the crimped state and the solder solidified, the superconducting wires 10, 10 that had been connected were taken out from the groove 21.

図8に、実施例1において、接続が済んだ超電導線材10,10の幅を測定したグラフを示す。この幅は、超電導線材10,10の接続箇所の長さ方向に対して2cm間隔で測定した。幅の平均値は約5.09mmであり、比較例1と比較すると、はんだによるバリの影響が除去されたことが分かる。実施例1で接続が済んだ超電導線材10,10を観察しても、側面にバリは発見されなかった。このため、接続前と比較した幅の増加は、幅ずれが原因と考えられる。   In FIG. 8, the graph which measured the width | variety of the superconducting wire 10 and 10 which completed connection in Example 1 is shown. This width was measured at intervals of 2 cm with respect to the length direction of the connecting portion of the superconducting wires 10 and 10. The average value of the width is about 5.09 mm. Compared with Comparative Example 1, it can be seen that the influence of burrs due to solder has been removed. Even when the superconducting wires 10 and 10 connected in Example 1 were observed, no burrs were found on the side surfaces. For this reason, the increase in the width compared with that before the connection is considered to be caused by the width shift.

本発明の超電導線材接続体は、少なくとも2本の超電導線材が、その間に低融点金属が介在した状態で重なり合い、かつ互いに接続された超電導線材接続体であって、超電導線材接続体の側面に低融点金属のバリが存在しないことを特徴とする。本発明によれば、接続部の全長にわたり、バリが存在しない超電導線材接続体を得ることができる。   The superconducting wire connecting body of the present invention is a superconducting wire connecting body in which at least two superconducting wires overlap with each other with a low-melting point metal interposed therebetween and are connected to each other, and are connected to the side of the superconducting wire connecting body. It is characterized by the absence of refractory metal burrs. According to the present invention, it is possible to obtain a superconducting wire connecting body having no burr over the entire length of the connecting portion.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

金属メッシュテープを吸い取り手段として用いる場合、上述の実施形態では、配置工程の段階から金属メッシュテープを超電導線材の上に重ね合わせるものとしたが、本発明は特にこれに限定されるものではない。例えば、低融点金属が溶融した後に金属メッシュテープを超電導線材に接触させてもよい。溝の側面または底面に開口部を設けて、この開口部から吸い取り手段を出没自在に設けることも可能である。   In the case where the metal mesh tape is used as the sucking means, in the above-described embodiment, the metal mesh tape is superposed on the superconducting wire from the stage of the arranging step, but the present invention is not particularly limited to this. For example, the metal mesh tape may be brought into contact with the superconducting wire after the low melting point metal is melted. It is also possible to provide an opening on the side surface or bottom surface of the groove, and to provide the sucking means so as to be able to appear and retract from the opening.

金属メッシュテープ17以外の吸い取り手段の例として、図9には、基台20の溝21の底面または側面の少なくとも1箇所に排気口24を設けた場合を示す。図示例では、溝21の側面にその長手方向に沿って複数の排気口24が設けられている。排気口24は、ポンプ(図示せず)に接続され、吸い取り工程において、ポンプの吸引により、余分な溶融した低融点金属を排気口24から吸い取り除去することができる。このようにして、余分な低融点金属を吸い取ることにより、バリの発生を抑制することができる。   As an example of the suction means other than the metal mesh tape 17, FIG. 9 shows a case where the exhaust port 24 is provided at least at one position on the bottom surface or side surface of the groove 21 of the base 20. In the illustrated example, a plurality of exhaust ports 24 are provided on the side surface of the groove 21 along the longitudinal direction thereof. The exhaust port 24 is connected to a pump (not shown), and excess molten low melting point metal can be sucked and removed from the exhaust port 24 by suction of the pump in the sucking process. In this way, the generation of burrs can be suppressed by sucking off the extra low melting point metal.

本発明により得られた超電導線材接続体は、超電導コイルや超電導ケーブル等における導体として好適である。超電導コイルの用途は、特に限定されないが、磁気共鳴画像診断装置(MRI)、核磁気共鳴分光装置(NMR)、超電導磁気エネルギー貯蔵装置(SMES)等が挙げられる。   The superconducting wire connection body obtained by the present invention is suitable as a conductor in a superconducting coil, a superconducting cable, or the like. The use of the superconducting coil is not particularly limited, and examples thereof include a magnetic resonance imaging diagnostic apparatus (MRI), a nuclear magnetic resonance spectroscopic apparatus (NMR), and a superconducting magnetic energy storage apparatus (SMES).

10…超電導線材、11…テープ基板、12…中間層、13…超電導層、14…保護層、15…安定化層、16…低融点金属、17…金属メッシュテープ、18…バリ、20…基台、21…溝、22…側壁、23…底壁、24…排気口、25…圧着治具、26…凸部、27…板部。 DESCRIPTION OF SYMBOLS 10 ... Superconducting wire, 11 ... Tape substrate, 12 ... Intermediate layer, 13 ... Superconducting layer, 14 ... Protective layer, 15 ... Stabilization layer, 16 ... Low melting point metal, 17 ... Metal mesh tape, 18 ... Burr, 20 ... Base 21: groove, 22: side wall, 23: bottom wall, 24: exhaust port, 25: crimping jig, 26: convex part, 27: plate part.

Claims (9)

複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法であって、
接続される超電導線材を、これらの超電導線材の間に低融点金属が介在した状態で、基台に設けた溝に配置する配置工程と、
前記溝に配置された前記超電導線材及び前記低融点金属を加圧及び加熱することにより前記低融点金属を溶融させる溶融工程と、
余分な溶融した前記低融点金属を吸い取る吸い取り工程と、
を有し、
前記配置工程において、前記溶融工程にて、前記低融点金属を溶融させる前に、前記超電導線材および前記低融点金属とともに、金属メッシュテープを前記溝の内部に配置するかまたは前記超電導線材に重ね合わせて配置することを特徴とする超電導線材接続体の製造方法。
A plurality of tape-shaped superconducting wires are manufacturing methods of a superconducting wire connecting body connected via a low melting point metal,
An arrangement step of arranging the superconducting wire to be connected in a groove provided in the base with a low melting point metal interposed between these superconducting wires,
A melting step of melting the low melting point metal by pressurizing and heating the superconducting wire and the low melting point metal disposed in the groove;
A blotting process for sucking off the excessive molten low melting point metal;
I have a,
In the placing step, before melting the low melting point metal in the melting step, a metal mesh tape is placed inside the groove or superposed on the superconducting wire together with the superconducting wire and the low melting point metal. method of manufacturing a superconducting wire connector characterized that you arranged Te.
前記吸い取り工程の後、前記低融点金属が溶融している状態で、余分な溶融した前記低融点金属を吸い取った前記金属メッシュテープを取り外すことを特徴とする請求項1に記載の超電導線材接続体の製造方法。 2. The superconducting wire connector according to claim 1, wherein after the sucking step, the metal mesh tape that sucks off the excessive molten low melting point metal is removed in a state where the low melting point metal is melted. Manufacturing method. 前記金属メッシュテープは、フラックスを含む銅メッシュテープであることを特徴とする請求項1または2に記載の超電導線材接続体の製造方法。 The said metal mesh tape is a copper mesh tape containing a flux, The manufacturing method of the superconducting wire connecting body of Claim 1 or 2 characterized by the above-mentioned. 複数のテープ状の超電導線材が、低融点金属を介して接続された超電導線材接続体の製造方法であって、
接続される超電導線材を、これらの超電導線材の間に低融点金属が介在した状態で、基台に設けた溝に配置する配置工程と、
前記溝に配置された前記超電導線材及び前記低融点金属を加圧及び加熱することにより前記低融点金属を溶融させる溶融工程と、
余分な溶融した前記低融点金属を吸い取る吸い取り工程と、
を有し、
前記基台は、前記溝の底面または側面の少なくとも1箇所に排気口を有し、前記排気口は、ポンプに接続され、
前記吸い取り工程において、前記ポンプの吸引により、余分な溶融した前記低融点金属を前記排気口から吸い取ることを特徴とする超電導線材接続体の製造方法。
A plurality of tape-shaped superconducting wires are manufacturing methods of a superconducting wire connecting body connected via a low melting point metal,
An arrangement step of arranging the superconducting wire to be connected in a groove provided in the base with a low melting point metal interposed between these superconducting wires,
A melting step of melting the low melting point metal by pressurizing and heating the superconducting wire and the low melting point metal disposed in the groove;
A blotting process for sucking off the excessive molten low melting point metal;
Have
The base has an exhaust port in at least one of the bottom surface or the side surface of the groove, and the exhaust port is connected to a pump.
In the blotting step, by suction of the pump, the production method of extra molten said low melting point metal you characterized by blotting from the exhaust port superconducting wire connector.
前記超電導線材が、スズまたはスズ合金により接合された安定化層を有し、
前記低融点金属は、前記安定化層を接合する前記スズまたは前記スズ合金の融点より低いことを特徴とする請求項1〜4のいずれか1項に記載の超電導線材接続体の製造方法。
The superconducting wire has a stabilization layer joined by tin or tin alloy,
5. The method of manufacturing a superconducting wire connecting body according to claim 1, wherein the low melting point metal is lower than a melting point of the tin or the tin alloy to which the stabilization layer is joined.
請求項1〜5のいずれか1項に記載の超電導線材接続体の製造方法によって製造された超電導線材接続体であって、
少なくとも2本の超電導線材が、その間に低融点金属が介在した状態で重なり合い、かつ互いに接続された超電導線材接続体であって、前記超電導線材接続体の側面に前記低融点金属のバリが存在しないことを特徴とする超電導線材接続体。
A superconducting wire connecting body manufactured by the method for manufacturing a superconducting wire connecting body according to any one of claims 1 to 5,
At least two superconducting wires overlap with each other with a low melting point metal interposed therebetween, and are connected to each other, and there is no burr of the low melting point metal on the side surface of the superconducting wire connecting member A superconducting wire connecting body characterized by that.
複数のテープ状の超電導線材を、低融点金属を介して接続する超電導線材の接続装置であって、
接続される超電導線材を配置する溝を有する基台と、
前記溝に配置された前記超電導線材を加圧及び加熱する手段と、
低融点金属の溶融時に余分な溶融した低融点金属を吸い取る吸い取り手段と、
を有し、
前記吸い取り手段は、前記基台において前記溝の底面または側面の少なくとも1箇所に設けられた排気口を備え、前記排気口はポンプに接続されたことを特徴とする超電導線材の接続装置。
A superconducting wire connecting device for connecting a plurality of tape-shaped superconducting wires via a low melting point metal,
A base having a groove for arranging a superconducting wire to be connected;
Means for pressurizing and heating the superconducting wire disposed in the groove;
A sucking means for sucking off an excessive molten low melting point metal when the low melting point metal is melted;
I have a,
The superconducting wire connecting device according to claim 1, wherein the suction means includes an exhaust port provided in at least one of a bottom surface or a side surface of the groove in the base, and the exhaust port is connected to a pump .
前記吸い取り手段は、さらに金属メッシュテープを備えることを特徴とする請求項7に記載の超電導線材の接続装置。 The blotting means, superconducting wire connection device according to claim 7, further characterized by Rukoto comprises a metal mesh tape. 前記金属メッシュテープは、フラックスを含む銅メッシュテープであることを特徴とする請求項8に記載の超電導線材の接続装置。   The superconducting wire connecting device according to claim 8, wherein the metal mesh tape is a copper mesh tape containing a flux.
JP2014054066A 2014-03-17 2014-03-17 Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus Active JP5695772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054066A JP5695772B1 (en) 2014-03-17 2014-03-17 Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054066A JP5695772B1 (en) 2014-03-17 2014-03-17 Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus

Publications (2)

Publication Number Publication Date
JP5695772B1 true JP5695772B1 (en) 2015-04-08
JP2015176828A JP2015176828A (en) 2015-10-05

Family

ID=52836966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054066A Active JP5695772B1 (en) 2014-03-17 2014-03-17 Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus

Country Status (1)

Country Link
JP (1) JP5695772B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045288A1 (en) * 2021-09-24 2023-03-30 上海交通大学 Solder-free welded joint and welding manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973184B (en) * 2016-07-04 2018-10-30 苏州宝兴电线电缆有限公司 A kind of connector detection alarm device
JP7148439B2 (en) * 2019-03-05 2022-10-05 東芝Itコントロールシステム株式会社 Conductor joining jig

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577109A (en) * 1978-12-05 1980-06-10 Mitsubishi Electric Corp Connecting device for superconductive coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577109A (en) * 1978-12-05 1980-06-10 Mitsubishi Electric Corp Connecting device for superconductive coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045288A1 (en) * 2021-09-24 2023-03-30 上海交通大学 Solder-free welded joint and welding manufacturing method therefor

Also Published As

Publication number Publication date
JP2015176828A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP5770947B2 (en) Superconducting recovery method by joining 2nd generation ReBCO high temperature superconductor using partial fine melt diffusion welding by direct contact of high temperature superconductor layer and annealing with oxygen supply annealing
WO2014192832A1 (en) Wire rod connection device, wire rod connection method, and method for manufacturing connection structure
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
WO2013164918A1 (en) Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
JP6155258B2 (en) Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
JP5695803B2 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
JP5695772B1 (en) Superconducting wire connecting body manufacturing method, superconducting wire connecting body, and superconducting wire connecting apparatus
JP2017050242A (en) Connection structure of oxide superconducting wire rod and method for producing the same
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP5847009B2 (en) Oxide superconducting wire
JP4182832B2 (en) Superconducting plate connection method and connection part thereof
JP2011008949A (en) Superconductive wire rod and its manufacturing method
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP2009117202A (en) Superconductive tape, manufacturing method thereof, coil, and magnet
JP2015023056A (en) Laminated superconducting pancake coil and superconducting apparatus including the same
KR20210066011A (en) Method of Electrical Contact of Superconducting Strip Conductors
JP5608842B1 (en) Wire rod connecting device, wire rod connecting method, and manufacturing method of connection structure
CN110546720A (en) Superconducting wire, method for manufacturing superconducting wire, superconducting coil, superconducting magnet, and superconducting device
JP6356046B2 (en) Superconducting wire connection structure, superconducting wire and connection method
WO2015166936A1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
US20190066877A1 (en) SUPERCONDUCTING JOINTS BETWEEN Bi2212 ROUND AND RECTANGULAR WIRE
JP5723553B2 (en) Oxide superconducting wire manufacturing apparatus and oxide superconducting wire manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R151 Written notification of patent or utility model registration

Ref document number: 5695772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250