JP5692413B2 - 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法 - Google Patents

厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法 Download PDF

Info

Publication number
JP5692413B2
JP5692413B2 JP2013547435A JP2013547435A JP5692413B2 JP 5692413 B2 JP5692413 B2 JP 5692413B2 JP 2013547435 A JP2013547435 A JP 2013547435A JP 2013547435 A JP2013547435 A JP 2013547435A JP 5692413 B2 JP5692413 B2 JP 5692413B2
Authority
JP
Japan
Prior art keywords
welding
electrode
groove
steel plate
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013547435A
Other languages
English (en)
Other versions
JPWO2014122789A1 (ja
Inventor
裕治 橋場
裕治 橋場
野瀬 哲郎
哲郎 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013547435A priority Critical patent/JP5692413B2/ja
Application granted granted Critical
Publication of JP5692413B2 publication Critical patent/JP5692413B2/ja
Publication of JPWO2014122789A1 publication Critical patent/JPWO2014122789A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0209Seam welding; Backing means; Inserts of non-horizontal seams in assembling non-horizontal plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0253Seam welding; Backing means; Inserts for rectilinear seams for the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • B23K9/1735Arc welding or cutting making use of shielding gas and of a consumable electrode making use of several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は厚鋼板の多電極エレクトロガスアーク溶接方法に関するものであり、特に、板厚が40〜300mm程度の厚鋼板部材を用いて大型鋼構造物を製作、建造するにあたり、鋼板部材同士の突合わせ溶接や鋼管の端部同士を突合わせての円周溶接、もしくは鋼管のシーム部分を立向姿勢で突合わせ溶接を行う際、高い生産性で1パスでのエレクトロガスアーク溶接を行うことで、溶接効率の向上と溶接欠陥の低減を両立可能とする、厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法に関する。
近年、構造物の大型化に伴い、単純な鋼板部材あるいは柱部材として用いられる鋼管部材の板厚が増大し、例えば、200mmを超える厚板部材、あるいは、100mmを超える板厚の鋼板を円筒形に曲げ加工して、突合わせ部分をシーム溶接して製造される鋼管のような例も増えている。また、建築分野で用いられる鋼製の柱部材は、従来から用いられているボックス柱のような角型断面の柱部材に加え、最近では、意匠性の観点などから、断面円形の鋼管を柱部材として適用する例が増加している。また、鋼管状部材が大型鉄塔、発電用大型風車に用いられる等、鋼板とともに鋼管の大型鋼構造物としての利用例は増加している。
現在、構造物としての鋼管柱を製造する場合には、最終的な構造物の全長に比べて短尺の鋼管部材同士を、それらの端部で円周溶接することにより、複数個つなぎ合わせて製造する方法が主流である。また、それらの接続方法としては、例えば、炭酸ガスアーク溶接、あるいは比較的小さな入熱量でのサブマージアーク溶接などにより、多パス、多層溶接による方法が一般的である。一方、鋼管の板厚が50mmを超えるようになると、上述のような小入熱による多層溶接では、施工時間、施工コストが莫大なものとなるが故、溶接効率(溶接スピード)を向上させ、溶接施工時間の短縮、即ち、施工コストの低減が要求されるようになってきている。また、能率向上の要求は、厚鋼板からなる構造物の製作においても同様であり、厚鋼板から構成される平板継手あるいは鋼管部材のシーム溶接、鋼管部材同士の端部における円周溶接のような大型の溶接構造物の建造においては、従来の多パス、多層溶接に代わって、例えば、エレクトロガスアーク溶接(EGW溶接)等を用いた、大入熱による1パス溶接を適用することが期待されている。
上述のEGW溶接は、一般的には立向姿勢で行われる高効率な1パス溶接方法として知られており、特に、造船分野において好適に用いられている。EGW溶接の一般的な形態としては、例えば、被溶接鋼板の端部の各々に開先加工を施し、この開先面同士を突合わせつつ、溶接線が実質的に鉛直方向となるように被溶接鋼板を配置した後、被鋼板部材の下端から上端に向かうように、溶接トーチを垂直上進させて溶接を進行させる。また、ここで用いる溶接トーチ(溶接電極)は、通常、自動台車と一体とされており、開先内に溶接金属が形成されてゆく速度(湯面上昇速度)を検出して、この速度に同期して台車が自動的に垂直上方に走行して行く機構を備えていることが一般的である。
また、近年、上述のようなEGW溶接によって建築鉄骨柱向け鋼管部材を製造する方法が提案されている。特許文献1、2には、それぞれ、非貫通型と貫通型のダイアフラムプレートを鋼管部材の端面、もしくは、筒体の胴囲にEGW溶接によって接合する方法が開示されている。ここで、特許文献1、2に記載の技術は、鋼管部材同士を円周溶接するのではなく、仕口部材としてのダイアフラムプレート(鋼板)部材を鋼管部材の胴囲に外嵌めし、これを鋼管の胴囲に対し溶接接合するための円周溶接方法である。また、特許文献2においては、特許文献1に記載の構成に加え、さらに、溶接中の電流監視方法を規定し、溶融池液面の安定化を図ることが記載されている。
また、例えば、特許文献3等には、鋼管部材とその外周面に設ける鉄骨仕口等のフランジ状部材をEGW溶接によって円周溶接する装置が開示されている。特に、特許文献3に記載の溶接装置では、一つの鋼管柱(ワーク)に対して取り付ける複数のフランジ状部材を、同時にまとめて施工できるようにするため、施工すべき箇所数分の複数の溶接トーチ(電極)を設けた構成とされている。なお、ここでの多電極の意味は、1台の溶接機器に溶接箇所数分の電極が備えられている構成を意味しており、1つの開先内に複数の電極を備えていることを意味するものではない。
ここで、EGW溶接方法については、一つの溶接箇所に複数の溶接トーチ(電極)を用いた2電極型のEGW溶接装置が提案されており(例えば、特許文献4)、特に、厚鋼板の溶接が必要となるコンテナ船建造に用いられている。一つの溶接箇所に対して1電極のみを用いる従来の構成のEGW溶接装置に対し、特許文献4に記載の溶接装置は、一つの溶接箇所に対して2電極を適用した機器構成としている。そして、2電極化の際に、2つのトーチが近接しすぎると生ずる、アークの相互干渉の問題を克服しながら2電極化を達成している。特許文献4によれば、2電極化による効用のうち、一つ目は、溶接可能とする板厚の上限拡大であり、二つ目は、溶接効率の向上、即ち、溶接施工時間の短縮による生産性の向上が実現できるとされている。EGW溶接では、向き合った開先面で囲まれた空隙(領域)内で、トーチに送給された溶接材料(溶接ワイヤ)の先端から発生したアークが熱源となり、溶接ワイヤ自体と開先面(母材)表面が一様に溶融し合い、最終的に向き合った開先面で囲まれた空間は全て溶融した溶接金属で満たされる。そして、これが凝固することで溶接金属となり、結果として、各母材と溶接金属とが一体となることで溶接継手が形成されることになる。
一般に、過度に厚手の母材を溶接しようとした場合には、電極数が1つのみでは開先面全体を一様に加熱することができず、開先面の一部の範囲に溶け残し、いわゆる、融合不良欠陥を発生させることになる。特許文献4に記載の溶接装置では、1電極EGW溶接では融合不良欠陥が発生するような板厚であっても、電極数を2つに増設したことで、開先面を十分に加熱溶融することができ、融合不良欠陥の発生を抑制することが可能となる。これにより、特許文献4では、溶接可能とする板厚の上限拡大を達成している。また、溶接効率、即ち、単位時間あたりに得ることができる、向き合った開先面で囲まれた空隙を満たす溶接金属の生成量(質量)は、2つの電極ともにほぼ同じ量であることから、電極数が2つに増すことで、1電極EGW溶接の場合に比較して、単純に約2倍の溶接効率を達成している。なお、電極が1つの場合には、安定した良好なアーク状態を維持すること、即ち、アークを安定的に発生させて実用的な施工性を維持する観点からは、電極に与えることができる電気的エネルギーには上限があるため、例えば、電流値あるいは電圧値を2倍に増大させ、単位時間あたりで単純に2倍のエネルギーを電極に投入することで2倍の溶着効率を得ようとすることは、一般的には困難である。
また、特許文献4による2電極型のEGW溶接装置では、溶接電流値を常時監視することで、湯面上昇速度を検知し、台車の上昇速度を制御することで、適正な溶接を継続するような機構を備えている。
特許文献5、6では、湯面とトーチ(溶接ワイヤ)先端が近づくと溶接電流値が上昇し、湯面とトーチ先端が離れると溶接電流値が低下することを利用して、溶接電流値が所定の範囲内になるように、トーチの上昇速度および/または溶接ワイヤの供給速度を変化させている。
特許文献7では、湯面とトーチ(溶接ワイヤ)先端間の距離を、溶接電流および予め求めておいた係数から検出し、設定距離と差を補正するように、トーチ位置を調整している。
特開平11−33716号公報 特開2005−74442号公報 特開2003−245775号公報 特開平10−118771号公報 特開2012−11400号公報 特開2012−11407号公報 特開2007−160349号公報
近年、構造物の大型化に伴って構造部材の板厚増大が進み、最大で300mm程度にも達する厚鋼板が適用される例が生じている。このような厚鋼板を接合する溶接継手の作製に際し、従来の小入熱による多パス溶接を適用した場合、施工時間の増大が著しくなることから、施工コストの低減、即ち、溶接効率の向上が強く望まれるところとなっている。そこで、一つの溶接箇所の板厚分全てをひと時に溶接可能な、大入熱による1パス溶接を適用し、厚鋼板部材からなる構造物の溶接施工時間の短縮をはかることが期待されている。
上記各特許文献に記載された従来の方法又は装置において、最大板厚が300mmにも達する厚鋼板のEGW溶接による1パス溶接を適用しようとする場合、以下に説明するような問題がある。
板厚が100mmを超えるような厚鋼板に1パス溶接を施す場合の対応方法の一つ目は、部材の表裏面それぞれの側から、1回ずつ、計2回にわたって1パス溶接を行うことで、片側あたり、即ち、1回あたりに溶接可能な板厚の上限が通常は80mm程度に限定されている機材を、2回繰り返して用いることで、実質的に2倍の板厚まで溶接を可能とする方法である。例えば、X型開先のような開先形状を採用し、部材の表裏面両面から溶接可能な開先形状を採用する。より具体的には、表面側からの1パス溶接を完了させた後、鋼板を裏返し、裏面側からもう一度1パス溶接を実行する方法である。この方法によれば、2電極型のEGW溶接装置により、片側のみの溶接施工で板厚80〜90mm分を1パスにて施工可能であり、2回に分けて両面溶接をすることで、最大160〜180mmの板厚まで対応可能である。
しかしながら、上述の方策を適用した場合の問題点としては、表面側開先に対応する溶接ビードが形成されているところに、裏面側から再度EGW溶接を行う場合、表面側に先に形成されている溶接金属のルート部を完全に再溶融して未溶着部のない完全な溶け込みを得るには溶接施工に関する高度な技能を必要とすることが挙げられる。また、上述の方法では、両面からの溶接金属は、それぞれ板厚中央付近でルート部を形成するが、2回目の溶接の際に、ルート部側で生じたスラグがうまく浮上排出されず、ルート部付近においてスラグ巻き込みによる溶接欠陥を発生させるおそれがあることが挙げられる。また、そもそも、対象とする部材の板厚全体にわたって1パス溶接を行わずに2回の溶接施工を行うことは、非効率的であるのに加え、一般的に巨大な重量物となる継手を反転させる工程も加わることになり、さらに効率的とはいえない施工法と言える。また、適用する溶接材料の性質にもよるが、先行の溶接金属が後続の(2回目の溶接)パスによる熱影響を受けることで、靱性低下の懸念も生じる。
また、厚鋼板に1パス溶接を施す場合の二つ目の対応方法としては、1パス溶接で対応可能な板厚以外の部分を、小入熱多パス(多層)溶接にて対処する方法も採られることが多い。この場合、開先形状は、片面溶接となるV型開先や、両面からの溶接となるX型開先など、どちらも採用可能であるが、小入熱溶接を先に施し、残りの板厚を大入熱1パス溶接とするか、あるいはその逆として、大入熱1パス溶接を先に施した後、残りの板厚を小入熱溶接として埋め終わるかの、二つの順序をとり得る。上述の対応方法では、溶接機器の変更のためのセットアップ時間を除けば、すべての板厚分に小入熱溶接を適用する場合よりも、確実に施工時間の短縮につながる。
一方、上記方法を採用した場合の留意点として、継手に要求される機械的性質の仕様によっては、適用する溶接材料の選択に特別な配慮が必要となることが挙げられる。例えば、小入熱溶接を先に施し、残りの板厚を大入熱1パス溶接とする場合には、小入熱溶接により形成された溶接金属に、後続して大入熱溶接による再熱が加わるため、小入熱溶接の溶接金属が過度に軟化してしまうことから、部分的な強度低下を引き起こす可能性について検討する必要がある。また、逆に、大入熱1パス溶接を先に施し、残りの板厚を小入熱溶接とする場合には、通常、焼入性を比較的高水準に設定している大入熱溶接金属に対し、後続して小入熱溶接による再熱が加わるため、大入熱溶接による溶接金属が過度に硬化し、結果としてこの領域の溶接金属が靭性低下を引き起こす可能性について検討する必要が生じる。
従来、板厚が100mmを超えるような厚鋼板を突合わせ溶接する場合には、極めて多大な工程時間と労力で多パス(多層)溶接を行うか、あるいは、巨大なワークを反転させる工程を伴いながら厚鋼板の表面側及び裏面側の2回にわたり、それぞれ1パス溶接を行う方法などの採用を余儀なくされることが多く、施工能率低下が著しかった。このため、厚鋼板同士あるいは厚鋼板からなる鋼管部材のシーム溶接部分などを溶接効率の良い1パス溶接、例えば、EGW溶接を適用することで、溶接効率の向上と溶接欠陥の抑制を両立可能な方法が切に望まれていた。
本発明は上記問題に鑑みてなされたものであり、特に、板厚が40〜300mm程度の厚鋼板から製造された部材を用いて大型鋼構造物を製作、建造するにあたり、鋼板部材もしくは鋼管部材のシーム部分を立向姿勢で突合わせ溶接する場合、及び、鋼管部材の円周溶接を行う場合に、溶接効率の向上と溶接欠陥の低減を両立させることが可能な、厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法を提供することを目的とする。
本発明者等が上記問題を解決するため、特に、厚鋼板からなる要素部材の端部を突合わせて溶接し、厚鋼板同士、あるいは鋼管部材のシーム部を溶接する方法として多電極のEGW溶接方法を適用し、溶接効率の向上及び溶接欠陥の低減を図ることを試み、鋭意研究を重ねた。その結果、2台のエレクトロガスアーク溶接装置を厚鋼板の表面側及び裏面側の両方に配置し、これら2台の溶接装置が保持する溶接トーチの合計数を2以上としたうえで、さらに、厚鋼板の表面側と裏面側との間で溶接中に溶融した溶接金属が導通可能な開先形状並びに突合わせ形態を採用し、溶接電極を開先内の溶融溶接金属の湯面レベルに同期して移動することにより、溶接効率の向上と溶接欠陥の低減を両立できることを見出した。
本発明は、上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]
溶接しようとする厚鋼板の端部を対向に配置して、前記鋼板の端部間に開先を形成し、
前記開先のルート間隔ROが0〜16mmの範囲であり、且つ、前記ルート間隔ROが0≦RO<1mmの範囲においては、ルート面RFが下記の式1で表される関係を満たし、1mm≦RO<10mmの範囲においては、ルート面RFが下記の式2で表される関係を満たし、前記ルート間隔ROが10mm≦RO≦16mmの範囲においては、ルート面RFが下記の式3で表される関係を満たし、
RF≦7.8RO+4.0mm ・・・・・式1
RF≦4.8RO+7.0mm ・・・・・式2
RF≦55mm ・・・・・式3
但し、上記式1、式2、式3において、RF:ルート面、RO:ルート間隔、であり、
前記開先内に、前記鋼板の表裏面側にそれぞれ、電極数が1本又は2本以上のエレクトロガスアーク溶接電極を配置し、
鉛直方向下側から上側に向けて、同時に溶接を行い、
各々の前記エレクトロガスアーク溶接電極が前記開先内で生成した溶融溶接金属の湯面レベルに同期して移動するように、該エレクトロガスアーク溶接電極の移動速度を制御することを特徴とする、多電極エレクトロガスアーク溶接方法。
[2]
前記ルート間隔ROが3mm以上8mm以下であり、ルート面RFが8mm以下であることを特徴とする、[1]に記載の多電極エレクトロガスアーク溶接方法。
[3]
前記エレクトロガスアーク溶接電極の進入角度を、鉛直下向方向を0°として、0°以上40°以下とすることを特徴とする、[1]又は[2]に記載の多電極エレクトロガスアーク溶接方法。
[4]
前記厚鋼板の板厚が40〜300mmであることを特徴とする、[1]〜[3]のいずれか1項に記載の多電極エレクトロガスアーク溶接方法。
[5]
前記エレクトロガスアーク溶接電極の少なくともひとつの電極を、前記厚鋼板の板厚方向で揺動させながら、溶接を行うことを特徴とする、[1]〜[4]のいずれか1項に記載の多電極エレクトロガスアーク溶接方法。
[6]
前記厚鋼板に曲げ加工を施して鋼管状に加工した後、前記曲げ加工によって対向に配置された前記厚鋼板の端部を溶接することを特徴とする、[1]〜[5]のいずれか1項に記載の多電極エレクトロガスアーク溶接方法。
[7]
複数の鋼管の端部を対向に配置して、前記鋼管の端部間に前記開先を形成し、前記鋼管の中心軸が略同心、且つ、略水平となるように、前記鋼管をポジショナー手段に載置し、
次いで、前記ポジショナー手段で前記鋼管をその中心軸周りに回転させて、前記溶接を行うことを特徴とする、[1]〜[5]のいずれか1項に記載の多電極エレクトロガスアーク円周溶接方法。
[8]
さらに、前記鋼管の胴囲に仕口部材を対向に配置して、前記開先を形成し、前記仕口部材を溶接することを特徴とする、[7]に記載の多電極エレクトロガスアーク円周溶接方法。
本発明の厚鋼板の多電極エレクトロガスアーク溶接方法によれば、概して、上記構成の如く、
厚鋼板の端部同士を突合わせて、所定の開先を形成し、
前記開先のルート間隔ROおよびルート面RFが所定の関係を満たし、
前記開先の両面側にそれぞれ、エレクトロガスアーク溶接電極を配置し、
前記厚鋼板の両面側において、鉛直方向下側から上側に向けて、同時に1パス溶接を行い、
各エレクトロガスアーク溶接電極が前記開先内で生成した溶融溶接金属の湯面レベルに同期して移動する。これにより、板厚が40〜300mm程度の厚鋼板を立向姿勢で突合わせ溶接する場合であっても、1パス溶接による溶接効率の向上と溶接欠陥の抑制効果が同時に得られる。
従って、例えば、厚鋼板から製造され、建築分野で用いられる鋼管状柱部材、大型鉄塔、発電用大型風車の鉄塔部分等、鋼板並びに鋼管から構成される大型鋼構造物を製造する際の溶接プロセスに本発明を適用することにより、高い生産性及び溶接品質が同時に実現できることから、その社会的貢献は計り知れない。
本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法の一実施形態を模式的に説明するための図であり、(a)は厚鋼板の開先加工が施された端部同士を突合わせた状態を示す平面図、(b)は(a)の上面図である。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法の一実施形態を模式的に説明するための図であり、(a)は多電極エレクトロガスアーク溶接装置を用いて厚鋼板の端部間の溶接を行う手順を示す概略図、(b)は(a)のx−x断面図である。 図2と同様の図であって、厚鋼板の板厚が比較的薄く、厚鋼板の一方の面側および反対の面側にそれぞれ1本の溶接電極を配置した場合の図である。(a)では、溶接電極の進入角度も説明する。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の一実施形態を模式的に説明するための図であり、(a)は開先内で生成された溶融溶接金属の湯面が厚鋼板の両面側において同レベルである状態を示し、(b)は溶融溶接金属の湯面のレベルが厚鋼板の両面で異なった状態を示す概略図である。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の一実施形態を説明するための図であり、厚鋼板の端部を対向に配置して、前記鋼板の端部間に開先を形成した際のルート間隔とルート面の関係を示すグラフである(a)。(b)は板厚tが102mmの場合、(c)は80mmの場合の未溶着部の有無をプロットしたグラフである。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の一実施形態を模式的に説明するための図であり、厚鋼板の端部の開先形状を変化させた場合の、エレクトロガスアーク溶接電極の配置を示す概略図である。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の一実施形態を模式的に説明するための図であり、(a)は鋼管状に加工された厚鋼板を示す斜視図、(b)は(a)に示す鋼管の端部を対向に配置して、前記鋼管の端部間に開先を形成した状態を示す断面図である。 本発明に係る鋼管の多電極エレクトロガスアーク円周溶接方法の一実施形態を模式的に説明するための図であり、多電極エレクトロガスアーク溶接装置を用いて鋼管の端部を対向に配置して、前記鋼管の端部間に開先を形成して溶接する手順を示す概略図である。 本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の実施例を模式的に説明するための図であり、厚鋼板の端部の開先形状とエレクトロガスアーク溶接電極の位置関係を示す概略図である。
以下、本発明の厚鋼板の多電極エレクトロガスアーク溶接方法の一実施形態について、図1〜図9を適宜参照しながら説明する。なお、本実施形態は、本発明の厚鋼板の多電極エレクトロガスアーク溶接方法の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。
本発明者等は、上述したように、特に、厚鋼板からなる要素部材の端部を突合わせて溶接し、厚鋼板同士、鋼管部材の端部、あるいは鋼管部材のシーム部を溶接する方法として多電極のエレクトロガスアーク(EGW)溶接方法を適用し、溶接効率の向上及び溶接欠陥の低減を図ることを試み、鋭意研究を重ねた。
近年、鋼板部材として、板厚が100mmを超えて300mmにも達するような厚鋼板が適用される傾向があることから、小入熱を適用する従来の多パスによる多層溶接では、溶接効率が極めて低いという問題がある。また、大入熱を適用した、例えば、2電極型のEGW溶接方法を用いた場合でも、部材板厚全体を1パス溶接することは、溶接装置の能力不足により、難しい状況にある。
本発明者等は鋭意実験を繰り返し、上記課題に対処する方法として、まず、電極を増設する対応策を検討した。ここで、上述したような、大入熱溶接法の代表例として挙げた、従来公知の2電極型のEGW溶接方法を適用した場合、融合不良等の欠陥を生じさせず、ひとときに溶接可能な上限板厚は80〜90mm程度である。また、この場合、1電極あたりが健全な溶接施工に寄与できる最大の板厚は、板厚を電極数で除した単純平均を採用すれば、40〜45mm程度であると推定できる。例えば、板厚300mmの継手に1パス溶接を適用するためには、7〜8電極程度を備えるEGW溶接装置であれば、全厚分の1パス溶接が可能と考えられる。しかしながら、V型開先のように片面のみから溶接可能な開先形状を採用する従来法の範囲において、上述の多電極溶接を実施した場合、V型開先がなす開先断面積、即ち、向き合った開先面で囲まれた領域の面積が膨大となる。この際、1パス溶接の入熱量は開先断面積に比例して増大するため、適用入熱の莫大な増加が生じ、実質的に鋼材の熱影響部(HAZ部)および溶接金属部の強度・靱性低下を招くことから、現実には適用不可能な方策である。
ここで、入熱量の増大を抑制することを目的として、X型、H型、I型、あるいはK型の開先形状を採用することで、単純な片側V型開先の開先形状よりも開先断面積を低減できると考えられる。ここで、部材両面から溶接を行うための代表的な開先形状である、X型、H型、I型、K型開先とは、部材の片面側相当の開先形状が、それぞれ、概略、V型(あるいはY型)、U型、I型、レ型の開先形状に相当し、かつ、両面とも形状が同一である開先形状を指している。
また、EGW溶接を用いて、厚鋼板を1パス溶接するにあたり、厚鋼板の一方の面側(以下、表面側という場合がある)及び反対の面側(以下、裏面側という場合がある。なお表面および裏面は特定の面を指すものではなく、相対的な呼称である。)にそれぞれ、溶接トーチ(溶接電極)を配置し、両面側から同時に1パス溶接を行う方法とすることにより、溶接効率を向上させることが可能と考えられる。
上述のような、両面に開口した開先形状を採用したうえで、開先断面積、即ち、溶接入熱量の低減を図りつつ、部材の表面側、裏面側それぞれに電極を配置して、両面同時に1パス溶接を行うアーク溶接またはEGW溶接方法が望ましい。
このような装置並びに方法を採用した場合の問題点として、両側の溶接トーチの上昇速度が同一とならず、溶融プールの湯面の高さ位置が、厚鋼板の表面側と裏面側とで異なる位置となり、表裏面の溶融溶接金属が一体となって凝固しないという問題があった(図4(b)を参照)。この場合、最初に凝固した側の溶接金属131が、後で凝固する溶融溶接金属131aで再加熱(図4(b)中の再熱影響部Hを参照)され、溶接部の靱性が低下する可能性があった。このような現象が生じる理由としては、表面側、裏面側の開先断面積の差のほか、表面側、裏面側の溶接装置で溶接ワイヤの送給速度にわずかな差が生じることなどが考えられる。また、上述の溶接方法においては、片側の溶接金属が最初に凝固し、この凝固した溶接金属のルート近傍部が、遅れて上昇して来る側の溶接金属によって再溶融されるが、このとき、ルート部において、融合不良欠陥の発生も懸念される。
そこで、本発明者は、上述のような上昇速度の不一致を解決する方策として、部材のどちらか一方の面側に形成された溶融プールから、他方の側の溶融プールへと溶融金属が自由に移動できるように、開先のルート間隔とルート面が所定の関係を満足させることを考案した。言い換えれば、表面側と裏面側の開先面の中間に、適当な寸法を規定したルート間隔とルート面を設けることで、溶融金属の導通路を構成する。このような導通路を設けて溶融金属が開先内を移動することで、表面側・裏面側それぞれの開先部分に形成された溶融プールの湯面レベルが、板厚全体にわたって一定となる。さらに、溶接電極が、開先内で生成した溶融溶接金属の湯面レベルに同期して移動することで、表裏面とも同一の溶接速度で溶接電極を上昇させることになり、上述した板厚中央付近での融合不良欠陥の発生および再熱による靭性低下の懸念を払拭できることとなる。
そして、本発明では、上述したように、厚鋼板の表面側及び裏面側にそれぞれ溶接電極を配置し、鉛直方向下側から上側に向けて、同時に溶接を行う。そのうえで、図4(a)に示すように、厚鋼板1の表面側と裏面側との間で溶融溶接金属31aが導通可能な導通路21を設けることにより、1回で表面から裏面まで溶接金属が形成された完全溶け込み溶接、つまり1パス溶接が可能となり、溶接効率の向上と溶接欠陥の抑制を両立できる。
[第1の実施形態]
本発明の第1の実施形態である多電極エレクトロガスアーク(EGW)溶接方法は、
溶接しようとする厚鋼板1の端部1aを対向に配置して、前記鋼板の端部間に開先2を形成し、
開先2のルート間隔ROおよびルート面RFが所定の関係を満たし(詳細は後述)、
開先2の厚鋼板1の表面側1A及び裏面側1Bにそれぞれ、電極数が1本又は2本以上のエレクトロガスアーク溶接電極5を配置し、
鉛直方向下側から上側に向けて、同時に溶接を行い、
各々のエレクトロガスアーク溶接電極5が開先2内で生成した溶融溶接金属の湯面レベルに同期して移動するように、エレクトロガスアーク溶接電極5の移動速度を制御することを採用している。
以下に、本発明の第1の実施形態における厚鋼板1のEGW溶接方法の手順について詳述する。
溶接しようとする厚鋼板1の端部1aを対向に配置して、前記鋼板の端部間に開先2を形成する。本実施形態における被溶接物である厚鋼板としては、図1(a)、(b)に示すような、例えば、板厚が40〜300mmの範囲であってもよい。また、厚鋼板1の鋼成分としては、特に限定されず、従来公知の成分を何ら制限なく採用することができる。そして、図1(a)、(b)に示すように、本実施形態においては、上述のような厚鋼板1の端部1a同士を突合わせてEGW溶接(図2(a)、(b)、図3(a)、(b)を参照)を行うことにより、大型構造物をなす鋼板継手等を製造することができる。
厚鋼板1の端部1aを対向に配置して、鋼板の端部間に形成される開先としては、図1(b)に示す開先2のような、両面開先であるX型開先形状とすることができる。なお、開先とは、JIS Z 3001−1:2008に基づき、溶接する母材間に設ける溝のことを指す。本実施形態における開先形状は、図1(b)に示す例のX型開先には限定されず、厚鋼板1の表面側1A及び裏面側1Bの各々において溶接可能な開先、すなわち両面開先であれば如何なる形状であっても良い。例えば、両面開先としては、X型開先の他、JIS Z 3001−1:2008で規定されるようなK型、両面J型、H型、I型等の各種形状を採用することが可能である。この場合、必ずしも、板厚中央で対称な形状・寸法となるような純粋なX型、H型の開先にする必要はなく、例えば、図6(b)に示すように、表面側は大きな板厚方向深さを持つV型とし、裏面は、表面側よりも小さな板厚方向深さを持つV型であってもよい。また、必ずしも鋼板の表裏面側がともに同じ開先形状である必要はなく、表裏面それぞれが、V型、U型、I型、レ型、J型の内の一つずつを開先形状として選択し、自由に組み合わせてもよい。例えば、鋼板の表面側をU型とし、裏面側をレ型とするなどの組合せが挙げられる。
端部1aを対向に配置して、鋼板の端部間に開先を形成するために、図2(a)に示す例のようなエレクトロガスアーク(EGW)溶接機4を用い、溶接対象である2枚の厚鋼板1を、図1(a)に示すように基台41上にセットしてもよい。
本実施形態においては、開先2のルート間隔ROおよびルート面RFが所定の関係を満たす。これは、図1(b)に示すように、開先2内の表面側1A及び裏面側1Bのそれぞれで生成された溶融溶接金属31aが、表面1A側と裏面1B側の間で導通可能となる導通路21を確保するためである(図4(a)も参照)。このような導通路21により、溶融溶接金属31aが表面1A及び裏面1Bの両面側を自由に導通するので、溶融溶接金属31aの湯面レベルが表裏で同等に保たれる。これにより、溶融溶接金属31aが凝固して溶接金属31となるタイミングも、表面1Aと裏面1Bとでほぼ同時となり、例えば、表面側で既に凝固した溶接金属が裏面側の溶融溶接金属から部分的に再加熱(再溶融)されることを抑制できるので、溶接部の靱性低下を防止できる。従って、溶接欠陥の抑制効果が得られる。
本実施形態においては、開先2のルート間隔ROおよびルート面RFが満たす所定の関係は以下のとおりである。
開先のルート間隔ROが0〜16mmの範囲であり、且つ、ルート間隔ROが0≦RO<1mmの範囲においては、ルート面RFが下記の式1で表される関係を満たし、1mm≦RO<10mmの範囲においては、ルート面RFが下記の式2で表される関係を満たし、前記ルート間隔ROが10mm≦RO≦16mmの範囲においては、ルート面RFが下記の式3で表される関係を満たす。
RF≦7.8RO+4.0mm ・・・・・式1
RF≦4.8RO+7.0mm ・・・・・式2
RF≦55mm ・・・・・式3
{但し、上記式1、式2、式3において、RF:ルート面、RO:ルート間隔、である}
ルート面RF、ルート間隔ROとは、本明細書において特に断りのない限り、JIS Z 3001−1:2008によって定義されるものの長さを意味し、それぞれの単位はmmである。例えば、上述のような導通路21を設けるにあたり、図1(b)に示したような、導通路21の通路幅(板幅方向)に相当する長さを、ルート間隔ROと呼び、導通路21の通路長(板厚方向)に相当する長さをルート面RFと呼ぶ。
上記の関係式1〜3を、図5に示す。
図5(a)のグラフに示すように、ルート間隔ROは0〜16mmであり、ルート面RFは0〜55mmである。
ルート間隔ROの上限は16mmである。ルート間隔ROが16mmの際に、ルート面RFの上限値は55mmとなるが、ルート間隔RO及びルート面RFの両者が上記数値以上、即ち、図5(a)の領域の右上方を外れると、EGW溶接電極からのアークの影響力が開先面、特にルート面RFに及びにくくなり、融合不良が生じる。また、ルート間隔ROの増大に伴い、当然のことながら開先断面積が増大し、入熱量も増大するため、ルート間隔ROが16mmを超える場合には、入熱量の水準が過大となり、HAZ部および溶融金属の靭性、および、強度の低下を招くため、実用的ではない。
図5(a)のグラフに示すように、ルート面RFとルート間隔ROとの関係は、ルート間隔ROが広くなるほど、ルート面RFを長寸にできる。これは、一般に、ルート面RFが長くなるほど未溶着部が発生し易くなることから、ルート面RFを長寸にする場合には、ルート間隔ROも拡幅することで、電極先端より発生したアークが導通路21を構成するルート面RF全体にあたりやすくして未溶融の領域を残さないこと、また、アークによって高温に加熱された溶融溶接金属を十分に滞りなく供給、流通させることで、未溶着欠陥が導通路部21に発生することを抑止する。
ルート間隔ROの下限は0mmである。ルート間隔ROが0mmの際に、ルート面RFの上限値は4mmとなる。ルート間隔ROが0mmであっても、アークの輻射熱および溶融溶接金属からの熱伝導と対流等の効果により、板厚方向長さ(ルート面RF)で4mmの距離の溶け込み深さが得られ、未溶着欠陥を生じることはない。
さらに望ましくは、ルート間隔ROが、3mm以上8mm以下の範囲をとり、ルート面RFが、8mm以下の範囲をとる。この理由を以下に記す。融合不良は、電極先端より発生したアークの熱が開先面特にルート面RFに十分に及ばず、開先面の一部の領域が、鋼材の溶融点にまで昇温しないことを一因として生じる。ルート間隔ROが3mm未満であると、アークが導通路部分(ルート面RF)にあたりにくくなり、アーク熱が十分に到達しづらくなる。また、加熱した溶融溶接金属も導通路を通過しづらくなる。したがって、ルート間隔ROに応じてルート面RFを短くする必要がある。
ルート間隔ROは8mm以下が好ましいとする理由は、ルート間隔RFが8mmを超えて大きくなる場合、導通路を構成する、対向しているルート面RFが両者とも、アークに対して遠位となり、ルート面RFの長さを構成する開先面の十分な加熱が得られない可能性が高まるからである。
ルート面RFは8mm以下が好ましい理由は、導通路を構成するルート面RFを十分に加熱する必要性から、ルート面RF≦8mmであれば十分にアーク熱をルート面RF全体に及ぼすことができるためである。
通常、開先形状および開先角度、寸法等は、溶接トーチの寸法、電極数、オシレーション動作の振幅等を総合的に考慮して決定される。1パス溶接の入熱量は、開先断面積にほぼ正比例し、溶接速度は開先断面積に反比例するため、入熱量をできるだけ低減し、溶接速度を向上させるためには、開先断面積の低減が有効である。X型開先の場合、開先断面積は、ルート面RFの増加に伴って単調減少することから、ルート面RFを長寸にすることが有効である。しかしながら、上述したように、未溶着部回避の観点から、ルート面RFの拡大にはルート間隔ROの拡大も留意しなければならない。このため、本発明者は、ルート間隔ROとルート面RFの相関関係を調査することは、能率向上および継手品質向上の観点から有意義であると考え、鋭意実験を実行した。
即ち、以下に示す検証試験を通じ、図5(a)のグラフ(領域)に示す、未溶着部回避のためのルート間隔ROとルート面RFの相関関係を求めた。
まず、下記表2に示す鋼種B1で、板厚102mmの鋼板、および鋼種Aで板厚80mmの鋼板を用い、さまざまなRO、RFの寸法を設定し、鋼板端部に機械加工によりX型開先を設け、4電極構成または2電極構成のEGW溶接を実施した。下記表1に、本実験において共通する溶接条件を示し、また、下記表2に、後述の実施例におけるデータと併せた鋼種一覧を示す。
Figure 0005692413
Figure 0005692413
そして、得られた突合わせ継手に対して超音波探傷試験(UT)を実施し、必要に応じて断面マクロ試験片の直接観察を行うことで、導通部分(ルート面部分)での未溶着欠陥の発生の有無を確認した。
その結果、図5(b)、(c)のグラフに示すような観察結果が得られた。このような結果より、未溶着欠陥の発生は、RO、RFの寸法に依存していることが確かめられたので、RO、RFの好適な範囲を以下のように規定した。
図5(b)は、厚鋼板1の板厚t=102mm、図5(c)は厚鋼板1の板厚t=80mの場合のグラフである。t=102、80mmと、板厚が変わっても、溶け込み不良を作らない領域に変化はない。つまり、板厚に依存することなく、この領域内のRO、RFの寸法にすることにより、溶け込み不良を確実に抑制できる。
この観察結果に基づいて、上記のとおり、開先2のルート間隔ROおよびルート面RFが満たす所定の関係、式1〜3を規定した。
ここで、図5(a)のグラフ中に示す領域1は、上記式1で表される範囲を示す領域であり、領域2は、上記式2で表される範囲を示す領域であり、領域3は、上記式3で表される範囲を示す領域である。本発明者等が鋭意検討した結果、図5(a)の関係曲線に示すように、ルート間隔ROが0≦RO(mm)<1の範囲である領域1と、1≦RO(mm)<10の範囲である領域2と、10≦RO(mm)≦16の範囲である領域3とでは、ルート間隔ROとルート面RFとの関係が異なることが明らかとなった。このため、本発明では、ルート間隔ROに応じて、それぞれ異なる上記式1〜3を規定している。これにより、ルート間隔RO(mm)が0〜16(mm)の範囲全体において、ルート間隔ROとルート面RFとの関係を適正な範囲とすることが可能となり、溶接効率の向上と溶接欠陥の低減を両立できる効果がより顕著に得られる。
次に、開先2の前記厚鋼板1の表裏面側1A、1Bにそれぞれ、電極数が1本又は2本以上のエレクトロガスアーク溶接電極を配置する。鋼板の表面側1A及び裏面側1Bとは、鋼板の一方の面側及び前記反対の面側と称してもよい。ここで、表面および裏面は特定の面を指すものではなく、相対的な呼称である。図2(a)、(b)に示す例のように、厚鋼板1の端部1aの開先2内に、表面1A及び裏面1Bの両面側から各々2本のEGW溶接電極5を配置してもよい。なお、EGW溶接電極5は、表面1A及び裏面1Bの両面側から各々1本又は2本以上の電極数とされていれば良く、厚鋼板1の板厚に応じて適正な電極数を設定すれば良い。この際の電極数決定の判断基準としては、1電極あたりで、おおよそ40〜45mm分の板厚の鋼板を溶接可能との従来知見を適用すればよい。例えば、図6(b)に示す例のように、厚鋼板10の表面10A側と裏面10B側とで開先2a、2bの寸法や形状が異なる場合には、これら寸法形状に応じて、表面10A側と裏面10B側とで異なる本数のEGW溶接電極5を配置した構成としても良い。図示例においては、厚鋼板10の表面10A側に配置されたEGW溶接電極5の本数が2本とされている一方、裏面10B側に配置されたEGW溶接電極5の本数は1本とされている。
該EGW溶接電極5の先端部51が、図3(a)の拡大部に示すように、厚鋼板1の鋼板板厚方向、特に導通路21を向くように配置してもよい。鋼板の表面(あるいは裏面)を基準面とし、この基準面内の略鉛直方向とトーチ先端からワイヤが突き出す方向とのなす角度P(°)を溶接電極5の進入角度と定義する。ここで、鉛直下向方向を0°とする。トーチの進入角度Pは0°以上40°以下が好ましく、さらに望ましくは、20°以上35°以下とすることが、より好ましい。この理由を以下に記す。融合不良は、電極先端より発生したアークの熱が開先面特にルート面RFに十分に及ばず、開先面の一部の領域が、鋼材の溶融点にまで昇温しないこと、および、融点に達して溶融した開先面の新生面を覆うように十分な溶融溶接金属が供給されない時に生じるが、Pが0°以上40°以下であれば、融合不良を特に生じる可能性のある導通路を構成するルート面RFにアークが十分にあたり、なおかつ、溶融溶接金属の表面を同時に加熱することとなり、融合不良を生じる可能性を低減できる。トーチ進入角度が0°であっても、式1〜3で規定される適正なルート間隔ROとルート面RFを採っていれば、溶融溶接金属からの熱伝導と対流等の効果もあり、未溶着欠陥を生じることはない。より好適には、トーチ進入角度を20°以上35°以下とすることで、アーク熱が、ルート面RFを構成する、対向している開先面両者への加熱分と溶融溶接金属の加熱分とに適正に分配され、これにより融合不良欠陥を抑止することができる。
そして、本実施形態では、図2(a)に示すように、厚鋼板1の表面側1A及び裏面側1Bにおいて、鉛直方向下側の溶接開始位置Aから溶接終了位置Bに向けて、同時に、溶接を行う。ここで、「鉛直方向下側から上側に向けて」とは、厚鋼板を固定して溶接電極を上昇移動させることだけでなく、溶接電極を固定して厚鋼板を下降移動させることも意図している。この溶接は、1回で表面から裏面まで溶融金属を形成する完全溶け込み溶接であり、つまり1パス溶接である。1パス溶接であるため、板厚の大きな40〜300mm程度の厚鋼板1同士をEGW溶接する場合であっても、溶接工程の効率を低下させることなく溶接を行うことが可能である。
溶接開始位置Aにおいて、溶接ワイヤを供給しながら溶融プール(溶融溶接金属)を形成させ、さらに、自動台車42により、EGW溶接電極5を開先2に沿って溶接終了位置Bに向けて上進させてもよい。ここで、図2(a)に示すように、EGW溶接電極5は自動台車42と一体化されていてもよい。これにより、順次、開先2内部に溶融溶接金属31aからなる溶融プールを形成させ、この溶融プール(溶融溶接金属31a)の凝固に伴って溶接金属31が形成される。以上のような工程により、開先2内に溶接部3が形成され、厚鋼板1同士が溶接される。
そして、本実施形態では、溶接電極5が開先2内で生成した溶融溶接金属31aの湯面レベルに同期して移動するように、溶接電極5の移動速度を制御する。上記の導通路21を設けることで、溶融溶接金属31aからなる一つの共有の溶融プールを形成し、安定した両面同時のEGW溶接を実現している。いうまでもないが、一つの共有の溶融プールを形成しているので、表面側と裏面側で溶融金属の湯面レベルは同じ高さにある。溶接電極5が、溶融溶接金属31aの湯面レベルに同期して移動することにより、厚鋼板1の両面側に配置したEGW溶接電極5の上昇速度が同期され、より一層安定した同時溶接を行うことが可能となるので、溶接欠陥の抑止につながる。同期とは、動作を時間的に一致させること、または、そうなるように制御することである。溶接電極5が、湯面レベルに同期して移動するとは、溶接電極5が湯面レベルの上昇速度と同じ速度、同じ方向で移動すること、またはそうなるように制御して移動することである。
同期させる手段は、目的を達成できるものであれば、特に限定はされない。例えば、EGW溶接電極5のうちの何れか一つに、溶接電流の変化を検知する、図示略の電流検知手段を設けることが挙げられる。このような電流検知手段を設けた場合、溶融溶接金属31aの表面(湯面)が上昇して、先端部51から突出したワイヤの突出し長さが短くなった際に溶接電流値が上昇するが、電流検知手段により、溶接電流値の時間変化を監視し,溶接電流値の上昇速度を演算することで、湯面の上昇速度を検知することができる。そして、この電流検知手段による演算結果に基づき、表面1A側及び裏面1B側に配置された各々のEGW溶接電極5が、湯面上昇に同期して上昇移動するように、すなわち湯面上昇と同じ速度で同じ方向へ上昇移動するように、EGW溶接電極5(自動台車42)の移動速度を制御することができる。上述のような構成とすることにより、溶融溶接金属31aの表面とEGW溶接電極5の先端部51との距離(アーク長)が所定の範囲内、例えば15〜60mm、より好ましくは15〜30mmとでき、より一層安定した同時溶接を行うことが可能となり、溶接欠陥の抑止につながる。
また、溶融溶接金属31aの湯面は、温度,放射率ともほぼ一定であるので、湯面からの距離に応じて赤外線の強度が変化する。この現象を利用して、所定の位置に設置した放射温度計により、湯面レベルを検知することができる。また、CCDカメラや超音波によって、湯面レベルを検知することも可能である。これらの検出信号に基づき、溶融溶接金属31aの湯面レベルと電極先端51間の距離が所定の範囲内、例えば15〜60mm、より好ましくは15〜30mmの範囲内になるように、EGW溶接電極5(自動台車42)移動させることができる。このように、EGW溶接電極5が湯面上昇に同期して上昇移動するように、該EGW溶接電極5(自動台車42)の移動速度を制御することもできる。
上記の溶接電流値、赤外線強度、画像、超音波反射時間、等の信号を検出する手段、および/またはこれらの検出信号に基づいて自動台車42の移動速度を調整するための制御手段を、図2(a)に示す台車駆動制御装置43の内部に、設けた構成を採用しても良い。これらの手段は、表面側1Aと裏面側1Bのいずれか一方にのみ備えていてもよく、また表面側1Aと裏面側1Bの両方に備えてもよい。片面にのみ検出手段を備えることは、コスト的に有利である。万一、溶融プールの湯面の高さが、厚鋼板の表面側と裏面側とで異なっても(図4(b)参照)、両面に検出手段を備えていれば、異常な湯面レベルの相違を察知し、適宜必要な措置、例えば、アラームの発生、溶接中断、電極先端位置の修正、アーク電流・電圧の調整等の措置をとることができる。異常事象であるか否かの判断には、両面での自動台車42の位置または速度とのズレ、を考慮することもできる。これにより、さらに判断の精度が向上する。
なお、本実施形態では、厚鋼板1の表面1A及び裏面1Bから両面同時溶接を行うが、一時的且つわずかながら、両側の溶接トーチの上昇速度が同一とならず、溶融プールの湯面の高さ位置が、厚鋼板の表面側と裏面側とで異なる位置となる場合がありえる。その理由としては、厚鋼板の表面側と裏面側の開先断面積の僅かな差の他、表面側及び裏面側の各溶接装置の間で、溶接ワイヤの送給速度に僅かな差が生じること等が挙げられる。また、上記以外の理由で、ごく短時間の時間範囲内で起きる事象として、機器の上昇動作の特徴等により、各面におけるぞれぞれのEGW溶接電極5の移動速度に若干のずれが生じることがある。通常、立向上進でEGW溶接を行う場合、EGW溶接電極5は、上進と短時間の停止を繰り返しながらのステップ状の上昇動作を行うが、例えば、表面側では上昇動作直後の瞬間に、裏面側では、まさにステップ状の上昇動作の開始直前であるような状況では、非常に短時間ながら、表裏面側の機器の上下方向位置に若干の差を生じる可能性がある。このため、本発明においては、表面1A側及び裏面1B側の各々におけるEGW溶接電極5の上下方向のずれ、即ち、溶接進行方向におけるずれは10mm以下であることが好ましく、この範囲内であることが、同時EGW溶接の許容範囲となる。EGW溶接電極5のずれが10mm以下であれば、溶融溶接金属31aの湯面のレベルに大きな差異が生じること無く、溶融溶接金属31aが導通路21を通じて表面1A側と裏面1B側との間を導通し、厚鋼板1の両面側で共有の溶融プールを形成させることが可能となる。
上述した同期手段において、表裏面側の溶接電極5の上下方向のずれが所定の範囲内、例えば、±10mm以内、好ましくは±5mm以内、より好ましくは±3mm以内にするという条件を加えて、制御することもできる。
本実施形態において、厚鋼板1の表面1A側及び裏面1B側の各々におけるEGW溶接電極5の溶接進行方向におけるずれを、10mm以下とすることが好ましいとする根拠について、以下に説明する。
一般に、EGW溶接は、300〜400A程度の溶接電流をEGW溶接電極5に印加しながら行われる。また、溶融溶接金属31aによる溶融プールの平均深さ(mm)は、一般に、溶接電流値(A)の約1/10(mm)と言われており、即ち、上記範囲の溶接電流であれば、溶融プールの深さは30mm程度と推定できる。上述したように、本発明においては、厚鋼板1の表面1A側及び裏面1B側の各々において、それぞれ開先2内に生成される溶融溶接金属31aからなる溶融プールを、導通路21によって一つの共有の溶融プールとすることが最も重要である。このような共有の溶融プールを維持するためには、溶融プールの深さ方向のずれ、即ち、溶融溶接金属31aの湯面レベルのずれが、表面1A側と裏面1B側とで±1/3程度、つまり、±10mm程度までが許容できるものと推定される。従って、EGW溶接電極5の先端部51の位置が、溶接進行方向で±10mm以下のずれであれば、ほぼ同時の溶接と見なすことができ、許容範囲内と言うことができる。
さらに、上述したとおり、湯面レベル検出手段を有する同期手段を両面に備えることによって、表裏面間の湯面レベルの相違を察知し、湯面レベルの相違が所定の範囲内、例えば、±10mm以内、好ましくは±5mm以内、より好ましくは±3mm以内にすることができる。
EGW溶接電極5を、厚鋼板1の板厚方向で揺動させながら溶接を行ってもよい。これは、溶接欠陥を抑制する効果がより顕著に得られる点からさらに好ましい。
また、EGW溶接電極5は、必ずしも全ての電極を揺動させる必要はない。例えば、厚手鋼板1の表面側及び裏面側とも1電極ずつの場合には、表面側の電極のみを揺動させ、裏面側の電極を揺動させずに溶接を実施すること、表面側及び裏面側とも2電極ずつの場合には、表面側・裏面側の開口側の電極のみを揺動させ、表面側・裏面側のルート側の電極は揺動させずに溶接を実施すること等、一部の電極を揺動させ、その他の電極を揺動させず、固定したまま溶接を行うことも可能である。
厚鋼板1に曲げ加工を施して鋼管状に加工した後、前記曲げ加工によって対向に配置された前記厚鋼板の端部11aを溶接してもよい。
図7(a)に示すように、厚鋼板1が曲げ加工によって管状とされる。この際の加工方法としては、従来から鋼管部材の製造に用いられているUO又はUOE加工法を何ら制限無く採用することができる。より厚手の鋼板素材からなる鋼管には、ベンディングロール等による曲げ加工によって鋼管状に加工することができる。これらの曲げ加工によって対向に配置された端部11a,11a間の開先を、上記で説明したようなEGW溶接方法あるいは他の溶接方法によってシーム溶接する。また、鋼管11を垂直に立て、垂直になったシーム部を本発明の多電極EGW溶接方法を用いて溶接することも可能である。このようにして、厚鋼板からなる鋼管11を得ることができる。
以上説明したような、本実施形態の厚鋼板1の多電極エレクトロガスアーク溶接方法によれば、厚鋼板1の両面間を溶融溶接金属31aが導通可能であり、この湯面レベルに同期して溶接電極を移動させて、両面側から同時にEGW溶接を行うプロセスを採用することにより、板厚が40〜300mm程度の厚鋼板1を立向姿勢で突合わせ溶接する場合であっても、1パス溶接による溶接効率の向上と溶接欠陥の抑制効果が同時に得られる。鋼板の板厚に応じて適正な電極数を設定すれば良い。その場合、1電極あたりで、おおよそ40〜45mm分の板厚の鋼板を溶接可能との従来知見を適用してもよい。例えば、鋼板の板厚は80mm以下であってもよい。鋼板の板厚は70または80mm以上としてもよく、または100mm以上としてもよい。鋼板の板厚を250mm以下又は200mm以下又は160mm以下に制限してもよい。
[第2の実施形態]
次に、本発明の第2の実施形態である鋼管の多電極エレクトロガスアーク(EGW)円周溶接方法について、主に図7、8を参照しながら説明する。
本実施形態では、鋼管状の複数の鋼管11の管端部を対向に配置して、鋼管の端部間に前記開先を形成して円周溶接する方法であり、第1の実施形態EGW溶接方法とは異なる点がある。以下の説明において、上述した第1の実施形態の厚鋼板のEGW溶接方法と共通する構成については、同じ符号を付与するとともに、その詳しい説明を省略する。
本実施形態の鋼管11の多電極EGW円周溶接方法は、図7(a)、(b)に示すように、各々の端部11a,11aを突き合わせて開先2を形成した厚鋼板を、内径が300mm以上の管状に加工した後、管状とされた複数の鋼管11の管端部11bを対向に配置して、鋼管の端部間に開先を形成するか、あるいは、鋼管11の管端部11bと他の管状部材(図示略)の管端部を対向に配置して、端部間に開先を形成し、円周溶接を行う。この際、本実施形態では、管状とした胴部分の内面にEGW溶接装置を設置することから、EGW溶接装置が設置可能なスペースを考慮し、管状部材の内径が300mm以上である場合を適用対象とする。そして、図8に示すように、開先12(図7(a)、(b)参照)内にEGW溶接電極5を配置し、溶接線(円周)が実質的に鉛直面内に含まれるように、互いに突き合わされた管端部11b,11b(図7(a)、(b)参照)の各々の円周上の開先面に沿ってEGW溶接を行う。
本実施形態においては、鋼管状に形成した複数の鋼管11をワークとし、これらの管端部11b,11b同士を、EGW溶接による円周溶接で接合する例について説明する。また、鋼管11は、第1の実施形態の厚鋼板1と同様、厚さが40〜300mmの厚板としてもよい。また、必要に応じて用いられる図示略の管状部材、仕口部材についても、同様に40〜300mmの厚板からなるものであってよい。
また、本実施形態で説明する例においては、図8に示すように、鋼管11の表面(外面)11A側、及び、裏面(内面)11B側の各々の側から、EGW溶接電極5を2本ずつ、管端部11bの開先12内において、先端部51が鋼管11の鋼板板厚方向、特に導通部を向くように配置している。
また、本実施形態では、図8に示す例のようなポジショナー手段45を備えたEGW円周溶接機40を用いて、鋼管11の内外面の両面から同時に、1パスで円周溶接を行う例について説明する。円周溶接にEGW溶接を適用する際には、鋼管長さ方向から見て、大よそ時計の文字盤で表現するところの9時(または3時)の位置付近に溶接電極を固定し、ワークである鋼管11を回転させることで溶接を進めれば、EGW溶接機は実質的に立向姿勢を保持した状態となる。このことから、元来、立向溶接姿勢で行われるEGW溶接法の特徴から、湯漏れ等を起こす危険性が低く、合理的な装置構成と考えられる。
本実施形態では、まず、複数の鋼管11の管端部11b,11bを対向に配置して、鋼管(又は管状部材)の端部間に開先12を形成する。開先12の形状は、図7(b)に示す例のX型開先には限定されず、鋼管11(又は管状部材)の表面11A及び裏面11Bの各々において溶接可能な開先、すなわち両面開先であれば如何なる形状であっても良い。
図7(b)に示すように、各々の両面の開先12,12内で生成された溶融溶接金属31aが表面11A及び裏面11Bとの間を導通可能となる導通路12Aを確保しながら、鋼管11の管端部11b同士を突合わせる。これとともに、図8に示すように、これら鋼管11を、各々の中心軸が略同心、且つ、略水平となるように、その中心軸周りに回転させるポジショナー手段45のローラー45a上に載置する。
図8に示すように(図7(a)、(b)も参照)、鋼管11の表面11A及び裏面11Bの両面側から開先12内に、電極数が1本又は2本以上とされたEGW溶接電極5をそれぞれ配置する(図8に示す例では各面側2本ずつで計4本)。次に、鋼管11を、図8中に示すR方向に回転させながら、鋼管11の表面11A及び裏面11Bの両面側において同時に1パス円周溶接を行う。ここで、鋼管11の回転は、第1の実施形態における「鉛直方向下側から上側に向けて」が意図する厚鋼板を下降移動させることに相当する動作である。
以上のような方法により、複数の鋼管11同士を1パス溶接する。
本実施形態においては、第1の実施形態の場合と同様、図8に示す溶接開始位置A1から溶接終了位置B1に向けて、実質的に立向姿勢で1パスによるEGW溶接を行うことで、鋼管11の管端部11b,11b同士を円周溶接する。これにより、厚鋼板11が複数繋ぎ合わされてなり、大型構造物をなす鋼管柱等を製造することができる。
以下、本実施形態の鋼管11の多電極EGW溶接方法の手順並びに条件について、さらに詳細に説明する。
本実施形態では、第1の実施形態の場合と同様、まず、平板状の厚鋼板の溶接部位となる各々の端部11b、11b間に、図1(b)に例示するようなX型の開先12を形成する(図7(a)中の符号12を参照)。ここで、管端部11bは、鋼管状に加工した後の鋼管11同士を突合わせて接合する際の溶接部位となる。また、開先形状についても、第1の実施形態と同様、X型開先のみならず、各種形状を適宜採用することが可能である。
次いで、図7、8に示すように、これら鋼管11を、ポジショナー手段45のローラー45a上に載置する。この際、突合わされた各々の管端部11b,11bにおけるルート間隔RO及びルートフェイスRFの寸法、並びに、これらの関係は、第1の実施形態と同様とすることができる。
次いで、図8に示すように、表面11A及び裏面11Bの両面側に形成された開先12(図7(a)、(b)参照)内に2本のEGW溶接電極5を配置するとともに、このEGW溶接電極5の先端部51が、ワークである鋼管11の板厚方向を向くように配置する。
そして、第1の実施形態と同様、溶接開始位置A1において、溶接ワイヤを供給しながら溶融プール(溶融溶接金属31a)を形成させ、図8に示す溶接開始位置A1から溶接終了位置B1に向けて、実質的に立向上進の方向で同時にEGW溶接を行う。この際、突合わされた各々の管端部11bの間の開先12内で形成された溶融溶接金属31aが、表面11Aと裏面11Bの間で導通可能となる導通路12A(図7(b)参照)を確保するように、EGW溶接を行う。これにより、図4(a)に示すような第1の実施形態の場合と同様に、表面11A及び裏面11Bの両面側で溶融溶接金属31aの湯面レベルが同等に保たれる。
この際、ポジショナー手段45が、溶接速度、即ち、溶融溶接金属31aの溶着速度に応じた速度によるローラー45aの回転を開始し、鋼管11を、図8中に示すR方向に回転させ、回転速度を制御しながら円周溶接を進行させる。この際、溶接方向としては、溶接線が実質的に鉛直面内となるとともに、EGW溶接電極5が実質的に鉛直方向で上進するのと同じ姿勢となる。これにより、順次、開先12内部に溶融溶接金属31aからなる溶融プールを形成させ、この溶融プール(溶融溶接金属31a)の凝固に伴って溶接金属31が形成され、円周溶接部30が得られる。
上述のような1パス円周溶接にあたっては、溶接電極5が開先2内で生成した溶融溶接金属31aの湯面レベルに同期して移動するように、溶接電極5の移動速度を制御する。例えば、鋼管11の開先12内に配置された各々のEGW溶接電極5における溶接電流値の時間変化により、開先12内で生成した溶融溶接金属31aの湯面の上昇速度を検知する。そして、この検出結果に基づき、ポジショナー手段45のローラー45aの回転速度を制御することにより、EGW溶接電極5の先端部51から開先12内に突出する溶接ワイヤの突出し長さを所定の範囲内に保持しながら溶接することができ、より一層安定した同時1パス溶接を行うことが可能となる。このような方法を実現するためには、例えば、EGW溶接電極5のうちの何れか一つに、溶接電流の変化を検知する、図示略の電流検知手段を設けることが挙げられる。このような電流検知手段を設けた場合、溶融溶接金属31aの表面(湯面)が上昇して、先端部51から突出したワイヤの突出し長さが短くなった際に溶接電流値が上昇するが、電流検知手段により、溶接電流値の時間変化を監視し,溶接電流値の上昇速度を演算することで湯面の上昇速度を検知することができる。そして、この電流検知手段による演算結果に基づき、湯面上昇速度に同期するように、ポジショナー手段45のローラー45aの回転速度を制御する。上述のような構成とすることにより、溶融溶接金属31aの表面とEGW溶接電極5の先端部51との距離(アーク長)が所定の範囲内、例えば15〜60mm、より好ましくは15〜30mmとでき、より一層安定した同時1パス溶接を行うことが可能となり、溶接欠陥の抑止につながる。湯面の検知には、前述の、放射温度計、CCDカメラや超音波等を用いてもよい。
上記の溶接電流値、赤外線強度、画像、超音波反射時間、等の信号を検出する手段、および/またはこれらの検出信号に基づいて自動台車42の移動速度を調整するための制御手段を、図2(a)に示す台車駆動制御装置43の内部に、設けた構成を採用しても良い。
そして、溶接の進行に伴ってEGW溶接電極5が溶接終了位置Bに到達するのに伴い、ポジショナー手段45のローラー45aを停止させる。
以上のような工程により、突合わされた端部11a,11aの位置に円周溶接部30が形成され、鋼管11同士が溶接される。
本実施形態では、鋼管11の表面11A及び裏面11Bの両面側、即ち、鋼管表面(外面)11A側と裏面(内面)11B側の両側にEGW溶接電極5を配置して、同時に1パス円周溶接を行う。これにより、板厚が大きな鋼管11同士をEGW溶接する場合であっても、溶接工程の効率を低下させることなく、また、溶接欠陥を抑制しながら1パス円周溶接を行うことが可能となる。
なお、本実施形態においても、第1の実施形態と同様、EGW溶接電極5の両面側の合計本数を2本以上とし、被溶接物である鋼管11の板厚に応じて、適宜、電極数を増加させることが可能である。これにより、板厚が40〜300mmの厚板である鋼管11の管端部11b,11bを、高効率で欠陥発生を抑制しつつEGW溶接することが可能となる。
また、第1の実施形態と同様、EGW溶接電極5を、鋼管11(又は管状部材)の板厚方向で揺動させながら円周溶接を行うことが、溶接欠陥を抑制する効果がより顕著に得られる点からさらに好ましい。
また、本実施形態においては、さらに、円周溶接部30によって接合された鋼管11の胴囲に、図示略の仕口部材を溶接によって接合する方法を採用しても良い。この際、仕口部材に用いる鋼材としては特に限定されず、例えば、ダイアフラムプレート等、従来からこの分野で用いられているものを適用することができ、また、端部において、表面11A側及び裏面11B側に両面開先加工が施された仕口部材を採用することも可能である。また、この際の溶接方法としても、上述したようなEGW溶接を採用することができる。
また、本実施形態で説明したような、EGW溶接を用いた表裏面側同時の1パスによる円周溶接方法は、従来から知られている、鋼管非貫通型のダイアフラム等の仕口部材(通常は概略円盤状の鋼板)と鋼管との溶接施工にも適用することが可能である。
以上説明したような、本実施形態の厚鋼板11の多電極エレクトロガスアーク溶接方法によれば、第1の実施形態と同様、鋼管11の両面間を溶融溶接金属31aが導通可能に構成し、両面側から同時にEGW溶接を行うプロセスを採用することで、板厚が40〜300mm程度の厚鋼板から構成される鋼管状部材を立向姿勢で突合わせて溶接する場合であっても、1パス溶接による溶接効率の向上と溶接欠陥の抑制効果が同時に得られる。
以下に、本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
本実施例においては、まず、上記した表2に示すような鋼種からなり、下記表3に示すような板厚及び外形サイズを有する鋼板を準備した。また、同様に、上記表2に示すような鋼種からなり、下記表3に示すような板厚及び外形サイズを有する鋼板を用い、曲げ加工法により、下記表3に示すような外径とされた鋼管を作製した。
Figure 0005692413
次に、準備した各々の鋼板並びに鋼管の各々の端部に、下記表4及び図9(a)〜(e)に示すような開先形状とした。
次いで、各々の鋼板の端部同士、並びに、鋼管の管端部同士を突合わせ、下記表4、5に示すような本発明例及び比較例の条件で、多電極EGW溶接による1パス溶接を行った。この際、本発明例1〜30(参考例1〜6含む)並びに比較例1〜8については、立向上進の溶接姿勢にてEGW溶接による突合わせ溶接を行った。また、本発明例31〜39(参考例31〜33含む)並びに比較例9〜12については、鋼管の管端部同士を突合わせた状態で、溶接線が実質的に鉛直面内となるように、管端部に沿って鋼管を回転させることで、鉛直方向下側から上側に向けて、EGW溶接による円周溶接を行った。また、各本発明例及び比較例においては、下記表4及び図9(a)〜(e)に示すような電極配置として、EGW溶接を行った。
Figure 0005692413
Figure 0005692413
Figure 0005692413
そして、各種条件で多電極エレクトロガスアーク溶接を用いて接合した鋼板継手並びに鋼管継手に関し、以下に説明するような方法により、溶接部の溶接欠陥、および溶接熱影響部(HAZ)と溶接金属の靱性を評価した。
溶接欠陥については、溶接部のうち、溶け込みが得られないおそれがある、ルート位置の溶け込み不良を主に検知する目的で、JIS Z 3060(2002年)における鋼溶接部の超音波探傷試験方法を適用規格とし、溶接継手の超音波探傷試験を実施することで調査した。この際、探傷方法として斜角一探触子法を用い、探傷屈折角を60.0°として、継手両面側から直射法にて探傷を行った。また、判定基準としては、上記規格の付属書7 L検出レベルに則り、探傷結果を評価した。
そして、上記条件による超音波探傷法で溶接欠陥が検出されなかった場合を「○」、「溶接欠陥が検出された場合を「×」として、評価結果を表5、6に示した。
一方、母材熱影響部と溶接金属の材質そのものの健全性を評価する目的で、特に、大入熱溶接において課題となる靱性を評価するため、JIS Z 2242(1998年)に則り、溶接継手から、板幅方向を長手としてシャルピー試験片を採取してシャルピー衝撃試験を実施した。この際、HAZ靱性については、溶融線からHAZ側に1mm離れた位置にV字状の切欠き(ノッチ)を設け、衝撃試験における全吸収エネルギーをシャルピー吸収エネルギー「−20℃:vE−20(J)、0℃:vE0(J)」として評価し、結果を表5、6に示した。
また、溶接金属靱性については、溶接金属の中央位置にV字状の切欠き(ノッチ)を設け、衝撃試験における全吸収エネルギーをシャルピー吸収エネルギー「−20℃:vE−20(J)、0℃:vE0(J)」として評価し、結果を表5、6に示した。
一般に、溶接継手を構造物に供用するためには、第一に、探傷結果の評価として溶接欠陥が検出されないことが必須の要件であり、第二に、溶接部が、良好なシャルピー靱性値を確保していることが望まれる。本実施例においては、おおむね、−20℃におけるシャルピー衝撃試験において、吸収エネルギーが47Jを超える範囲を、良好なシャルピー靱性値として評価することとした。
表5に示すように、本発明で規定した条件で1パスでのEGW溶接を行った本発明例1〜39(参考例1〜6、31〜33含む)においては、鋼板同士あるいは鋼管同士をEGW溶接した何れの場合においても溶接欠陥が検出されず、また、HAZと溶融金属中央位置の靱性が優れていることがわかる。従って、本発明の溶接方法を用いることで、溶接品質に優れるとともに、1パスによる高い生産性が実現できることが明らかとなった。
これに対し、表6に示すように、本発明で規定した範囲外の条件で1パスでのEGW溶接を行った比較例1〜12においては、鋼板同士あるいは鋼管同士をEGW溶接した何れの場合においても、溶接欠陥を検出しないこと、および、HAZ、溶接金属靱性の確保をともに両立させることができず、実構造物の溶接継手として不適格であることが明らかとなった。
比較例4および8はX型開先であり、板厚に比して好適な溶接入熱量が適用されたために、良好な靱性値が得られているものの、ともに、ルート面RFの距離に対して十分な溶け込みが得られず、溶接欠陥評価が不合格となった例である。
また、比較例1〜3、5〜7、および9〜12は、溶接欠陥評価は合格となっているものの、片面側にのみ開先加工が施された開先形状であり、鋼材HAZ靱性、溶接金属ともに十分な靱性値が得られず、実構造物の溶接継手として不適格と判定された例である。
以上説明したような実施例の結果により、本発明に係る厚鋼板の多電極エレクトロガスアーク溶接方法及び鋼管の多電極エレクトロガスアーク円周溶接方法が、溶接部性能の低下を抑制しつつ、溶接効率向上と溶接欠陥低減の両立が可能である。
本発明によれば、例えば、厚鋼板から製造され、建築分野で用いられる鋼管状柱部材や鋼矢板、大型鉄塔、発電用大型風車の鉄塔部分等、鋼板並びに鋼管から構成される大型鋼構造物を製造する際の溶接プロセスに本発明を適用することにより、高い生産性及び溶接品質が同時に実現できることから、その社会的貢献は計り知れない。
1、10 厚鋼板、
1A、10A 表面、
1B、10B 裏面、
1a 端部、
2、2a、2b 開先、
21 導通路、
11 鋼管(厚鋼板を管状に加工した鋼管)
11A 表面、
11B 裏面、
11a 端部、
11b 管端部、
12 開先、
3 溶接部
30 円周溶接部
31 溶接金属、
31a 溶融溶接金属(溶融プール)、
4 エレクトロガスアーク溶接機(EGW溶接機)、
41 基台、
42 自動台車、
43 台車駆動制御装置、
40 エレクトロガスアーク円周溶接機(EGW円周溶接機)、
45 ポジショナー手段
45a ローラー、
5 エレクトロガスアーク溶接電極(EGW溶接電極)、
51 先端部、
A、A1 溶接開始位置、
B、B1 溶接終了位置。

Claims (7)

  1. 溶接しようとする板厚が80〜300mmである厚鋼板の端部を対向に配置して、前記鋼板の端部間に開先を形成し、
    前記開先のルート間隔ROが0〜16mmの範囲であり、且つ、前記ルート間隔ROが0≦RO<1mmの範囲においては、ルート面RFが下記の式1で表される関係を満たし、1mm≦RO<10mmの範囲においては、ルート面RFが下記の式2で表される関係を満たし、前記ルート間隔ROが10mm≦RO≦16mmの範囲においては、ルート面RFが下記の式3で表される関係を満たし、
    RF≦7.8RO+4.0mm ・・・・・式1
    RF≦4.8RO+7.0mm ・・・・・式2
    RF≦55mm ・・・・・式3
    但し、上記式1、式2、式3において、RF:ルート面、RO:ルート間隔、であり、
    前記開先内に、前記鋼板の表裏面側にそれぞれ、電極数が1本又は2本以上のエレクトロガスアーク溶接電極を配置し、
    鉛直方向下側から上側に向けて、同時に溶接を行い、
    各々の前記エレクトロガスアーク溶接電極が前記開先内で生成した溶融溶接金属の湯面レベルに同期して移動するように、該エレクトロガスアーク溶接電極の移動速度を制御することを特徴とする、多電極エレクトロガスアーク溶接方法。
  2. 前記ルート間隔ROが3mm以上8mm以下であり、ルート面RFが8mm以下であることを特徴とする、請求項1に記載の多電極エレクトロガスアーク溶接方法。
  3. 前記エレクトロガスアーク溶接電極の進入角度を、鉛直下向方向を0°として、0°以上40°以下とすることを特徴とする、請求項1又は2に記載の多電極エレクトロガスアーク溶接方法。
  4. 前記エレクトロガスアーク溶接電極の少なくともひとつの電極を、前記厚鋼板の板厚方向で揺動させながら、溶接を行うことを特徴とする、請求項1〜のいずれか1項に記載の多電極エレクトロガスアーク溶接方法。
  5. 前記厚鋼板に曲げ加工を施して鋼管状に加工した後、前記曲げ加工によって対向に配置された前記厚鋼板の端部を溶接することを特徴とする、請求項1〜のいずれか1項に記載の多電極エレクトロガスアーク溶接方法。
  6. 複数の鋼管の端部を対向に配置して、前記鋼管の端部間に前記開先を形成し、前記鋼管の中心軸が略同心、且つ、略水平となるように、前記鋼管をポジショナー手段に載置し、
    次いで、前記ポジショナー手段で前記鋼管をその中心軸周りに回転させて、前記溶接を行うことを特徴とする、請求項1〜のいずれか1項に記載の多電極エレクトロガスアーク円周溶接方法。
  7. さらに、前記鋼管の胴囲に仕口部材を対向に配置して、前記開先を形成し、前記仕口部材を溶接することを特徴とする、請求項に記載の多電極エレクトロガスアーク円周溶接方法。
JP2013547435A 2013-02-06 2013-03-01 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法 Active JP5692413B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547435A JP5692413B2 (ja) 2013-02-06 2013-03-01 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013021741 2013-02-06
JP2013021741 2013-02-06
JP2013547435A JP5692413B2 (ja) 2013-02-06 2013-03-01 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法
PCT/JP2013/055719 WO2014122789A1 (ja) 2013-02-06 2013-03-01 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法

Publications (2)

Publication Number Publication Date
JP5692413B2 true JP5692413B2 (ja) 2015-04-01
JPWO2014122789A1 JPWO2014122789A1 (ja) 2017-01-26

Family

ID=51299400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013547435A Active JP5692413B2 (ja) 2013-02-06 2013-03-01 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法

Country Status (7)

Country Link
EP (1) EP2954969B1 (ja)
JP (1) JP5692413B2 (ja)
KR (1) KR101638758B1 (ja)
CN (1) CN105189011B (ja)
DK (1) DK2954969T3 (ja)
ES (1) ES2660742T3 (ja)
WO (1) WO2014122789A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101898159B1 (ko) * 2016-06-21 2018-09-14 주식회사 포스코 용접 생산성 및 용접부 저온인성이 우수한 극후물 강판 용접이음부의 제조방법
CN106914733B (zh) * 2017-03-10 2019-04-23 中国十九冶集团有限公司 桥梁钢结构节点板开槽坡口及焊接方法
JP6875232B2 (ja) * 2017-07-10 2021-05-19 株式会社神戸製鋼所 多電極ガスシールドアーク片面溶接方法
CN108406156B (zh) * 2018-04-09 2020-06-19 张家口泥河湾产业发展有限公司 一种低热输入窄间隙垂直气电立焊方法
CN109128452A (zh) * 2018-08-20 2019-01-04 南京理工大学 一种超高强钢弧焊接缝角度感知方法与装置
CN113182648B (zh) * 2021-04-20 2022-09-20 南京钢铁股份有限公司 适用于耐磨钢板的免预热高效焊接方法
CN114769811A (zh) * 2022-05-25 2022-07-22 中国建筑第八工程局有限公司 一种十字型高强度超厚钢板焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144442A (en) * 1977-05-21 1978-12-15 Tomoegumi Iron Works Vertical automatic welding method of pipe body
JPS5680392A (en) * 1979-12-06 1981-07-01 Kobe Steel Ltd Composite wire for electrogas arc welding and vertical welding method using said wire
JPS60187476A (ja) * 1984-03-06 1985-09-24 Nippon Steel Corp 狭開先潜弧溶接方法
JPS62101380A (ja) * 1985-10-30 1987-05-11 Nippon Kokan Kk <Nkk> 厚鋼板の突合せ溶接方法
JPH01289568A (ja) * 1988-05-17 1989-11-21 Miyaji Tekkosho:Kk 板継ぎ溶接方法およびそれに使用する装置
JPH10118770A (ja) * 1996-10-14 1998-05-12 Kobe Steel Ltd 鋼板のエレクトロガスアーク溶接方法
JP2005074442A (ja) * 2003-08-28 2005-03-24 Katayama Stratec Kk 多電極円周エレクトロガスアーク溶接方法
JP2012011407A (ja) * 2010-06-30 2012-01-19 Nippon Steel Corp 溶接継手の製造方法及びその製造方法を実施するための溶接装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391041A (en) * 1977-01-24 1978-08-10 Nippon Kokan Kk High current density gas shield vertical welding method
JPS6036346B2 (ja) * 1979-05-12 1985-08-20 新日本製鐵株式会社 エレクトロガスア−ク溶接法
JPH033716A (ja) 1989-05-31 1991-01-09 Shimadzu Corp デバリング方法
JP2794393B2 (ja) * 1994-08-25 1998-09-03 川崎製鉄株式会社 固定管の円周自動溶接方法
JPH08187579A (ja) * 1994-10-31 1996-07-23 Mitsubishi Heavy Ind Ltd エレクトロガス溶接方法及びその装置
CN1064290C (zh) * 1996-07-18 2001-04-11 中国建筑第三工程局钢结构建筑安装工程公司 Co2气体保护半自动立焊和/或斜立焊钢板焊接工艺
JP3582811B2 (ja) 1996-10-17 2004-10-27 日鐵住金溶接工業株式会社 立向エレクトロガス溶接装置
JPH1133716A (ja) 1997-07-11 1999-02-09 Katayama Stratec Kk 建築鉄骨柱でのエレクトロガス溶接方法
JP2001071142A (ja) * 1999-09-08 2001-03-21 Nkk Corp 厚鋼板のエレクトロガス溶接方法
JP2003245775A (ja) 2002-02-22 2003-09-02 Katayama Stratec Kk 多電極円周エレクトロガスアーク溶接装置
CN1330449C (zh) * 2004-11-08 2007-08-08 渤海船舶重工有限责任公司 双面双弧焊焊接方法
JP2007160349A (ja) 2005-12-14 2007-06-28 Daihen Corp エレクトロガスアーク溶接ロボットの制御方法
CN101862887B (zh) * 2010-04-28 2012-05-02 南京钢铁股份有限公司 一种低温风塔用厚板s355nl埋弧焊焊接方法
JP5408055B2 (ja) 2010-06-29 2014-02-05 新日鐵住金株式会社 溶接継手の製造方法及びその方法を実施するための溶接装置
CN101905365B (zh) * 2010-08-10 2011-12-28 首钢总公司 一种超厚度高强水电用钢的焊接方法
CN102615404B (zh) * 2012-04-17 2014-01-22 江苏建筑职业技术学院 不锈钢厚板双面同步焊接方法
CN102784998A (zh) * 2012-08-08 2012-11-21 武汉钢铁(集团)公司 80毫米厚高强度桥梁钢对接手工焊接的方法
CN102861972B (zh) * 2012-10-10 2014-10-29 青岛北海船舶重工有限责任公司 超厚钢板立式拼板焊接方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144442A (en) * 1977-05-21 1978-12-15 Tomoegumi Iron Works Vertical automatic welding method of pipe body
JPS5680392A (en) * 1979-12-06 1981-07-01 Kobe Steel Ltd Composite wire for electrogas arc welding and vertical welding method using said wire
JPS60187476A (ja) * 1984-03-06 1985-09-24 Nippon Steel Corp 狭開先潜弧溶接方法
JPS62101380A (ja) * 1985-10-30 1987-05-11 Nippon Kokan Kk <Nkk> 厚鋼板の突合せ溶接方法
JPH01289568A (ja) * 1988-05-17 1989-11-21 Miyaji Tekkosho:Kk 板継ぎ溶接方法およびそれに使用する装置
JPH10118770A (ja) * 1996-10-14 1998-05-12 Kobe Steel Ltd 鋼板のエレクトロガスアーク溶接方法
JP2005074442A (ja) * 2003-08-28 2005-03-24 Katayama Stratec Kk 多電極円周エレクトロガスアーク溶接方法
JP2012011407A (ja) * 2010-06-30 2012-01-19 Nippon Steel Corp 溶接継手の製造方法及びその製造方法を実施するための溶接装置

Also Published As

Publication number Publication date
DK2954969T3 (en) 2018-04-16
KR101638758B1 (ko) 2016-07-11
EP2954969A4 (en) 2016-11-09
JPWO2014122789A1 (ja) 2017-01-26
EP2954969B1 (en) 2018-01-10
CN105189011B (zh) 2018-03-27
WO2014122789A1 (ja) 2014-08-14
EP2954969A1 (en) 2015-12-16
ES2660742T3 (es) 2018-03-26
KR20150103213A (ko) 2015-09-09
CN105189011A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5692413B2 (ja) 厚鋼板の多電極エレクトロガスアーク溶接方法、及び、鋼管の多電極エレクトロガスアーク円周溶接方法
CN104384677B (zh) 一种特厚钢板焊接方法
US10668550B2 (en) Method for welding pipelines from high-strength pipes with controllable heat input
EP2695694A1 (en) Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
JP6025620B2 (ja) サブマージアーク溶接方法、当該サブマージアーク溶接方法を用いる鋼管を製造する方法、溶接継手、及び当該溶接継手を有する鋼管
CN212371483U (zh) 一种用于反应堆容器的连接结构
RU2511191C1 (ru) Способ многослойной сварки труб
CN104625322A (zh) 大型非标设备厚板全位置焊接方法
EP2883643A1 (en) Submerged arc welding method, weld joint formed by the welding method, and steel pipe or tube having the weld joint
JP5730139B2 (ja) 鋼材の突合わせ溶接方法
CN106378517A (zh) 一种膜式壁管屏异种钢接头位置的扁钢角焊缝焊接工艺
RU2706988C1 (ru) Способ многослойной гибридной лазерно-дуговой сварки стальных плакированных труб
RU2686407C1 (ru) Способ ремонта стенки резервуара
CN114178798A (zh) 一种焊接钢管加工方法
JP5742090B2 (ja) 溶接熱影響部の靭性に優れた、鋼材のサブマージアーク溶接方法
JP5268594B2 (ja) I型継手の溶接方法及びそのi型溶接継手並びにそれを用いた溶接構造物
RU2563793C1 (ru) Способ сварки трубопроводов из высокопрочных труб с контролируемым тепловложением
RU2668623C1 (ru) Способ устранения дефекта сварного шва трубной сформованной заготовки, выполненного с использованием лазера
RU2787195C1 (ru) Способ гибридной лазерно-дуговой сварки толстостенных труб
CN113732468B (zh) 一种60mm及以上异规格厚板焊接方法
CN102941399A (zh) 珠光体耐热钢结构件气保护焊接方法
RU2697754C1 (ru) Способ бездефектной гибридной лазерно-дуговой сварки толстостенных стыковых соединений
JP6918895B2 (ja) メッキ除去方法、溶接方法、溶接物、構造物
RU2598764C1 (ru) Способ создания тройникового соединения
CN116475537A (zh) 一种高温钢管水平固定全位置单面焊双面成型的焊接方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5692413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350