JP5690621B2 - Expandable polystyrene resin particles, expanded particles and expanded molded articles - Google Patents

Expandable polystyrene resin particles, expanded particles and expanded molded articles Download PDF

Info

Publication number
JP5690621B2
JP5690621B2 JP2011056790A JP2011056790A JP5690621B2 JP 5690621 B2 JP5690621 B2 JP 5690621B2 JP 2011056790 A JP2011056790 A JP 2011056790A JP 2011056790 A JP2011056790 A JP 2011056790A JP 5690621 B2 JP5690621 B2 JP 5690621B2
Authority
JP
Japan
Prior art keywords
polystyrene resin
resin particles
mass
particles
expandable polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011056790A
Other languages
Japanese (ja)
Other versions
JP2012193243A (en
Inventor
高野 雅之
雅之 高野
峻 嶋田
峻 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2011056790A priority Critical patent/JP5690621B2/en
Publication of JP2012193243A publication Critical patent/JP2012193243A/en
Application granted granted Critical
Publication of JP5690621B2 publication Critical patent/JP5690621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発泡性ポリスチレン系樹脂粒子、発泡粒子及び発泡成形体に関する。更に詳しくは、本発明は、低粘着力のラベルでも貼着可能な発泡成形体を与えうる発泡性ポリスチレン系樹脂粒子、それから得られた発泡粒子及び発泡成形体に関する。   The present invention relates to expandable polystyrene resin particles, expanded particles, and expanded molded articles. More specifically, the present invention relates to an expandable polystyrene resin particle capable of giving a foamed molded product that can be attached even with a low-adhesive label, and a foamed particle and a foamed molded product obtained therefrom.

従来、ポリスチレン系樹脂から構成される発泡成形体は、水産物や農産物の輸送容器、食品容器等として用いられてきた。このような発泡成形体は、意匠性を向上する、内容物を表示する等のために、その表面に模様を設けることが通常行われている。模様を設ける方法としては、模様を印刷したラベルを貼り付ける方法がある。
貼り付けられたラベルは、発泡成形体から剥離することがある。その場合、再度ラベルを押し付ける必要がある。そのため、ラベルの剥離が抑制された発泡成形体の提供が望まれている。
ラベルの剥離を抑制する方法として、特開平10−15977号公報(特許文献1)に記載の方法がある。この方法は、発泡成形体の外側表面に蒸気スリット跡を設けずに、発泡成形体の表面の平滑性を向上することで、ラベルの剥離を防止する方法である。
Conventionally, a foam-molded article composed of a polystyrene-based resin has been used as a transport container for food and agricultural products, a food container, and the like. Such a foamed molded body is usually provided with a pattern on the surface for improving design properties, displaying contents, and the like. As a method of providing a pattern, there is a method of attaching a label printed with a pattern.
The affixed label may peel from the foamed molded product. In that case, it is necessary to press the label again. Therefore, it is desired to provide a foamed molded product in which the peeling of the label is suppressed.
As a method for suppressing the peeling of the label, there is a method described in JP-A-10-15777 (Patent Document 1). This method is a method for preventing the peeling of the label by improving the smoothness of the surface of the foam molded product without providing a steam slit mark on the outer surface of the foam molded product.

特開平10−15977号公報JP-A-10-15777

しかし、上記公報に記載された方法では、上記スリット跡を発泡成形体に与えない構造の成形金型を新設する必要があること、発泡成形体の外観、融着性を向上させるためには高い熱量が必要となり、コスト的に不利であるという課題がある。
そのため、成形金型の新設が不要であり、コスト的に問題がなく、低粘着力のラベルの貼着が可能な発泡成形体及び、この発泡成形体を与えうる発泡性スチレン系樹脂粒子の提供が望まれていた。
However, in the method described in the above publication, it is necessary to newly provide a molding die having a structure that does not give the slit mark to the foamed molded product, and it is high in order to improve the appearance and fusion property of the foamed molded product. There is a problem that heat is required, which is disadvantageous in terms of cost.
Therefore, there is no need to install a molding die, there is no problem in cost, and a foamed molded product that can be attached with a low-adhesive label and expandable styrene resin particles that can provide this foamed molded product are provided. Was desired.

本発明の発明者等は、発泡成形体の製造手順及び製造中に使用される添加剤について見直した。その結果、融着促進剤の使用量が多くなると、ラベルが剥離しやすくなることを見い出した。この融着促進剤は、発泡成形体を構成する発泡粒子の融着性を向上させる目的で使用されているため、その使用量を低減することは困難である。
そこで、本発明の発明者等は、発泡性ポリスチレン系樹脂粒子の洗浄前に存在する粉末成分に着目した。この粉末成分は、発泡性ポリスチレン系樹脂粒子の製造工程で生じており、主として微小なポリスチレン系樹脂や分散剤等から構成されていると発明者等は考えている。この粉末成分は、通常、不要な成分であると考えられていたため、洗浄によりできるだけ除去されるものである。しかしながら、粉末成分と融着促進剤とが特定の範囲で表面に存在する発泡性ポリスチレン系樹脂粒子は、低粘着力のラベルの貼着が可能な発泡成形体を与えうることを意外にも見出すことで、本発明に至った。
The inventors of the present invention reviewed the production procedure of the foam molded article and the additives used during the production. As a result, it has been found that the label is easily peeled off when the amount of the fusion accelerator used is increased. Since this fusion accelerator is used for the purpose of improving the fusing property of the foamed particles constituting the foamed molded article, it is difficult to reduce the amount of use.
Therefore, the inventors of the present invention have focused on the powder component present before washing the expandable polystyrene resin particles. The inventors believe that this powder component is produced in the production process of expandable polystyrene resin particles and is mainly composed of a fine polystyrene resin, a dispersant and the like. Since this powder component was generally considered to be an unnecessary component, it is removed as much as possible by washing. However, it is surprisingly found that the expandable polystyrene resin particles in which the powder component and the fusion accelerator are present on the surface in a specific range can give a foamed molded article that can be attached with a low-adhesive label. This led to the present invention.

かくして本発明によれば、ポリスチレン系樹脂粒子と、前記ポリスチレン系樹脂粒子内に存在する発泡剤と、前記ポリスチレン系樹脂粒子の表面に存在する融着促進剤及び粉末成分とを少なくとも含む発泡性ポリスチレン系樹脂粒子であり、
前記発泡性ポリスチレン系樹脂粒子が、0.5〜1.2mmの平均粒子径を有し、
前記粉末成分が、前記発泡性ポリスチレン系樹脂粒子100質量部に対して、0.008〜0.025質量部含まれ、
前記融着促進剤及び前記粉末成分が、2〜7.5:1(質量比)の割合で存在し、
前記粉末成分が、100μm以下の平均粒子径を有することを特徴とする発泡性ポリスチレン系樹脂粒子が提供される。
Thus, according to the present invention, expandable polystyrene containing at least polystyrene resin particles, a foaming agent present in the polystyrene resin particles, and a fusion accelerator and a powder component present on the surface of the polystyrene resin particles. Resin particles,
The expandable polystyrene resin particles have an average particle diameter of 0.5 to 1.2 mm,
The powder component is included in an amount of 0.008 to 0.025 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles,
The fusion promoter and the powder component are present in a ratio of 2 to 7.5: 1 (mass ratio) ;
It said powder component, expandable polystyrene resin particles is provided, which comprises have a mean particle size of less 100 [mu] m.

また、上記発泡性ポリスチレン系樹脂粒子を発泡して得られた発泡粒子が提供される。
更に、上記発泡粒子を発泡成形して得られた発泡成形体が提供される。
Moreover, the foamed particle obtained by foaming the said expandable polystyrene-type resin particle is provided.
Furthermore, a foam molded article obtained by foam molding of the foamed particles is provided.

本発明によれば、特別な金型を使用することなく、低粘着力(例えば、700gf/25mm以下)のラベルの貼着が可能であり、融着性に優れた発泡成形体、及びこの発泡成形体を与えることができ、予備発泡時のブロッキングが抑制された発泡性スチレン系樹脂粒子及び発泡粒子を提供できる。
また、粉末成分が、100μm以下の平均粒子径を有することで、より低粘着力のラベルの貼着が可能であり、融着性に優れた発泡成形体を与えうる発泡性ポリスチレン系樹脂粒子を提供できる。
更に、融着促進剤が、前記発泡性ポリスチレン系樹脂粒子100質量部に対して、0.035〜0.075質量部含まれることで、より低粘着力のラベルの貼着が可能であり、融着性に優れた発泡成形体を与えうる発泡性ポリスチレン系樹脂粒子を提供できる。
According to the present invention, it is possible to attach a label having a low adhesive strength (for example, 700 gf / 25 mm or less) without using a special mold, and a foamed molded article having excellent fusion property and the foamed product. A molded body can be provided, and expandable styrene-based resin particles and expanded particles in which blocking during preliminary foaming is suppressed can be provided.
In addition, since the powder component has an average particle diameter of 100 μm or less, it is possible to attach a label having a lower adhesive strength, and expandable polystyrene resin particles capable of giving a foamed molded article having excellent fusion property. Can be provided.
Furthermore, since the fusion accelerator is contained in an amount of 0.035 to 0.075 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles, a label having a lower adhesive strength can be attached. It is possible to provide expandable polystyrene resin particles that can provide a foamed molded article having excellent fusing property.

実施例1〜5と比較例1〜2の融着促進剤量/粉末成分量と、融着率×剥離防止率との関係を示す図である。It is a figure which shows the relationship between the fusion accelerator amount of Example 1-5 and Comparative Examples 1-2, and the amount of powder components, and a fusion rate x peeling prevention rate.

(発泡性ポリスチレン系樹脂粒子)
発泡性ポリスチレン系樹脂粒子(以下、発泡性粒子ともいう)は、発泡剤と、融着促進剤と、粉末成分とを少なくとも含む。
(1)ポリスチレン系樹脂
発泡性ポリスチレン系樹脂粒子は、基材樹脂として、ポリスチレン系樹脂を含む。
ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、パラメチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられる。
また、ポリスチレン系樹脂としては、スチレン系モノマーと、このスチレン系モノマーと共重合可能なビニルモノマーとの共重合体も挙げられる。
(Expandable polystyrene resin particles)
Expandable polystyrene resin particles (hereinafter also referred to as expandable particles) include at least a foaming agent, a fusion accelerator, and a powder component.
(1) Polystyrene resin Expandable polystyrene resin particles contain a polystyrene resin as a base resin.
The polystyrene resin is not particularly limited, and for example, a styrene monomer such as styrene, α-methylstyrene, paramethylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, or the like. Examples thereof include a polymer or a copolymer thereof.
Examples of the polystyrene resin include a copolymer of a styrene monomer and a vinyl monomer copolymerizable with the styrene monomer.

上記スチレン系モノマーと共重合可能なビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等の炭素数1〜8のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレート等の二官能性モノマー、無水マレイン酸、N−ビニルカルバゾール等が挙げられる。
ポリスチレン系樹脂は、スチレン系モノマー由来の成分が主成分(50質量%以上、好ましくは80質量%以上、より好ましくは99.8質量%以上)を占めることが好ましい。更にポリスチレン系樹脂は、スチレン由来の成分を50質量%以上含有していることが好ましく、ポリスチレンのみからなることがより好ましい。
Examples of the vinyl monomer copolymerizable with the styrenic monomer include alkyls having 1 to 8 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate (meta ) Acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, difunctional monomers such as divinylbenzene, alkylene glycol dimethacrylate, maleic anhydride, N-vinylcarbazole, etc. Can be mentioned.
In the polystyrene resin, it is preferable that a component derived from a styrene monomer occupies a main component (50 mass% or more, preferably 80 mass% or more, more preferably 99.8 mass% or more). Furthermore, the polystyrene resin preferably contains 50% by mass or more of a component derived from styrene, and more preferably consists of only polystyrene.

更に、ポリスチレン系樹脂のスチレン換算重量平均分子量は、20万〜50万が好ましい。20万より小さいと、発泡性ポリスチレン系樹脂粒子を発泡させて得られる発泡成形体の機械的強度が低下することがある。一方、50万より大きいと、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、高倍率の発泡成形体を得ることができないことがある。より好ましい分子量は、24万〜40万である。   Furthermore, the weight average molecular weight in terms of styrene of the polystyrene resin is preferably 200,000 to 500,000. If it is less than 200,000, the mechanical strength of the foamed molded product obtained by foaming the expandable polystyrene resin particles may decrease. On the other hand, if it is larger than 500,000, the foamability of the expandable polystyrene resin particles may be reduced, and a high-magnification foamed molded article may not be obtained. A more preferable molecular weight is 240,000 to 400,000.

(2)発泡剤
発泡剤は、発泡性ポリスチレン系樹脂粒子内に存在している。
発泡剤としては、沸点がポリスチレン系樹脂の軟化点以下であり、常圧でガス状又は液状の有機化合物が適している。例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、ノルマルヘキサン、石油エーテル等の炭化水素、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、HCFC−141b、HCFC−142b、HCFC−124、HFC−134a、HFC−152a等のハロゲン含有炭化水素、炭酸ガス、窒素、アンモニア等の無機ガス等が挙げられる。これらの発泡剤は、単独で使用してもよく、2種以上を併用してもよい。この内、炭化水素を使用するのが、オゾン層の破壊を防止する観点、及び空気と速く置換し、発泡成形体の経時変化を抑制する観点で好ましい。炭素水素の内、沸点が−45〜40℃の炭化水素がより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン等が更に好ましい。
発泡剤の使用量は、発泡性ポリスチレン系樹脂粒子100質量部に対して、好ましくは1〜10質量部、より好ましくは2〜7質量部である。
(2) Foaming agent The foaming agent is present in the expandable polystyrene resin particles.
As the foaming agent, a gaseous or liquid organic compound having a boiling point equal to or lower than the softening point of the polystyrene resin and normal pressure is suitable. For example, hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene, normal hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol and isopropyl alcohol, Low boiling point ether compounds such as dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, halogen-containing hydrocarbons such as HCFC-141b, HCFC-142b, HCFC-124, HFC-134a, HFC-152a, carbon dioxide, nitrogen And inorganic gases such as ammonia. These foaming agents may be used alone or in combination of two or more. Among these, it is preferable to use hydrocarbons from the viewpoint of preventing the destruction of the ozone layer and from the viewpoint of quickly replacing with the air and suppressing the time-dependent change of the foamed molded product. Among the carbon hydrogens, hydrocarbons having a boiling point of −45 to 40 ° C. are more preferable, and propane, normal butane, isobutane, normal pentane, isopentane and the like are more preferable.
The amount of the foaming agent used is preferably 1 to 10 parts by mass, more preferably 2 to 7 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles.

(3)融着促進剤
融着促進剤は、発泡性ポリスチレン系樹脂粒子の表面に存在している。
融着促進剤としては、例えば、12−ヒドロキシステアリン酸トリグリセリド、12−ヒドロキシステアリン酸アマイド、ステアリン酸アマイド等が挙げられる。
また、融着促進剤は、融着促進剤と粉末成分の比で表すと、2〜7.5:1(質量比)の割合で存在している。融着促進剤の比が2未満の場合、発泡成形体を構成する発泡粒子の融着が不十分となることがある。7.5より大きい場合、ラベルの接着性が低下し、剥離することがある。より好ましい融着促進剤と粉末成分の比は、2.5〜7:1である。
融着促進剤は、発泡性ポリスチレン系樹脂粒子100質量部に対して、0.035〜0.075質量部使用することが好ましい。使用量が0.035質量部を下回ると、十分な融着促進効果が得られないことがある。使用量が0.075質量部を超えるとラベルの接着性が低下し、剥離することがある。使用量は、0.04〜0.06質量部がより好ましい。
(3) Fusion promoter The fusion promoter is present on the surface of the expandable polystyrene resin particles.
Examples of the fusion accelerator include 12-hydroxystearic acid triglyceride, 12-hydroxystearic acid amide, stearic acid amide and the like.
Further, the fusion accelerator is present in a ratio of 2 to 7.5: 1 (mass ratio) in terms of the ratio between the fusion accelerator and the powder component. When the ratio of the fusion accelerator is less than 2, the fusion of the foamed particles constituting the foamed molded product may be insufficient. When it is larger than 7.5, the adhesiveness of the label is lowered, and it may be peeled off. A more preferable ratio between the fusion accelerator and the powder component is 2.5 to 7: 1.
The fusion promoter is preferably used in an amount of 0.035 to 0.075 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles. When the amount used is less than 0.035 parts by mass, a sufficient fusion promoting effect may not be obtained. When the amount used exceeds 0.075 parts by mass, the adhesiveness of the label is lowered and may be peeled off. The amount used is more preferably 0.04 to 0.06 parts by mass.

(4)粉末成分
粉末成分は、発泡性ポリスチレン系樹脂粒子の表面に存在している。
粉末成分は、発泡性ポリスチレン系樹脂粒子の製造工程で生じており、主として微小なポリスチレン系樹脂や分散剤等から構成されていると発明者等は考えている。
粉末成分は、平均粒子径が100μm以下であることが好ましい。100μmより大きい場合、成形体の外観を悪化させることがある。より好ましい平均粒子径は、10〜50μmである。
(4) Powder component The powder component is present on the surface of the expandable polystyrene resin particles.
The inventors believe that the powder component is produced in the production process of the expandable polystyrene resin particles, and is mainly composed of a fine polystyrene resin, a dispersant and the like.
The powder component preferably has an average particle size of 100 μm or less. If it is larger than 100 μm, the appearance of the molded product may be deteriorated. A more preferable average particle diameter is 10 to 50 μm.

粉末成分は、通常、発泡性ポリスチレン系樹脂粒子100質量部に対して、0.008〜0.025質量部程度含まれている。0.008質量部よりも粉末成分の含有量を低下させるには洗浄工程の回数が多く、生産時間が長くなるが、剥離防止効果の向上が見込めず好ましくない。0.025質量部を超えると、融着を阻害するため、融着促進剤が多く必要となり、結果的にラベル剥離が引き起こされることになるため好ましくない。より好ましい粉末成分の含有量は、0.01〜0.02質量部である。   The powder component is usually contained in an amount of about 0.008 to 0.025 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles. In order to reduce the content of the powder component from 0.008 parts by mass, the number of washing steps is large, and the production time becomes long. If the amount exceeds 0.025 parts by mass, the fusion is hindered, so a large amount of a fusion accelerator is required, and as a result, label peeling is caused, which is not preferable. A more preferable content of the powder component is 0.01 to 0.02 parts by mass.

(5)他の成分
発泡性ポリスチレン系樹脂粒子は、公知の他の成分を含んでいてもよい。他の成分としては、ブロッキング防止剤、発泡助剤、難燃剤、難燃助剤、気泡調整剤、充填剤、滑剤、着色剤等が挙げられる。
ブロッキング防止剤としては、ステアリン酸亜鉛が挙げられる。ブロッキング防止剤は、発泡性ポリスチレン系樹脂粒子100質量部に対して、0.07〜0.15質量部含まれていることが好ましい。含有量が0.07質量部よりも少ないとブロッキング防止効果が十分でないことがある。0.15質量部よりも多いと、発泡性ポリスチレン系樹脂粒子表面からブロッキング防止剤が脱落し、輸送配管内に付着することで、配管が閉塞することがあり、また成形時の融着が阻害されることがある。より好ましい含有量は、0.09〜0.12質量部である。
(5) Other components Expandable polystyrene resin particles may contain other known components. Examples of other components include an anti-blocking agent, a foaming aid, a flame retardant, a flame retardant aid, a bubble regulator, a filler, a lubricant, and a colorant.
Examples of the antiblocking agent include zinc stearate. It is preferable that 0.07-0.15 mass part of antiblocking agent is contained with respect to 100 mass parts of expandable polystyrene resin particles. If the content is less than 0.07 parts by mass, the anti-blocking effect may not be sufficient. If the amount is more than 0.15 parts by mass, the anti-blocking agent may fall off from the surface of the expandable polystyrene resin particles and adhere to the inside of the transport pipe, which may block the pipe and inhibit fusion during molding. May be. A more preferable content is 0.09 to 0.12 parts by mass.

発泡助剤としては、トルエン、キシレン、シクロヘキサン、酢酸エチル、フタル酸ジオクチル、テトラクロロエチレン等が挙げられる。
難燃剤としては、例えば、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート、テトラブロモビスフェノールA等が挙げられる。
また、難燃助剤としては、例えば、ジクミルパーオキサイドのような有機過酸化物が挙げられる。
Examples of the foaming aid include toluene, xylene, cyclohexane, ethyl acetate, dioctyl phthalate, and tetrachloroethylene.
Examples of the flame retardant include tetrabromocyclooctane, hexabromocyclododecane, trisdibromopropyl phosphate, tetrabromobisphenol A, and the like.
Moreover, as a flame retardant adjuvant, the organic peroxide like a dicumyl peroxide is mentioned, for example.

(6)発泡性ポリスチレン系樹脂粒子の形状
発泡性ポリスチレン系樹脂粒子の形状は、特に限定されず、球形、円筒状、不定形等のいずれの形状も取りえる。この内、成形型内への充填性を考慮すると、球形又は円筒状であることが好ましい。
発泡性ポリスチレン系樹脂粒子は、0.5〜1.2mmの平均粒子径を有している。平均粒子径が0.5mmよりも小さいと発泡剤の保持性が悪く、所望の発泡倍数まで発泡できないことがある。平均粒子径が1.2mmよりも大きいと発泡粒子の粒子径が大きくなるため、成形型内への充填性が劣ることがある。より好ましい平均粒子径は、0.6〜1.0mmである。
(6) Shape of expandable polystyrene resin particles The shape of the expandable polystyrene resin particles is not particularly limited, and any shape such as a spherical shape, a cylindrical shape, or an indefinite shape can be taken. Among these, considering the filling property into the mold, it is preferably spherical or cylindrical.
The expandable polystyrene resin particles have an average particle diameter of 0.5 to 1.2 mm. If the average particle size is smaller than 0.5 mm, the foaming agent may not be retained and foaming may not be achieved up to a desired expansion ratio. If the average particle diameter is larger than 1.2 mm, the particle diameter of the foamed particles becomes large, so that the filling ability into the mold may be inferior. A more preferable average particle diameter is 0.6 to 1.0 mm.

(7)発泡性ポリスチレン系樹脂粒子の製造方法
発泡性ポリスチレン系樹脂粒子は、例えば、ポリスチレン系樹脂粒子に発泡剤を含浸させ、所定の粉末成分量になるまで洗浄することにより得ることができる。
ポリスチレン系樹脂粒子は、公知の方法で製造されたものを用いることができる。例えば、
(1)押出機で溶融混練したポリスチレン系樹脂をストランド状に押し出し、ストランドをカットする方法、
(2)水性媒体、スチレン系単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系単量体を懸濁重合させてポリスチレン系樹脂粒子を製造する懸濁重合法、
(3)水性媒体及びポリスチレン系樹脂の種粒子をオートクレーブ内に供給し、種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系単量体を連続的にあるいは断続的に供給して、種粒子にスチレン系単量体を吸収させつつ重合開始剤の存在下にて重合させてポリスチレン系樹脂粒子を製造するシード重合法等
により得られたポリスチレン系樹脂粒子が挙げられる。なお、種粒子は、上記(2)の懸濁重合法により得られた粒子を分級することで入手できる。
(7) Production Method of Expandable Polystyrene Resin Particles Expandable polystyrene resin particles can be obtained, for example, by impregnating polystyrene resin particles with a foaming agent and washing them to a predetermined powder component amount.
As the polystyrene resin particles, those produced by a known method can be used. For example,
(1) A method of extruding a polystyrene resin melt-kneaded by an extruder into a strand shape and cutting the strand,
(2) Suspension in which an aqueous medium, a styrene monomer and a polymerization initiator are supplied into an autoclave, and the styrene monomer is suspension-polymerized while heating and stirring in the autoclave to produce polystyrene resin particles. Polymerization method,
(3) After supplying seed particles of aqueous medium and polystyrene resin into the autoclave and dispersing the seed particles in the aqueous medium, the styrene monomer is continuously or intermittently heated and stirred in the autoclave. And polystyrene resin particles obtained by a seed polymerization method or the like for producing polystyrene resin particles by polymerizing in the presence of a polymerization initiator while absorbing styrene monomers in seed particles. It is done. The seed particles can be obtained by classifying the particles obtained by the suspension polymerization method (2).

上記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、イソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3,3,5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられる。これらは単独で用いられても二種以上が併用されてもよい。   The polymerization initiator used in the suspension polymerization method and the seed polymerization method is not particularly limited, and examples thereof include benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, t-butyl peroxide, and t-butyl peroxide. Oxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, isopropyl carbonate, t-butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane, t- Organic peroxides such as butylperoxy-3,3,5 trimethylhexanoate and di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile It is done. These may be used alone or in combination of two or more.

水性媒体中にポリスチレン系樹脂粒子を分散させてなる水性懸濁液は、上記懸濁重合法又はシード重合法による重合後の反応液を水性懸濁液として用いても、あるいは、上記懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を反応液から分離し、このポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成してもよい。
水性媒体としては、特に限定されず、例えば、水、アルコール等が挙げられる。この内、水が好ましい。
An aqueous suspension obtained by dispersing polystyrene resin particles in an aqueous medium may be obtained by using the reaction liquid after polymerization by the suspension polymerization method or seed polymerization method as an aqueous suspension, or by using the suspension weight described above. An aqueous suspension may be formed by separating the polystyrene resin particles obtained by the combination method or the seed polymerization method from the reaction solution and suspending the polystyrene resin particles in an aqueous medium separately prepared.
It does not specifically limit as an aqueous medium, For example, water, alcohol, etc. are mentioned. Of these, water is preferred.

また、上記懸濁重合法又はシード重合法において、スチレン系モノマーを重合させる際に、スチレン系モノマーの液滴又はポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよい。このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機塩等が挙げられる。難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。
上記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウム等のアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、オレイン酸ナトリウム等の高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩等が挙げられる。この内、アルキルベンゼンスルホン酸塩が好ましい。
In the suspension polymerization method or the seed polymerization method, a suspension stabilizer may be used to stabilize the dispersibility of the styrene monomer droplets or the polystyrene resin seed particles when the styrene monomer is polymerized. Good. Examples of such suspension stabilizers include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly water-soluble inorganic salts such as tricalcium phosphate and magnesium pyrophosphate. When using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.
Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. Can be mentioned. Of these, alkylbenzene sulfonates are preferred.

懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成する場合にも、ポリスチレン系樹脂粒子の分散性を安定させるために、上述の懸濁安定剤やアニオン界面活性剤を水性媒体中に添加してもよい。
この際、難水溶性無機塩の水性媒体中への添加量は、水性媒体100質量部に対して0.2〜2質量部であることが好ましい。0.2質量部より少ないと、水性媒体中におけるポリスチレン系樹脂粒子の分散性が低下し、ポリスチレン系樹脂粒子が塊状になってしまうことがある。2質量部より多いと、ポリスチレン系樹脂粒子を分散させてなる水性媒体の粘性が上昇して、ポリスチレン系樹脂粒子を水性媒体中に均一に分散できないことがある。
In order to stabilize the dispersibility of the polystyrene resin particles even when the aqueous suspension is formed by suspending the polystyrene resin particles obtained by the suspension polymerization method or the seed polymerization method in a separately prepared aqueous medium. The above-mentioned suspension stabilizer and anionic surfactant may be added to the aqueous medium.
Under the present circumstances, it is preferable that the addition amount to the aqueous medium of a slightly water-soluble inorganic salt is 0.2-2 mass parts with respect to 100 mass parts of aqueous media. When the amount is less than 0.2 parts by mass, the dispersibility of the polystyrene resin particles in the aqueous medium may be reduced, and the polystyrene resin particles may be agglomerated. When the amount is more than 2 parts by mass, the viscosity of the aqueous medium in which the polystyrene resin particles are dispersed may increase, and the polystyrene resin particles may not be uniformly dispersed in the aqueous medium.

発泡剤のポリスチレン系樹脂粒子への含浸は、スチレン系モノマーの重合後の粒子に行ってもよく、成長途上粒子に行ってもよい。重合の途中での含浸は、水性媒体中で含浸させる方法(湿式含浸法)により行うことができる。重合後の含浸は、湿式含浸法か、又は媒体非存在下で含浸させる方法(乾式含浸法)により行うことができる。また、重合の途中での含浸は、通常重合後期に行うことが好ましい。   The impregnation of the foaming agent into the polystyrene resin particles may be performed on the particles after polymerization of the styrene monomer, or may be performed on the growing particles. Impregnation during the polymerization can be performed by a method of impregnation in an aqueous medium (wet impregnation method). The impregnation after polymerization can be carried out by a wet impregnation method or a method of impregnation in the absence of a medium (dry impregnation method). Moreover, it is preferable to perform the impregnation in the middle of the polymerization usually in the latter stage of the polymerization.

発泡性ポリスチレン系樹脂粒子は、発泡剤の含浸後に、所定の粉末成分量にするために、適宜洗浄される。ここで、製造工程中、分散安定剤に無機塩を使用している場合は塩酸等の強酸により、無機塩を水溶性の塩にして取り除くことが好ましい。
次に、発泡性ポリスチレン系樹脂粒子に融着促進剤を粒子表面に塗布することで、本発明の発泡性粒子が得られる。塗布する方法としては攪拌機中で融着促進剤とともに発泡性ポリスチレン系樹脂粒子を攪拌するのが好ましい。攪拌機としてはタンブラーミキサー、レディゲミキサー等の攪拌機が用いられる。
The expandable polystyrene resin particles are appropriately washed after impregnation with the foaming agent in order to obtain a predetermined powder component amount. Here, when an inorganic salt is used as the dispersion stabilizer during the production process, it is preferable to remove the inorganic salt as a water-soluble salt with a strong acid such as hydrochloric acid.
Next, the expandable particle | grains of this invention are obtained by apply | coating a fusion accelerator to the particle | grain surface to expandable polystyrene type resin particle. As an application method, it is preferable to stir the expandable polystyrene resin particles together with the fusion accelerator in a stirrer. As the stirrer, a stirrer such as a tumbler mixer or a Redige mixer is used.

(発泡粒子)
発泡粒子は、発泡性ポリスチレン系樹脂粒子を発泡させて得ることができる。食品容器用の発泡粒子は0.014〜0.033g/cm3の範囲の嵩密度を持つことが好ましい。嵩密度が0.033g/cm3を上回ると生産性が低下することがある。0.014g/cm3を下回ると、成形品強度が低下することがある。より好ましい嵩密度は、0.015〜0.025g/cm3の範囲である。
(Foamed particles)
Foamed particles can be obtained by foaming expandable polystyrene resin particles. The foamed particles for food containers preferably have a bulk density in the range of 0.014 to 0.033 g / cm 3 . When the bulk density exceeds 0.033 g / cm 3 , productivity may be reduced. If it is less than 0.014 g / cm 3 , the strength of the molded product may be lowered. A more preferable bulk density is in the range of 0.015 to 0.025 g / cm 3 .

(発泡成形体)
発泡成形体は、発泡粒子(予備発泡粒子)を多数の小孔を有する閉鎖金型内に充填し、再び加圧水蒸気等で加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させることにより一体化させることで製造できる。
得られた発泡成形体は、その表面が発泡性粒子の表面に由来するため、融着促進剤と粉末成分量が、発泡性粒子の量と等しい。そのため、粘着力700gf/25mm以下の低粘着性のラベルでも容易に貼着しうる。
発泡成形体は農産箱、水産箱といった食品容器や、資材運搬用容器等の広い用途に利用できる。
(Foamed molded product)
In the foamed molded product, the expanded particles (pre-expanded particles) are filled into a closed mold having a large number of small holes, heated and foamed again with pressurized steam, etc., filling the gaps between the expanded particles, and the expanded particles mutually. It can be manufactured by being integrated by fusing.
Since the surface of the obtained foamed molding is derived from the surface of the expandable particles, the amount of the fusion accelerator and the powder component is equal to the amount of the expandable particles. Therefore, even a low adhesive label having an adhesive strength of 700 gf / 25 mm or less can be easily attached.
The foamed molded product can be used in a wide range of applications such as food containers such as agricultural boxes and fishery boxes, and containers for material transportation.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例における各種測定法を下記する。
<平均粒子径>
平均粒子径とはD50で表現される値である。具体的には、ふるい目開き4.00mm、目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.85mm、目開き0.71mm、目開き0.60mm、目開き0.50mm、目開き0.425mm、目開き0.355mm、目開き0.300mm、目開き0.250mm、目開き0.212mm、目開き0.180mmのJIS標準ふるいで分級し、その結果から得られた累積質量分布曲線を元にして累積質量が50%となる粒子径(メディアン径)を平均粒子径と称する。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by these Examples. Various measurement methods in the examples are described below.
<Average particle size>
The average particle diameter is a value expressed by D50. Specifically, sieve opening 4.00 mm, opening 3.35 mm, opening 2.80 mm, opening 2.36 mm, opening 2.00 mm, opening 1.70 mm, opening 1.40 mm, opening 1.18 mm, opening 1.00 mm, opening 0.85 mm, opening 0.71 mm, opening 0.60 mm, opening 0.50 mm, opening 0.425 mm, opening 0.355 mm, opening 0. Particle size with a cumulative mass of 50% based on the cumulative mass distribution curve obtained by classification using a JIS standard sieve with 300 mm, 0.250 mm mesh, 0.212 mm mesh, and 0.180 mm mesh (Median diameter) is referred to as the average particle diameter.

<重量平均分子量>
重量平均分子量は、下記の要領で測定されたスチレン換算重量平均分子量をいう。
即ち、ポリスチレン系樹脂30mgをクロロホルム10ミリリットルで溶解する。得られた溶液を、非水系0.45μmのクロマトディスクで濾過した後、クロマトグラフを用いて平均分子量を下記条件にて測定する。
ガスクロマトグラフ:Water社製商品名「Detector 484,Pump 510」
カラム:昭和電工社製
商品名「Shodex GPC K−806L(φ8.0×300mm)」2本
カラム温度:40℃
キャリアーガス:クロロホルム
キャリアーガス流量:1.2ミリリットル/分
注入・ポンプ温度:室温
検出:UV254nm
注入量:50マイクロリットル
検量線用標準ポリスチレン:昭和電工社製商品名「shodex」重量平均分子量:1030000及び東ソー社製の重量平均分子量:5480000,3840000,355000,102000,37900,9100,2630,495のポリスチレン
<Weight average molecular weight>
A weight average molecular weight means the styrene conversion weight average molecular weight measured in the following ways.
That is, 30 mg of polystyrene resin is dissolved in 10 ml of chloroform. The resulting solution is filtered through a non-aqueous 0.45 μm chromatographic disk, and the average molecular weight is measured under the following conditions using a chromatograph.
Gas chromatograph: Product name “Detector 484, Pump 510” manufactured by Water
Column: Showa Denko Corporation trade name “Shodex GPC K-806L (φ8.0 × 300 mm)” Column temperature: 40 ° C.
Carrier gas: Chloroform Carrier gas flow rate: 1.2 ml / min injection / pump temperature: room temperature detection: UV254 nm
Injection amount: standard polystyrene for 50 microliter calibration curve: trade name “shodex” manufactured by Showa Denko KK: weight average molecular weight: 1030000 and weight average molecular weight manufactured by Tosoh Corporation: 5480000, 3840000, 355000, 102000, 37900, 9100, 2630,495 Polystyrene

<粉末成分量>
発泡性ポリスチレン系樹脂粒子分散液を1リットル計量する。分散液を側面に孔を設け、孔部に目開き0.18mmのナイロン網を取り付けたビーカーに供する。該ビーカーに攪拌機を取り付け、270rpmで攪拌する。攪拌下で濃度50ppmのアルキルベンゼンスルホン酸ナトリウム水溶液を注ぎいれることで、発泡性ポリスチレン系樹脂粒子に付着した粉末成分を分離し、液中に分散させる。ビーカーの流れ出口にポリカップを設置し、6リットルの粉末成分分散液を採取する。
ブフナー漏斗にガラス繊維ろ紙GA−200を敷き、粉末成分分散液を吸引ろ過する。ろ過した粉末をろ紙ごと45℃のオーブンで24時間乾燥させる。
また、ビーカーに残った粉末成分が分離された発泡性ポリスチレン系樹脂粒子を乾燥させる。
粉末成分が分離された発泡性ポリスチレン系樹脂粒子の質量をA、ガラスろ紙の質量をB、ガラスろ紙を含む乾燥後の粉末成分の質量をCとし、以下の式にて粉末成分量を測定する。
粉末成分量(質量部)=(C−B)/(A+C−B)×100
<Amount of powder component>
1 liter of the expandable polystyrene resin particle dispersion is weighed. The dispersion is provided in a beaker in which holes are provided on the side surfaces and a nylon net having a mesh opening of 0.18 mm is attached to the holes. Attach a stirrer to the beaker and stir at 270 rpm. By pouring an aqueous solution of sodium alkylbenzene sulfonate having a concentration of 50 ppm under stirring, the powder component adhering to the expandable polystyrene resin particles is separated and dispersed in the liquid. A polycup is installed at the flow outlet of the beaker, and 6 liters of the powder component dispersion is collected.
A glass fiber filter paper GA-200 is laid on a Buchner funnel, and the powder component dispersion is suction filtered. The filtered powder is dried together with the filter paper in an oven at 45 ° C. for 24 hours.
Further, the expandable polystyrene resin particles from which the powder component remaining in the beaker is separated are dried.
The mass of the expandable polystyrene resin particles from which the powder component is separated is A, the mass of the glass filter paper is B, the mass of the powder component after drying including the glass filter paper is C, and the amount of the powder component is measured by the following formula. .
Powder component amount (parts by mass) = (C−B) / (A + C−B) × 100

<粉末成分の平均粒子径>
ベックマン・コールター社製Multisizer3に孔径400μmのアパチャーを取り付け、前記の粉末成分量の測定の際に得られた粉末成分を含むろ液を適量供給し、平均粒子径を測定する。
<Average particle size of powder component>
An aperture having a pore size of 400 μm is attached to Multisizer 3 manufactured by Beckman Coulter, an appropriate amount of the filtrate containing the powder component obtained in the measurement of the amount of the powder component is supplied, and the average particle size is measured.

<嵩密度>
予備発泡粒子の嵩倍数は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定する。具体的は、まず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させる。メスシリンダー内に落下させた測定試料の体積Vcm3をJIS K6911に準拠した見掛け密度測定器を用いて測定する。Wg及びVcm3を下記式に代入することで、予備発泡粒子の嵩密度を算出する。
予備発泡粒子の嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
<Bulk density>
The bulk magnification of the pre-expanded particles is measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. Specifically, first, Wg is collected using pre-expanded particles as a measurement sample, and this measurement sample is naturally dropped into a measuring cylinder. The volume Vcm 3 of the measurement sample dropped into the graduated cylinder is measured using an apparent density measuring instrument based on JIS K6911. By substituting Wg and Vcm 3 into the following formula, the bulk density of the pre-expanded particles is calculated.
Bulk density of pre-expanded particles (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)

<予備発泡粒子の結合量>
予備発泡粒子をW1g用意し、この予備発泡粒子を目開きが0.5cmの篩でふるい、篩上に残った予備発泡粒子の質量W2gを測定する。W1とW2を下記式に代入することにより得られた値を予備発泡粒子の結合度とする。なお、結合度が1質量%以下を「○」、1質量%を超えるものを「×」と評価する。
予備発泡粒子の結合度(質量%)=100×W2/W1
<発泡成形体の密度>
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×35mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(kg/m3)を求める。
<Bonded amount of pre-expanded particles>
W1g of pre-expanded particles are prepared, the pre-expanded particles are sieved with a sieve having an opening of 0.5 cm, and the mass W2g of the pre-expanded particles remaining on the sieve is measured. The value obtained by substituting W1 and W2 into the following formula is defined as the degree of bonding of the pre-expanded particles. Note that a degree of bond of 1% by mass or less is evaluated as “◯”, and a value exceeding 1% by mass is evaluated as “x”.
Bonding degree of pre-expanded particles (% by mass) = 100 × W2 / W1
<Density of foam molding>
The mass (a) and the volume (b) of the test piece (example 75 × 300 × 35 mm) cut out from the foamed molded product (after being molded and dried at 40 ° C. for 20 hours or more) each have three or more significant figures. And the density (kg / m 3 ) of the foamed molded product is obtained from the formula (a) / (b).

<発泡成形体融着率>
発泡成形体の中心に沿ってカッターナイフで深さ約5mmの切り込み線を入れる。この後、この切り込み線に沿って発泡成形体を手で二分割する。その破断面における発泡粒子について、100〜150個の任意の範囲について粒子内で破断している粒子の数(a)と粒子同士の界面で破断している粒子の数(b)とを数える。結果を、式[(a)/((ア)+(b))]×100に代入して得られた値を融着率(%)とする。融着率80%以上を○、80%未満を×と評価する。
<Fusion molding fusion rate>
A cutting line having a depth of about 5 mm is made with a cutter knife along the center of the foam molded body. Thereafter, the foamed molded product is manually divided into two along the cut line. Regarding the foamed particles in the fracture surface, the number (a) of particles broken in the particles and the number (b) of particles broken at the interface between the particles in an arbitrary range of 100 to 150 are counted. A value obtained by substituting the result into the formula [(a) / ((a) + (b))] × 100 is defined as a fusion rate (%). A fusion rate of 80% or more is evaluated as ○, and a less than 80% is evaluated as ×.

<ラベル剥離評価>
発泡成形品側面に粘着力600gf/25mmのラベルを貼付する。貼付後、24時間放置する。その後、任意の発泡成形品100個に対して側面に貼られたテープに剥離が生じている発泡成形品の数(a)と剥離が生じていない発泡成形品の数(b)とを数える。結果を、式[(b)/((a)+(b))]×100に代入して得られた値を剥離防止率(%)とする。剥離防止率80%以上を○とし、80%未満を×として評価する。
<Label peeling evaluation>
A label having an adhesive strength of 600 gf / 25 mm is attached to the side surface of the foam molded product. After pasting, leave for 24 hours. Thereafter, the number (a) of foam molded products in which peeling occurs on the tape attached to the side surface with respect to 100 arbitrary foam molded products and the number (b) of foam molded products in which peeling does not occur are counted. A value obtained by substituting the result into the formula [(b) / ((a) + (b))] × 100 is defined as a peeling prevention rate (%). Evaluation is made with a peel prevention rate of 80% or more as ◯ and less than 80% as x.

[実施例1]
(樹脂粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000g、懸濁安定剤として第三リン酸カルシウム100g及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0gを供給し攪拌しながらスチレンモノマー40000g並びに重合開始剤としてベンゾイルパーオキサイド96.0g及びt−ブチルパーオキシベンゾエート28.0gを添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してポリスチレン系樹脂粒子(a)を得た。
ポリスチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのポリスチレン系樹脂粒子(b)を得た。
次に、内容量100リットルの攪拌機付き重合容器内に、水40000g、ポリスチレン系樹脂粒子(b)10000g、懸濁安定剤としてピロリン酸マグネシウム120.0g及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム6.0gを供給して攪拌しながら75℃に昇温した。
[Example 1]
(Manufacture of resin particles)
Into a polymerization vessel equipped with a stirrer having an internal volume of 100 liters, 40000 g of water, 100 g of calcium triphosphate as a suspension stabilizer and 2.0 g of calcium dodecylbenzenesulfonate as an anionic surfactant are stirred and 40000 g of styrene monomer and a polymerization initiator are stirred. After adding 96.0 g of benzoyl peroxide and 28.0 g of t-butylperoxybenzoate, the temperature was raised to 90 ° C. to polymerize. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours, and obtained the polystyrene-type resin particle (a).
The polystyrene resin particles (a) were sieved to obtain polystyrene resin particles (b) having a particle diameter of 0.5 to 0.71 mm as seed particles.
Next, 40000 g of water, 10000 g of polystyrene resin particles (b), 120.0 g of magnesium pyrophosphate as a suspension stabilizer, and calcium dodecylbenzenesulfonate 6 as an anionic surfactant are placed in a polymerization vessel equipped with a stirrer having an internal volume of 100 liters. 0.0 g was supplied and the temperature was raised to 75 ° C. while stirring.

次に、重合開始剤としてベンゾイルパーオキサイド110.0g及びt−ブチルパーオキシベンゾエート4.0gをスチレンモノマー2000gに溶解させたものを前記内容量100リットルの重合容器に供給してから、75℃で60分保持した。
60分経過後に反応液を110℃まで150分で昇温しつつ、且つスチレンモノマー28000gを150分で重合容器内にポンプで一定量ずつ供給した上で、120℃に昇温して2時間経過後に70℃まで冷却し、ポリスチレン系樹脂粒子(c)を得た(重量平均分子量30万)。
Next, 110.0 g of benzoyl peroxide and 4.0 g of t-butyl peroxybenzoate as a polymerization initiator dissolved in 2000 g of styrene monomer were supplied to the polymerization vessel having an internal volume of 100 liters. Hold for 60 minutes.
After 60 minutes, the reaction solution was heated to 110 ° C. in 150 minutes, and 28000 g of styrene monomer was fed into the polymerization vessel by a fixed amount in 150 minutes, and then heated to 120 ° C. for 2 hours. After cooling to 70 ° C., polystyrene resin particles (c) were obtained (weight average molecular weight 300,000).

(発泡剤含浸)
続いて、発泡助剤としてシクロヘキサン180.0gを重合容器内に入れて密閉し100℃に昇温した。次に、発泡剤としてn−ブタン3600gをポリスチレン系樹脂粒子(c)30000gが入った重合容器内に圧入して3時間保持した。この後、30℃以下まで冷却した上で重合容器内から取り出し、塩酸20mol/Lの塩酸300mlを添加し、攪拌した。次いで、目開き0.5mmの金網にて脱水し、再度水40リットルを注ぎいれ、攪拌した後、目開き0.5mmの金網にて脱水した。この注水から脱水までを洗浄工程とし、洗浄工程を3回実施し、付着粉末成分を0.015質量%とした。脱水し乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子(a)を得た。
続いて、発泡性ポリスチレン系樹脂粒子(a)の表面にブロッキング防止剤としてステアリン酸亜鉛0.1質量%及び融着促進剤として12−ヒドロキシステアリン酸トリグリセリド0.05質量%を被覆処理した。被覆処理により、付着粉末成分量0.015質量%かつ融着促進剤量0.05質量%の発泡性ポリスチレン系樹脂粒子(b)を得た。
(Foaming agent impregnation)
Subsequently, 180.0 g of cyclohexane as a foaming aid was placed in a polymerization vessel, sealed and heated to 100 ° C. Next, 3600 g of n-butane as a foaming agent was pressed into a polymerization vessel containing 30000 g of polystyrene resin particles (c) and held for 3 hours. Thereafter, the mixture was cooled to 30 ° C. or lower and taken out from the polymerization vessel, and 300 ml of hydrochloric acid of 20 mol / L hydrochloric acid was added and stirred. Subsequently, it dehydrated with a wire mesh having a mesh opening of 0.5 mm, and again poured 40 liters of water, stirred, and then dehydrated with a metal mesh having a mesh opening of 0.5 mm. The process from water injection to dehydration was the cleaning process, and the cleaning process was carried out three times to make the adhered powder component 0.015% by mass. After dehydrating and drying, it was left in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles (a).
Subsequently, the surface of the expandable polystyrene resin particles (a) was coated with 0.1% by mass of zinc stearate as an antiblocking agent and 0.05% by mass of 12-hydroxystearic acid triglyceride as a fusion accelerator. By the coating treatment, expandable polystyrene resin particles (b) having an adhering powder component amount of 0.015% by mass and a fusion accelerator amount of 0.05% by mass were obtained.

(予備発泡)
次いで、発泡性ポリスチレン系樹脂粒子(b)を予備発泡装置にて嵩密度0.017g/cm3に予備発泡させた後に20℃で24時間熟成して予備発泡粒子を得た。予備発泡粒子の結合量は0.40質量%と良好なものであった。
(発泡成形体の製造)
続いて、得られた予備発泡粒子を成形型のキャビティ内に入れ、成形機「ACE−30QS」(積水工機製作所社製)を用いて、予備発泡粒子を蒸気圧0.7kgf/cm2で17秒間加熱することで発泡成形体を得た。次に、成形型のキャビティ内の発泡成形体を5秒間水冷した後、減圧下にて放冷して横300mm×縦430mm×高さ130mm×厚み20mmの箱型の発泡成形体を取り出した。
得られた発泡成形体は収縮もなく、熱融着率90%と熱融着性の良好なものであった。
(Pre-foaming)
Next, the expandable polystyrene resin particles (b) were prefoamed to a bulk density of 0.017 g / cm 3 using a prefoaming apparatus and then aged at 20 ° C. for 24 hours to obtain prefoamed particles. The bonding amount of the pre-expanded particles was as good as 0.40% by mass.
(Manufacture of foam moldings)
Subsequently, the obtained pre-expanded particles were put into a cavity of a mold, and the pre-expanded particles were vaporized at a vapor pressure of 0.7 kgf / cm 2 using a molding machine “ACE-30QS” (manufactured by Sekisui Koki Co., Ltd.). A foamed molded article was obtained by heating for 17 seconds. Next, the foamed molded body in the cavity of the molding die was water-cooled for 5 seconds, and then allowed to cool under reduced pressure to take out a box-shaped foamed molded body having a width of 300 mm × length of 430 mm × height of 130 mm × thickness of 20 mm.
The obtained foamed molded article had no shrinkage and had a heat fusion rate of 90% and a good heat fusion property.

(ラベル貼り付け工程)
続いて、発泡成形体を24時間自然乾燥させた後、ラベラー機(積水化学工業社製)を用い、長辺側へ横370mm×縦80mmの株式会社サトー製のOPSラベルを貼り付けた。剥離防止率を表1に示す。
(Labeling process)
Subsequently, after the foamed molded product was naturally dried for 24 hours, an OPS label made by Sato Co., Ltd. having a width of 370 mm and a length of 80 mm was attached to the long side using a labeler (manufactured by Sekisui Chemical Co., Ltd.). Table 1 shows the peeling prevention rate.

実施例2
融着促進剤量を0.07質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.50質量%と良好なものであった。
実施例3
融着促進剤量を0.04質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.40質量%と良好なものであった。
Example 2
A foam molded article was obtained in the same manner as in Example 1 except that the amount of the fusion accelerator was 0.07% by mass. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bound was as good as 0.50% by mass.
Example 3
A foam molded article was obtained in the same manner as in Example 1 except that the amount of the fusion accelerator was 0.04% by mass. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bonded was as good as 0.40% by mass.

実施例4
発泡剤含浸後の洗浄工程を2回とすることで粉末成分量を0.02質量%にすること以外は実施例1と同様にして発泡成形体を得た。結果を表1に示す。なお、予備発泡粒子の結合量は0.50質量%と良好なものであった。
実施例5
発泡剤含浸後の洗浄工程を5回とすることで粉末成分量を0.008質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.50質量%と良好なものであった。
Example 4
A foamed molded article was obtained in the same manner as in Example 1 except that the washing step after impregnation with the foaming agent was performed twice so that the amount of the powder component was 0.02% by mass. The results are shown in Table 1. The amount of pre-expanded particles bound was as good as 0.50% by mass.
Example 5
A foamed molded article was obtained in the same manner as in Example 1 except that the washing step after impregnation with the foaming agent was performed 5 times to make the amount of the powder component 0.008% by mass. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bound was as good as 0.50% by mass.

比較例1
融着促進剤量を0.012質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.80質量%と良好であった。
比較例2
発泡剤含浸後の洗浄工程を2回とすることで粉末成分量を0.02質量%にし、融着促進剤量を0.03質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.40質量%であった。
Comparative Example 1
A foam molded article was obtained in the same manner as in Example 1 except that the amount of the fusion accelerator was 0.012% by mass. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bonded was as good as 0.80% by mass.
Comparative Example 2
Foam molding in the same manner as in Example 1 except that the washing step after impregnation with the foaming agent is performed twice so that the amount of the powder component is 0.02% by mass and the amount of the fusion accelerator is 0.03% by mass. Got the body. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bound was 0.40% by mass.

比較例3
発泡剤含浸後の洗浄工程を1回とすることで粉末成分量を0.044質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は0.60質量%と良好であった。
比較例4
発泡剤含浸後の洗浄工程を1回とすることで粉末成分量を0.04質量%にし、融着促進剤量を0.015質量%にすること以外は実施例1と同様にして発泡成形体を得た。融着率及び剥離防止率を表1に示す。なお、予備発泡粒子の結合量は1.10質量%と結合の多いものであった。

Figure 0005690621
Comparative Example 3
A foamed molded article was obtained in the same manner as in Example 1 except that the amount of the powder component was changed to 0.044% by mass by performing the washing step after impregnation with the foaming agent. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bound was as good as 0.60% by mass.
Comparative Example 4
Foam molding is performed in the same manner as in Example 1 except that the amount of the powder component is 0.04% by mass and the amount of the fusion accelerator is 0.015% by mass by setting the cleaning process after impregnating the foaming agent once. Got the body. Table 1 shows the fusion rate and the peeling prevention rate. The amount of pre-expanded particles bonded was 1.10% by mass, which was a large amount of bonded.
Figure 0005690621

更に、実施例1〜5及び比較例1〜2について、融着促進剤量/粉末成分量と、融着率×剥離防止率との関係を図1に示す。図1に比較例1及び2のみを示している理由は、融着促進剤量と粉末成分量が実施例1〜5と近接しているためである。また、融着率×剥離防止率の値が高いほうが、融着と剥離防止をより高い次元で両立できること意味している。
表1及び図1から、融着促進剤量と粉末成分量とが特定の範囲であれば、高い融着率及び高いラベル剥離防止率の発泡成形体を得られることがわかる。
Further, for Examples 1 to 5 and Comparative Examples 1 and 2, the relationship between the amount of fusion accelerator / the amount of powder components and the fusion rate × the delamination prevention rate is shown in FIG. The reason why only Comparative Examples 1 and 2 are shown in FIG. 1 is that the amount of fusion accelerator and the amount of powder components are close to those of Examples 1 to 5. Further, a higher value of fusion rate × peeling prevention rate means that fusion and prevention of peeling can be achieved at a higher level.
It can be seen from Table 1 and FIG. 1 that if the amount of the fusion accelerator and the amount of the powder component are in a specific range, a foamed molded product having a high fusion rate and a high label peeling prevention rate can be obtained.

Claims (5)

ポリスチレン系樹脂粒子と、前記ポリスチレン系樹脂粒子内に存在する発泡剤と、前記ポリスチレン系樹脂粒子の表面に存在する融着促進剤及び粉末成分とを少なくとも含む発泡性ポリスチレン系樹脂粒子であり、
前記発泡性ポリスチレン系樹脂粒子が、0.5〜1.2mmの平均粒子径を有し、
前記粉末成分が、前記発泡性ポリスチレン系樹脂粒子100質量部に対して、0.008〜0.025質量部含まれ、
前記融着促進剤及び前記粉末成分が、2〜7.5:1(質量比)の割合で存在し、
前記粉末成分が、100μm以下の平均粒子径を有することを特徴とする発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles comprising at least polystyrene resin particles, a foaming agent present in the polystyrene resin particles, a fusion accelerator and a powder component present on the surface of the polystyrene resin particles,
The expandable polystyrene resin particles have an average particle diameter of 0.5 to 1.2 mm,
The powder component is included in an amount of 0.008 to 0.025 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles,
The fusion promoter and the powder component are present in a ratio of 2 to 7.5: 1 (mass ratio) ;
It said powder component, expandable polystyrene resin particles characterized by have a mean particle size of less 100 [mu] m.
前記融着促進剤が、前記発泡性ポリスチレン系樹脂粒子100質量部に対して、0.035〜0.075質量部含まれる請求項に記載の発泡性ポリスチレン系樹脂粒子。 2. The expandable polystyrene resin particles according to claim 1 , wherein the fusion accelerator is contained in an amount of 0.035 to 0.075 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles. 請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子を発泡させて得られた発泡粒子。 Foamed particles obtained by foaming the expandable polystyrene resin particles according to claim 1 or 2 . 請求項に記載の発泡粒子を発泡成形させて得られた発泡成形体。 A foam-molded product obtained by foam-molding the foamed particles according to claim 3 . 粘着力700gf/25mm以下のラベルを貼着しうる請求項に記載の発泡成形体。 The foamed molded product according to claim 4 , wherein a label having an adhesive strength of 700 gf / 25 mm or less can be attached.
JP2011056790A 2011-03-15 2011-03-15 Expandable polystyrene resin particles, expanded particles and expanded molded articles Active JP5690621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056790A JP5690621B2 (en) 2011-03-15 2011-03-15 Expandable polystyrene resin particles, expanded particles and expanded molded articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056790A JP5690621B2 (en) 2011-03-15 2011-03-15 Expandable polystyrene resin particles, expanded particles and expanded molded articles

Publications (2)

Publication Number Publication Date
JP2012193243A JP2012193243A (en) 2012-10-11
JP5690621B2 true JP5690621B2 (en) 2015-03-25

Family

ID=47085473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056790A Active JP5690621B2 (en) 2011-03-15 2011-03-15 Expandable polystyrene resin particles, expanded particles and expanded molded articles

Country Status (1)

Country Link
JP (1) JP5690621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7049767B2 (en) * 2017-01-27 2022-04-07 株式会社カネカ Effervescent polystyrene resin particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3030053A1 (en) * 1980-08-08 1982-03-25 Basf Ag, 6700 Ludwigshafen PARTICULATE, FUEL-CONTAINING STYRENE POLYMERISATES AND THEIR USE
JP4532255B2 (en) * 2004-12-21 2010-08-25 積水化成品工業株式会社 Expandable styrene resin particles and method for producing the same
JP2010209146A (en) * 2009-03-06 2010-09-24 Kaneka Corp Pre-expansion particle of styrene-modified polyethylene-based resin and styrene-modified polyethylene resin foam composed of the pre-expansion particle

Also Published As

Publication number Publication date
JP2012193243A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5386262B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and foam molded article
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5689011B2 (en) Resin particle, method for producing the same, expandable resin particle, expanded particle
JP2008075051A (en) Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP2013209608A (en) Styrene-based resin particle, method for producing the same, expandable particle, foamed particle, and foamed molded article
JP5690621B2 (en) Expandable polystyrene resin particles, expanded particles and expanded molded articles
JP2013032449A (en) Foamable polystyrene-based resin particle, foamed particle, and foamed molding
JP2014145066A (en) Flame-retardant styrene resin particle and method for producing the same, foamable particle, foaming particle, and formed-molded body
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP5492616B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles
JP5798950B2 (en) Building materials and manufacturing method thereof
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP2013224410A (en) Foamable styrene resin particle, method for producing the same, prefoamed particle, molded foam, and processed product
JP5914080B2 (en) Expandable styrene resin particles and method for producing the same
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP2013203978A (en) Foamable polystyrene-based resin particle, method for producing the same and application thereof
JP2006036993A (en) Expandable styrene resin particle and its production method
JP5592678B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP2011074238A (en) Foamable polystyrene resin particle for food container
JP2012201827A (en) Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
JP2011026508A (en) Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5690621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150