JP5685813B2 - Lead-free low melting point glass paste for insulation coating - Google Patents

Lead-free low melting point glass paste for insulation coating Download PDF

Info

Publication number
JP5685813B2
JP5685813B2 JP2009299017A JP2009299017A JP5685813B2 JP 5685813 B2 JP5685813 B2 JP 5685813B2 JP 2009299017 A JP2009299017 A JP 2009299017A JP 2009299017 A JP2009299017 A JP 2009299017A JP 5685813 B2 JP5685813 B2 JP 5685813B2
Authority
JP
Japan
Prior art keywords
glass
lead
paste
glass paste
free low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009299017A
Other languages
Japanese (ja)
Other versions
JP2011136890A (en
Inventor
耕治 富永
耕治 富永
潤 濱田
潤 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009299017A priority Critical patent/JP5685813B2/en
Priority to PCT/JP2010/072613 priority patent/WO2011081022A1/en
Priority to KR1020127013375A priority patent/KR20120085302A/en
Priority to TW099146166A priority patent/TWI460142B/en
Publication of JP2011136890A publication Critical patent/JP2011136890A/en
Application granted granted Critical
Publication of JP5685813B2 publication Critical patent/JP5685813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Insulating Materials (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感太陽電池等に代表される電子材料基板用の絶縁性被覆材料、電極保護被覆材料及び封着材料として用いられる絶縁被覆用無鉛低融点ガラスペーストに関する。   The present invention relates to an insulating coating material for an electronic material substrate typified by a dye-sensitized solar cell, an electrode protective coating material, and a lead-free low melting point glass paste for insulating coating used as a sealing material.

太陽光などの光エネルギーを有効に利用する手段の1つとして、光エネルギーを電気エネルギーに直接変換する太陽電池が広く用いられている。この太陽電池は、シリコンの多結晶、または単結晶を用いたシリコン型太陽電池が良く知られており、すでに住宅用の電力供給用から電卓等の微弱電力用電源として利用されている。しかしながら、こうしたシリコン型太陽電池の製造にあたって必須となるシリコンの単結晶や多結晶、あるいはアモルファスシリコンを製造するためには、シリコン高純度化でのプロセスや高温での溶融プロセスを必要とするために多大なエネルギーを消費する。このため、シリコン型太陽電池を製造するために費やしたエネルギー量の総和が、この太陽電池の発電可能期間に発電できる総発電エネルギー量よりも大きいという危惧が出ている。   As one of means for effectively using light energy such as sunlight, solar cells that directly convert light energy into electric energy are widely used. As this solar cell, a silicon solar cell using a polycrystal of silicon or a single crystal is well known, and has already been used as a power source for weak power such as a calculator from a power supply for a house. However, in order to produce silicon single crystals, polycrystals, or amorphous silicon, which are indispensable for the production of such silicon-type solar cells, a process for silicon purification and a melting process at high temperatures are required. Consumes a lot of energy. For this reason, there is a concern that the total amount of energy consumed to manufacture the silicon solar cell is larger than the total amount of power generation that can be generated during the power generation period of this solar cell.

このようなシリコン型太陽電池の課題を解決する太陽電池として、近年、色素増感型太陽電池が注目されている。色素増感型太陽電池は、スイスのミカエル・グレツェルらがその基礎となる構造を開発したもので、光電変換効率が高く、かつ、シリコン型太陽電池のように単結晶シリコンなどの製造に多大なエネルギーを消費する材料が必要ではないため、太陽電池を作製するためのエネルギーも桁違いに少なく、且つ低コストで量産が可能なものであり、その普及が期待される。   In recent years, dye-sensitized solar cells have attracted attention as solar cells that solve the problems of such silicon-type solar cells. Dye-sensitized solar cells were developed by Michael Grezel and others of Switzerland. They have a high photoelectric conversion efficiency and are very large in the production of single-crystal silicon and the like like silicon-type solar cells. Since a material that consumes energy is not necessary, the energy for producing the solar cell is extremely small, and mass production is possible at low cost, and its spread is expected.

色素増感太陽電池は、電極基板上に酸化物半導体微粒子からなる光増感色素が担持された酸化物半導体多孔膜を有する作用極と、この作用極に対向して設けられた対極と、作用極と対極との間に電解液が充填されることにより形成された電解質層とを備えている。この種の色素増感太陽電池は、太陽光等の入射光を吸収した光増感色素により酸化物半導体微粒子が増感され、光エネルギーを電力に変換する光電変換素子として機能する。   The dye-sensitized solar cell has a working electrode having an oxide semiconductor porous film in which a photosensitizing dye composed of oxide semiconductor fine particles is supported on an electrode substrate, a counter electrode provided opposite to the working electrode, and an action And an electrolyte layer formed by filling an electrolyte between the electrode and the counter electrode. In this type of dye-sensitized solar cell, oxide semiconductor fine particles are sensitized by a photosensitizing dye that absorbs incident light such as sunlight, and functions as a photoelectric conversion element that converts light energy into electric power.

上記のような色素増感太陽電池で用いられる透明電極基板としては、スズ添加酸化インジウム(ITO)やフッ素添加酸化スズ(FTO)などの透明導電膜を基板の表面に成膜したものが一般的である。しかしながら、ITOやFTOの比抵抗は10−4[Ω・cm]オーダー程度と、銀や金などの金属の比抵抗に比べて、約100倍もの値を示すことから、特に大面積のセルとした場合に、光電変換効率の低下を招く一因となる。 As a transparent electrode substrate used in the dye-sensitized solar cell as described above, a transparent conductive film such as tin-added indium oxide (ITO) or fluorine-added tin oxide (FTO) is generally formed on the surface of the substrate. It is. However, the specific resistance of ITO or FTO is about 10 −4 [Ω · cm], which is about 100 times the specific resistance of metals such as silver and gold. In such a case, the photoelectric conversion efficiency is reduced.

透明電極基板の抵抗を下げる手法として、透明導電膜(ITO、FTOなど)の形成厚さを厚くする方法が考えられるが、抵抗値が十分に下がるほどの厚さで膜形成すると、透明導電層による光吸収が大きくなってしまう。そのため、入射光の透過率が著しく低下するので、やはり光電変換効率の低下が生じ易い。   As a method for reducing the resistance of the transparent electrode substrate, a method of increasing the thickness of the transparent conductive film (ITO, FTO, etc.) can be considered, but if the film is formed with such a thickness that the resistance value is sufficiently reduced, the transparent conductive layer The light absorption due to increases. For this reason, the transmittance of incident light is remarkably lowered, so that the photoelectric conversion efficiency is likely to be lowered.

この問題に対する解決策として、透明電極基板の表面に、開口率を著しく損なわない程度にAg、Cu,Niなどの金属配線を設けることにより、電極基板の抵抗の低下を図る検討がなされている。   As a solution to this problem, studies have been made to reduce the resistance of the electrode substrate by providing metal wiring such as Ag, Cu, Ni, etc. on the surface of the transparent electrode substrate to such an extent that the aperture ratio is not significantly impaired.

この場合、電解液に用いられる腐食性の強いヨウ素電解液による金属配線の腐食を防止するため、少なくとも金属配線の表面部分が何らかの保護層により保護されている必要がある。この保護層は、回路基板を密に被覆でき、電解質層を構成するヨウ素電解液に対する耐薬品性に優れることが要求される。このような要求を満たす材料としては、絶縁樹脂やガラスなどが挙げられるが、酸化物半導体多孔膜を形成する際などに、基板が熱履歴を経る場合があるため、絶縁樹脂よりも耐熱性に優れ且つガラス基板よりも融点の低い低融点ガラスペーストを用いることが望ましい。   In this case, in order to prevent corrosion of the metal wiring by the highly corrosive iodine electrolyte used for the electrolytic solution, at least the surface portion of the metal wiring needs to be protected by some protective layer. This protective layer is required to be able to cover the circuit board closely and to be excellent in chemical resistance against the iodine electrolytic solution constituting the electrolyte layer. Insulating resin, glass, etc. can be cited as materials that satisfy these requirements, but the substrate may undergo a thermal history when forming an oxide semiconductor porous film. It is desirable to use a low melting point glass paste that is excellent and has a lower melting point than the glass substrate.

しかしながら、従来の低融点ガラスでは、ガラスの融点を下げる効果が極めて大きいPbOを多量に含有した低融点ガラスが広く用いられている(例えば、特許文献1参照)。しかしながらPbOは、人体や環境に与える弊害が大きく、近年その採用を避ける趨勢にある。   However, in the conventional low melting point glass, a low melting point glass containing a large amount of PbO that has a very large effect of lowering the melting point of the glass is widely used (for example, see Patent Document 1). However, PbO has a great detrimental effect on the human body and the environment, and has recently tended to avoid its adoption.

そのため、無鉛低融点ガラスペーストを用いて保護層を形成させた色素増感太陽電池が提案されている(例えば、特許文献2、3参照)。   Therefore, a dye-sensitized solar cell in which a protective layer is formed using a lead-free low-melting glass paste has been proposed (see, for example, Patent Documents 2 and 3).

特開2001−52621号公報JP 2001-52621 A 特開2008−177022号公報JP 2008-177022 A 特開2008−192427号公報JP 2008-192427 A

従来、低融点ガラス、例えば電子部品の接着や封着材料として、或いは電子部品に形成された電極や抵抗体の保護や絶縁のための被覆材料としてのガラスには鉛系のガラスが採用されてきた。鉛成分はガラスを低融点とするうえで重要な成分ではあるものの、人体や環境に与える弊害が大きく、近年その採用を避ける趨勢にあり、電子材料では無鉛ガラスが求められている。さらに、金属配線を被覆するガラスとして、ガラス中に発生するピンホールや、電解液がガラスを侵食するなどで、電解液による金属配線の腐食を効率よく長期間防ぐことは困難であった。
Conventionally, lead-based glass has been used as a low melting glass, for example, as a material for bonding and sealing electronic components, or as a coating material for protecting and insulating electrodes and resistors formed on electronic components. It was. Although the lead component is an important component for making the glass have a low melting point, it has a great detrimental effect on the human body and the environment. In recent years, there is a tendency to avoid its use, and lead-free glass is required for electronic materials. Furthermore, as glass covering the metal wiring, it is difficult to efficiently prevent corrosion of the metal wiring due to the electrolytic solution for a long period of time due to pinholes generated in the glass or the electrolytic solution corroding the glass.

すなわち、特開2001−52621号公報は、低融点ガラスとしての効果は認められるが、鉛を含んでいるという基本的な問題がある。   That is, Japanese Patent Application Laid-Open No. 2001-52621 has a basic problem of containing lead, although the effect as a low melting point glass is recognized.

さらに、特開2008−177022号公報は、鉛を含まず、緻密性に優れたガラス保護層を形成できているが、ピンホールや電解液によるガラスの侵食によって、長期にわたって金属配線を保護できない。また特開2008−192427号公報は長期安定した保護層を形成しているものの、ガラスの被覆性が不十分なため、保護層を100μm以上と厚くしなければならず、結果的に光電効率を下げるといった問題がある。   Furthermore, Japanese Patent Application Laid-Open No. 2008-177022 can form a glass protective layer that does not contain lead and is excellent in denseness. However, the metal wiring cannot be protected over a long period of time due to erosion of the glass by a pinhole or an electrolytic solution. Japanese Patent Application Laid-Open No. 2008-192427 forms a protective layer that is stable for a long period of time. However, since the covering property of glass is insufficient, the protective layer must be thickened to 100 μm or more. There is a problem of lowering.

本発明は、色素増感太陽電池の透明電極基板の金属配線の腐食を防止する保護層を形成するための、ガラスフリットが95〜50質量%含有され、有機成分を必須成分とする絶縁被覆用ガラスペーストにおいて、該ペーストに含有されるガラスフリットが質量%でSiOを0〜7、Bを10〜20、ZnOを9〜25、Biを35〜69.2、BaOを0〜10、RO(LiO、NaO、KOから選択される一種以上の和)を0〜10、RO(MgO、CaO、SrOから選択される一種以上の和)を0〜10、Alを0〜8含有し、SiO 、B 、ZnO、Bi 、BaO、R O、RO、及びAl の和が100である組成からなり、30℃〜300℃における熱膨張係数が(65〜85)×10 −7 /℃、軟化点が450℃以上550℃以下であることを特徴とする絶縁被覆用無鉛低融点ガラスペーストである。
The present invention relates to an insulating coating containing 95 to 50% by mass of a glass frit for forming a protective layer for preventing corrosion of metal wiring of a transparent electrode substrate of a dye-sensitized solar cell and containing an organic component as an essential component. In the glass paste, the glass frit contained in the paste is mass%, SiO 2 is 0 to 7, B 2 O 3 is 10 to 20, ZnO is 9 to 25 , Bi 2 O 3 is 35 to 69.2 , BaO. 0-10, R 2 O (one or more kinds selected from Li 2 O, Na 2 O, K 2 O) is 0-10, RO (one or more kinds selected from MgO, CaO, SrO) 0-10, Al 2 O 3 0-8 , and the sum of SiO 2 , B 2 O 3 , ZnO, Bi 2 O 3 , BaO, R 2 O, RO, and Al 2 O 3 is 100. Composition of thermal expansion at 30 ° C to 300 ° C There (65~85) × 10 -7 / ℃ , an insulating coating lead-free low-melting-point glass paste, wherein the softening point of 450 ° C. or higher 550 ° C. or less.

また、ガラスフリットが質量%で、SiOを0〜7、Bを10〜20、ZnOを9〜25、Biを35〜69.2、BaOを0〜10、RO(LiO、NaO、KOから選択される一種以上の和)を0〜10、RO(MgO、CaO、SrOから選択される一種以上の和)を0〜10、Alを0〜8含有し、SiO 、B 、ZnO、Bi 、BaO、R O、RO、及びAl の和が100である組成からなることを特徴とする上記の絶縁被覆用無鉛低融点ガラスペーストである。
Further, the glass frit is% by mass, SiO 2 is 0 to 7, B 2 O 3 is 10 to 20, ZnO is 9 to 25 , Bi 2 O 3 is 35 to 69.2 , BaO is 0 to 10, R 2 O (one or more selected from Li 2 O, Na 2 O, K 2 O) is 0 to 10, RO (one or more selected from MgO, CaO, SrO) is 0 to 10, Al 2 O 3 was contained 0-8, and wherein SiO 2, B 2 O 3, ZnO, Bi 2 O 3, BaO, R 2 O, RO, and the sum of Al 2 O 3 is that a composition of 100 This is a lead-free low melting point glass paste for insulating coating.

また、ガラスフリットの30℃〜300℃における熱膨張係数が(65〜85)×10−7/℃、軟化点が450℃以上550℃以下であることを特徴とする上記の絶縁被覆用無鉛低融点ガラスペーストである。
In addition, the above-mentioned lead-free low insulation coating characterized in that the glass frit has a thermal expansion coefficient at 30 ° C. to 300 ° C. of (65 to 85 ) × 10 −7 / ° C. and a softening point of 450 ° C. or higher and 550 ° C. or lower. It is a melting point glass paste.

さらに、上記の絶縁被覆用無鉛低融点ガラスペーストを塗布し焼成された、膜厚が10〜30μmのガラス層からなることを特徴とする色素増感太陽電池の透明電極基板の金属配線の保護被覆層である。
Further, the protective coating for the metal wiring of the transparent electrode substrate of the dye-sensitized solar cell, characterized by comprising a glass layer having a film thickness of 10 to 30 μm, which is coated with the above lead-free low melting point glass paste for insulation coating and baked Is a layer .

さらにまた、上記の絶縁被覆用無鉛低融点ガラスペーストを使っていることを特徴とする電子材料用基板である。   Furthermore, the present invention is a substrate for electronic materials characterized by using the above lead-free low melting point glass paste for insulating coating.

本発明により、色素増感太陽電池等に代表される電子材料基板用の絶縁性被覆材料、電極保護被覆材料及び封着材料として用いられる絶縁被覆用無鉛低融点ガラスペーストを得ることが出来る。   According to the present invention, an insulating coating material for an electronic material substrate typified by a dye-sensitized solar cell, an electrode protective coating material, and a lead-free low-melting glass paste for insulating coating used as a sealing material can be obtained.

本発明は、絶縁無鉛低融点ガラスペーストにおいて、質量%でSiOを0〜7、Bを10〜20、ZnOを7〜30、Biを35〜80、BaOを0〜10、RO(LiO、NaO、KO)を0〜10、RO(MgO、CaO、SrO)を0〜10、Alを0〜8含むガラスフリットが、有機成分を必須成分とするガラスペースト中に95〜50質量%含有されることを特徴とする絶縁被覆用無鉛低融点ガラスペーストである。
The present invention is an insulating lead-free low-melting glass paste in which, in mass%, SiO 2 is 0 to 7, B 2 O 3 is 10 to 20, ZnO is 7 to 30, Bi 2 O 3 is 35 to 80, and BaO is 0 to 0. 10, glass frit containing 0-10 R 2 O (Li 2 O, Na 2 O, K 2 O), 0-10 RO (MgO, CaO, SrO), 0-8 Al 2 O 3 is organic It is a lead-free low-melting-point glass paste for insulating coating, which is contained in an amount of 95 to 50% by mass in a glass paste containing an essential component.

SiOはガラス形成成分であり、安定したガラスを形成することができるもので、0〜7%(質量%、以下においても同様である)で含有させる。7%を越えると、ガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは、2〜5%の範囲である。 SiO 2 is a glass forming component and can form a stable glass, and is contained in an amount of 0 to 7% (mass%, the same applies to the following). If it exceeds 7%, the softening point of the glass will increase, making the formability and workability difficult. More preferably, it is 2 to 5% of range.

はSiO同様のガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与え、SiOとともにガラスの誘電率を低下させるものである。ガラス中に10〜20%で含有させるのが好ましい。10%未満ではガラスの流動性が不充分となり、焼結性が損なわれる。他方20%を越えるとガラスの軟化点が上昇する。より好ましくは10〜18%の範囲である。 B 2 O 3 is a glass-forming component similar to SiO 2 , facilitates glass melting, suppresses an excessive increase in the thermal expansion coefficient of the glass, and imparts moderate fluidity to the glass during baking, together with SiO 2 It decreases the dielectric constant. It is preferable to contain 10 to 20% in glass. If it is less than 10%, the fluidity of the glass becomes insufficient and the sinterability is impaired. On the other hand, if it exceeds 20%, the softening point of the glass increases. More preferably, it is 10 to 18% of range.

ZnOはガラスの軟化点を下げ、熱膨張係数を適宜範囲に調整するが、安定性を劣化させる成分で、ガラス中に7〜30%の範囲で含有させるのが好ましい。7%未満ではその作用を発揮し得ず、30%を超えると安定性が劣化する。より好ましくは9〜25%の範囲である。   ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, but it is a component that deteriorates the stability, and is preferably contained in the glass in a range of 7 to 30%. If it is less than 7%, the effect cannot be exhibited, and if it exceeds 30%, the stability deteriorates. More preferably, it is 9 to 25% of range.

Biはガラス形成成分であり、ガラス溶融を容易とし、ガラスの軟化点を下げる。ガラス中に35〜80%で含有させるのが好ましい。35%未満ではガラスの軟化点の低下が不十分で、焼結性が損なわれる。他方80%を越えるとガラスの熱膨張係数が高くなりすぎる。より好ましくは40〜78%の範囲である。 Bi 2 O 3 is a glass forming component, facilitates glass melting, and lowers the softening point of glass. It is preferable to make it contain in 35-80% in glass. If it is less than 35%, the softening point of the glass is not sufficiently lowered, and the sinterability is impaired. On the other hand, if it exceeds 80%, the thermal expansion coefficient of the glass becomes too high. More preferably, it is 40 to 78% of range.

O(LiO、NaO、KO)はガラスの軟化点を下げ、適度に流動性を与え、熱膨張係数を適宜範囲に調整するものであり、0〜10%の範囲で含有させることが好ましい。10%を越えると熱膨張係数を過度に上昇させる。より好ましくは0〜7%の範囲である。 R 2 O (Li 2 O, Na 2 O, K 2 O) lowers the softening point of glass, imparts moderate fluidity, and adjusts the thermal expansion coefficient to an appropriate range, and is in the range of 0 to 10%. It is preferable to contain. If it exceeds 10%, the thermal expansion coefficient is excessively increased. More preferably, it is 0 to 7% of range.

BaOはガラスの軟化点を下げ、焼結性を向上させる。ガラス中に0〜10%で含有させるのが好ましい。10%を越えるとガラスの熱膨張係数が高くなりすぎる。より好ましくは0〜7%の範囲である。   BaO lowers the softening point of the glass and improves the sinterability. It is preferable to make it contain in glass at 0 to 10%. If it exceeds 10%, the thermal expansion coefficient of the glass becomes too high. More preferably, it is 0 to 7% of range.

Alはガラスの安定性を向上させる成分で、0〜8%の範囲で含有させることが好ましい。8%を越えると軟化点が高くなりすぎる。より好ましくは0〜6%の範囲である。 Al 2 O 3 is a component that improves the stability of the glass and is preferably contained in the range of 0 to 8%. If it exceeds 8%, the softening point becomes too high. More preferably, it is 0 to 6% of range.

RO(MgO、CaO、SrO)はガラスに適度に流動性を与え、熱膨張係数を適宜範囲に調整するもので、0〜10%の範囲で含有させる。10%を越えると熱膨張係数が過度に上昇する。より好ましくは、0〜7%の範囲である。   RO (MgO, CaO, SrO) imparts moderate fluidity to glass and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the range of 0 to 10%. If it exceeds 10%, the thermal expansion coefficient excessively increases. More preferably, it is 0 to 7% of range.

この他にも、一般的な酸化物で表すCuO、La3、CeO2、CoO、MnO、TiO、In、SnO、TeO、Fe、ZrOなどを加えてもよい。 In addition, CuO, La 2 O 3, CeO 2, CoO, MnO 2 , TiO 2 , In 2 O 3 , SnO 2 , TeO 2 , Fe 2 O 3 , ZrO 2 and the like represented by general oxides May be added.

実質的にPbOを含まないことにより、人体や環境に与える影響を皆無とすることができる。ここで、実質的にPbOを含まないとは、PbOがガラス原料中に不純物として混入する程度の量を意味する。例えば、低融点ガラス中における0.3wt%以下の範囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPbOの影響を受けないことになる。   By substantially not containing PbO, it is possible to eliminate the influence on the human body and the environment. Here, “substantially free of PbO” means an amount of PbO mixed as an impurity in the glass raw material. For example, if it is in the range of 0.3 wt% or less in the low-melting glass, there is almost no influence on the adverse effects described above, that is, the influence on the human body and the environment, the insulation characteristics, etc., and it is not substantially affected by PbO. Become.

30℃〜300℃における熱膨張係数が(65〜100)×10−7/℃、軟化点が450℃以上550℃以下である上記の無鉛低融点ガラスである。熱膨張係数が(65〜100)×10−7/℃を外れると厚膜形成時に被膜の剥離、基板の反り等の問題が発生する。好ましくは、(70〜85)×10−7/℃の範囲である。また、軟化点を550℃以下にすることにより、高歪点ガラス、ソーダライムガラスを使用することができる。好ましくは、450℃以上540℃以下である。 The above lead-free low melting point glass having a thermal expansion coefficient of (65 to 100) × 10 −7 / ° C. at 30 ° C. to 300 ° C. and a softening point of 450 ° C. or higher and 550 ° C. or lower. When the thermal expansion coefficient is outside (65 to 100) × 10 −7 / ° C., problems such as peeling of the coating film and warping of the substrate occur when forming a thick film. Preferably, it is in the range of (70 to 85) × 10 −7 / ° C. Further, by setting the softening point to 550 ° C. or less, high strain point glass and soda lime glass can be used. Preferably, it is 450 degreeC or more and 540 degrees C or less.

絶縁被覆用無鉛低融点ガラスペースト中のガラスフリット含有量としては、95〜50質量%であることが好ましい。95質量%を越えると作業上十分な粘度が得られず、ペーストを塗布することが困難となる。50質量%以下では、ガラスペーストの粘度が低くなりすぎるため、十分な膜厚を得ることが困難であり、また、被覆パターンを維持できない。   The glass frit content in the lead-free low-melting glass paste for insulating coating is preferably 95 to 50% by mass. If it exceeds 95% by mass, sufficient viscosity cannot be obtained in the operation, and it becomes difficult to apply the paste. If it is 50% by mass or less, the viscosity of the glass paste becomes too low, so that it is difficult to obtain a sufficient film thickness, and the coating pattern cannot be maintained.

また、セラミックス粉末をフィラーとして導入することによって緻密性を向上させた絶縁被覆用無鉛低融点ガラスペーストとすることができる。   Moreover, it can be set as the lead-free low melting-point glass paste for insulation coating which improved the compactness by introduce | transducing ceramic powder as a filler.

なお、ここでのフィラーとは、ガラス中に混合される微結晶及び多結晶の粒子の粉末であり、最終的な被膜の中に、その状態で溶融せずに残るものである。   Here, the filler is a powder of microcrystalline and polycrystalline particles mixed in the glass, and remains in the final coating without melting in that state.

ガラスフリットとセラミックス粉末のフィラーの混合比は広く取ることができるが、セラミック粉末フィラーが1wt%未満ではフィラーの効果は見られない。また、20wt%を超えると焼結性、緻密性が損なわれ基板との剥離や、電解液の浸透が起こる恐れがある。このため、好ましくは1〜20wt%の範囲であるが、さらに好ましくは、4〜15wt%の範囲である。セラミックス粉末としてはAl、SiO、ZrO、β-ユークリプタイト、ZnO、TiOなどに代表される無機フィラーが用いられる。
The mixing ratio of the glass frit and the ceramic powder filler can be widened, but if the ceramic powder filler is less than 1 wt%, the effect of the filler is not seen. On the other hand, if it exceeds 20 wt%, the sinterability and denseness may be impaired, and peeling from the substrate or infiltration of the electrolytic solution may occur. For this reason, it is preferably in the range of 1 to 20 wt%, more preferably in the range of 4 to 15 wt%. As the ceramic powder, an inorganic filler typified by Al 2 O 3 , SiO 2 , ZrO 2 , β-eucryptite, ZnO, TiO 2 or the like is used.

また、本発明の絶縁被覆用無鉛低融点ガラスペーストは、緻密性、被覆性が高いことを特徴とするもので、種々の電子材料用基板にも好適に用いられる。   The lead-free low-melting glass paste for insulating coating of the present invention is characterized by high density and high coating properties, and is suitably used for various electronic material substrates.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(サンプルの作製)
SiO源として微粉珪砂を、B源としてほう酸を、ZnO源として亜鉛華を、Bi源として酸化ビスマスを、Al源として酸化アルミニウムを、LiO源として炭酸リチウムを、NaO源として炭酸ナトリウムを、KO源として炭酸カリウムを、ZrO源として酸化ジルコニウムを、BaO源として炭酸バリウムを、CaO源として炭酸カルシウムを、SrO源として炭酸ストロンチウムを使用した。これらを所望の低融点ガラス組成となるべく調合したうえで、白金ルツボに投入し、電気加熱炉内で1000〜1300℃、1〜2時間で加熱溶融して表1の実施例1〜、表2の比較例1〜5に示す組成のガラスを得た。
(Sample preparation)
Fine silica sand as the SiO 2 source, boric acid as the B 2 O 3 source, zinc white as the ZnO source, bismuth oxide as the Bi 2 O 3 source, aluminum oxide as the Al 2 O 3 source, and carbonic acid as the Li 2 O source Lithium, sodium carbonate as Na 2 O source, potassium carbonate as K 2 O source, zirconium oxide as ZrO 2 source, barium carbonate as BaO source, calcium carbonate as CaO source and strontium carbonate as SrO source did. After preparing these as a desired low melting glass composition, it puts into a platinum crucible and heat-melts in 1000-1300 degreeC and 1-2 hours in an electric heating furnace, Examples 1-4 of Table 1, Table 1 The glass of the composition shown in 2 comparative examples 1-5 was obtained.

Figure 0005685813
Figure 0005685813

Figure 0005685813
Figure 0005685813

ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜3μm、最大粒径15μm未満の粉末状に整粒した。   A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was formed into flakes with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 1 to 3 μm and a maximum particle size of less than 15 μm.

次いで、厚み1〜3mm、サイズ20mm角のソーダライムガラス基板に、焼付け後の膜厚が約10μm、幅0.5mm、縦10mm×5本となるべく勘案して、スクリーン印刷法を用いてAgペーストを塗布し、塗布層を形成した。次いで、乾燥後、550℃で30分間焼成することにより、銀電極を形成させた。さらに上記ガラスフリットにαテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと前記ガラス粉を混合し、粘度、300±50ポイズ程度のガラスペーストを調製した。また、一部は、前記ガラスペースト中にフィラーを含有させたペーストを調整した。上記ガラスペーストを焼付け後の被覆膜厚が約10〜30μmとなるべく勘案して、スクリーン印刷法を用いて銀電極を完全に被覆できるように塗布し、塗布層を形成した。乾燥後、各焼成温度で30分間焼成することにより、保護層を形成させた。   Next, on a soda lime glass substrate having a thickness of 1 to 3 mm and a size of 20 mm square, an Ag paste using a screen printing method is taken into consideration so that the film thickness after baking is about 10 μm, a width of 0.5 mm, and a length of 10 mm × 5. Was applied to form a coating layer. Next, after drying, a silver electrode was formed by baking at 550 ° C. for 30 minutes. Further, ethyl cellulose as a binder and the glass powder were mixed with paste oil composed of α-terpineol and butyl carbitol acetate into the glass frit to prepare a glass paste having a viscosity of about 300 ± 50 poise. Moreover, a part prepared the paste which contained the filler in the said glass paste. The glass paste was applied so that the coating film thickness after baking was about 10 to 30 μm and applied so that the silver electrode could be completely covered by screen printing, thereby forming a coating layer. After drying, the protective layer was formed by baking at each baking temperature for 30 minutes.

(評価)
上記作製したサンプルをヨウ素電解液としてI、LiIを溶解させたアセトニトリル溶液に浸漬させ85℃の高温環境下に100時間保持した。この時、銀電極の腐食を目視にて確認し、腐食の無いものを○、腐食のあるものを×とした。
(Evaluation)
The prepared sample was immersed in an acetonitrile solution in which I 2 and LiI were dissolved as an iodine electrolyte, and kept in a high temperature environment of 85 ° C. for 100 hours. At this time, the corrosion of the silver electrode was confirmed by visual observation.

(結果)
絶縁被覆用無鉛低融点ガラスペーストおよび、各種試験結果を表に示す。
(result)
The table shows the lead-free low melting point glass paste for insulation coating and various test results.

表1における実施例1〜に示すように、本発明のガラスペースト範囲内においては、銀電極のヨウ素電解液による腐食は認められず、且つ、軟化点が450℃〜550℃であり、好適な熱膨張係数(65〜85)×10−7/℃を有しており、色素増感太陽電池電極保護被覆材料、電子材料基板用の絶縁性被覆材料及び封着材料用のガラスペーストとして好適である。
As shown in Examples 1 to 4 in Table 1, in the glass paste range of the present invention, corrosion by the iodine electrolyte of the silver electrode is not observed, and the softening point is 450 ° C. to 550 ° C. Suitable thermal expansion coefficient (65 to 85 ) × 10 −7 / ° C., suitable as a dye-sensitized solar cell electrode protective coating material, an insulating coating material for electronic material substrates, and a glass paste for sealing materials It is.

他方、本発明の組成範囲を外れる表2における比較例1〜5は、ヨウ素電解液による銀電極の腐食が認められる、又は好ましい物性値を示さず、絶縁性被覆材料及び封着材料用のガラスペーストとしては適用し得ない。   On the other hand, Comparative Examples 1 to 5 in Table 2 outside the composition range of the present invention show that the corrosion of the silver electrode by the iodine electrolytic solution is observed or does not show preferable physical properties, and the glass for the insulating coating material and the sealing material It cannot be applied as a paste.

Claims (4)

色素増感太陽電池の透明電極基板の金属配線の腐食を防止する保護層を形成するための、ガラスフリットが95〜50質量%含有され、有機成分を必須成分とする絶縁被覆用ガラスペーストにおいて、
該ペーストに含有されるガラスフリットが質量%でSiOを0〜7、Bを10〜20、ZnOを9〜25、Biを35〜69.2、BaOを0〜10、RO(LiO、NaO、KOから選択される一種以上の和)を0〜10、RO(MgO、CaO、SrOから選択される一種以上の和)を0〜10、Alを0〜8含有し、SiO 、B 、ZnO、Bi 、BaO、R O、RO、及びAl の和が100である組成からなり、
30℃〜300℃における熱膨張係数が(65〜85)×10 −7 /℃、
軟化点が450℃以上550℃以下であることを特徴とする絶縁被覆用無鉛低融点ガラスペースト。
In the glass paste for insulating coating containing 95-50% by mass of glass frit for forming a protective layer for preventing corrosion of the metal wiring of the transparent electrode substrate of the dye-sensitized solar cell, and having an organic component as an essential component,
The SiO 2 0 to 7 glass frit in mass% contained in the paste, B 2 O 3 10 to 20, the ZnO 9~25, Bi 2 O 3 and from 35 to 69.2, the BaO 0 , R 2 O (one or more selected from Li 2 O, Na 2 O, K 2 O) is 0 to 10, and RO (one or more selected from MgO, CaO, SrO) is 0 to 10 A composition containing 0 to 8 of Al 2 O 3 , and the sum of SiO 2 , B 2 O 3 , ZnO, Bi 2 O 3 , BaO, R 2 O, RO, and Al 2 O 3 is 100,
The thermal expansion coefficient at 30 ° C. to 300 ° C. is (65 to 85) × 10 −7 / ° C.,
A lead-free low-melting-point glass paste for insulating coating, having a softening point of 450 ° C or higher and 550 ° C or lower.
請求項1記載の絶縁被覆用無鉛低融点ガラスペーストを塗布し焼成された、膜厚が10〜30μmのガラス層からなることを特徴とする色素増感太陽電池の透明電極基板の金属配線の保護被覆層。Protection of the metal wiring of the transparent electrode substrate of the dye-sensitized solar cell, comprising a glass layer having a film thickness of 10 to 30 µm applied and baked with the lead-free low melting point glass paste for insulating coating according to claim 1 Coating layer. 請求項1記載の絶縁被覆用無鉛低融点ガラスペーストを色素増感太陽電池の透明電極基板の金属配線上に塗布し塗布層を形成する工程、Applying the lead-free low-melting glass paste for insulating coating according to claim 1 on the metal wiring of the transparent electrode substrate of the dye-sensitized solar cell to form a coating layer;
該塗布層を乾燥させる工程、Drying the coating layer,
乾燥させた該塗布層を焼成して保護層を形成する工程、を有することを特徴とする色素増感太陽電池の透明電極基板の金属配線の保護層の形成方法。A method for forming a protective layer for a metal wiring of a transparent electrode substrate of a dye-sensitized solar cell, comprising a step of baking the dried coating layer to form a protective layer.
前記保護層は膜厚が10〜30μmであることを特徴とする請求項3に記載の保護層の形成方法。The method for forming a protective layer according to claim 3, wherein the protective layer has a thickness of 10 to 30 μm.
JP2009299017A 2009-12-29 2009-12-29 Lead-free low melting point glass paste for insulation coating Expired - Fee Related JP5685813B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009299017A JP5685813B2 (en) 2009-12-29 2009-12-29 Lead-free low melting point glass paste for insulation coating
PCT/JP2010/072613 WO2011081022A1 (en) 2009-12-29 2010-12-16 Lead-free low-melting-point glass paste for insulation coating
KR1020127013375A KR20120085302A (en) 2009-12-29 2010-12-16 Lead-free low-melting-point glass paste for insulation coating
TW099146166A TWI460142B (en) 2009-12-29 2010-12-27 Insulated with lead - free low - melting glass paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299017A JP5685813B2 (en) 2009-12-29 2009-12-29 Lead-free low melting point glass paste for insulation coating

Publications (2)

Publication Number Publication Date
JP2011136890A JP2011136890A (en) 2011-07-14
JP5685813B2 true JP5685813B2 (en) 2015-03-18

Family

ID=44226434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299017A Expired - Fee Related JP5685813B2 (en) 2009-12-29 2009-12-29 Lead-free low melting point glass paste for insulation coating

Country Status (4)

Country Link
JP (1) JP5685813B2 (en)
KR (1) KR20120085302A (en)
TW (1) TWI460142B (en)
WO (1) WO2011081022A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888493B2 (en) * 2011-02-10 2016-03-22 セントラル硝子株式会社 Conductive paste and solar cell element using the conductive paste
CN102568866A (en) * 2011-12-23 2012-07-11 彩虹集团公司 Method for packaging dye sensitized solar cell by low glass powder
KR101377555B1 (en) * 2012-03-14 2014-03-24 에스에스씨피 주식회사 A glass frit, paste composition comprising the same and silicon solar cell using the paste composition
EP2831009B1 (en) * 2012-03-30 2017-05-03 Corning Incorporated Bismuth borate glass encapsulant for led phosphors
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2015194290A1 (en) * 2014-06-19 2015-12-23 株式会社村田製作所 Conductive paste and glass article
JP6720712B2 (en) * 2016-06-16 2020-07-08 Agc株式会社 Glass powder, conductive paste and solar cell
KR102367363B1 (en) * 2017-07-07 2022-02-24 엘지전자 주식회사 Solar cell panel and method for manufacturing the same
KR102431078B1 (en) * 2017-09-11 2022-08-11 엘지전자 주식회사 Solar cell panel and method for manufacturing the same
US20190376359A1 (en) * 2018-06-10 2019-12-12 Pa&E, Hermetic Solutions Group, Llc Hydrophobic dielectric sealing materials
CN111187006A (en) * 2020-02-22 2020-05-22 刘世伟 Low-melting-point powder special for high-temperature sintering printing ink and preparation method thereof
JP7491020B2 (en) * 2020-03-31 2024-05-28 日本電気硝子株式会社 Glass for covering semiconductor elements and semiconductor covering material using the same
CN112151641B (en) * 2020-10-20 2022-09-13 常州亿晶光电科技有限公司 Method for preparing N-type battery by using insulating edge protective layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344363B2 (en) * 2007-07-20 2013-11-20 日本電気硝子株式会社 Glass composition for sealing
JP5349791B2 (en) * 2007-11-19 2013-11-20 旭硝子株式会社 Lead-free glass and glass-ceramic composition for manufacturing dye-sensitized solar cells

Also Published As

Publication number Publication date
KR20120085302A (en) 2012-07-31
TW201139316A (en) 2011-11-16
WO2011081022A1 (en) 2011-07-07
JP2011136890A (en) 2011-07-14
TWI460142B (en) 2014-11-11

Similar Documents

Publication Publication Date Title
JP5685813B2 (en) Lead-free low melting point glass paste for insulation coating
JP5349791B2 (en) Lead-free glass and glass-ceramic composition for manufacturing dye-sensitized solar cells
JP5609319B2 (en) Low melting point glass composition and conductive paste material using the same
JP5309629B2 (en) Lead-free glass composition having acid resistance
TWI497739B (en) A conductive paste and a solar cell element using the conductive paste
JP5489054B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
WO2012035565A1 (en) Sealing agent with low softening temperature useful in the preparation of electronic devices
CN101913763A (en) Glass composite for back surface field aluminum paste of solar battery and preparation method thereof
JP2011126722A (en) Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
CN102106033A (en) Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
TWI469944B (en) A low melting point glass composition and a conductive paste material using the same
JP2007063105A (en) Nonlead glass composition
TW201500313A (en) Solar cell and paste composition for forming aluminum electrode for solar cell
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP4863580B2 (en) Glass composition, insulating film, and silicon device
JP2012140296A (en) Lead-free low-melting glass composition with corrosion resistance
JP2015071513A (en) Insulated substrate for cigs solar battery and cigs solar battery
JP4892860B2 (en) Lead-free low melting point glass
JP2009120407A (en) Lead-free low-melting glass
JP2005219942A (en) Lead-free low melting point glass
JP2011241094A (en) Glass composition suitable for paste for electrode and paste for electrode using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5685813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees