WO2013172007A1 - Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell - Google Patents

Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2013172007A1
WO2013172007A1 PCT/JP2013/003025 JP2013003025W WO2013172007A1 WO 2013172007 A1 WO2013172007 A1 WO 2013172007A1 JP 2013003025 W JP2013003025 W JP 2013003025W WO 2013172007 A1 WO2013172007 A1 WO 2013172007A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
oxide
secondary battery
electrolyte secondary
positive electrode
Prior art date
Application number
PCT/JP2013/003025
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 江口
剛志 牧
弘樹 大島
友哉 佐藤
仁 愛清
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013172007A1 publication Critical patent/WO2013172007A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current collector for a positive electrode of a nonaqueous electrolyte secondary battery, a manufacturing method thereof, a positive electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
  • a metal such as Al that spontaneously forms a stable passive film on the surface in order to withstand corrosion caused by electrolytic salts. is there.
  • a passive film such as Al 2 O 3 or AlF 3 is formed on the surface thereof.
  • contact between the electrolytic salt or the like and the current collector body is reduced, so that the current collector body is hardly corroded by the electrolytic salt or the like.
  • the current collector main body on which the passive film is formed can maintain a good current collecting function.
  • the passive film on the surface has high resistance, when the passive film is formed on the current collector body, the discharge capacity of the battery is reduced as compared with the case where there is no passive film.
  • Patent Document 1 discloses a current collector body including an oxidation-resistant protective film containing, as a constituent, a compound selected from Al iodide, TiN, Ti 2 O 3 , SnO 2 , In 2 O 3 , RuO 2, and the like. It is described that it forms on the surface. These compounds contained in the protective film have conductivity and are electrochemically stable even under high voltage.
  • a protective film containing the above compound on the current collector body By forming a protective film containing the above compound on the current collector body, the contact between the electrolyte salt in the electrolyte and the current collector body of the positive electrode can be reduced. Can be suppressed. As a result, cycle characteristics and capacity maintenance characteristics can be improved.
  • Patent Document 1 describes the capacity retention rate (%) and capacity recovery rate (%) after standing at 50 ° C. for 2 weeks, and the cycle characteristics (%) of 300 cycles at 50 ° C. However, Patent Document 1 does not describe the discharge capacity.
  • the thickness of the oxide film formed on the surface of the current collector body made of aluminum or aluminum alloy is set to 3 nm or less, and the oxide film is less susceptible to corrosion than aluminum.
  • a positive electrode current collector in which a conductive layer made of metal or metal carbide is formed is described.
  • the discharge capacity of the battery at each discharge rate is measured. According to this, at a rate of 50 C or higher, the discharge capacity of the battery is improved by the conductive layer.
  • the aluminum foil with the conductive layer formed is compared with the discharge capacity of the battery of Test Example 1 in which the aluminum foil without the conductive layer is used as the current collector body.
  • the discharge capacities of the batteries of Test Examples 2 to 7 in which is used as the current collector are low.
  • a lithium salt of a fluorine-containing anion such as LiPF 6 (lithium hexafluorophosphate) or LiBF 4 (lithium tetrafluoroborate) is generally used as an electrolyte salt of a nonaqueous electrolyte secondary battery.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiPF 6 is known to exhibit higher conductivity than LiBF 4 while having low thermal stability. When the conductivity of the electrolyte is high, the initial capacity of the nonaqueous electrolyte secondary battery is increased, but when the thermal stability of the electrolyte is low, the cycle characteristics of the nonaqueous electrolyte secondary battery are deteriorated.
  • non-aqueous electrolyte secondary battery using LiPF 6 as the electrolytic salt has a higher initial capacity when using a high voltage than the non-aqueous electrolyte secondary battery using LiBF 4 as the electrolytic salt, but the cycle characteristics are lowered.
  • non-aqueous electrolyte secondary batteries using LiBF 4 as the electrolyte salt can suppress deterioration of cycle characteristics when using high voltage because of the high thermal stability of the electrolyte, but the electrolyte has low conductivity and high resistance. It was difficult to obtain an initial capacity. JP 2004-55247 A JP 2011-96667 A
  • the present inventors have formed a layer that does not hinder electron transfer on the surface of the current collector body, thereby suppressing corrosion of the current collector due to electrolytic salt or the like even at a high potential, and a passive film is spontaneously generated. It was examined whether the discharge capacity of the battery could be improved as compared with the case where the current collector body formed in the above was used.
  • the present invention has been made in view of such circumstances, and a current collector for a positive electrode of a nonaqueous electrolyte secondary battery having excellent cycle characteristics and output characteristics even at a high potential, a method for producing the same, and a nonaqueous It is a first object of the present invention to provide an electrolyte secondary battery.
  • the conductive oxide or specific resistance having a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less on the surface of the current collector body for positive electrode is 9.9. It has been found that by forming a coating layer made of a conductive nitride of ⁇ 10 ⁇ 3 ⁇ cm or less, the nonaqueous electrolyte secondary battery has excellent cycle characteristics and output characteristics even at a high potential.
  • the current collector for a nonaqueous electrolyte secondary battery positive electrode of the present invention that solves the first problem has a current collector body and a specific resistance of 9.9 ⁇ formed on the surface of the current collector body. has a 10 -3 [Omega] cm or less is conductive oxide or the specific resistance is made of conductive nitride is 9.9 ⁇ 10 -3 ⁇ cm or less coating layer, a conductive oxide, Zn oxide, indium , Mo, W, Ti, Zr, Sn and H added at least one element selected, tin oxide added at least one element selected from F, W, Ta, Sb, P and B, It is one selected from zinc oxide added with at least one element selected from Ga, Al and B and titanium oxide added with Nb element, and the conductive nitride is TiN, ZrN, HfN, TaN, NbN, VN and Characterized in that it is a one selected from N.
  • a material obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H to indium oxide is preferably indium zinc oxide.
  • a material in which at least one element selected from Ga, Al, and B is added to zinc oxide is preferably aluminum zinc oxide or gallium zinc oxide.
  • the conductive oxide is preferably one in which at least one element selected from F, Sb and P is added to tin oxide.
  • the conductive nitride is preferably TiN.
  • the thickness of the coat layer is preferably 10 nm to 1 ⁇ m.
  • the nonaqueous electrolyte secondary battery of the present invention that solves the first problem includes the current collector for a positive electrode of the nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery of the present invention that solves the first problem has the current collector for a positive electrode of the nonaqueous electrolyte secondary battery, and when the total amount of the nonaqueous electrolyte is 100% by mass, It is preferable to have a non-aqueous electrolyte solution containing 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group.
  • cyclic compounds having a sultone group are 1,3-propane sultone, 1,4-butene sultone, 1,3-propene sultone, 3-methyl-1,3-propene sultone, 1-methyl-1,3-propane sultone. It is preferably at least one selected from the group consisting of 2-methyl-1,3-propane sultone and 3-methyl-1,3-propane sultone.
  • the non-aqueous electrolyte secondary battery is for a non-aqueous electrolyte secondary battery positive electrode having a coating layer made of the above non-aqueous electrolyte and a conductive oxide in which at least one selected from F, Sb and P is added to tin oxide. And a current collector.
  • the method for producing a current collector for a positive electrode of a nonaqueous electrolyte secondary battery according to the present invention that solves the above first problem has a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less by sputtering on the surface of the current collector body.
  • the conductive nitride is TiN, ZrN, HfN, TaN. , N N, characterized in that it is one selected from the VN and WN.
  • the nonaqueous electrolyte secondary battery of the present invention that solves the second problem includes a current collector body and a coating layer made of a conductive oxide formed on the surface of the current collector body.
  • a non-aqueous electrolyte secondary battery positive electrode having a current collector for a water electrolyte secondary battery positive electrode, and a non-aqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolyte salt, and conductive oxidation
  • the product is an indium oxide to which at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H is added, and at least one selected from F, W, Ta, Sb, P and B to tin oxide. It is any one selected from those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide. .
  • a material obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H to indium oxide is preferably indium tin oxide or indium zinc oxide.
  • What added at least one element chosen from Ga, Al, and B to zinc oxide is preferably aluminum zinc oxide or gallium zinc oxide.
  • the conductive oxide preferably has a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the film thickness of the coating layer is preferably 10 nm to 1 ⁇ m.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention that solves the third problem is formed on the surface of the current collector body, the first layer formed on the surface of the current collector body, and the surface of the first layer.
  • the specific resistance of the first layer is lower than the specific resistance of the second layer, and It is characterized by being higher than the specific resistance of the current collector body.
  • the collector body considering the resistance when flowing electricity to the protective layer of the collector body and SnO 2, the collector body itself, in addition to the resistance caused by SnO 2 itself, the current collector body and SnO 2 There is a resistance that occurs at the interface. Since electrochemical properties in the collector body and SnO 2 (each specific resistance value) are largely different, it is considered very large Schottky barrier arises at the interface of the current collector body and SnO 2. As a result, it is assumed that the resistance of the conventional positive electrode has increased.
  • a current collector body In the positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the third problem, a current collector body, a first layer (for example, In 2 O 3 —ZnO (IZO)), and a second layer (for example, SnO 2 )
  • IZO In 2 O 3 —ZnO
  • SnO 2 second layer
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention that solves the above third problem has a lower resistance than the conventional positive electrode, although a protective layer is newly added to the conventional positive electrode. Show.
  • the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem is a non-aqueous electrolyte secondary battery having a current collector body and a coating layer containing a metal oxide or a metal nitride.
  • the current collector for the battery positive electrode has a high resistance metal (hereinafter sometimes simply referred to as “high resistance metal”) having a specific resistance higher than that of the current collector body between the current collector body and the coating layer. It is characterized by.
  • the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem is used, the non-aqueous electrolyte secondary battery exhibits a low resistance for the following reason. .
  • the resistance generated by the current collector body, the high resistance metal itself, and SnO 2 itself there is a resistance generated at the interface between the current collector body and the high resistance metal and the interface between the high resistance metal and SnO 2.
  • the resistance generated at the interface between the current collector body and the high resistance metal is extremely low. This is because both the current collector body and the high resistance metal are metals, and the electrochemical properties (respective resistivity values) of both are similar.
  • the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem shows lower resistance than a conventional current collector having a coating layer of SnO 2 or the like.
  • the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention is a conductive oxide or specific resistance having a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less on the surface of the current collector body.
  • the method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to the present invention as the first means can easily form a coat layer on the surface of the current collector body.
  • the nonaqueous electrolyte secondary battery of the present invention as the first means has the current collector for the positive electrode of the nonaqueous electrolyte secondary battery, it has excellent cycle characteristics and output characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention of the first means has a non-aqueous electrolyte solution containing the non-aqueous electrolyte secondary battery positive electrode current collector and a cyclic compound having a sultone group, and thus a further excellent cycle. Has characteristics.
  • the coat layer made of a conductive oxide is formed on the surface of the current collector body for positive electrode. Resistance can be reduced.
  • the nonaqueous electrolyte secondary battery of the present invention of the second means further has a nonaqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolyte salt, cycle characteristics are improved. LiBF 4 has a problem that the conductivity of the battery is low and the battery capacity increases and the initial capacity is low, but the resistance of the positive electrode can be reduced by the effect of the coating layer formed on the positive electrode current collector body. A decrease in initial capacity can be prevented.
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the third aspect of the present invention has the protective layers of the first layer and the second layer on the surface of the current collector body, so that the current collector body is extremely unlikely to corrode. .
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the third aspect of the present invention has a low resistance despite the fact that the positive electrode current collector has two protective layers. Mobility does not decrease greatly.
  • the nonaqueous electrolyte secondary battery using the positive electrode for a nonaqueous electrolyte secondary battery of the present invention of the third means can exhibit a good capacity retention rate even under high potential driving conditions.
  • the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention of the fourth means can have a low resistance and a good capacity retention rate.
  • the non-aqueous electrolyte secondary battery positive electrode current collector according to the first embodiment of the present invention has a current collector body and a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm formed on the surface of the current collector body.
  • the current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery.
  • a coat layer is formed on the surface of the current collector body.
  • the coat layer reduces the contact between the electrolytic salt and the current collector body, and suppresses the corrosion of the current collector body by the electrolytic salt and the like. Therefore, a metal material such as stainless steel, titanium, nickel, aluminum, copper, or a conductive resin can be used as a material for the current collector body.
  • the current collector body can take the form of a foil, a sheet, a film and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • the current collector body preferably has a thickness of 10 ⁇ m to 100 ⁇ m.
  • the coat layer is formed on the surface of the current collector body and has a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less or a conductive nitride having a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less. It consists of things. Normally, when an aluminum foil is used as a current collector body, the surface of the aluminum foil is formed by a reaction with Al 2 O 3 formed by a natural reaction with oxygen in the atmosphere and an electrolytic salt in the electrolytic solution. A passive film such as AlF 3 is formed. This passive film is an insulator, and the number of digits of the specific resistance ( ⁇ cm) is about 10 8 . The aluminum foil is protected from the electrolytic salt by a passive film.
  • the passive film is a high resistance film. Therefore, an electrode using a current collector body having a passive film on its surface has a high resistance, and a battery using the electrode has a reduced discharge capacity compared to a battery using a current collector body without a passive film. Output characteristics deteriorate.
  • a coat layer is formed in advance on the surface of the current collector body. Therefore, it is difficult to form the passive film on the surface of the current collector body. That is, this coat layer can suppress the formation of the high resistance layer on the surface of the current collector body. Further, since the contact between the electrolytic salt or the like and the current collector main body can be reduced by the coat layer, corrosion due to the electrolytic salt or the like of the current collector main body can be suppressed.
  • the battery having the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment of the present invention can maintain the output characteristics of the battery well.
  • the coating layer is made of conductive oxide or conductive nitride.
  • the conductive oxide is indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, and tin oxide is selected from F, W, Ta, Sb, P and B Any one selected from the group consisting of zinc oxide added with at least one element selected from Ga, Al and B, and titanium oxide added with an Nb element.
  • the conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN and WN. Since the coating layer is made of the above-mentioned conductive oxide or conductive nitride, it is electrochemically stable to oxygen, electrolytic solution and electrolytic salt in the atmosphere, and is electrochemically stable even at high voltage. is there.
  • All of the above conductive oxides are metal oxides with other elements added.
  • the element may be added alone or in the form of an oxide containing the element.
  • the above conductive oxide has a charge transfer body that can move freely, that is, carriers due to the addition of elements to the metal oxide as a base material and the generation of oxygen vacancies in the structure of the metal oxide. Indicates. Therefore, the specific resistance of the conductive oxide is low.
  • Such a material can change the specific resistance by changing the ratio of the element to be added.
  • the amount of each element added may be adjusted so that the conductive oxide has a specific resistance in the above range.
  • Zn element or Sn element is added to indium oxide
  • Zn element or Sn element examples include indium zinc oxide
  • examples of the indium oxide added with the Sn element include indium tin oxide.
  • In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide
  • In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
  • F element, Sb element, Ta element or P element to tin oxide are preferable.
  • Fluorine tin oxide can be cited as the addition of F element to tin oxide
  • antimony tin oxide can be cited as the addition of Sb element to tin oxide
  • tantalum as the addition of Ta element to tin oxide.
  • the tin oxide include phosphorous tin oxide as a P element added to tin oxide.
  • Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
  • Ga element or Al element examples include gallium zinc oxide
  • examples of the zinc oxide added with the Al element include aluminum zinc oxide.
  • Ga-doped zinc oxide (GZO) is preferred as the gallium zinc oxide
  • AZO aluminum-doped zinc oxide
  • titanium oxide added with Nb element is titanium niobium oxide.
  • the titanium niobium oxide is preferably TiO 2 ; Nb.
  • the coat layer is formed on the current collector body at a high temperature, the difference in heat shrinkage between the current collector body and the coat layer when the temperature is returned to room temperature. Due to the film stress. Therefore, the current collector body on which the coat layer is formed is not flat, and when an active material or the like is applied to the current collector body on which the coat layer is formed, the applicability is affected and the battery characteristics are impaired. For this reason, it is desirable that the coat layer be formed on the current collector body as much as possible at room temperature.
  • the conductive oxide is preferably AZO.
  • AZO is a crystalline material, but can have a sufficiently low resistance even at room temperature. In general, when the resistance of a crystalline material is to be lowered, heat treatment is performed to increase the crystallinity. AZO can achieve low resistance even at room temperature, largely because of the physical properties of the material. AZO can adjust the specific resistance appropriately by optimizing the amount of Al added to zinc oxide without heat treatment. Is possible.
  • the conductive oxide is preferably IZO.
  • IZO is a composite of indium oxide and zinc oxide and has an amorphous structure. IZO has sufficiently low resistance even at room temperature. IZO has a high smoothness and does not cause a local reaction. Due to its characteristics, IZO has a small film stress and little influence on battery characteristics.
  • the conductive oxide is preferably GZO.
  • GZO can be further reduced in resistance at room temperature when compared with AZO.
  • the conductive oxide is preferably one in which at least one element selected from F, W, Ta, Sb, P and B is added to tin oxide. When these additive elements enter tin oxide, the conductivity can be improved.
  • the conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN and WN. Conductive nitrides have higher hardness than conductive oxides, high wear resistance, and high mechanical strength. Therefore, by using conductive nitride for the coat layer, the strength of the coat layer is improved and the coatability of the coat layer is improved.
  • the conductive nitride is preferably TiN. TiN is excellent in conductivity and corrosion resistance.
  • the film thickness of the coating layer is preferably 10 nm to 1 ⁇ m, and more preferably 20 nm to 800 nm. If the thickness of the coat layer is 10 nm or more, the surface of the current collector body can be protected and corrosion of the current collector body due to the electrolytic solution can be suppressed. If the thickness of the coat layer is 1 ⁇ m or less, the volume occupied by the current collector inside the battery can be made appropriate. If the volume occupied by the current collector in the battery becomes too large, the amount of active material and the like must be reduced, which leads to a decrease in battery capacity.
  • a sol-gel method As a method for forming a coating layer on the current collector body, a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, a coating method, or the like can be used.
  • This coat layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of conductive oxide and conductive nitride constituting the coat layer.
  • the current collector for the positive electrode of the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention can be preferably manufactured by using the following manufacturing method.
  • the specific resistance is 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less by sputtering on the surface of the current collector body.
  • the coat layer is formed by a sputtering method using a conductive oxide or a conductive nitride as a target.
  • the specific resistance of the formed coating layer is 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the conductive oxide or the conductive nitride the same materials as those described in the description of the current collector for the positive electrode of the nonaqueous electrolyte secondary battery can be used.
  • the specific resistance of the conductive oxide or the conductive nitride is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm or more and 1.0 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the conductive oxide is preferably any one selected from IZO, AZO and GZO. If these conductive oxides are used, the coating layer forming step can be performed not at a high temperature but at a temperature close to room temperature.
  • the conductive nitride is preferably TiN.
  • the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention has the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment.
  • the non-aqueous electrolyte secondary battery having the non-aqueous electrolyte secondary battery positive electrode current collector has a large charge / discharge capacity and excellent cycle performance.
  • the non-aqueous electrolyte secondary battery has a positive electrode having the current collector for a non-aqueous electrolyte secondary battery positive electrode.
  • a positive electrode active material layer formed by binding a positive electrode active material with a binder is attached to the non-aqueous electrolyte secondary battery positive electrode current collector.
  • the schematic diagram explaining the positive electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment is shown in FIG.
  • a coat layer 2 is formed on the current collector body 1
  • a positive electrode active material layer 3 is formed on the coat layer 2.
  • the current collector body 1 on which the coat layer 2 is formed is referred to as a non-aqueous electrolyte secondary battery positive electrode current collector 4.
  • the positive electrode active material layer may further contain a conductive additive.
  • the positive electrode is prepared by preparing a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder and, if necessary, a conductive additive, and adding a suitable solvent to the above composition to form a paste, and then coating After applying to the surface of the current collector body on which the layer is formed, it can be dried and compressed to increase the electrode density as necessary.
  • a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used.
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • a lithium-containing compound is suitable as the positive electrode active material.
  • lithium cobalt composite oxide having a layered structure lithium nickel composite oxide having a layered structure, lithium manganese composite oxide having a spinel structure, general formula: LiCo p Ni q Mn r D s O 2 (D is the doping component, Al, Mg, Ti, Sn , Zn, W, Zr, Mo, Fe, and a component consisting of Na, added are if necessary
  • P + q + r + s 1, 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, 0 ⁇ r ⁇ 1, 0 ⁇ s ⁇ 1)
  • a lithium composite metal oxide having an olivine type lithium iron phosphate Lithium-containing metal composite oxides such as composite oxides can be used.
  • Other metal compounds can also be used as the positive electrode active material. Examples of other metal compounds include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, or disulfides such as titanium sulfide
  • lithium composite metal oxide examples include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 can be used. Among these, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in terms of thermal stability.
  • the binder serves to bind the positive electrode active material and the conductive additive to the current collector.
  • a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilyl group-containing resin is used. be able to.
  • Conductive aid is added to increase the conductivity of the electrode.
  • the conductive assistant for example, carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), etc., which are carbonaceous fine particles, are used alone. Or in combination of two or more.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
  • the non-aqueous electrolyte secondary battery according to the first embodiment of the present invention uses a negative electrode, a separator, and a non-aqueous electrolyte in addition to the above-described positive electrode for a non-aqueous electrolyte secondary battery as a battery component.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.
  • a negative electrode active material layer contains a negative electrode active material and a binder, and contains a conductive support agent as needed.
  • the current collector, binder, and conductive additive are the same as those described for the current collector body, binder, and conductive additive in the positive electrode.
  • a carbon-based material that can occlude and release lithium an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
  • the carbon-based material examples include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, a fired organic polymer compound, carbon fiber, activated carbon, or carbon black.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • Elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn , Pb, Sb and Bi.
  • silicon (Si) or tin (Sn) is preferable.
  • Examples of elemental compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2, NiSi 2, CaSi 2 , CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO Alternatively, LiSnO can be used.
  • a silicon compound or a tin compound is preferable.
  • the silicon compound SiO v (0.5 ⁇ v ⁇ 1.5) is preferable.
  • the tin compound for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be used.
  • polyacetylene polypyrrole, or the like can be used as the polymer material.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.
  • the nonaqueous electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
  • cyclic esters for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone can be used.
  • chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
  • a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate to 0.5 mol / l to 1.7 mol.
  • a solution dissolved at a concentration of about 1 / l can be used.
  • the nonaqueous electrolytic solution may contain an additive for suppressing the decomposition of the nonaqueous electrolytic solution.
  • an additive for example, a sulfone compound, an ⁇ , ⁇ -unsaturated hostone, a phosphocarboxylic acid anhydride, or a cyclic compound having a sultone group can be used.
  • sulfone compound examples include sulfobenzoic anhydride and 1,2-benzenedisulfonic anhydride.
  • Examples of ⁇ , ⁇ -unsaturated hostons include 2-methoxy-2,5-dihydro-1,2-oxaphosphole-2-oxide, 2-ethoxy-2,5-dihydro-1,2-oxaphos Hole-2-oxide, 2- (2,2,2-trifluoroethoxy) -2,5-dihydro-1,2-oxaphosphole-2-oxide, 1-ethoxy-1,3-dihydro-2, 1-benzooxaphosphol-1-oxide.
  • Examples of phosphocarboxylic acid anhydrides include 2-methyl-1,2-oxaphosphole-5 (2H) -one-2-oxide, 2-ethyl-1,2-oxaphosphole-5 (2H)- On-2-oxide, 2-vinyl-1,2-oxaphosphole-5 (2H) -one-2-oxide, 2-ethoxy-1,2-oxaphosphole-5 (2H) -one-2- Oxide, 1-ethoxy-2,1-benzooxaphosphole-3 (1H) -one-1-oxide.
  • the cyclic compound having a sultone group can be selected from those having a 4-membered ring, a 5-membered ring, a 6-membered ring, or a 7-membered ring.
  • Examples of cyclic compounds having a sultone group include 1,3-propane sultone, 1,4-butane sultone, 1,4-butene sultone, 1,3-propene sultone, 1-methyl-1,3-propane sultone, and 2-methyl.
  • cyclic compounds having a sultone group are 1,3-propane sultone, 1,4-butene sultone, 1,3-propene sultone, 3-methyl-1,3-propene sultone, 1-methyl-1,3-propane sultone. It is preferably at least one selected from the group consisting of 2-methyl-1,3-propane sultone and 3-methyl-1,3-propane sultone. These cyclic compounds exhibit high effects as additives.
  • the nonaqueous electrolytic solution preferably contains 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group when the entire nonaqueous electrolytic solution is 100% by mass.
  • a cyclic compound having a sultone group has a small LUMO (lowest unoccupied molecular orbital) and is easily reduced. Therefore, at the time of charge / discharge of the nonaqueous electrolyte secondary battery, the cyclic compound having a sultone group is reduced and decomposed preferentially over the main component of the nonaqueous electrolyte. Therefore, the reduction
  • the activation energy when lithium is solvated by oxygen of the sultone group decreases.
  • the decomposition of the non-aqueous electrolyte is also suppressed by a decrease in activation energy when lithium solvates.
  • the nonaqueous electrolyte contains a cyclic compound having a sultone group, so that the decomposition of the nonaqueous electrolyte is suppressed, and the cycle characteristics of the nonaqueous electrolyte secondary battery that progresses by the decomposition of the nonaqueous electrolyte are degraded. Is suppressed, and the nonaqueous electrolyte secondary battery has improved cycle characteristics.
  • the amount of the cyclic compound having a sultone group is less than 2.0% by mass when the nonaqueous electrolytic solution is 100% by mass, the effect of suppressing the decomposition of the nonaqueous electrolytic solution is small, and the cyclic compound having a sultone group is 6
  • the content is more than 0.0% by mass, the internal resistance of the nonaqueous electrolyte secondary battery increases. Therefore, when the nonaqueous electrolytic solution is 100% by mass, the cyclic compound having a sultone group is preferably contained in an amount of 2.0% by mass or more and 6.0% by mass or less.
  • the nonaqueous electrolyte secondary battery includes a nonaqueous electrolyte solution containing 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group, when the nonaqueous electrolyte solution is 100% by mass, And a positive electrode current collector having a coating layer made of a conductive oxide in which at least one selected from F, Sb, Ta and P is added to tin.
  • the non-aqueous electrolyte secondary battery having this combination has improved cycle characteristics when driven at a high voltage (4.3 V or higher).
  • a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention is a nonaqueous electrolyte secondary battery having a current collector body and a coat layer made of a conductive oxide formed on the surface of the current collector body.
  • the description of the current collector body is the same as the description of the current collector body of the first embodiment.
  • the coating layer is formed on the surface of the current collector body and is made of a conductive oxide.
  • the passive film described in the first embodiment is formed on the surface of the aluminum foil. Since the passive film is a high-resistance film, an electrode using the current collector body having the passive film on the surface has a high resistance, and the output characteristics of a battery using the electrode deteriorate.
  • a coating layer made of a conductive oxide is formed on the surface of the current collector body in advance. Therefore, it is difficult to form the passive film. That is, this coat layer can suppress the formation of the high resistance layer on the surface of the current collector body. Further, since the contact between the electrolytic salt or the like and the current collector main body can be reduced by the coat layer, corrosion due to the electrolytic salt or the like of the current collector main body can be suppressed.
  • the coating layer is made of a conductive oxide.
  • the conductive oxide is indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, and tin oxide is selected from F, W, Ta, Sb, P and B Any one selected from the group consisting of zinc oxide added with at least one element selected from Ga, Al and B, and titanium oxide added with an Nb element. Since the coat layer is made of the above conductive oxide, it is resistant to oxygen, electrolytic solution and electrolytic salt in the atmosphere, and can withstand high voltage.
  • All of the above conductive oxides are metal oxides with other elements added.
  • the element may be added alone or in the form of an oxide containing the element.
  • the above conductive oxide has a charge transfer body that can move freely, that is, carriers due to the addition of elements to the metal oxide as a base material and the generation of oxygen vacancies in the structure of the metal oxide. Indicates. Therefore, the conductive oxide has a low specific resistance. Since the conductive oxide has a low specific resistance, the resistance of the electrode using the non-aqueous electrolyte secondary battery positive electrode current collector used in the second embodiment of the present invention does not substantially decrease. Therefore, the nonaqueous electrolyte secondary battery according to the second embodiment of the present invention can suppress a decrease in output characteristics.
  • the conductive oxide preferably has a specific resistance of 9.9 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the specific resistance of the conductive oxide can be changed by changing the ratio of the element to be added.
  • the same conductive oxide as described in the first embodiment can be used.
  • the description of the conductive oxide of the second embodiment is the same as that of the conductive oxide of the first embodiment.
  • indium oxide used in the second embodiment those in which at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H is added to indium oxide used in the second embodiment are preferable.
  • Sn element or Zn element is added to indium oxide are preferable.
  • Indium tin oxide may be used as the indium oxide added with Sn element
  • indium zinc oxide may be used as the indium oxide added with Zn element.
  • ITO is preferable as the indium tin oxide
  • In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide.
  • ITO is a composite of indium oxide and tin oxide, and can take various crystal states depending on the film formation technique. By selecting the respective conditions such as the tin doping amount, film forming conditions, and heat treatment, the ITO film can be made a low resistance film. The ITO film is also characterized by a small specific resistance even when the film thickness is small. Therefore, the ratio of the coat layer using ITO to the current collector can be reduced.
  • IZO is a complex of indium oxide and zinc oxide and has an amorphous structure. In order to reduce the resistance of the crystalline material, heat treatment is performed to increase the crystallinity. On the other hand, when an aluminum foil is used for the current collector body, film stress occurs when film formation is performed at a high temperature and then returned to room temperature, which affects the flatness of the current collector body. As a result, when an active material or the like is applied to the current collector main body on which the coat layer is formed, the coating property is affected, leading to the deterioration of battery characteristics. Therefore, it is desirable to form the coat layer at room temperature as much as possible. Since IZO has a sufficiently low resistance even at room temperature, no special heat treatment is required. Moreover, since the film stress is small due to the characteristics, the influence on the battery characteristics is small.
  • At least one element selected from Ga, Al and B is added, and zinc oxide is preferably added with an Al element or Ga element.
  • Aluminum zinc oxide can be cited as a material in which Al element is added to zinc oxide
  • gallium zinc oxide can be cited as a material in which Ga element is added to zinc oxide.
  • Aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide
  • gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide.
  • AZO is a crystalline material, but it can have a sufficiently low resistance even by room temperature film formation. AZO can achieve low resistance even at room temperature, largely because of the physical properties of the material. AZO can adjust the specific resistance appropriately by optimizing the amount of Al added to zinc oxide without heat treatment. Is possible.
  • the conductive oxide is preferably GZO.
  • the resistance of GZO can be further reduced by room temperature film formation as compared with AZO.
  • the film thickness of the coat layer of the second embodiment is preferably 10 nm to 1 ⁇ m, and more preferably 20 nm to 800 nm. If the thickness of the coat layer is 10 nm or more, the surface of the current collector body can be protected and corrosion of the current collector body due to the electrolytic solution can be suppressed. If the thickness of the coat layer is 1 ⁇ m or less, the volume occupied by the current collector inside the battery can be made appropriate. If the volume occupied by the current collector in the battery becomes too large, the amount of active material and the like must be reduced, which leads to a decrease in battery capacity.
  • a sol-gel method As a method for forming a coating layer on the current collector body, a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, a coating method, or the like can be used.
  • This coating layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of conductive oxide forming the coating layer.
  • the current collector for a non-aqueous electrolyte secondary battery positive electrode used in the second embodiment of the present invention can be preferably manufactured by using the following manufacturing method.
  • the method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to the second embodiment includes a coat layer forming step of forming a coat layer made of a conductive oxide on the surface of the current collector by a sputtering method.
  • the coating layer is formed by a sputtering method using a conductive oxide as a target.
  • a conductive oxide the same oxide as described in the explanation of the current collector for the positive electrode of the nonaqueous electrolyte secondary battery can be used.
  • the specific resistance of the conductive oxide is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm or more and 1.0 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the conductive oxide is preferably any one selected from ITO, IZO, AZO, and GZO.
  • a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention has a positive electrode having the current collector for a nonaqueous electrolyte secondary battery positive electrode.
  • the description about the positive electrode of the second embodiment is the same as the description of the positive electrode of the first embodiment.
  • Non-aqueous electrolyte secondary battery uses an electrolyte that uses LiBF 4 as a negative electrode, a separator, and an electrolyte salt, in addition to the above-described positive electrode for a nonaqueous electrolyte secondary battery, as a battery component. .
  • the negative electrode and separator of the second embodiment can be the same as those of the first embodiment.
  • the description of the negative electrode and separator of the second embodiment is the same as the description of the negative electrode and separator of the first embodiment.
  • an electrolyte that can be used for a general non-aqueous electrolyte secondary battery can be used except that LiBF 4 is used as an electrolyte salt.
  • the electrolyte includes a solvent and an electrolytic salt dissolved in the solvent.
  • the solvent of the second embodiment can be the same as that of the first embodiment.
  • the description of the solvent of the second embodiment is the same as the description of the solvent of the first embodiment.
  • LiBF 4 is used as the electrolytic salt. LiBF 4 is less conductive than LiPF 6 and is hydrophobic. Therefore, the reactivity with water is low and the hydrolysis resistance is excellent.
  • a solution in which LiBF 4 is dissolved at a concentration of about 0.5 mol / l to 1.7 mol / l in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate can be used.
  • the nonaqueous electrolyte secondary battery of the second embodiment of the present invention has a positive electrode for a nonaqueous electrolyte secondary battery of the second embodiment and has an electrolyte having LiBF 4 as an electrolytic salt. It has charge / discharge capacity and excellent cycle performance.
  • the positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment of the present invention includes a current collector body, a first layer formed on the surface of the current collector body, and a second layer formed on the surface of the first layer. And the positive electrode for a nonaqueous electrolyte secondary battery having an active material layer formed on the surface of the second layer, the specific resistance of the first layer is lower than the specific resistance of the second layer, and the current collector body It is characterized by being higher than the specific resistance.
  • the current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery.
  • the first and second protective layers are formed on the surface of the current collector body. Can withstand corrosion of electrolytic salts and the like.
  • Examples of the material for the current collector main body include metal materials such as stainless steel, titanium, nickel, aluminum, copper, gold, tungsten, and molybdenum, or conductive resins.
  • specific resistance values ( ⁇ cm) of the above materials are as follows: stainless steel: 71 ⁇ cm, titanium: 43 ⁇ cm, nickel: 6 ⁇ cm, aluminum: 2.5 ⁇ cm, copper: 1.6 ⁇ cm, gold: 2 ⁇ cm, tungsten: 5 ⁇ cm, molybdenum : About 5 ⁇ cm.
  • the specific resistance value of the current collector body is not particularly limited, but the specific resistance value of the current collector body is preferably 1 ⁇ cm to 200 ⁇ cm, more preferably 1.5 ⁇ cm to 100 ⁇ cm.
  • the current collector body can take the form of a foil, a sheet, a film, a line, a bar, and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • the thickness is preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • the first layer is a protective layer formed on the surface of the current collector body. Therefore, as the protective layer, the first layer is preferably formed on the entire surface of the current collector body. However, in order to obtain the effect of the third embodiment of the present invention, the first layer may be formed on at least a part of the surface of the current collector body. In particular, the first layer is preferably formed at least between the second layer described later and the current collector body.
  • the specific resistance of the first layer is higher than the specific resistance of the current collector body used.
  • the specific resistance value of the material of the first layer is preferably 1.5 ⁇ cm to 1 ⁇ cm, and more preferably 100 ⁇ cm to 0.01 ⁇ cm.
  • the material constituting the first layer has a specific resistance higher than the specific resistance of the current collector body to be used.
  • the material constituting the first layer is a degenerate semiconductor, that is, a conductive metal oxide, a conductive metal nitride, a conductive metal carbide, or a conductive organic polymer obtained by adding (doping) another element to a metal oxide. Is preferred.
  • metal oxide examples include indium oxide (In 2 O 3 ), zinc oxide (ZnO), zinc peroxide (ZnO 2 ), tin oxide (II) (SnO), tin oxide (IV) (SnO 2 ), and oxidation.
  • Tin (VI) SnO 3
  • titanium dioxide TiO 2
  • dititanium trioxide Ti 2 O 3
  • ruthenium oxide RuO 2
  • aluminum oxide Al 2 O 3
  • nickel oxide NiO
  • oxide Examples include tantalum (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), and chromium oxide (Cr 2 O 3 ). it can.
  • the specific resistance of the compound after addition is lower than that of the compound before addition.
  • the other elements include Zn, Mo, W, Ti, Zr, Sn, H, F, Ta, Sb, P, B, Ga, Al, and Nb.
  • Conductive metal oxide, conductive metal nitride, or conductive metal carbide has higher specific resistance than the current collector body used.
  • Specific examples of the conductive metal oxide include indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, tin oxide with F, W, Ta, Sb, Examples include those obtained by adding at least one element selected from P and B, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide.
  • the conductive metal nitride examples include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), niobium nitride (NbN), vanadium nitride (VN), and tungsten nitride ( WN).
  • Specific examples of the conductive metal carbide include titanium carbide (TiC), molybdenum carbide (MoC), tungsten carbide (WC), tantalum carbide (TaC), niobium carbide (NbC), vanadium carbide (VC), and zirconium carbide (ZrC). Can be illustrated.
  • the conductive metal oxide In the conductive metal oxide, other elements are added to the base metal oxide, or oxygen vacancies are generated in the structure of the metal oxide due to the addition of other elements. , Showing conductivity. By changing the ratio of other elements to be added, the specific resistance of the conductive metal oxide changes. In the conductive metal oxide of the present invention, other elements may be added to the metal oxide at an appropriate ratio as appropriate so as to exhibit a specific resistance within the scope of the present invention.
  • Zn element or Sn element is added to indium oxide
  • Zn element or Sn element examples include indium zinc oxide
  • examples of the indium oxide added with the Sn element include indium tin oxide.
  • In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide
  • In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
  • F element, Sb element, Ta element or P element to tin oxide are preferable.
  • Fluorine tin oxide can be cited as the addition of F element to tin oxide
  • antimony tin oxide can be cited as the addition of Sb element to tin oxide
  • tantalum as the addition of Ta element to tin oxide.
  • the tin oxide include phosphorous tin oxide as a P element added to tin oxide.
  • Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
  • gallium zinc oxide can be cited as an example in which Ga element is added to zinc oxide, and Al element is added to zinc oxide.
  • aluminum zinc oxide, and boron zinc oxide may be mentioned as the element in which element B is added to zinc oxide.
  • Gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide
  • aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide
  • boron-doped zinc oxide (BZO) is preferred as the boron zinc oxide.
  • titanium oxide added with Nb element is titanium niobium oxide.
  • the titanium niobium oxide is preferably TiO 2 ; Nb.
  • IZO is a material in which 90% by mass of indium oxide is added with 10% by mass of zinc oxide and has an amorphous structure
  • ITO is generally 90% by mass.
  • it means that 10% by mass of tin oxide is added to indium oxide.
  • indium zinc oxide, aluminum zinc oxide, boron zinc oxide, indium tin oxide When expressed as gallium zinc oxide, fluorine tin oxide, antimony tin oxide, or titanium niobium oxide, the mixing ratio of the metal element in each oxide is not limited.
  • IZO is advantageous because it exhibits a sufficiently low resistance even in film formation at room temperature and does not require special heat treatment. Furthermore, since IZO has a characteristic that the film stress is small, it is advantageous in that it has little influence on battery characteristics.
  • AZO is a crystalline material and exhibits sufficiently low resistance even at room temperature.
  • GZO is a film formed at room temperature and exhibits a lower resistance than AZO.
  • the band gap indicated by the material of the first layer is preferably 7 eV or less, and more preferably 1 eV to 4 eV.
  • the thickness of the first layer is preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
  • Examples of the method for forming the first layer on the surface of the current collector body include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method.
  • This first layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of material constituting the first layer.
  • the second layer is a protective layer for the current collector body formed on the surface of the first layer.
  • the current collector body is protected by the two protective layers, so that the current collector body is more stable than the protection by only one protective layer.
  • a first layer having a specific resistance larger than that of the current collector body and a second layer having a specific resistance larger than that of the first layer are sequentially formed, as described above.
  • the resistance of the positive electrode obtained is low.
  • the second layer is preferably formed on the entire surface of the first layer.
  • the second layer may be formed on at least a part of the surface of the first layer.
  • the specific resistance of the second layer is higher than the specific resistance of the first layer used.
  • the resistivity of the material of the second layer preferably 100 ⁇ cm ⁇ 10 8 ⁇ cm, and more preferably further 10,000 ⁇ cm ⁇ 10 8 ⁇ cm.
  • the band gap exhibited by the material of the second layer is preferably 7 eV or less, and more preferably 1 eV to 4 eV.
  • the material of the second layer is preferably a material having a lower carrier density than the material of the first layer.
  • the material constituting the second layer has a specific resistance higher than that of the first layer to be used.
  • the material constituting the second layer is preferably a metal oxide, metal nitride, or metal carbide.
  • the material constituting the second layer include indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (IV) (SnO 2 ), titanium dioxide (TiO 2 ), dititanium trioxide ( Ti 2 O 3 ), ruthenium oxide (RuO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), chromium oxide (Cr 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC).
  • the film thickness of the second layer is preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
  • the combination of the first layer and the second layer only needs to satisfy the condition that the specific resistance of the first layer is lower than the specific resistance of the second layer.
  • the first layer is a conductive metal oxide
  • the second layer is a metal oxide
  • the first layer is a conductive metal nitride
  • the second layer is a metal nitride.
  • the first layer is a conductive metal carbide
  • the second layer is preferably a metal carbide.
  • the total thickness of the first layer and the second layer is preferably 20 nm to 2 ⁇ m, more preferably 40 nm to 1 ⁇ m, and even more preferably 100 nm to 500 nm.
  • Examples of the method for forming the second layer on the surface of the first layer include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method.
  • This second layer forming method may be appropriately selected and used according to the material and shape of the current collector main body and the first layer, and the type of material constituting the second layer.
  • the active material contained in the positive electrode active material layer may be any material that can occlude and release lithium ions, for example, in the case of a positive electrode active material for a lithium secondary battery.
  • an active material of the positive electrode for the lithium secondary battery cobalt composite oxide such as LiCoO 2 , manganese composite oxide such as LiMn 2 O 4 and Li 2 MnO 3 , nickel composite oxide such as LiNiO 2 , LiFePO 4 , LiFeVO 4 , iron complex oxides, Li (Ni, Co) O 2 , Li (Ni, Mn) O 2 , Li (Co, Mg) O 2 , Li (Ni, Co, Mn) O 2 , Li Examples thereof include composite oxides such as (Ni, Co, Al) O 2 , Li (Co, Mg, Al) O 2 , and Li (Ni, Co, Mn, Al) O 2 . These materials may be used as a mixture.
  • the above-mentioned p, q, and r can be in the ranges of 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, and 0 ⁇ r ⁇ 1, respectively.
  • a non-aqueous electrolyte secondary battery including the composite metal oxide can be excellent in thermal stability and inexpensive.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 Li 1.0 Ni 0.6 Co 0.2 Mn 0.2 O 2 , Li 1.0 Ni 0.5 Co Examples include 0.2 Mn 0.3 O 2 , LiCoO 2 , and LiNi 0.8 Co 0.2 O 2 .
  • the active material layer may contain a conductive aid.
  • the same conductive assistant as that in the first embodiment can be used.
  • the description of the conductive auxiliary agent of the third embodiment is the same as the description of the conductive auxiliary agent of the first embodiment.
  • the active material layer may contain a binder.
  • the binder serves to bind the active material and the conductive additive to the surface of the second layer.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to.
  • a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used.
  • An active material may be applied to the surface.
  • an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to form a paste. After coating on the surface of the two layers, it is dried. If necessary, the dried product may be compressed to increase the electrode density.
  • solvent examples include N-methyl-2-pyrrolidone (NMP), methanol, and methyl isobutyl ketone (MIBK).
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • FIG. 3 is a schematic diagram for explaining a positive electrode for a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention.
  • the first layer 21 is formed on the surface of the current collector 10
  • the second layer 22 is formed on the surface of the first layer 21
  • the active material layer 31 is formed on the surface of the second layer 22.
  • the nonaqueous electrolyte secondary battery according to the third embodiment of the present invention has the positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment.
  • the nonaqueous electrolyte secondary battery having the positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment can exhibit a good capacity retention rate even under high potential driving conditions. Therefore, the nonaqueous electrolyte secondary battery according to the third embodiment of the present invention has a large charge / discharge capacity and excellent cycle performance.
  • the high potential driving condition means that the operating potential of lithium ions with respect to lithium metal is 4.3 V or more, and further 4.5 to 5.5 V.
  • the charging potential of the positive electrode for the non-aqueous electrolyte secondary battery is 4.3 V or higher, further 4.5 V to 5.V. 5V can be set. Note that, under the driving conditions of a general lithium ion secondary battery, the operating potential of lithium ions with respect to lithium metal is less than 4.3V.
  • the nonaqueous electrolyte secondary battery according to the third embodiment of the present invention includes a negative electrode, a separator, and an electrolyte in addition to the above-described positive electrode for a nonaqueous electrolyte secondary battery as battery components.
  • the negative electrode, separator, and electrolyte solution of the third embodiment can be the same as those of the first embodiment.
  • the description of the negative electrode, separator, and electrolytic solution of the third embodiment is the same as the description of the negative electrode, separator, and electrolytic solution of the first embodiment.
  • a current collector for a nonaqueous electrolyte secondary battery positive electrode includes a current collector body and a coating layer containing a metal oxide or metal nitride for a nonaqueous electrolyte secondary battery positive electrode current collector.
  • the electric body is characterized by having a high resistance metal between the current collector body and the coating layer.
  • the current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery.
  • a coating layer containing a metal oxide or a metal nitride is formed as a protective layer for the current collector body. Can withstand corrosion.
  • the current collector body As a material of the current collector body, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, In addition, metal materials such as stainless steel can be exemplified.
  • ⁇ cm specific resistance values ( ⁇ cm) of the above materials are shown: silver: 1.5 ⁇ cm, copper: 1.6 ⁇ cm, gold: 2 ⁇ cm, aluminum: 2.5 ⁇ cm, magnesium 4 ⁇ cm, tungsten: 5 ⁇ cm, cobalt: 6 ⁇ cm, zinc: 6 ⁇ cm, nickel: 6 ⁇ cm, iron: 9 ⁇ cm, platinum: 10 ⁇ cm, tin: 11 ⁇ cm, indium: 5 ⁇ cm, titanium: 43 ⁇ cm, tantalum: 12 ⁇ cm, chromium: 13 ⁇ cm, molybdenum: 5 ⁇ cm, stainless steel: 71 ⁇ cm.
  • the specific resistance value of the current collector body is preferably 1.5 ⁇ cm to 150 ⁇ cm, and more preferably 1.5 ⁇ cm to 100 ⁇ cm.
  • the current collector body can take the form of foil, sheet, film, wire, rod, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
  • the thickness is preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • the high-resistance metal exists between the current collector body and the coating layer.
  • the existence form of the high-resistance metal is not particularly limited.
  • the high-resistance metal may be present in layers on the entire surface or part of the current collector body, or may be scattered on the entire surface or part of the current collector body.
  • the thickness in the case where the high resistance metal is present in layers or the thickness in the case where the high resistance metal is scattered is preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
  • Examples of the high resistance metal are the same as those described in the current collector body except for silver having the lowest specific resistance.
  • the specific resistance value of the high resistance metal only needs to be higher than that of the current collector body.
  • the specific resistance value of the high resistance metal is preferably 1.6 ⁇ cm to 200 ⁇ cm, and more preferably 1.6 ⁇ cm to 150 ⁇ cm.
  • the coating layer in the fourth embodiment of the present invention contains a metal oxide or a metal nitride.
  • the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention has a coating layer containing a metal oxide or metal nitride, and therefore exhibits corrosion resistance, and the current collector main body is extremely corroded. Hateful.
  • metal oxide examples include indium oxide (In 2 O 3 ), zinc oxide (ZnO), zinc peroxide (ZnO 2 ), tin oxide (II) (SnO), tin oxide (IV) (SnO 2 ), and tin oxide.
  • VI (SnO 3 ), titanium dioxide (TiO 2 ), dititanium trioxide (Ti 2 O 3 ), ruthenium oxide (RuO 2 ), aluminum oxide (Al 2 O 3 ), nickel oxide (NiO), tantalum oxide (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), chromium oxide (Cr 2 O 3 ), magnesium oxide (MgO), cobalt oxide (II) (CoO), cobalt oxide (III) (Co 2 O 3 ), tricobalt tetroxide (Co 3 O 4 ), iron oxide (II) (FeO), iron oxide (III) (Fe 2 O 3 , Triiron tetraoxide (Fe 3 O 4) is exemplified.
  • metal nitride examples include aluminum nitride (AlN), titanium nitride (TiN), copper nitride (Cu 3 N 2 ), magnesium nitride (Mg 3 N 2 ), tungsten nitride (WN), cobalt nitride (Co 3 N), Zinc nitride (Zn 3 N 2 ), nickel nitride (Ni 3 N), iron nitride (FeN), tin nitride (Sn 3 N 2 ), indium nitride (InN), ruthenium nitride (Ru 3 N 4 ), tantalum nitride ( Examples are TaN) and chromium nitride (CrN).
  • AlN aluminum nitride
  • TiN titanium nitride
  • Cu 3 N 2 copper nitride
  • Mg 3 N 2 magnesium nitride
  • WN tungsten nitride
  • Co 3 N Zin
  • the material constituting the coating layer may be a degenerate semiconductor, that is, a metal oxide obtained by adding (doping) another element.
  • a metal oxide obtained by adding (doping) another element can include those listed above.
  • the element added to the metal oxide include Zn, Mo, W, Ti, Zr, Sn, H, F, Ta, Sb, P, B, Ga, Al, and Nb.
  • Zn element or Sn element is added to indium oxide
  • Zn element or Sn element examples include indium zinc oxide
  • examples of the indium oxide added with the Sn element include indium tin oxide.
  • In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide
  • In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
  • F element, Sb element, Ta element or P element to tin oxide are preferable.
  • Fluorine tin oxide can be cited as the addition of F element to tin oxide
  • antimony tin oxide can be cited as the addition of Sb element to tin oxide
  • tantalum as the addition of Ta element to tin oxide.
  • the tin oxide include phosphorous tin oxide as a P element added to tin oxide.
  • Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
  • gallium zinc oxide can be cited as an example in which Ga element is added to zinc oxide, and Al element is added to zinc oxide.
  • aluminum zinc oxide, and boron zinc oxide may be mentioned as the element in which element B is added to zinc oxide.
  • Gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide
  • aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide
  • boron-doped zinc oxide (BZO) is preferred as the boron zinc oxide.
  • titanium oxide added with Nb element is titanium niobium oxide.
  • the titanium niobium oxide is preferably TiO 2 ; Nb.
  • IZO is a material in which 90% by mass of indium oxide is added with 10% by mass of zinc oxide and has an amorphous structure
  • ITO is generally 90% by mass.
  • it means that 10% by mass of tin oxide is added to indium oxide.
  • indium zinc oxide, aluminum zinc oxide, boron zinc oxide, indium tin oxide When expressed as gallium zinc oxide, fluorine tin oxide, antimony tin oxide, or titanium niobium oxide, the mixing ratio of the metal element in each oxide is not limited.
  • IZO is advantageous because it exhibits a sufficiently low resistance even at room temperature film formation and does not require any special heat treatment. Furthermore, since IZO has a characteristic that the film stress is small, it is advantageous in that it has little influence on battery characteristics.
  • AZO is a crystalline material and exhibits sufficiently low resistance even at room temperature. GZO exhibits a lower resistance than AZO in film formation at room temperature.
  • the specific resistance value of the material of the coating layer is preferably 10 ⁇ cm to 10 8 ⁇ cm, and more preferably 10 ⁇ cm to 10 6 ⁇ cm.
  • the coating layer is a current collector body and a protective layer of high resistance metal.
  • the coating layer may be formed on at least a part of the surface of the high resistance metal. It is assumed that the coating layer is formed on a part or the whole of the surface of the high-resistance metal, or formed on a part or the whole of the exposed surface of the current collector body and the surface of the high-resistance metal. Is done.
  • the coating layer is preferably formed on the entire surface of the high-resistance metal, or formed on the entire surface of the current collector body and the entire surface of the high-resistance metal.
  • the film thickness of the coating layer is preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
  • the electrochemical properties (specific resistance values) of the two are close from the viewpoint of reducing the Schottky barrier generated at these interfaces.
  • the high resistance metal and the metal element of the material constituting the coating layer are the same.
  • the efficient continuous manufacturing method can be provided so that it may mention later. According to this manufacturing method, it is possible to prevent formation of a clear interface between the high-resistance metal and the coating layer, so that a significant reduction in the Schottky barrier can be achieved.
  • a manufacturing method of a current collector for a nonaqueous electrolyte secondary battery positive electrode according to a fourth embodiment of the present invention is a coating process for coating a high resistance metal on the surface of a current collector body, and a high resistance metal obtained in the coating process.
  • Examples of the coating process include a sputtering method and a coating method. These methods may be appropriately selected and used according to the material and shape of the current collector body and the type of the high resistance metal.
  • Examples of the coating process include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method. These methods may be appropriately selected and used according to the material and shape of the current collector body and the high resistance metal.
  • the coating step is preferably performed by sputtering a metal in an oxygen or nitrogen atmosphere.
  • a metal is sputtered in an oxygen atmosphere, the metal and the metal react to form a metal oxide coating layer.
  • the coating process is performed by sputtering the metal under an argon gas atmosphere. It is preferable that the coating process is performed by sputtering the same metal as that used in the coating process in an oxygen or nitrogen atmosphere. In particular, it is preferable that the coating process and the coating process are made continuous by introducing oxygen or nitrogen into the sputtering apparatus immediately before the coating process is completed.
  • the continuous manufacturing method is advantageous in terms of efficiency from the viewpoint of the manufacturing process.
  • the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention can be used as a positive electrode for a nonaqueous electrolyte secondary battery by forming an active material layer on the surface thereof.
  • the active material contained in the positive electrode active material layer of the fourth embodiment can be the same as the active material described in the third embodiment.
  • the description of the positive electrode active material in the fourth embodiment is the same as the description of the positive electrode active material described in the third embodiment.
  • the active material layer may contain a conductive aid.
  • the conductive assistant is added to increase the conductivity of the electrode.
  • the same thing as the conductive support agent described in 1st Embodiment can be used for the conductive support agent of 4th Embodiment.
  • the description of the conductive auxiliary agent of the fourth embodiment is the same as the description of the conductive auxiliary agent of the first embodiment.
  • the active material layer may contain a binder.
  • the binder serves to bind the active material and the conductive additive to the surface of the second layer.
  • the binder of the fourth embodiment the same binder as exemplified in the third embodiment can be used.
  • the description of the binder of the fourth embodiment is the same as the description of the binder of the third embodiment.
  • an active material layer on the surface of the current collector for a nonaqueous electrolyte secondary battery positive electrode As a method for forming an active material layer on the surface of the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention, a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain
  • the active material may be applied to the surface of the current collector using a conventionally known method such as a coating method.
  • a coating method such as a coating method.
  • an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then the collection is performed. After applying to the surface of the electric body, it is dried. If necessary, the dried product may be compressed to increase the electrode density.
  • solvent examples include N-methyl-2-pyrrolidone (NMP), methanol, and methyl isobutyl ketone (MIBK).
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention has a coating layer containing a metal oxide or metal nitride, and therefore exhibits corrosion resistance, and the current collector main body is extremely corroded. Hateful. Moreover, since the non-aqueous electrolyte secondary battery positive electrode current collector according to the fourth embodiment of the present invention exhibits low resistance, the electron mobility does not decrease greatly. As a result of these, the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode current collector of the fourth embodiment of the present invention exhibits low resistance and good capacity even under high-potential driving conditions. The maintenance rate can be shown.
  • the nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention has a large charge / discharge capacity and excellent cycle performance.
  • the high potential driving condition means that the operating potential of lithium ions with respect to lithium metal is 4.3 V or more, and further 4.5 to 5.5 V.
  • the charging potential of the positive electrode can be set to 4.3 V or higher, further 4.5 V to 5.5 V on the basis of lithium. Note that, under the driving conditions of a general lithium ion secondary battery, the operating potential of lithium ions with respect to lithium metal is less than 4.3V.
  • the nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention includes a negative electrode, a separator, and an electrolytic solution as a battery component in addition to the positive electrode having the above-described current collector.
  • the negative electrode, separator, and electrolyte solution of the fourth embodiment can be the same as those of the first embodiment.
  • the description of the negative electrode, separator, and electrolytic solution of the fourth embodiment is the same as that of the negative electrode, separator, and electrolytic solution of the first embodiment.
  • the nonaqueous electrolyte secondary batteries of the first to fourth embodiments of the present invention are not particularly limited in shape, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be adopted. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • the nonaqueous electrolyte secondary batteries of the first to fourth embodiments can be mounted on a vehicle.
  • the vehicle can be equipped with a non-aqueous electrolyte secondary battery having a high capacity and a high energy density, and can be a high-performance vehicle.
  • the vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • Bicycles and electric motorcycles are examples.
  • the embodiments of the current collector for the nonaqueous electrolyte secondary battery positive electrode of the present invention, the manufacturing method thereof, the positive electrode for the nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery have been described. It is not limited to the embodiment.
  • the present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
  • Example 1 to 7 ⁇ Formation of coat layer on current collector> An aluminum foil having a thickness of 20 ⁇ m was prepared as a current collector.
  • As the coating layer material IZO, AZO, ITO, zinc sulfide (ZnS), TiN, ATO, PTO, AlN, SnO 2 were prepared.
  • the aluminum foil is used as the current collector 5.
  • the aluminum foil was put into a sputtering apparatus, and ATO was sputtered on the surface thereof to form an ATO coating layer having a thickness of 100 nm. This is the current collector 7.
  • the specific resistance value of the coat layer of the current collector 1 is 8 ⁇ 10 ⁇ 4 ⁇ cm
  • the specific resistance value of the coat layer of the current collector 2 is 3 ⁇ 10 ⁇ 3 ⁇ cm
  • the specific resistance value of the coat layer of the current collector 3 is 1 ⁇ 10 ⁇ 2 ⁇ cm
  • the specific resistance value of the coat layer of the current collector 4 is 1 ⁇ 10 8 ⁇ cm or more
  • the specific resistance value of the coat layer of the current collector 6 is 5 ⁇ 10 ⁇ 3 ⁇ cm
  • the specific resistance value of the coat layer is 7 ⁇ 10 ⁇ 3 ⁇ cm
  • the specific resistance value of the coat layer of the current collector 8 is 3 ⁇ 10 ⁇ 3 ⁇ cm
  • the specific resistance value of the coat layer of the current collector 9 is 1 ⁇ 10 8 ⁇ cm.
  • the specific resistance value of the coat layer of the current collector 10 was 1 ⁇ cm.
  • Example 1 A laminate type lithium ion secondary battery of Example 1 using the current collector 1 as a positive electrode current collector was produced as follows. First, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive additive, 88 parts by mass and 6 parts by mass, respectively, and polyvinylidene fluoride (PVDF) 6 as a binder A slurry was prepared by mixing the mixture with parts by mass and dispersing the mixture in an appropriate amount of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry was placed on the current collector 1 and applied to the current collector 1 using a doctor blade so that the slurry became a film.
  • the positive electrode active material layer was formed on the surface of the current collector 1 by drying the current collector 1 coated with the slurry at 80 ° C. for 20 minutes and removing NMP by volatilization. Thereafter, the current collector 1 and the positive electrode active material layer on the current collector 1 were firmly bonded to each other by a roll press.
  • the electrode density of the positive electrode was set to 2.3 g / cm 3 .
  • the bonded product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and the positive electrode 1 having a thickness of about 50 ⁇ m was obtained.
  • the negative electrode was produced as follows. A mixture of 97 parts by weight of graphite powder, 1 part by weight of acetylene black as a conductive additive, 1 part by weight of styrene-butadiene rubber (SBR) and 1 part by weight of carboxymethylcellulose (CMC) as a binder was obtained. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, which is a negative electrode current collector, in a film shape using a doctor blade. The current collector coated with the slurry was dried to remove the ion exchange water, thereby forming a negative electrode active material layer on the surface of the current collector.
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • the electrode density of the negative electrode was 1.4 g / cm 3 .
  • the joined product of the negative electrode active material layer was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (25 mm ⁇ 30 mm rectangular shape), and formed into a negative electrode having a thickness of about 45 ⁇ m.
  • a laminate type lithium ion secondary battery was manufactured using the positive electrode 1 and the negative electrode. Specifically, a rectangular sheet (27 ⁇ 32 mm, thickness 25 ⁇ m) made of polypropylene resin as a separator was sandwiched between the positive electrode 1 and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film.
  • the laminated lithium ion secondary battery of Example 1 was produced through the above steps.
  • Example 2 A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the current collector 2 was used instead of the current collector 1 in Example 1.
  • Comparative Example 1 A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the current collector 5 was used instead of the current collector 1 in Example 1.
  • Comparative Example 2 A laminated lithium ion secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the current collector 3 was used instead of the current collector 1 in Example 1.
  • Comparative Example 3 A laminated lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the current collector 4 was used instead of the current collector 1 in Example 1.
  • Example 3 LiNi 0.5 Co 0.2 Mn 0.3 O 2 is used as the positive electrode active material, the current collector 6 is used instead of the current collector 1, the negative electrode thickness is about 60 ⁇ m, and the positive electrode thickness is about 50 ⁇ m.
  • Example 1 except that the density was about 3.0 g / cm 3 and the P / N ratio in Example 1 was 1.8, whereas the P / N ratio was 1.3.
  • a laminate type lithium ion secondary battery of Example 3 was produced.
  • Example 4 A laminated lithium ion secondary battery of Example 4 was produced in the same manner as Example 3 except that the current collector 7 was used instead of the current collector 6.
  • Example 5 A laminated lithium ion secondary battery of Example 5 was produced in the same manner as Example 3 except that the current collector 8 was used instead of the current collector 6.
  • Comparative Example 4 A laminated lithium ion secondary battery of Comparative Example 4 was produced in the same manner as in Example 3 except that the current collector 5 was used instead of the current collector 6.
  • Comparative Example 5 A laminated lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 3 except that the current collector 9 was used instead of the current collector 6.
  • Comparative Example 6 A laminated lithium ion secondary battery of Comparative Example 6 was produced in the same manner as in Example 3 except that the current collector 10 was used instead of the current collector 6.
  • Example 6 A laminated lithium ion secondary battery of Example 6 was produced in the same manner as in Example 3 except that the current collector 1 was used instead of the current collector 6.
  • Example 7 A laminated lithium ion secondary battery of Example 7 was produced in the same manner as in Example 4 except that 4% by mass of 1,3-propane sultone was added to the electrolytic solution when the total amount of the electrolytic solution was 100% by mass.
  • Comparative Example 7 A laminated lithium ion secondary battery of Comparative Example 7 was produced in the same manner as Comparative Example 4 except that 4% by mass of 1,3-propane sultone was added to the electrolytic solution when the total amount of the electrolytic solution was 100% by mass.
  • ⁇ Initial capacity measurement> The initial capacities of the laminated lithium ion secondary batteries of Example 1, Example 2, and Comparative Example 1 were measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was held for 1 hour. The discharge was a CC discharge (constant current discharge) at a voltage of 3.0 V and a 1 C rate. The discharge capacity was measured and the results are shown in Table 1.
  • Example 1 and Example 2 are formed with a coat layer made of a conductive oxide having a specific resistance with digits of 10 ⁇ 4 and 10 ⁇ 3 . Therefore, since it is suppressed that the flow of electrons is inhibited on the surface of the current collector body, it is presumed that the initial discharge capacity of Example 1 and Example 2 is higher than the initial discharge capacity of Comparative Example 1. Further, it was confirmed that the initial discharge capacity of the laminated lithium ion secondary battery can be improved under a high voltage condition of 4.5 V to 3.0 V.
  • the laminate type lithium ion secondary batteries of Comparative Example 1 Comparative Example 2 and Comparative Example 3 were compared, a current collector formed with a coat layer having a specific resistance of 10 ⁇ 2 or more (Comparative Example 2 and Comparative Example 2). It was found that the laminate type lithium ion secondary battery using Example 3) had a larger capacity drop at a higher rate than the laminate type lithium ion secondary battery using a current collector (Comparative Example 1) that did not form a coating layer. . From the above results, the laminate-type lithium ion secondary battery is particularly high by forming a coat layer made of a conductive oxide having a specific resistance with digits of 10 ⁇ 4 and 10 ⁇ 3 on the current collector body. It was found that capacity reduction can be suppressed at the rate.
  • ⁇ Cycle characteristic evaluation> The cycle characteristics of the laminated lithium ion secondary batteries of Example 1, Example 2, and Comparative Example 1 were evaluated. As an evaluation of the cycle characteristics, a cycle test in which charging and discharging were repeated under the following conditions was performed, and the discharge capacity of each cycle was measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate at 55 ° C. and a voltage of 4.5V. The voltage was held for 1 hour. Discharging performed CC discharge (constant current discharge) at 3.0V and 1C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Each discharge capacity retention rate was calculated based on the discharge capacity at the first cycle. The discharge capacity retention rate (%) was determined by the following formula.
  • Discharge capacity maintenance rate (%) (discharge capacity of each cycle / discharge capacity of the first cycle) ⁇ 100
  • FIG. 2 shows a graph showing the relationship between the number of cycles and the capacity retention rate (%) of the laminated lithium ion secondary batteries of Example 1, Example 2 and Comparative Example 1.
  • the capacity retention rate of the laminated lithium ion secondary batteries of Example 1 and Example 2 was higher than that of the laminated lithium ion secondary battery of Comparative Example 1 in each cycle.
  • the capacity retention rate of the laminated lithium ion secondary battery of Comparative Example 1 was 64.8%, whereas that of the laminate type lithium ion secondary battery of Example 1 was The capacity retention rate was 72.5%, and the capacity retention rate of the laminated lithium ion secondary battery of Example 2 was 68.5%.
  • the cycle of the laminate-type lithium ion secondary battery can be achieved even at a high temperature of 55 ° C. It was found that the characteristics were improved as compared with Comparative Example 1. Therefore, the protective film prevents the current collector body from being corroded by the electrolytic solution, and the laminated lithium ion secondary battery of Example 1 and Example 2 is also more effective than the laminated lithium ion secondary battery of Comparative Example 1. The secondary battery was found to be superior.
  • the initial capacity measurement was performed by first conditioning each laminated lithium ion secondary battery.
  • the conditioning treatment was performed by repeating charging and discharging three times at a predetermined voltage and a predetermined rate at 25 ° C.
  • Initial capacity measurement was performed as follows. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was maintained for 1 hour, and the discharge was a CC discharge (constant current discharge) at a voltage of 3.0V and a 1C rate. Then, it set to 25 degreeC, the discharge capacity in 0.33C was measured, and it was set as the initial stage capacity
  • the discharge capacity at the 1C rate was measured, and the discharge capacity at the 1C rate was normalized with the discharge capacity at each 0.33C rate as 100.
  • the cell resistance ( ⁇ ) was measured by 3C rate and 10 second discharge at a voltage of 20% SOC (State of charge). The results are shown in Table 3.
  • the standard value of the initial capacity of the laminated lithium ion secondary battery of Example 3 and Example 4 is 100 or more, and the standard of the initial capacity of the laminated lithium ion secondary battery of Comparative Example 4
  • the standard value of the cell resistance of the laminated lithium ion secondary battery of Example 3 and Example 4 is smaller than 100, and the standard value of the cell resistance of the laminated type lithium ion secondary battery of Comparative Example 4 It was small compared to.
  • the laminated lithium ion secondary batteries of Comparative Examples 5 and 6 having a large specific resistance have an initial capacity smaller than 100, smaller than the initial capacity of the laminated lithium ion secondary battery of Comparative Example 4, and are comparative examples.
  • the standard value of the cell resistance of the laminate type lithium ion secondary battery of No. 5 and Comparative Example 6 was larger than 100, which was larger than the standard value of the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 4.
  • the cell resistance is measured at a 3C rate, it is an index showing high rate characteristics. A smaller value of the cell resistance indicates better high rate characteristics.
  • the standard value of the cell resistance being 100 or less indicates that the high rate characteristic is higher than that of the laminate type lithium ion secondary battery of Comparative Example 4.
  • the laminated lithium ion secondary batteries of Example 3 and Example 4 had higher initial capacity and higher high rate characteristics than the laminated lithium ion secondary battery of Comparative Example 4.
  • the standard value of the cell resistance of the laminated lithium ion secondary battery of Example 3 is smaller than the standard value of the cell resistance of the laminated lithium ion secondary battery of Example 4, and the 1C rate Since the laminate type lithium ion secondary battery of Example 3 is higher than the laminate type lithium ion secondary battery of Example 4 in comparison with the discharge capacity at 0.33C rate, the high rate characteristics are It was found that the laminate type lithium ion secondary battery of Example 3 was superior to the laminate type lithium ion secondary battery of Example 4. The reason for this is thought to be because the conductive nitride has higher mechanical strength than the conductive oxide, but it is not clear.
  • the initial capacity was measured as follows. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was maintained for 1 hour, and the discharge was a CC discharge (constant current discharge) at a voltage of 3.0V and a 1C rate. Then, it set to 25 degreeC, the discharge capacity in 0.33C was measured, and it was set as the initial stage capacity (mAh / g).
  • the cell resistance ( ⁇ ) was measured by 3C rate and 10 second discharge at a voltage of 20% SOC (State of charge).
  • the capacity maintenance rate was measured by measuring the discharge capacity of each cycle by performing a cycle test in which charging and discharging were repeated under the following conditions. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate at 55 ° C. and a voltage of 4.5V. The voltage was held for 1 hour. Discharging performed CC discharge (constant current discharge) at 3.0V and 1C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Then, it set to 25 degreeC and measured the discharge capacity in 0.33C. Based on the initial capacity, the capacity retention rate after 25 cycles was calculated from the discharge capacity after 25 cycles. The capacity retention rate (%) was obtained by the following formula.
  • Capacity retention rate (%) (discharge capacity after 25 cycles / initial capacity) ⁇ 100
  • the cell resistance was compared, the same value was obtained except that the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 6 was increased.
  • the cell resistance is an index indicating the high rate characteristic, and the lower the value, the higher the high rate characteristic.
  • the laminate type lithium ion secondary battery of Comparative Example 4 the laminate type lithium ion secondary battery of Example 4, and the laminate type lithium ion secondary battery of Example 7 were compared.
  • the capacity retention rate of the laminate type lithium ion secondary battery of Example 4 in which the ATO coat layer was formed on the current collector was compared with the capacity retention rate of the laminate type lithium ion secondary battery of Comparative Example 4 having no coat layer. Improved. Further, the capacity retention rate of the laminated lithium ion secondary battery of Example 7 in which the ATO coat layer was formed on the current collector and 1,3-propane sultone was added to the electrolyte was the laminated lithium ion of Example 4. The capacity retention rate of the ion secondary battery was improved.
  • the protective film acts to prevent the current collector body from being corroded by the electrolytic solution resulting from the formation of the coat layer on the current collector body, and the sultone group. It was confirmed that the inclusion of the cyclic compound having the non-aqueous electrolyte exhibited both the effect of suppressing the decomposition of the non-aqueous electrolyte due to the active material and the like, and the cycle characteristics were greatly improved.
  • the laminated lithium ion secondary battery of Example 5 a coating layer made of PTO is formed on the current collector body. From Table 4 to Example 5, the laminate-type lithium ion secondary battery has an initial capacity higher than that of the laminate-type lithium ion secondary battery of Example 4 using the current collector body on which the coating layer made of ATO is formed. As a result, the cell resistance and the capacity retention ratio were the same.
  • Example 8 A laminated lithium ion secondary battery of Example 8 was produced in the same manner as in Example 1 except that the current collector 3 was used as a positive electrode current collector and LiBF 4 was used as an electrolytic salt instead of LiPF 6 .
  • Example 9 A laminated lithium ion secondary battery of Example 9 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 1.
  • Example 10 A laminated lithium ion secondary battery of Example 10 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 2.
  • Comparative Example 8 A laminated lithium ion secondary battery of Comparative Example 8 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 5 and the electrolytic salt was changed to LIPF 6 .
  • Comparative Example 9 A laminated lithium ion secondary battery of Comparative Example 9 was produced in the same manner as in Example 8 except that the electrolytic salt in Example 8 was changed to LIPF 6 .
  • Comparative Example 10 A laminated lithium ion secondary battery of Comparative Example 10 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 5.
  • ⁇ Initial capacity measurement> The initial capacities of the laminated lithium ion secondary batteries of Examples 8 to 10 and Comparative Examples 8 to 10 were measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was held for 1 hour. The discharge was a CC discharge (constant current discharge) at a voltage of 3.0 V and a 1 C rate. The discharge capacity is measured and used as the initial capacity.
  • Capacity retention rate (%) capacity after cycle / initial capacity x 100
  • Table 5 shows the initial capacity, post-cycle capacity, and capacity retention rate of each of the examples and comparative examples.
  • the laminate type lithium ion secondary batteries of Comparative Example 8 and Comparative Example 10 differ only in the electrolytic salt.
  • the laminated lithium ion secondary battery of Comparative Example 10 using LiBF 4 as the electrolytic salt has a lower initial capacity than the laminated lithium ion secondary battery of Comparative Example 8 using LIPF 6 as the electrolytic salt, but maintains the capacity. The rate was high and the cycle characteristics were good.
  • the laminated lithium ion secondary batteries of Comparative Example 8 and Comparative Example 9 differ only in whether a coating layer is formed.
  • the laminate type lithium ion secondary battery of Comparative Example 9 on which the coating layer was formed had a higher capacity retention rate but a lower initial capacity than the laminate type lithium ion secondary battery of Comparative Example 8.
  • the initial capacity of the laminate type lithium ion secondary battery of Example 8 in which the coat layer was formed was that of Comparative Example 10 having no coat layer. It was found that the initial capacity of the laminated lithium ion secondary battery can be greatly improved.
  • the capacity retention rate of the laminated lithium ion secondary battery of Example 8 was found to be greater than the capacity retention rate of the laminated lithium ion secondary battery of Comparative Example 10.
  • the laminate type lithium ion secondary battery of Example 8 not only improved the initial capacity but also increased the capacity retention rate. From this, it was found that a synergistic effect was produced by forming a coat layer and further using LiBF 4 as an electrolytic salt.
  • the initial stage of the laminate type lithium ion secondary battery of Example 9 and Example 10 was compared.
  • the capacity was almost the same as the initial capacity of the laminated lithium ion secondary battery of Example 8, and the cycle characteristics were further improved as compared with the laminated lithium ion secondary battery of Example 8. Therefore, it was found that the laminate type lithium ion secondary batteries of Examples 8 to 10 were excellent in both initial capacity and cycle characteristics even under a high voltage use environment.
  • Example 11 An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector body. This aluminum foil was put into a sputtering apparatus, and IZO in which 10% by mass of zinc oxide was added to 90% by mass of indium oxide was sputtered on the surface of the aluminum foil to form a first layer having a thickness of 100 nm. Thereafter, SnO 2 was sputtered on the surface of the first layer to form a second layer having a thickness of 100 nm. The total film thickness of the first layer and the second layer is 200 nm.
  • the slurry was placed on the surface of the second layer, and applied with a doctor blade so that the slurry became a film.
  • the current collector coated with the slurry was dried at 80 ° C. for 20 minutes, NMP was removed by volatilization, and an active material layer was formed on the surface of the second layer. Thereafter, the current collector on which the active material layer was formed was compressed by a roll press, and the current collector, the first layer, the second layer, and the active material layer were firmly bonded.
  • the joined product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and used as a positive electrode for a nonaqueous electrolyte secondary battery.
  • the negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive auxiliary agent, 1 part by mass of styrene-butadiene rubber (SBR) and 1 part by mass of carboxymethyl cellulose (CMC) as a binder were mixed, and this mixture was mixed. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, which is a negative electrode current collector, in a film shape using a doctor blade. The current collector coated with the slurry is dried and pressed, and the bonded product is heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and a negative electrode having a thickness of about 60 ⁇ m did.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl
  • a laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode for the nonaqueous electrolyte secondary battery. Specifically, a rectangular sheet (27 ⁇ 32 mm, thickness 25 ⁇ m) made of polypropylene resin as a separator was sandwiched between a positive electrode and a negative electrode for a nonaqueous electrolyte secondary battery to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film.
  • the positive electrode and negative electrode for nonaqueous electrolyte secondary batteries are provided with a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • Comparative Example 11 An active material layer was formed directly on the surface of the current collector body of the positive electrode. That is, a laminated lithium ion secondary battery of Comparative Example 11 was produced in the same manner as in Example 11 except that the first layer and the second layer were not formed.
  • Comparative Example 12 A laminated lithium ion secondary battery of Comparative Example 12 was produced in the same manner as in Example 11 except that the second layer was not formed.
  • the thickness of the IZO layer is 100 nm.
  • Comparative Example 13 A laminated lithium ion secondary battery of Comparative Example 13 was produced in the same manner as in Example 11 except that the first layer was not formed.
  • the film thickness of the SnO 2 layer is 100 nm.
  • Comparative Example 14 The order of formation of the first layer and the second layer was reversed, that is, the SnO 2 layer was formed on the surface of the current collector body, and the IZO layer was formed on the surface of this layer.
  • the laminate type lithium ion secondary battery of Comparative Example 14 was produced by the method described above.
  • the total film thickness of the SnO 2 layer and the IZO layer is 200 nm.
  • ⁇ Evaluation method> The initial capacities of the laminated lithium ion secondary batteries of Example 11 and Comparative Examples 11 to 14 were measured.
  • the battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate, voltage 4.5 V, and CC discharge (constant current discharge) is performed at voltage 3.0 V, 0.33 C rate.
  • the discharge capacity when measured was measured and used as the initial capacity.
  • the capacity retention rate (%) was obtained by the following formula.
  • Capacity retention rate (%) capacity after cycle / initial capacity x 100
  • the current rate for discharging in 1 hour is called 1C.
  • the laminate type lithium ion secondary battery of Example 11 was The laminated lithium ion secondary battery and the protective layer of Comparative Example 11 in which the protective layer was not formed in advance even though two types of protective layers of the IZO layer and the SnO 2 layer were formed on the current collector body.
  • the resistance value was equal to or lower than that of the laminate type lithium ion secondary battery of Comparative Example 12 having only the IZO layer.
  • the laminate type lithium ion secondary battery of Example 11 exhibited a capacity retention rate superior to the laminate type lithium ion secondary batteries of Comparative Example 11 and Comparative Example 12.
  • the protective layer of the laminate type lithium ion secondary battery of Example 11 is only SnO 2 layer.
  • the resistance value of the laminate type lithium ion secondary battery of Comparative Example 13 and the protective layer in the order of the laminate type lithium ion secondary battery of Comparative Example 14, which is different from the laminate type lithium ion secondary battery of Example 11, is significantly lower. Indicated.
  • the low resistance value of the laminated lithium ion secondary battery of Example 11 is that the first layer in contact with the current collector body uses IZO, which is a degenerate semiconductor and has a high carrier density.
  • IZO is a degenerate semiconductor and has a high carrier density.
  • the Schottky barrier generated at the interface between the layers is remarkably reduced, and the second layer in contact with the first layer uses SnO 2 having the same band gap as that of IZO. It can be understood that the result was obtained.
  • the nonaqueous electrolyte secondary battery of the present invention has a low resistance and a good capacity retention rate, the nonaqueous electrolyte secondary battery of the present invention is excellent in output characteristics and cycle characteristics. It could be confirmed. It was also confirmed that the nonaqueous electrolyte secondary battery of the present invention can be used under a high potential driving condition of 4.5V.
  • Example 12 An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector body. This aluminum foil was put into a sputtering apparatus, and tin was sputtered to a thickness of about 100 nm on the surface of the aluminum foil under an argon gas atmosphere. Oxygen gas was introduced into the sputtering apparatus during the sputtering of tin. By doing so, a coating layer containing SnO 2 was formed to a thickness of about 100 nm on the exposed aluminum foil surface and tin surface. That is, the current collector 11 was obtained by continuously performing the coating process and the coating process.
  • the specific resistance of aluminum as a current collector body is 2.5 ⁇ cm
  • the specific resistance of Sn (tin) as a high resistance metal is 11 ⁇ cm.
  • the positive electrode was created as follows.
  • the slurry was placed on the surface of the coating layer of the current collector 11 and applied using a doctor blade so that the slurry became a film.
  • the current collector 11 coated with the slurry was dried at 80 ° C. for 20 minutes, NMP was removed by volatilization, and an active material layer was formed on the surface of the coating layer. Thereafter, the current collector 11 on which the active material layer was formed was compressed by a roll press machine, and the current collector 11 and the active material layer were firmly bonded.
  • the joined product was heated with a vacuum dryer at 120 ° C. for 6 hours and cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm) to obtain a positive electrode.
  • the negative electrode was produced as follows.
  • a laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet (27 ⁇ 32 mm, thickness 25 ⁇ m) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film.
  • a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • the positive electrode and the negative electrode each have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • Comparative Example 15 An aluminum foil itself having a thickness of 20 ⁇ m was used as a current collector for the positive electrode. Except for this, a laminated lithium ion secondary battery of Comparative Example 15 was produced in the same manner as in Example 12.
  • the positive electrode current collector was formed by directly forming a coating layer containing SnO 2 with a thickness of about 100 nm on the surface of an aluminum foil having a thickness of 20 ⁇ m. That is, a laminated lithium ion secondary battery of Comparative Example 16 was produced in the same manner as in Example 12 except that the high resistance metal was not formed between the aluminum foil and the coating layer.
  • ⁇ Evaluation method> The initial capacities of the laminated lithium ion secondary batteries of Example 12 and Comparative Examples 15 and 16 were measured.
  • the battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate, voltage 4.5 V, and CC discharge (constant current discharge) is performed at voltage 3.0 V, 0.33 C rate.
  • the discharge capacity when measured was measured and used as the initial capacity.
  • the capacity retention rate (%) was obtained by the following formula.
  • Capacity retention rate (%) capacity after cycle / initial capacity x 100
  • the current rate for discharging in 1 hour is called 1C.
  • Table 7 shows the results of the initial capacity, resistance, and capacity retention rate.
  • the laminated lithium ion secondary battery of Example 12 has a coating film in advance even though the SnO 2 coating layer is formed. A low resistance value equivalent to that of the laminate type lithium ion secondary battery of Comparative Example 15 in which was not formed was shown. In addition, the laminate type lithium ion secondary battery of Example 12 exhibited a capacity retention rate superior to that of the laminate type lithium ion secondary battery of Comparative Example 15.
  • the laminated lithium ion secondary battery of Comparative Example 16 is a high resistance, since the electrochemical properties of aluminum and SnO 2 which constitute the current collector is greatly different, and SnO 2 of the aluminum foil and the covering layer This is probably due to the large Schottky barrier at the interface.
  • the presence of Sn between the aluminum foil and the SnO 2 of the coating layer allows the interface between aluminum and Sn and the interface between Sn and SnO 2 to be present.
  • the resistance generated at the interface between aluminum and Sn is not a problem because both are metals and their electrochemical properties are similar.
  • the difference in electrochemical properties between Sn and SnO 2 is less than the difference in the electrochemical properties between aluminum and SnO 2. Therefore, it is presumed that the Schottky barrier generated at the interface between Sn and SnO 2 is lower than the Schottky barrier generated at the interface between aluminum and SnO 2 .
  • Example 12 since the current collector of Example 12 was obtained by continuously performing the Sn coating step and the SnO 2 coating step, it is presumed that the generation of the interface generated between Sn and SnO 2 itself is reduced. Therefore, it is considered that the resistance value of the laminated lithium ion secondary battery of Example 12 was significantly lower than the resistance value of the laminated lithium ion secondary battery of Comparative Example 16.
  • the present invention since the capacity retention rate after 200 cycles under the high potential driving condition is the same for the laminated lithium ion secondary battery of Example 1 and the laminated lithium ion secondary battery of Comparative Example 2, the present invention It can be said that the current collector for positive electrode of non-aqueous electrolyte secondary battery is excellent in corrosion resistance.
  • the non-aqueous electrolyte secondary battery using the current collector for positive electrode of the non-aqueous electrolyte secondary battery of the present invention has a low resistance and a good capacity retention rate, the non-aqueous electrolyte secondary battery outputs It was confirmed that the characteristics and cycle characteristics were excellent. It was also confirmed that the current collector for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention can be used under a high potential driving condition of 4.5V.
  • Example 12 and Comparative Examples 15 and 16 From the results and considerations of Example 12 and Comparative Examples 15 and 16, the relationship between the current collector body aluminum, the high resistance metal Sn and the coating layer SnO 2 is present and the current collector resistance is clarified. It was. That is, it was confirmed that the resistance of the current collector is remarkably lowered by the presence of a high-resistance metal having a specific resistance higher than that of the current collector body between the current collector body and the coating layer.
  • This relationship is not limited to the above embodiments, the current collector body silver than aluminum, for metals such as copper, indium oxide of the coating layer other than SnO 2, zinc oxide, nickel oxide, titanium oxide, etc.
  • Example 12 From the results and discussion of Example 12 and Comparative Examples 15 and 16, it can be applied to metal nitrides such as metal nitrides such as aluminum nitride and titanium nitride, and degenerate semiconductors such as IZO, AZO, and ITO. Will be apparent to those skilled in the art.
  • metal nitrides such as metal nitrides such as aluminum nitride and titanium nitride
  • degenerate semiconductors such as IZO, AZO, and ITO. Will be apparent to those skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Provided is a current collector for a non-aqueous electrolyte secondary cell positive electrode, the current collector having: a main current collector body; and a coat layer formed on the surface of the main current collector body, the coat layer comprising an electroconductive oxide having a specific resistance no greater than 9.9 × 10-3 Ωcm or an electroconductive nitride having a specific resistance no greater than 9.9 × 10-3 Ωcm. Also provided is a non-aqueous electrolyte secondary cell having: a positive electrode for a non-aqueous electrolyte secondary cell having a current collector for a non-aqueous electrolyte secondary cell positive electrode having a main current collector body and a coat layer formed on the surface of the main current collector body, the coat layer comprising an electroconductive oxide; and a non-aqueous electrolyte containing LiBF4 (lithium tetrafluoroborate) as an electrolytic salt. Also provided is a positive electrode for a non-aqueous electrolyte secondary cell, having a main current collector body, a first layer formed on the surface of the main current collector body, a second layer formed on the surface of the first layer, and an active material layer formed on the surface of the second layer, the specific resistance of the first layer being lower than the specific resistance of the second layer and higher than the specific resistance of the main current collector body. Also provided is a current collector for a non-aqueous electrolyte secondary cell positive electrode having a main current collector body and a coating layer containing a metal oxide or a metal nitride, wherein a high-resistance metal having a higher specific resistance than the main current collector body is provided between the main current collector body and the coating layer.

Description

非水電解質二次電池正極用集電体、その製造方法、非水電解質二次電池用正極及び非水電解質二次電池Non-aqueous electrolyte secondary battery positive electrode current collector, manufacturing method thereof, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
 本発明は、非水電解質二次電池正極用集電体、その製造方法、非水電解質二次電池用正極及び非水電解質二次電池に関する。 The present invention relates to a current collector for a positive electrode of a nonaqueous electrolyte secondary battery, a manufacturing method thereof, a positive electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
 非水電解質二次電池の正極集電体には、電解塩などによる腐食に耐えるため、自然発生的に表面に安定な不動態膜が形成されるAlなどの金属を使用するのが一般的である。例えばAlを集電体本体に用いた場合、その表面にAl、AlF等の不動態膜が形成される。集電体本体の表面に不動態膜が形成されると、電解塩等と集電体本体との接触が低減されるので、電解塩などによって集電体本体が腐食されにくくなる。このため、不動態膜が形成された集電体本体は、集電機能を良好に保つことができる。しかしながら、表面の不動態膜は抵抗が高いため、集電体本体に不動態膜が形成されると不動態膜がない場合と比較して電池の放電容量が低下する。 For the positive electrode current collector of a non-aqueous electrolyte secondary battery, it is common to use a metal such as Al that spontaneously forms a stable passive film on the surface in order to withstand corrosion caused by electrolytic salts. is there. For example, when Al is used for the current collector body, a passive film such as Al 2 O 3 or AlF 3 is formed on the surface thereof. When a passive film is formed on the surface of the current collector body, contact between the electrolytic salt or the like and the current collector body is reduced, so that the current collector body is hardly corroded by the electrolytic salt or the like. For this reason, the current collector main body on which the passive film is formed can maintain a good current collecting function. However, since the passive film on the surface has high resistance, when the passive film is formed on the current collector body, the discharge capacity of the battery is reduced as compared with the case where there is no passive film.
 近年、非水電解質二次電池の高電位化要求が高まり、様々な高電位化検討が行われている。集電体に関しては、例えば高電位においてサイクル特性を上げるために集電体本体に保護膜を形成することが検討されている。 In recent years, demands for higher potentials of non-aqueous electrolyte secondary batteries have increased, and various potential studies have been conducted. With respect to the current collector, for example, it has been studied to form a protective film on the current collector body in order to improve cycle characteristics at a high potential.
 例えば特許文献1には、ヨウ化Al、TiN、Ti、SnO、In、RuO等から選ばれる化合物を構成成分として含む耐酸化性を有する保護膜を集電体本体の表面に形成することが記載されている。この保護膜に含まれるこれらの化合物は導電性を有し、かつ高電圧下においても電気化学的に安定である。集電体本体に上記化合物を含む保護膜を形成することにより、電解質中の電解塩と、正極の集電体本体との接触を低減することができるため、高電位駆動下においても両者の反応を抑制することができる。その結果として、サイクル特性及び容量維持特性を向上することが可能である。特許文献1には、50℃で2週間放置後の容量維持率(%)と容量回復率(%)、50℃で300サイクルのサイクル特性(%)について記載されている。しかしながら特許文献1には、放電容量に関する記載はない。 For example, Patent Document 1 discloses a current collector body including an oxidation-resistant protective film containing, as a constituent, a compound selected from Al iodide, TiN, Ti 2 O 3 , SnO 2 , In 2 O 3 , RuO 2, and the like. It is described that it forms on the surface. These compounds contained in the protective film have conductivity and are electrochemically stable even under high voltage. By forming a protective film containing the above compound on the current collector body, the contact between the electrolyte salt in the electrolyte and the current collector body of the positive electrode can be reduced. Can be suppressed. As a result, cycle characteristics and capacity maintenance characteristics can be improved. Patent Document 1 describes the capacity retention rate (%) and capacity recovery rate (%) after standing at 50 ° C. for 2 weeks, and the cycle characteristics (%) of 300 cycles at 50 ° C. However, Patent Document 1 does not describe the discharge capacity.
 また特許文献2には、アルミニウム又はアルミニウム合金製の集電体本体の表面に形成された酸化膜の厚さが3nm以下となるようにして、その酸化膜の上にアルミニウムよりも腐食を受けにくい金属又は金属炭化物からなる導電層が形成された正極集電体が記載されている。特許文献2の実施例において各放電レートによる電池の放電容量が測定されている。これによると、50C以上のレートにおいては、導電層によって電池の放電容量が改善される。しかしながら、1/3C、1C、5Cレートにおいて比較すると、導電層を形成していないアルミニウム箔を集電体本体として使用した試験例1の電池の放電容量に比べて、導電層を形成したアルミニウム箔を集電体として使用した試験例2~7の電池の放電容量は低い。 In Patent Document 2, the thickness of the oxide film formed on the surface of the current collector body made of aluminum or aluminum alloy is set to 3 nm or less, and the oxide film is less susceptible to corrosion than aluminum. A positive electrode current collector in which a conductive layer made of metal or metal carbide is formed is described. In the example of Patent Document 2, the discharge capacity of the battery at each discharge rate is measured. According to this, at a rate of 50 C or higher, the discharge capacity of the battery is improved by the conductive layer. However, when compared with the 1 / 3C, 1C, and 5C rates, the aluminum foil with the conductive layer formed is compared with the discharge capacity of the battery of Test Example 1 in which the aluminum foil without the conductive layer is used as the current collector body. The discharge capacities of the batteries of Test Examples 2 to 7 in which is used as the current collector are low.
 このようにこれらの保護膜では、いずれも未だ望ましいサイクル特性を有しかつ望ましい放電容量を示すような出力特性を有する非水電解質二次電池を達成するに至っていない。 As described above, none of these protective films has yet achieved a non-aqueous electrolyte secondary battery having desirable cycle characteristics and output characteristics exhibiting desirable discharge capacity.
 一方で非水電解質二次電池の電解塩として一般的にLiPF(六フッ化リン酸リチウム)やLiBF(四フッ化ホウ酸リチウム)のような含フッ素アニオンのリチウム塩が用いられている。LiPFはLiBFに比べて高い伝導度を示す一方で、熱安定性が低いことが知られている。電解質の伝導度が高いと非水電解質二次電池の初期容量が高くなるが、電解液の熱安定性が低いと非水電解質二次電池のサイクル特性が悪くなる。このことから、電解塩にLiPFを用いる非水電解質二次電池はLiBFを電解塩に用いる非水電解質二次電池に比べて、高電圧使用時に初期容量は高いが、サイクル特性が低下する。逆に電解塩にLiBFを用いる非水電解質二次電池は、電解質の熱安定性が高いため高電圧使用時にサイクル特性の劣化を抑制できるが、電解質の導電率が低く抵抗が高くなって十分な初期容量を得ることが難しかった。
特開2004-55247号公報 特開2011-96667号公報
On the other hand, a lithium salt of a fluorine-containing anion such as LiPF 6 (lithium hexafluorophosphate) or LiBF 4 (lithium tetrafluoroborate) is generally used as an electrolyte salt of a nonaqueous electrolyte secondary battery. . LiPF 6 is known to exhibit higher conductivity than LiBF 4 while having low thermal stability. When the conductivity of the electrolyte is high, the initial capacity of the nonaqueous electrolyte secondary battery is increased, but when the thermal stability of the electrolyte is low, the cycle characteristics of the nonaqueous electrolyte secondary battery are deteriorated. From this, the non-aqueous electrolyte secondary battery using LiPF 6 as the electrolytic salt has a higher initial capacity when using a high voltage than the non-aqueous electrolyte secondary battery using LiBF 4 as the electrolytic salt, but the cycle characteristics are lowered. . Conversely, non-aqueous electrolyte secondary batteries using LiBF 4 as the electrolyte salt can suppress deterioration of cycle characteristics when using high voltage because of the high thermal stability of the electrolyte, but the electrolyte has low conductivity and high resistance. It was difficult to obtain an initial capacity.
JP 2004-55247 A JP 2011-96667 A
 (第1の課題)
 本発明者らは、集電体本体の表面に電子移動を妨げない層を形成することによって、高電位においても電解塩などによる集電体の腐食を抑制し、かつ不動態膜が自然発生的に形成された集電体本体を用いた場合よりも電池の放電容量を向上させることはできないか検討した。本発明は、このような事情に鑑みて為されたものであり、高電位においても優れたサイクル特性及び出力特性を有する非水電解質二次電池正極用集電体、その製造方法、及び非水電解質二次電池を提供することを本発明の第1の目的とする。
(First issue)
The present inventors have formed a layer that does not hinder electron transfer on the surface of the current collector body, thereby suppressing corrosion of the current collector due to electrolytic salt or the like even at a high potential, and a passive film is spontaneously generated. It was examined whether the discharge capacity of the battery could be improved as compared with the case where the current collector body formed in the above was used. The present invention has been made in view of such circumstances, and a current collector for a positive electrode of a nonaqueous electrolyte secondary battery having excellent cycle characteristics and output characteristics even at a high potential, a method for producing the same, and a nonaqueous It is a first object of the present invention to provide an electrolyte secondary battery.
 (第2の課題)
 高電圧使用環境下において、非水電解質二次電池の初期容量を維持しつつサイクル特性を改善することができる非水電解質二次電池を提供することを本発明の第2の目的とする。
(Second problem)
It is a second object of the present invention to provide a non-aqueous electrolyte secondary battery capable of improving cycle characteristics while maintaining the initial capacity of the non-aqueous electrolyte secondary battery in a high voltage use environment.
 (第3の課題)
 本発明者らが集電体本体の保護層につき検討したところ、表面に不動態膜が形成され得るAlを正極の集電体本体として用いた非水電解質二次電池においては、抵抗が低いものの容量維持率を保つのが困難であることが判明した。また、上記特許文献1の技術内容、すなわち、表面にSnOからなる保護層が形成された集電体本体を有する正極を用いた非水電解質二次電池においては、容量維持率を保つことはできるものの抵抗が高いことが判明した。すなわち、これらの保護層では、いずれも未だ望ましい非水電解質二次電池を達成するには至っていないといえる。本発明は、このような事情に鑑みて為されたものであり、低抵抗でかつ、容量維持率が良好な非水電解質二次電池用の正極を提供することを本発明の第3の目的とする。
(Third issue)
When the present inventors examined the protective layer of the current collector body, in the nonaqueous electrolyte secondary battery using Al as the positive electrode current collector body, on which a passive film can be formed on the surface, the resistance is low. It turned out to be difficult to maintain the capacity maintenance rate. Moreover, in the non-aqueous electrolyte secondary battery using the positive electrode having the current collector body on which the protective layer made of SnO 2 is formed on the surface, the capacity retention rate is not maintained in the above-mentioned Patent Document 1. It turned out that resistance was high. That is, it can be said that none of these protective layers has yet achieved a desirable nonaqueous electrolyte secondary battery. The present invention has been made in view of such circumstances, and a third object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery having a low resistance and a good capacity retention rate. And
 (第4の課題)
 低抵抗でかつ、容量維持率が良好な非水電解質二次電池を達成するための、非水電解質二次電池正極用集電体を提供することを本発明の第4の目的とする。
(Fourth issue)
It is a fourth object of the present invention to provide a non-aqueous electrolyte secondary battery positive electrode current collector for achieving a non-aqueous electrolyte secondary battery having a low resistance and a good capacity retention rate.
 (第1の手段)
 本発明者等が上記第1の課題を鋭意検討した結果、正極用集電体本体の表面に比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層を形成することにより非水電解質二次電池が高電位においても優れたサイクル特性及び出力特性を有するようになることを見いだした。
(First means)
As a result of intensive studies of the first problem by the present inventors, the conductive oxide or specific resistance having a specific resistance of 9.9 × 10 −3 Ωcm or less on the surface of the current collector body for positive electrode is 9.9. It has been found that by forming a coating layer made of a conductive nitride of × 10 −3 Ωcm or less, the nonaqueous electrolyte secondary battery has excellent cycle characteristics and output characteristics even at a high potential.
 すなわち、上記第1の課題を解決する本発明の非水電解質二次電池正極用集電体は、集電体本体と、集電体本体の表面に形成された、比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層と、を有し、導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであり、導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つであることを特徴とする。 That is, the current collector for a nonaqueous electrolyte secondary battery positive electrode of the present invention that solves the first problem has a current collector body and a specific resistance of 9.9 × formed on the surface of the current collector body. has a 10 -3 [Omega] cm or less is conductive oxide or the specific resistance is made of conductive nitride is 9.9 × 10 -3 Ωcm or less coating layer, a conductive oxide, Zn oxide, indium , Mo, W, Ti, Zr, Sn and H added at least one element selected, tin oxide added at least one element selected from F, W, Ta, Sb, P and B, It is one selected from zinc oxide added with at least one element selected from Ga, Al and B and titanium oxide added with Nb element, and the conductive nitride is TiN, ZrN, HfN, TaN, NbN, VN and Characterized in that it is a one selected from N.
 酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したものは、インジウム亜鉛酸化物であることが好ましい。酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したものは、アルミニウム亜鉛酸化物又はガリウム亜鉛酸化物であることが好ましい。 A material obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H to indium oxide is preferably indium zinc oxide. A material in which at least one element selected from Ga, Al, and B is added to zinc oxide is preferably aluminum zinc oxide or gallium zinc oxide.
 導電性酸化物は、酸化錫にF、Sb及びPから選ばれる少なくとも一種の元素を添加したものであることが好ましい。 The conductive oxide is preferably one in which at least one element selected from F, Sb and P is added to tin oxide.
 導電性窒化物はTiNであることが好ましい。 The conductive nitride is preferably TiN.
 コート層の厚みは、10nm~1μmであることが好ましい。 The thickness of the coat layer is preferably 10 nm to 1 μm.
 上記第1の課題を解決する本発明の非水電解質二次電池は、上記非水電解質二次電池正極用集電体を有することを特徴とする。 The nonaqueous electrolyte secondary battery of the present invention that solves the first problem includes the current collector for a positive electrode of the nonaqueous electrolyte secondary battery.
 上記第1の課題を解決する本発明の非水電解質二次電池は、上記非水電解質二次電池正極用集電体を有し、さらに非水電解液全体を100質量%としたときに、スルトン基を有する環状化合物を2.0質量%以上6.0質量%以下含む非水電解液を有することが好ましい。 The nonaqueous electrolyte secondary battery of the present invention that solves the first problem has the current collector for a positive electrode of the nonaqueous electrolyte secondary battery, and when the total amount of the nonaqueous electrolyte is 100% by mass, It is preferable to have a non-aqueous electrolyte solution containing 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group.
 特にスルトン基を有する環状化合物は、1、3-プロパンスルトン、1,4-ブテンスルトン、1,3-プロペンスルトン、3-メチル-1,3-プロペンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン及び3-メチル-1,3-プロパンスルトンからなる群から選ばれる少なくとも1つであることが好ましい。 Particularly, cyclic compounds having a sultone group are 1,3-propane sultone, 1,4-butene sultone, 1,3-propene sultone, 3-methyl-1,3-propene sultone, 1-methyl-1,3-propane sultone. It is preferably at least one selected from the group consisting of 2-methyl-1,3-propane sultone and 3-methyl-1,3-propane sultone.
 また非水電解質二次電池は、上記非水電解液と、酸化錫にF、Sb及びPから選ばれる少なくとも一種を添加した導電性酸化物からなるコート層を有する非水電解質二次電池正極用集電体と、を有することが好ましい。 The non-aqueous electrolyte secondary battery is for a non-aqueous electrolyte secondary battery positive electrode having a coating layer made of the above non-aqueous electrolyte and a conductive oxide in which at least one selected from F, Sb and P is added to tin oxide. And a current collector.
 上記第1の課題を解決する本発明の非水電解質二次電池正極用集電体の製造方法は、集電体本体の表面にスパッタリング法で比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層を形成するコート層形成工程を有し、導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであり、導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つであることを特徴とする。 The method for producing a current collector for a positive electrode of a nonaqueous electrolyte secondary battery according to the present invention that solves the above first problem has a specific resistance of 9.9 × 10 −3 Ωcm or less by sputtering on the surface of the current collector body. A coating layer forming step of forming a coating layer made of a certain conductive oxide or a conductive nitride having a specific resistance of 9.9 × 10 −3 Ωcm or less, and the conductive oxide includes Zn, One in which at least one element selected from Mo, W, Ti, Zr, Sn and H is added, one in which at least one element selected from F, W, Ta, Sb, P and B is added to tin oxide, oxidation It is one selected from zinc added with at least one element selected from Ga, Al and B and titanium oxide added with Nb element. The conductive nitride is TiN, ZrN, HfN, TaN. , N N, characterized in that it is one selected from the VN and WN.
 (第2の手段)
 本発明者等が上記第2の課題を鋭意検討した結果、正極用集電体本体の表面に導電性酸化物からなるコート層を形成し、かつ、LiBF(四フッ化ホウ酸リチウム)を電解塩として含有する非水電解質を用いることにより高電圧使用環境下においても初期容量を維持しつつサイクル特性を改善できることを見いだした。
(Second means)
As a result of intensive studies on the second problem by the present inventors, a coating layer made of a conductive oxide is formed on the surface of the current collector body for positive electrode, and LiBF 4 (lithium tetrafluoroborate) is added. It was found that by using a non-aqueous electrolyte contained as an electrolytic salt, the cycle characteristics can be improved while maintaining the initial capacity even in an environment where high voltage is used.
 すなわち、上記第2の課題を解決する本発明の非水電解質二次電池は、集電体本体と、集電体本体の表面に形成された導電性酸化物からなるコート層と、を有する非水電解質二次電池正極用集電体を有する非水電解質二次電池用正極と、LiBF(四フッ化ホウ酸リチウム)を電解塩として含有する非水電解質と、を有し、導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであることを特徴とする。 That is, the nonaqueous electrolyte secondary battery of the present invention that solves the second problem includes a current collector body and a coating layer made of a conductive oxide formed on the surface of the current collector body. A non-aqueous electrolyte secondary battery positive electrode having a current collector for a water electrolyte secondary battery positive electrode, and a non-aqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolyte salt, and conductive oxidation The product is an indium oxide to which at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H is added, and at least one selected from F, W, Ta, Sb, P and B to tin oxide. It is any one selected from those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide. .
 酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したものはインジウム錫酸化物又はインジウム亜鉛酸化物であることが好ましい。 A material obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H to indium oxide is preferably indium tin oxide or indium zinc oxide.
 酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したものはアルミニウム亜鉛酸化物又はガリウム亜鉛酸化物であることが好ましい。 What added at least one element chosen from Ga, Al, and B to zinc oxide is preferably aluminum zinc oxide or gallium zinc oxide.
 導電性酸化物は比抵抗が9.9×10-3Ωcm以下であることが好ましい。 The conductive oxide preferably has a specific resistance of 9.9 × 10 −3 Ωcm or less.
 コート層の膜厚は、10nm~1μmであることが好ましい。 The film thickness of the coating layer is preferably 10 nm to 1 μm.
 (第3の手段)
 本発明者等が上記第3の課題を鋭意検討した結果、正極用集電体本体とSnO等の保護層との間に、集電体本体の比抵抗よりも高く、かつ保護層の比抵抗よりも低い新たな保護層を導入することにより、低抵抗、かつ容量維持率が良好な非水電解質二次電池用の正極を提供することができることを見いだした。
(Third means)
As a result of the present inventors diligently examining the third problem, the specific resistance between the positive electrode current collector main body and the protective layer such as SnO 2 is higher than the specific resistance of the current collector main body and the ratio of the protective layer. It has been found that by introducing a new protective layer lower than the resistance, a positive electrode for a non-aqueous electrolyte secondary battery having a low resistance and a good capacity retention rate can be provided.
 すなわち、上記第3の課題を解決する本発明の非水電解質二次電池用正極は、集電体本体、集電体本体の表面に形成された第1層、第1層の表面に形成された第2層、及び第2層の表面に形成された活物質層を有する非水電解質二次電池用正極において、第1層の比抵抗が、第2層の比抵抗よりも低く、かつ、集電体本体の比抵抗よりも高いことを特徴とする。 That is, the positive electrode for a nonaqueous electrolyte secondary battery of the present invention that solves the third problem is formed on the surface of the current collector body, the first layer formed on the surface of the current collector body, and the surface of the first layer. In the positive electrode for a non-aqueous electrolyte secondary battery having the second layer and the active material layer formed on the surface of the second layer, the specific resistance of the first layer is lower than the specific resistance of the second layer, and It is characterized by being higher than the specific resistance of the current collector body.
 上記第3の課題を解決する本発明の非水電解質二次電池用正極を用いた場合に低抵抗を示すのは、以下の理由によるものと考えられる。 The reason why low resistance is exhibited when the positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the third problem is used is considered to be as follows.
 まず、従来の正極において、集電体本体とSnOの保護層に電気が流れる際の抵抗を考察すると、集電体本体自身、SnO自身で生じる抵抗に加え、集電体本体とSnOの界面で生じる抵抗が存在する。集電体本体とSnOとでは電気化学的性質(それぞれの比抵抗値)が大きく異なるので、集電体本体とSnOの界面では非常に大きなショットキー障壁が生じると考えられる。その結果、従来の正極の抵抗が高くなったと推察される。 First, in the conventional positive electrode, considering the resistance when flowing electricity to the protective layer of the collector body and SnO 2, the collector body itself, in addition to the resistance caused by SnO 2 itself, the current collector body and SnO 2 There is a resistance that occurs at the interface. Since electrochemical properties in the collector body and SnO 2 (each specific resistance value) are largely different, it is considered very large Schottky barrier arises at the interface of the current collector body and SnO 2. As a result, it is assumed that the resistance of the conventional positive electrode has increased.
 上記第3の課題を解決する本発明の非水電解質二次電池用正極において、集電体本体、第1層(例えばIn-ZnO(IZO))及び第2層(例えばSnO)を電気が流れる際の抵抗を考察すると、集電体本体自身、IZO自身、及びSnO自身で生じる抵抗に加え、集電体本体とIZOの界面、及びIZOとSnOの界面で生じる抵抗が存在する。しかし、集電体本体とIZOとの電気化学的性質(それぞれの比抵抗値)が集電体本体とSnOとの電気化学的性質よりも近いものであるため、集電体本体とIZOの界面で生じるショットキー障壁は、集電体本体とSnOとの界面で生じるショットキー障壁より著しく低い。その結果として、集電体本体とIZOの界面での抵抗は著しく低いと推察される。さらに、IZOとSnOとの電気化学的性質(それぞれの比抵抗、バンドギャップ)がいずれも集電体本体とSnOとの電気化学的物性よりも近いものであるため、IZOとSnOの界面で生じる抵抗は著しく低いと推察される。 In the positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the third problem, a current collector body, a first layer (for example, In 2 O 3 —ZnO (IZO)), and a second layer (for example, SnO 2 ) In addition to the resistance generated in the current collector body itself, IZO itself, and SnO 2 itself, the resistance generated in the interface between the current collector body and IZO, and the interface between IZO and SnO 2 is considered. Exists. However, since the electrochemical properties (respective resistivity values) of the current collector body and IZO are closer than the electrochemical properties of the current collector body and SnO 2 , the current collector body and IZO The Schottky barrier generated at the interface is significantly lower than the Schottky barrier generated at the interface between the current collector body and SnO 2 . As a result, it is presumed that the resistance at the interface between the current collector body and the IZO is extremely low. Furthermore, since the electrochemical properties (respective specific resistance and band gap) of IZO and SnO 2 are both closer to the electrochemical properties of the current collector body and SnO 2 , IZO and SnO 2 It is assumed that the resistance generated at the interface is extremely low.
 よって、上記第3の課題を解決する本発明の非水電解質二次電池用正極は、従来の正極に保護層が新たに加わったものであるにもかかわらず、従来の正極よりも低抵抗を示す。 Therefore, the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention that solves the above third problem has a lower resistance than the conventional positive electrode, although a protective layer is newly added to the conventional positive electrode. Show.
 (第4の手段)
 本発明者等が上記第4の課題を鋭意検討した結果、正極用集電体本体とSnO等の被覆層との間に集電体本体よりも比抵抗の高い金属を導入した非水電解質二次電池正極用集電体を用いた非水電解質二次電池は、低抵抗であって、かつ容量維持率が良好であることを見いだした。
(Fourth means)
As a result of the present inventors diligently examining the fourth problem, a non-aqueous electrolyte in which a metal having a higher specific resistance than the current collector body is introduced between the current collector body for the positive electrode and the coating layer such as SnO 2. The non-aqueous electrolyte secondary battery using the secondary battery positive electrode current collector was found to have a low resistance and a good capacity retention rate.
 すなわち、上記第4の課題を解決する本発明の非水電解質二次電池正極用集電体は、集電体本体と金属酸化物又は金属窒化物を含む被覆層とを有する非水電解質二次電池正極用集電体において、集電体本体と被覆層との間に、集電体本体より比抵抗が高い高抵抗金属(以下、単に「高抵抗金属」という場合がある。)を有することを特徴とする。 That is, the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem is a non-aqueous electrolyte secondary battery having a current collector body and a coating layer containing a metal oxide or a metal nitride. The current collector for the battery positive electrode has a high resistance metal (hereinafter sometimes simply referred to as “high resistance metal”) having a specific resistance higher than that of the current collector body between the current collector body and the coating layer. It is characterized by.
 上記第4の課題を解決する本発明の非水電解質二次電池正極用集電体を用いた場合に、非水電解質二次電池が低抵抗を示すのは、以下の理由によるものと考えられる。 When the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem is used, the non-aqueous electrolyte secondary battery exhibits a low resistance for the following reason. .
 まず、従来の集電体において、集電体本体とSnOの保護層に電気が流れる際の抵抗を考察すると、集電体本体自身、SnO自身で生じる抵抗に加え、集電体本体とSnOの界面で生じる抵抗が存在する。集電体本体とSnOとでは電気化学的性質(それぞれの比抵抗値)が大きく異なるので、集電体本体とSnOの界面では非常に大きなショットキー障壁が生じると考えられる。その結果、集電体の抵抗が高くなったと推察される。 First, in the conventional current collector, considering the resistance when electricity flows through the current collector body and the SnO 2 protective layer, the current collector body itself, the resistance generated by the SnO 2 itself, There is a resistance that occurs at the SnO 2 interface. Since electrochemical properties in the collector body and SnO 2 (each specific resistance value) are largely different, it is considered very large Schottky barrier arises at the interface of the current collector body and SnO 2. As a result, it is assumed that the resistance of the current collector has increased.
 次に、上記第4の課題を解決する本発明の非水電解質二次電池正極用集電体において、集電体本体、高抵抗金属、被覆層(例えばSnO)に電気が流れる際の抵抗を考察すると、集電体本体自身、高抵抗金属自身、及びSnO自身で生じる抵抗に加え、集電体本体と高抵抗金属の界面、及び高抵抗金属とSnOの界面で生じる抵抗が存在する。ここで、集電体本体と高抵抗金属の界面で生じる抵抗は著しく低いと考えられる。これは、集電体本体と高抵抗金属の両者が金属であり、両者の電気化学的性質(それぞれの比抵抗値)が似ているためである。そして、高抵抗金属とSnOの界面で生じる抵抗について考察すると、高抵抗金属とSnOとの電気化学的性質(それぞれの比抵抗値)は、集電体本体とSnOとの電気化学的性質よりも近いものであるため、高抵抗金属とSnOの界面で生じるショットキー障壁は、集電体本体とSnOの界面で生じるショットキー障壁よりも著しく低い。その結果として、高抵抗金属とSnOの界面で生じる抵抗は、集電体本体とSnOの界面で生じる抵抗よりも、著しく低いものとなったと推察される。 Next, in the current collector for the positive electrode of the nonaqueous electrolyte secondary battery of the present invention that solves the fourth problem, the resistance when electricity flows through the current collector body, the high-resistance metal, and the coating layer (for example, SnO 2 ). In addition to the resistance generated by the current collector body, the high resistance metal itself, and SnO 2 itself, there is a resistance generated at the interface between the current collector body and the high resistance metal and the interface between the high resistance metal and SnO 2. To do. Here, it is considered that the resistance generated at the interface between the current collector body and the high resistance metal is extremely low. This is because both the current collector body and the high resistance metal are metals, and the electrochemical properties (respective resistivity values) of both are similar. Then, considering the resistance generated at the interface between the high-resistance metal and SnO 2, electrochemical properties (each specific resistance value) between the high resistance metal and SnO 2 are electrochemical the collector body and SnO 2 Since it is closer to the nature, the Schottky barrier generated at the interface between the high-resistance metal and SnO 2 is significantly lower than the Schottky barrier generated at the interface between the current collector body and SnO 2 . As a result, it is assumed that the resistance generated at the interface between the high resistance metal and SnO 2 is significantly lower than the resistance generated at the interface between the current collector body and SnO 2 .
 よって、上記第4の課題を解決する本発明の非水電解質二次電池正極用集電体は、SnO等の被覆層を有する従来の集電体よりも低抵抗を示す。 Therefore, the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention that solves the fourth problem shows lower resistance than a conventional current collector having a coating layer of SnO 2 or the like.
 (第1の効果)
 上記第1の手段の本発明の非水電解質二次電池正極用集電体は、集電体本体の表面に比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層を有する。コート層は導電性を有するので、集電体本体の表面にコート層があっても集電体本体への電子移動度は大きく低下しない。また集電体本体の表面はコート層で保護されるので、電解塩などによって集電体本体が腐食されるのが抑制される。そのため、上記非水電解質二次電池正極用集電体を有する非水電解質二次電池は優れたサイクル特性及び出力特性を有する。
(First effect)
The non-aqueous electrolyte secondary battery positive electrode current collector of the present invention according to the first means is a conductive oxide or specific resistance having a specific resistance of 9.9 × 10 −3 Ωcm or less on the surface of the current collector body. Has a coat layer made of a conductive nitride having a thickness of 9.9 × 10 −3 Ωcm or less. Since the coat layer has conductivity, the electron mobility to the current collector body is not greatly reduced even if the coat layer is on the surface of the current collector body. Further, since the surface of the current collector body is protected by the coat layer, the current collector body is prevented from being corroded by the electrolytic salt or the like. Therefore, the non-aqueous electrolyte secondary battery having the non-aqueous electrolyte secondary battery positive electrode current collector has excellent cycle characteristics and output characteristics.
 上記第1の手段の本発明の非水電解質二次電池正極用集電体の製造方法は、容易に集電体本体の表面にコート層を形成できる。 The method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to the present invention as the first means can easily form a coat layer on the surface of the current collector body.
 上記第1の手段の本発明の非水電解質二次電池は上記非水電解質二次電池正極用集電体を有するので、優れたサイクル特性及び出力特性を有する。 Since the nonaqueous electrolyte secondary battery of the present invention as the first means has the current collector for the positive electrode of the nonaqueous electrolyte secondary battery, it has excellent cycle characteristics and output characteristics.
 上記第1の手段の本発明の非水電解質二次電池は、上記非水電解質二次電池正極用集電体及びスルトン基を有する環状化合物を含む非水電解液を有するので、さらに優れたサイクル特性を有する。 The non-aqueous electrolyte secondary battery of the present invention of the first means has a non-aqueous electrolyte solution containing the non-aqueous electrolyte secondary battery positive electrode current collector and a cyclic compound having a sultone group, and thus a further excellent cycle. Has characteristics.
 (第2の効果)
 上記第2の手段の本発明の非水電解質二次電池は、正極用集電体本体の表面に導電性酸化物からなるコート層を形成しているので、正極用集電体本体界面での抵抗を低減できる。また上記第2の手段の本発明の非水電解質二次電池は、さらにLiBF(四フッ化ホウ酸リチウム)を電解塩として含有する非水電解質を有するため、サイクル特性が向上する。LiBFは導電率が低いため電池の抵抗が増加し初期容量が低くなるという問題があったが、正極用集電体本体に形成されたコート層の効果により正極の抵抗を減らすことができ、初期容量の低下を防ぐことができる。
(Second effect)
In the non-aqueous electrolyte secondary battery according to the second means of the present invention, the coat layer made of a conductive oxide is formed on the surface of the current collector body for positive electrode. Resistance can be reduced. In addition, since the nonaqueous electrolyte secondary battery of the present invention of the second means further has a nonaqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolyte salt, cycle characteristics are improved. LiBF 4 has a problem that the conductivity of the battery is low and the battery capacity increases and the initial capacity is low, but the resistance of the positive electrode can be reduced by the effect of the coating layer formed on the positive electrode current collector body. A decrease in initial capacity can be prevented.
 (第3の効果)
 上記第3の手段の本発明の非水電解質二次電池用正極は、集電体本体の表面に第1層及び第2層の保護層を有するので、集電体本体の腐食が極めて起こりにくい。また、上記第3の手段の本発明の非水電解質二次電池用正極は、正極の集電体が2層の保護層を有するにも関わらず低抵抗を示すため、集電体への電子移動度が大きく低下しない。その結果として、上記第3の手段の本発明の非水電解質二次電池用正極を用いた非水電解質二次電池は、高電位駆動条件下でも良好な容量維持率を示すことができる。
(Third effect)
The positive electrode for a non-aqueous electrolyte secondary battery according to the third aspect of the present invention has the protective layers of the first layer and the second layer on the surface of the current collector body, so that the current collector body is extremely unlikely to corrode. . In addition, the positive electrode for a non-aqueous electrolyte secondary battery according to the third aspect of the present invention has a low resistance despite the fact that the positive electrode current collector has two protective layers. Mobility does not decrease greatly. As a result, the nonaqueous electrolyte secondary battery using the positive electrode for a nonaqueous electrolyte secondary battery of the present invention of the third means can exhibit a good capacity retention rate even under high potential driving conditions.
 (第4の効果)
 上記第4の手段の本発明の非水電解質二次電池正極用集電体を用いた非水電解質二次電池は、低抵抗でかつ、良好な容量維持率を示すことができる。
(4th effect)
The non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode current collector of the present invention of the fourth means can have a low resistance and a good capacity retention rate.
第1の実施形態の非水電解質二次電池用正極を説明する模式図である。It is a schematic diagram explaining the positive electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment. 実施例1、実施例2及び比較例1のサイクル数と容量維持率(%)の関係を示すグラフである。It is a graph which shows the relationship between the cycle number of Example 1, Example 2, and the comparative example 1, and a capacity | capacitance maintenance factor (%). 第3の実施形態の非水電解質二次電池用正極を説明する模式図である。It is a schematic diagram explaining the positive electrode for nonaqueous electrolyte secondary batteries of 3rd Embodiment.
 1:集電体本体、2:コート層、3:活物質層、4:非水電解質二次電池正極用集電体、10:集電体本体、21:第1層、22:第2層、31:活物質層、50:非水電解質二次電池用正極。 1: current collector body, 2: coat layer, 3: active material layer, 4: current collector for non-aqueous electrolyte secondary battery positive electrode, 10: current collector body, 21: first layer, 22: second layer , 31: active material layer, 50: positive electrode for nonaqueous electrolyte secondary battery.
 以下に本発明の各実施形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限x及び上限yをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 (第1の実施形態)
 <非水電解質二次電池正極用集電体>
 本発明の第1の実施形態の非水電解質二次電池正極用集電体は、集電体本体と、集電体本体の表面に形成された、比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層と、を有する。
Each embodiment of the present invention will be described below. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
(First embodiment)
<Nonaqueous electrolyte secondary battery positive electrode current collector>
The non-aqueous electrolyte secondary battery positive electrode current collector according to the first embodiment of the present invention has a current collector body and a specific resistance of 9.9 × 10 −3 Ωcm formed on the surface of the current collector body. A conductive oxide or a coat layer made of conductive nitride having a specific resistance of 9.9 × 10 −3 Ωcm or less.
 集電体本体は、非水電解質二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。本発明の第1の実施形態の非水電解質二次電池正極用集電体において、集電体本体の表面にはコート層が形成されている。コート層は電解塩等と集電体本体との接触を低減し、集電体本体の電解塩等による腐食を抑制する。そのため、集電体本体の材料として、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料又は導電性樹脂を用いることができる。また集電体本体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体本体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。 The current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery. In the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment of the present invention, a coat layer is formed on the surface of the current collector body. The coat layer reduces the contact between the electrolytic salt and the current collector body, and suppresses the corrosion of the current collector body by the electrolytic salt and the like. Therefore, a metal material such as stainless steel, titanium, nickel, aluminum, copper, or a conductive resin can be used as a material for the current collector body. The current collector body can take the form of a foil, a sheet, a film and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body.
 集電体本体は、厚みが10μm~100μmであることが好ましい。 The current collector body preferably has a thickness of 10 μm to 100 μm.
 コート層は、集電体本体の表面に形成され、比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなる。通常、アルミニウム箔を集電体本体として用いると、アルミニウム箔の表面には、大気中の酸素との自然反応によって形成されたAl、電解液中の電解塩との反応で形成されたAlF等の不動態膜が形成される。この不動態膜は絶縁体であり、その比抵抗(Ωcm)の桁数は10程度である。アルミニウム箔は不動態膜によって電解塩から保護される。しかし、不動態膜は高抵抗の膜である。そのため、不動態膜を表面に有する集電体本体を用いる電極は高抵抗となり、その電極を用いた電池は、不動態膜を有しない集電体本体を用いる電池に比べて放電容量が低減し出力特性が低下する。 The coat layer is formed on the surface of the current collector body and has a specific resistance of 9.9 × 10 −3 Ωcm or less or a conductive nitride having a specific resistance of 9.9 × 10 −3 Ωcm or less. It consists of things. Normally, when an aluminum foil is used as a current collector body, the surface of the aluminum foil is formed by a reaction with Al 2 O 3 formed by a natural reaction with oxygen in the atmosphere and an electrolytic salt in the electrolytic solution. A passive film such as AlF 3 is formed. This passive film is an insulator, and the number of digits of the specific resistance (Ωcm) is about 10 8 . The aluminum foil is protected from the electrolytic salt by a passive film. However, the passive film is a high resistance film. Therefore, an electrode using a current collector body having a passive film on its surface has a high resistance, and a battery using the electrode has a reduced discharge capacity compared to a battery using a current collector body without a passive film. Output characteristics deteriorate.
 本発明の第1の実施形態の非水電解質二次電池正極用集電体は集電体本体の表面にあらかじめコート層が形成されている。そのため、集電体本体の表面に上記不動態膜が形成されにくい。すなわち、このコート層により、高抵抗層が集電体本体の表面に形成されることを抑制できる。またコート層により電解塩等と集電体本体との接触を低減できるので、集電体本体の電解塩などによる腐食を抑制できる。 In the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment of the present invention, a coat layer is formed in advance on the surface of the current collector body. Therefore, it is difficult to form the passive film on the surface of the current collector body. That is, this coat layer can suppress the formation of the high resistance layer on the surface of the current collector body. Further, since the contact between the electrolytic salt or the like and the current collector main body can be reduced by the coat layer, corrosion due to the electrolytic salt or the like of the current collector main body can be suppressed.
 またコート層の比抵抗が9.9×10-3Ωcm以下であるため、このコート層によって電極の抵抗が実質的には増大しない。そのため、本発明の第1の実施形態の非水電解質二次電池正極用集電体を有する電池は電池の出力特性を良好に維持することができる。 Further, since the specific resistance of the coat layer is 9.9 × 10 −3 Ωcm or less, the resistance of the electrode is not substantially increased by this coat layer. Therefore, the battery having the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment of the present invention can maintain the output characteristics of the battery well.
 コート層は導電性酸化物あるいは導電性窒化物からなる。導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つである。導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つである。コート層は上記の導電性酸化物あるいは導電性窒化物からなるので、大気中の酸素、電解液及び電解塩に対して電気化学的に安定であり、また高電圧においても電気化学的に安定である。 The coating layer is made of conductive oxide or conductive nitride. The conductive oxide is indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, and tin oxide is selected from F, W, Ta, Sb, P and B Any one selected from the group consisting of zinc oxide added with at least one element selected from Ga, Al and B, and titanium oxide added with an Nb element. The conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN and WN. Since the coating layer is made of the above-mentioned conductive oxide or conductive nitride, it is electrochemically stable to oxygen, electrolytic solution and electrolytic salt in the atmosphere, and is electrochemically stable even at high voltage. is there.
 上記導電性酸化物はいずれも金属酸化物に他の元素を添加したものである。元素の添加は元素単体で添加されても良いし、元素を含む酸化物の形で添加されても良い。上記導電性酸化物は、母材である金属酸化物への元素添加及び元素添加による金属酸化物の構造内の酸素欠損の発生などにより、自由に動ける電荷移動体、つまりキャリアが生じ、導電性を示す。そのため上記導電性酸化物の比抵抗は低い。 All of the above conductive oxides are metal oxides with other elements added. The element may be added alone or in the form of an oxide containing the element. The above conductive oxide has a charge transfer body that can move freely, that is, carriers due to the addition of elements to the metal oxide as a base material and the generation of oxygen vacancies in the structure of the metal oxide. Indicates. Therefore, the specific resistance of the conductive oxide is low.
 このような材料は添加する元素の割合を変化させることで比抵抗を変化させることができる。本発明において導電性酸化物は上記範囲の比抵抗を有するように各々の元素の添加量を調整すればよい。 Such a material can change the specific resistance by changing the ratio of the element to be added. In the present invention, the amount of each element added may be adjusted so that the conductive oxide has a specific resistance in the above range.
 酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもののうち、酸化インジウムにZn元素あるいはSn元素を添加したものが好ましい。酸化インジウムにZn元素を添加したものとして、インジウム亜鉛酸化物が挙げられ、酸化インジウムにSn元素を添加したものとして、インジウム錫酸化物が挙げられる。インジウム亜鉛酸化物としてIn-ZnO(IZO)が好ましく、インジウム錫酸化物としてIn-SnO(ITO)が好ましい。 Among those in which at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H is added to indium oxide, those in which Zn element or Sn element is added to indium oxide are preferable. Examples of the indium oxide added with the Zn element include indium zinc oxide, and examples of the indium oxide added with the Sn element include indium tin oxide. In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide, and In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
 酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化錫に、F元素、Sb元素、Ta元素あるいはP元素を添加したものが好ましい。酸化錫にF元素を添加したものとして、フッ素錫酸化物が挙げられ、酸化錫にSb元素を添加したものとして、アンチモン錫酸化物が挙げられ、酸化錫にTa元素を添加したものとして、タンタル錫酸化物が挙げられ、酸化錫にP元素を添加したものとして、リン錫酸化物が挙げられる。フッ素錫酸化物としてフッ素添加酸化錫(FTO)が好ましく、アンチモン錫酸化物としてアンチモン添加酸化錫(ATO)が好ましく、タンタル錫酸化物としてタンタル添加酸化錫(TaTO)が好ましく、リン錫酸化物としてリン添加酸化錫(PTO)が好ましい。 Of those obtained by adding at least one element selected from F, W, Ta, Sb, P and B to tin oxide, those obtained by adding F element, Sb element, Ta element or P element to tin oxide are preferable. Fluorine tin oxide can be cited as the addition of F element to tin oxide, antimony tin oxide can be cited as the addition of Sb element to tin oxide, and tantalum as the addition of Ta element to tin oxide. Examples of the tin oxide include phosphorous tin oxide as a P element added to tin oxide. Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
 酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化亜鉛にGa元素あるいはAl元素を添加したものが好ましい。酸化亜鉛にGa元素を添加したものとして、ガリウム亜鉛酸化物が挙げられ、酸化亜鉛にAl元素を添加したものとして、アルミニウム亜鉛酸化物が挙げられる。ガリウム亜鉛酸化物としてガリウム添加酸化亜鉛(GZO)が好ましく、アルミニウム亜鉛酸化物としてアルミニウム添加酸化亜鉛(AZO)が好ましい。 Among those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, those obtained by adding Ga element or Al element to zinc oxide are preferable. Examples of the zinc oxide added with the Ga element include gallium zinc oxide, and examples of the zinc oxide added with the Al element include aluminum zinc oxide. Gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide, and aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide.
 酸化チタンにNb元素を添加したものとして、チタンニオブ酸化物が挙げられる。チタンニオブ酸化物としてTiO;Nbが好ましい。 An example of the titanium oxide added with Nb element is titanium niobium oxide. The titanium niobium oxide is preferably TiO 2 ; Nb.
 ここで、集電体本体にアルミニウム箔を用いた場合、集電体本体へのコート層の形成を高温状態で行うと、室温に戻したときに集電体本体とコート層との熱収縮差による膜応力が生じる。そのためコート層を形成された集電体本体は平坦でなくなり、コート層を形成した集電体本体へ活物質などを塗布する際にその塗布性に影響を及ぼし、電池特性を損なうことに繋がる。このため可能な限りコート層は室温で集電体本体に成膜されることが望ましい。 Here, when an aluminum foil is used for the current collector body, if the coat layer is formed on the current collector body at a high temperature, the difference in heat shrinkage between the current collector body and the coat layer when the temperature is returned to room temperature. Due to the film stress. Therefore, the current collector body on which the coat layer is formed is not flat, and when an active material or the like is applied to the current collector body on which the coat layer is formed, the applicability is affected and the battery characteristics are impaired. For this reason, it is desirable that the coat layer be formed on the current collector body as much as possible at room temperature.
 集電体本体へのコート層の成膜を室温で行うために、導電性酸化物が、AZOであることが好ましい。AZOは結晶性の材料であるが、室温成膜によっても十分に低抵抗とすることができる。一般的に結晶性の材料の抵抗を下げようとした場合、加熱処理をして結晶性を上げる処理を行う。AZOが室温成膜でも低抵抗とすることができるのは、材料の物性に拠るところが大きく、AZOは加熱処理をしなくても酸化亜鉛に対するAlの添加量の最適化などにより比抵抗が適宜調整可能である。 In order to form the coating layer on the current collector body at room temperature, the conductive oxide is preferably AZO. AZO is a crystalline material, but can have a sufficiently low resistance even at room temperature. In general, when the resistance of a crystalline material is to be lowered, heat treatment is performed to increase the crystallinity. AZO can achieve low resistance even at room temperature, largely because of the physical properties of the material. AZO can adjust the specific resistance appropriately by optimizing the amount of Al added to zinc oxide without heat treatment. Is possible.
 また導電性酸化物は、IZOであることが好ましい。IZOは酸化インジウムと酸化亜鉛の複合体であり、アモルファス構造を有する。IZOは室温成膜によっても十分に低抵抗となる。またIZOは高い平滑性を有し、局所的な反応を起こさないという特性を有する。その特性からIZOは膜応力が小さく、電池特性への影響が少ない。 The conductive oxide is preferably IZO. IZO is a composite of indium oxide and zinc oxide and has an amorphous structure. IZO has sufficiently low resistance even at room temperature. IZO has a high smoothness and does not cause a local reaction. Due to its characteristics, IZO has a small film stress and little influence on battery characteristics.
 導電性酸化物は、GZOであることが好ましい。GZOはAZOと比べて室温成膜でさらに低抵抗化を図ることができる。 The conductive oxide is preferably GZO. GZO can be further reduced in resistance at room temperature when compared with AZO.
 導電性酸化物は、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したものであることが好ましい。酸化錫へこれらの添加元素が入ることにより、導電性を向上させることができる。 The conductive oxide is preferably one in which at least one element selected from F, W, Ta, Sb, P and B is added to tin oxide. When these additive elements enter tin oxide, the conductivity can be improved.
 導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つである。導電性窒化物は導電性酸化物に比べて高硬度であり、耐摩耗性が高く、機械的強度が高い。そのため導電性窒化物をコート層に用いることによってコート層の強度が向上し、コート層の塗工性が向上する。特に導電性窒化物はTiNであることが好ましい。TiNは導電性、耐食性に優れる。 The conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN and WN. Conductive nitrides have higher hardness than conductive oxides, high wear resistance, and high mechanical strength. Therefore, by using conductive nitride for the coat layer, the strength of the coat layer is improved and the coatability of the coat layer is improved. In particular, the conductive nitride is preferably TiN. TiN is excellent in conductivity and corrosion resistance.
 コート層の膜厚は10nm~1μmであることが好ましく、20nm~800nmであることがより好ましい。コート層の膜厚が10nm以上であれば、集電体本体の表面を保護して電解液による集電体本体の腐食を抑制することができる。コート層の膜厚が1μm以下であれば、電池内部の集電体の占める体積を適正にすることができる。電池内の集電体の占める体積が大きくなりすぎると、活物質の量等を減らさなければならなくなり、電池容量の低下につながり好ましくない。 The film thickness of the coating layer is preferably 10 nm to 1 μm, and more preferably 20 nm to 800 nm. If the thickness of the coat layer is 10 nm or more, the surface of the current collector body can be protected and corrosion of the current collector body due to the electrolytic solution can be suppressed. If the thickness of the coat layer is 1 μm or less, the volume occupied by the current collector inside the battery can be made appropriate. If the volume occupied by the current collector in the battery becomes too large, the amount of active material and the like must be reduced, which leads to a decrease in battery capacity.
 この集電体本体へコート層を形成する方法は、ゾルゲル法、熱分解スプレー法、CVD法(Chemical Vapor Deposition法)、スパッタリング法、真空蒸着法、コーティング法などを使用できる。このコート層形成方法は、集電体本体の材料や形状及びコート層を構成する導電性酸化物及び導電性窒化物の種類に応じて適切に選択して使用すればよい。 As a method for forming a coating layer on the current collector body, a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, a coating method, or the like can be used. This coat layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of conductive oxide and conductive nitride constituting the coat layer.
 本発明の第1の実施形態の非水電解質二次電池正極用集電体は特に下記の製造方法を用いることによって好適に製造できる。 The current collector for the positive electrode of the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention can be preferably manufactured by using the following manufacturing method.
<非水電解質二次電池正極用集電体の製造方法>
 本発明の第1の実施形態の非水電解質二次電池正極用集電体の製造方法は、集電体本体の表面にスパッタリング法で比抵抗が9.9×10-3Ωcm以下である導電性酸化物あるいは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層を形成するコート層形成工程を有することを特徴とする。
<Method for producing current collector for positive electrode of nonaqueous electrolyte secondary battery>
In the method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment of the present invention, the specific resistance is 9.9 × 10 −3 Ωcm or less by sputtering on the surface of the current collector body. A coating layer forming step of forming a coating layer made of a conductive oxide or a conductive nitride having a specific resistance of 9.9 × 10 −3 Ωcm or less.
 コート層形成工程では、導電性酸化物あるいは導電性窒化物をターゲットに用いたスパッタリング法によってコート層を形成する。形成されたコート層の比抵抗は9.9×10-3Ωcm以下となる。導電性酸化物あるいは導電性窒化物は上記非水電解質二次電池正極用集電体の説明で説明したものと同様のものを使用することができる。なお、導電性酸化物あるいは導電性窒化物の比抵抗は1.0×10-4Ωcm以上1.0×10-3Ωcm以下であることが好ましい。スパッタリング法を用いることにより接着性の高い、薄いコート層を簡便に集電体本体の表面に形成できる。 In the coat layer forming step, the coat layer is formed by a sputtering method using a conductive oxide or a conductive nitride as a target. The specific resistance of the formed coating layer is 9.9 × 10 −3 Ωcm or less. As the conductive oxide or the conductive nitride, the same materials as those described in the description of the current collector for the positive electrode of the nonaqueous electrolyte secondary battery can be used. Note that the specific resistance of the conductive oxide or the conductive nitride is preferably 1.0 × 10 −4 Ωcm or more and 1.0 × 10 −3 Ωcm or less. By using the sputtering method, a thin coating layer having high adhesion can be easily formed on the surface of the current collector body.
 導電性酸化物は、IZO、AZO及びGZOから選ばれるいずれか一つであることが好ましい。これらの導電性酸化物を用いればコート層形成工程を高温でなく室温に近い温度で行うことができる。 The conductive oxide is preferably any one selected from IZO, AZO and GZO. If these conductive oxides are used, the coating layer forming step can be performed not at a high temperature but at a temperature close to room temperature.
 導電性窒化物はTiNであることが好ましい。 The conductive nitride is preferably TiN.
<非水電解質二次電池>
 本発明の第1の実施形態の非水電解質二次電池は、上記第1の実施形態の非水電解質二次電池正極用集電体を有することを特徴とする。上記非水電解質二次電池正極用集電体を有する非水電解質二次電池は、大きな充放電容量を有し、かつ優れたサイクル性能を有する。
<Nonaqueous electrolyte secondary battery>
The nonaqueous electrolyte secondary battery according to the first embodiment of the present invention has the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the first embodiment. The non-aqueous electrolyte secondary battery having the non-aqueous electrolyte secondary battery positive electrode current collector has a large charge / discharge capacity and excellent cycle performance.
(非水電解質二次電池用正極)
 非水電解質二次電池は、上記非水電解質二次電池正極用集電体を有する正極を有する。
(Positive electrode for non-aqueous electrolyte secondary battery)
The non-aqueous electrolyte secondary battery has a positive electrode having the current collector for a non-aqueous electrolyte secondary battery positive electrode.
 正極は、正極活物質が結着剤で結着されてなる正極活物質層が、上記非水電解質二次電池正極用集電体に付着してなる。図1に第1の実施形態の非水電解質二次電池用正極を説明する模式図を示す。図1に示すように、集電体本体1にコート層2が形成され、コート層2上に正極活物質層3が形成される。第1の実施形態ではコート層2が形成された集電体本体1を非水電解質二次電池正極用集電体4と称する。 In the positive electrode, a positive electrode active material layer formed by binding a positive electrode active material with a binder is attached to the non-aqueous electrolyte secondary battery positive electrode current collector. The schematic diagram explaining the positive electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment is shown in FIG. As shown in FIG. 1, a coat layer 2 is formed on the current collector body 1, and a positive electrode active material layer 3 is formed on the coat layer 2. In the first embodiment, the current collector body 1 on which the coat layer 2 is formed is referred to as a non-aqueous electrolyte secondary battery positive electrode current collector 4.
 上記正極活物質層はさらに導電助剤を含んでもよい。正極は、正極活物質及び結着剤、必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらに上記組成物に適当な溶剤を加えてペースト状にしてから、コート層が形成された集電体本体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。 The positive electrode active material layer may further contain a conductive additive. The positive electrode is prepared by preparing a composition for forming a positive electrode active material layer containing a positive electrode active material, a binder and, if necessary, a conductive additive, and adding a suitable solvent to the above composition to form a paste, and then coating After applying to the surface of the current collector body on which the layer is formed, it can be dried and compressed to increase the electrode density as necessary.
 正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。 As a method for applying the composition for forming a positive electrode active material layer, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used.
 粘度調整のための溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。 As the solvent for adjusting the viscosity, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK) and the like can be used.
 正極活物質としては、リチウム含有化合物が適当である。例えば層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式:
LiCoNiMn (Dはドープ成分であり、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe、Naからなる成分であり、必要に応じて添加される、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1)で表される層状構造を有するリチウム複合金属酸化物、オリビン型のリチウム鉄リン酸複合酸化物などのリチウム含有金属複合酸化物などを用いることができる。また正極活物質として他の金属化合物を用いることもできる。他の金属化合物としては、例えば酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物、又は硫化チタンあるいは硫化モリブデンなどの二硫化物が挙げられる。
A lithium-containing compound is suitable as the positive electrode active material. For example, lithium cobalt composite oxide having a layered structure, lithium nickel composite oxide having a layered structure, lithium manganese composite oxide having a spinel structure, general formula:
LiCo p Ni q Mn r D s O 2 (D is the doping component, Al, Mg, Ti, Sn , Zn, W, Zr, Mo, Fe, and a component consisting of Na, added are if necessary P + q + r + s = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1, 0 ≦ s <1), a lithium composite metal oxide having an olivine type lithium iron phosphate Lithium-containing metal composite oxides such as composite oxides can be used. Other metal compounds can also be used as the positive electrode active material. Examples of other metal compounds include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, or disulfides such as titanium sulfide and molybdenum sulfide.
 特に正極活物質は、一般式:
LiCoNiMn (Dはドープ成分であり、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe、Naからなる成分であり、必要に応じて添加される、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1)で表される層状構造を有するリチウム複合金属酸化物を含むことが好ましい。上記リチウム複合金属酸化物は、熱安定性に優れ、低コストである。そのため、上記リチウム複合金属酸化物を含むことによって、熱安定性のよい、安価な非水電解質二次電池とすることができる。
In particular, the positive electrode active material has the general formula:
LiCo p Ni q Mn r D s O 2 (D is the doping component, Al, Mg, Ti, Sn , Zn, W, Zr, Mo, Fe, and a component consisting of Na, added are if necessary P + q + r + s = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1, 0 ≦ s <1). It is preferable to include a lithium mixed metal oxide having a layered structure represented by: The lithium composite metal oxide is excellent in thermal stability and low in cost. Therefore, by including the lithium composite metal oxide, an inexpensive non-aqueous electrolyte secondary battery with good thermal stability can be obtained.
 上記リチウム複合金属酸化物として、例えばLiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOを用いることができる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。 Examples of the lithium composite metal oxide include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 can be used. Among these, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in terms of thermal stability.
 結着剤は、正極活物質及び導電助剤を集電体に繋ぎ止める役割を果たす。結着剤として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を用いることができる。 The binder serves to bind the positive electrode active material and the conductive additive to the current collector. As the binder, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilyl group-containing resin is used. be able to.
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、例えば、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独で又は二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極に含有される活物質100質量部に対して、1~30質量部程度とすることができる。 Conductive aid is added to increase the conductivity of the electrode. As the conductive assistant, for example, carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), etc., which are carbonaceous fine particles, are used alone. Or in combination of two or more. The amount of the conductive aid used is not particularly limited, but can be, for example, about 1 to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.
(その他の構成要素)
 本発明の第1の実施形態の非水電解質二次電池は、電池構成要素として、上記した非水電解質二次電池用正極に加えて、負極、セパレータ、非水電解液を用いる。
(Other components)
The non-aqueous electrolyte secondary battery according to the first embodiment of the present invention uses a negative electrode, a separator, and a non-aqueous electrolyte in addition to the above-described positive electrode for a non-aqueous electrolyte secondary battery as a battery component.
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。集電体、結着剤、導電助剤は正極において、集電体本体、結着剤、導電助剤として説明したものと同様である。 The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. A negative electrode active material layer contains a negative electrode active material and a binder, and contains a conductive support agent as needed. The current collector, binder, and conductive additive are the same as those described for the current collector body, binder, and conductive additive in the positive electrode.
 負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する元素化合物、あるいは高分子材料などを用いることができる。 As the negative electrode active material, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
 炭素系材料としては、例えば、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, a fired organic polymer compound, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
 リチウムと合金化可能な元素として、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiが例示できる。特に、珪素(Si)又は錫(Sn)が好ましい。 Elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn , Pb, Sb and Bi. In particular, silicon (Si) or tin (Sn) is preferable.
 リチウムと合金化可能な元素を有する元素化合物として、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi
CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO
あるいはLiSnOが使用できる。リチウムと合金化可能な元素を有する元素化合物として、珪素化合物又は錫化合物が好ましい。珪素化合物としては、SiO(0.5≦v≦1.5)が好ましい。錫化合物としては、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)が使用できる。
Examples of elemental compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 ,
CoSi 2, NiSi 2, CaSi 2 , CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO
Alternatively, LiSnO can be used. As the elemental compound having an element that can be alloyed with lithium, a silicon compound or a tin compound is preferable. As the silicon compound, SiO v (0.5 ≦ v ≦ 1.5) is preferable. As the tin compound, for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be used.
 高分子材料としては、ポリアセチレン、ポリピロールなどが使用できる。 As the polymer material, polyacetylene, polypyrrole, or the like can be used.
 セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、又はセラミックス製の多孔質膜が使用できる。 The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. As the separator, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.
 非水電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。 The nonaqueous electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
 溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンが使用できる。 As the solvent, for example, cyclic esters, chain esters, and ethers can be used. As cyclic esters, for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone can be used. Examples of the chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers that can be used include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
 また上記溶媒に溶解させる電解質として、例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 Moreover, as an electrolyte dissolved in the solvent, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
 非水電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As the non-aqueous electrolyte, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate to 0.5 mol / l to 1.7 mol. A solution dissolved at a concentration of about 1 / l can be used.
 非水電解液は、非水電解液の分解を抑制するための添加剤を含んでも良い。添加剤として、例えば、スルホン化合物、α、β―不飽和ホストン、ホスホカルボン酸無水物、スルトン基を有する環状化合物を用いることができる。 The nonaqueous electrolytic solution may contain an additive for suppressing the decomposition of the nonaqueous electrolytic solution. As the additive, for example, a sulfone compound, an α, β-unsaturated hostone, a phosphocarboxylic acid anhydride, or a cyclic compound having a sultone group can be used.
 スルホン化合物としては、例えば、スルホ安息香酸無水物、1,2-ベンゼンジスルホン酸無水物が挙げられる。 Examples of the sulfone compound include sulfobenzoic anhydride and 1,2-benzenedisulfonic anhydride.
 α、β―不飽和ホストンとしては、例えば、2-メトキシ-2,5-ジヒドロ-1,2-オキサホスホール-2-オキシド、2-エトキシ-2,5-ジヒドロ-1,2-オキサホスホール-2-オキシド、2-(2,2,2-トリフルオロエトキシ)-2,5-ジヒドロ-1,2-オキサホスホール-2-オキシド、1-エトキシ-1,3-ジヒドロ-2,1-ベンゾオキサホスホール-1-オキシドが挙げられる。 Examples of α, β-unsaturated hostons include 2-methoxy-2,5-dihydro-1,2-oxaphosphole-2-oxide, 2-ethoxy-2,5-dihydro-1,2-oxaphos Hole-2-oxide, 2- (2,2,2-trifluoroethoxy) -2,5-dihydro-1,2-oxaphosphole-2-oxide, 1-ethoxy-1,3-dihydro-2, 1-benzooxaphosphol-1-oxide.
 ホスホカルボン酸無水物としては、例えば、2-メチル-1,2-オキサホスホール-5(2H)-オン-2-オキシド、2-エチル-1,2-オキサホスホール-5(2H)-オン-2-オキシド、2-ビニル-1,2-オキサホスホール-5(2H)-オン-2-オキシド、2-エトキシ-1,2-オキサホスホール-5(2H)-オン-2-オキシド、1-エトキシ-2,1-ベンゾオキサホスホール-3(1H)-オン-1-オキシドが挙げられる。 Examples of phosphocarboxylic acid anhydrides include 2-methyl-1,2-oxaphosphole-5 (2H) -one-2-oxide, 2-ethyl-1,2-oxaphosphole-5 (2H)- On-2-oxide, 2-vinyl-1,2-oxaphosphole-5 (2H) -one-2-oxide, 2-ethoxy-1,2-oxaphosphole-5 (2H) -one-2- Oxide, 1-ethoxy-2,1-benzooxaphosphole-3 (1H) -one-1-oxide.
 スルトン基を有する環状化合物としては、四員環、五員環、六員環、又は七員環を有するものから選択できる。スルトン基を有する環状化合物として、例えば、1、3-プロパンスルトン、1、4-ブタンスルトン、1,4-ブテンスルトン、1、3-プロペンスルトン、1-メチル-1、3-プロパンスルトン、2-メチル-1、3-プロパンスルトン及び3-メチル-1、3-プロパンスルトン、1,1,2,2-テトラフルオロ-2-ヒドロキシエタンスルホン酸スルトン、3,8(10)-p-メンタジエン-3,10-スルトン、1,8-ナフタスルトン、4,5,6,7-テトラブロモフェノールスルホフタレン、2-[ビス(3,5-ジブロモ-4-ヒドロキシフェニル)ヒドロキシメチル]ベンゼンスルホン酸γ-スルトン、4-ヒドロキシ-2,5-ナフタレンジスルホン酸5,4-スルトン、2,4-ブタンスルトン、γ-ブタンスルトン、δ-ヘキサデカンスルトン、1,2,5,6-テトラデオキシ-1-[(1,2,3,4-テトラヒドロ-5-メチル-2,4-ジオキソピリミジン)-1-イル]-6-スルホ-β-D-erythro-ヘキソフラノーススルトン、3-ヒドロキシ-2-オクタンスルホン酸スルトン、4-ヒドロキシ-2-オクタンスルホン酸スルトン、1,2,3a,4,8,14,15,17-オクタヒドロ-1β-[(メチルスルホニルオキシ)メチル]-1,3aβ-ジメチル-2,8,14,17-テトラオキソ-11,12-ジメトキシ-15,16-ジヒドロキシ[1]ベンゾピラノ[2',3':6,7]ナフト[2,1-g]オキサゾロ[3,2-b]イソキノリン-15β-(メタンスルホン酸)15,16-スルトン、1-クロロ-1,2,2-トリフルオロ-2-ヒドロキシエタンスルホン酸スルトン、2-クロロ-1,2,2-トリフルオロ-2-ヒドロキシエタンスルホン酸スルトン、ビフェニルスルトン、HBPスルトン、(3R)-2-サリチル-3α-(1-ピレニル)-5β-(ヒドロキシメチル)イソオキサゾリジン-4β-スルホン酸4,5-スルトン、3-ヒドロキシ-1-プロペン-1-スルホン酸スルトン、3-ヒドロキシ-3-(トリメトキシシリル)-1-プロパンスルホン酸1,3-スルトン、1-ヒドロキシ-1,1,2,3,3,3-ヘキサフルオロプロパン-2-スルホン酸2,1-スルトン、2'-ヒドロキシ-1,1'-ビアセナフチレン-2-スルホン酸2,2'-スルトン、3-(トリブチルアミニオ)-3-ヒドロキシ-1-プロパンスルホン酸1,3-スルトン、1-(ヒドロキシメチル)-2-アザビシクロ[2,2,2]オクタン-2-スルホン酸スルトン、1-ヒドロキシ-6-(トリエトキシシリル)-3-ヘキサンスルホン酸3,1-スルトン、2,2-ジメチル-3bα-ヒドロキシ-6-オキソ-3aβ,5,6,7,7aα,8aβ-ヘキサヒドロ-2H-1,3,4,8-テトラオキサ-6a-アザジシクロペンタ[a,f]ペンタレン-3cα(3bβH)-メタンスルホン酸スルトン、2α,3α-(イソプロピリデンビスオキシ)-2,3,6,7,8,8aα-ヘキサヒドロ-3aα-ヒドロキシ-5H-1,4-ジオキサ-7a-アザシクロペンタ[a]インデン-3bα(3aH)-メタンスルホン酸スルトン、2,2-ジメチル-3bα-ヒドロキシ-3aβ,5,6,7,7aα,8aβ-ヘキサヒドロ-2H-1,3,4,8-テトラオキサ-6a-アザジシクロペンタ[a,f]ペンタレン-3cα(3bβH)-メタンスルホン酸スルトン、2,2-ジメチル-3bα-ヒドロキシ-3aβ,5,6,7,7aα,8aβ-ヘキサヒドロ-2H,4H-1,3,8-トリオキサ-4,6a-ジアザジシクロペンタ[a,f]ペンタレン-3cα(3bβH)-メタンスルホン酸スルトン、2,2-ジメチル-3bα-ヒドロキシ-4-エトキシ-3aβ,3b,5,6,6aα,7aβ-ヘキサヒドロ-4H-1,3,7-トリオキサ-5-アザ-2H-シクロペンタ[a]ペンタレン-4α-メタンスルホン酸スルトン、2,2,5β-トリメチル-3bα-ヒドロキシ-6-オキソ-3aβ,5,6,7,7aα,8aβ-ヘキサヒドロ-2H,4H-1,3,8-トリオキサ-4,6a-ジアザジシクロペンタ[a,f]ペンタレン-3cα(3bβH)-メタンスルホン酸スルトン、2-(2-ヒドロキシフェニル)-4-オキソ-1,2,3,4-テトラヒドロピリジン-1-スルホン酸スルトン、2-(2-ヒドロキシ-1-ナフチル)-4-メチルベンゼンスルホン酸スルトン、2-(2-メチル-3-クロロ-6-ヒドロキシフェニル)-4-メチルベンゼンスルホン酸スルトン、2-(1-ヒドロキシ-2-ナフチル)-4-メチルベンゼンスルホン酸スルトン、2-(2-ヒドロキシ-5-メチルフェニル)-4-メチルベンゼンスルホン酸スルトン、2-(2-ヒドロキシ-4-メチル-5-クロロフェニル)-4-メチルベンゼンスルホン酸スルトン、(2R)-2β-(2,4-ジオキソ-5-メチル-1,2,3,4-テトラヒドロピリミジン-1-イル)-3aα,3bβ-ジヒドロキシ-5,5,7-トリメチル-2,3,3a,3b,4,5,7a,8,8aα-ノナヒドロ-1-オキサ-7a-アザシクロペンタ[a]インデン-4α-スルホン酸4,3a-スルトン、(2R)-2β-(2,4-ジオキソ-5-メチル-1,2,3,4-テトラヒドロピリミジン-1-イル)-3aα,3bβ-ジヒドロキシ-5,7,7-トリメチル-2,3,3a,3b,6,7,7a,8,8aα-ノナヒドロ-1-オキサ-7a-アザシクロペンタ[a]インデン-4-スルホン酸4,3a-スルトン、(2R)-2β-(2,4-ジオキソ-5-メチル-1,2,3,4-テトラヒドロピリミジン-1-イル)-3aα,3bβ-ジヒドロキシ-5-メチル-5β,7-ジエチル-2,3,3a,3b,4,5,7a,8,8aα-ノナヒドロ-1-オキサ-7a-アザシクロペンタ[a]インデン-4α-スルホン酸4,3a-スルトン、(2R)-2β-(2,4-ジオキソ-5-メチル-1,2,3,4-テトラヒドロピリミジン-1-イル)-3aα,3bβ-ジヒドロキシ-5-メチル-5α,7-ジエチル-2,3,3a,3b,4,5,7a,8,8aα-ノナヒドロ-1-オキサ-7a-アザシクロペンタ[a]インデン-4α-スルホン酸4,3a-スルトン、(2R,5Z)-2β-(2,4-ジオキソ-5-メチル-1,2,3,4-テトラヒドロピリミジン-1-イル)-3aα,3bβ-ジヒドロキシ-5-エチリデン-7,7-ジエチル-2,3,3a,3b,4,5,6,7,7a,8,8aα-ウンデカヒドロ-1-オキサ-7a-アザシクロペンタ[a]インデン-4α-スルホン酸4,3a-スルトン、N-[2β-(2-ヒドロキシエチル)-2-アリルテトラヒドロ-2H-ピラン-3α-イル]アミド硫酸スルトン、(4aα)-7β-アセトキシ-8aα-(2-ヒドロキシエチル)オクタヒドロ-5H-ピラノ[3,2-b]ピリジン-5-スルトンが挙げられる。 The cyclic compound having a sultone group can be selected from those having a 4-membered ring, a 5-membered ring, a 6-membered ring, or a 7-membered ring. Examples of cyclic compounds having a sultone group include 1,3-propane sultone, 1,4-butane sultone, 1,4-butene sultone, 1,3-propene sultone, 1-methyl-1,3-propane sultone, and 2-methyl. -1,3-propane sultone and 3-methyl-1,3-propane sultone, 1,1,2,2-tetrafluoro-2-hydroxyethanesulfonic acid sultone, 3,8 (10) -p-menthadiene-3 , 10-sultone, 1,8-naphtha sultone, 4,5,6,7-tetrabromophenol sulfophthalene, 2- [bis (3,5-dibromo-4-hydroxyphenyl) hydroxymethyl] benzenesulfonic acid γ- Sultone, 4-hydroxy-2,5-naphthalenedisulfonic acid 5,4-sultone, 2,4-butane sultone, γ-butane sultone, δ-hexadecane sultone, 1,2,5,6-tetradeoxy-1-[(1 , 2,3,4-Tetrahydro-5-methyl-2,4-dioxo Limidin) -1-yl] -6-sulfo-β-D-erythro-hexofuranose sultone, sultone 3-hydroxy-2-octanesulfonate, sultone 4-hydroxy-2-octanesulfonate, 1,2,3a , 4,8,14,15,17-Octahydro-1β-[(methylsulfonyloxy) methyl] -1,3aβ-dimethyl-2,8,14,17-tetraoxo-11,12-dimethoxy-15,16- Dihydroxy [1] benzopyrano [2 ', 3': 6,7] naphtho [2,1-g] oxazolo [3,2-b] isoquinoline-15β- (methanesulfonic acid) 15,16-sultone, 1-chloro -1,2,2-trifluoro-2-hydroxyethanesulfonic acid sultone, 2-chloro-1,2,2-trifluoro-2-hydroxyethanesulfonic acid sultone, biphenyl sultone, HBP sultone, (3R) -2 -Salicyl-3α- (1-pyrenyl) -5β- (hydroxymethyl) isoxazolidine-4β-sulfonic acid 4,5-sultone, 3-hydroxy-1-propene-1-sulphonic acid sultone, 3-hydroxy-3- (G Rimethoxysilyl) -1-propanesulfonic acid 1,3-sultone, 1-hydroxy-1,1,2,3,3,3-hexafluoropropane-2-sulfonic acid 2,1-sultone, 2'-hydroxy -1,1'-biacenaphthylene-2-sulfonic acid 2,2'-sultone, 3- (tributylaminio) -3-hydroxy-1-propanesulfonic acid 1,3-sultone, 1- (hydroxymethyl) -2 -Azabicyclo [2,2,2] octane-2-sulfonic acid sultone, 1-hydroxy-6- (triethoxysilyl) -3-hexanesulfonic acid 3,1-sultone, 2,2-dimethyl-3bα-hydroxy- 6-oxo-3aβ, 5,6,7,7aα, 8aβ-hexahydro-2H-1,3,4,8-tetraoxa-6a-azadicyclopenta [a, f] pentalene-3cα (3bβH) -methanesulfone Sultone acid, 2α, 3α- (isopropylidenebisoxy) -2,3,6,7,8,8aα-hexahydro-3aα-hydroxy-5H-1,4-dioxa-7a-azacyclopenta [a] indene- 3bα (3aH) -sultone methanesulfonate, 2,2- Dimethyl-3bα-hydroxy-3aβ, 5,6,7,7aα, 8aβ-hexahydro-2H-1,3,4,8-tetraoxa-6a-azadicyclopenta [a, f] pentalene-3cα (3bβH)- Sultone methanesulfonate, 2,2-dimethyl-3bα-hydroxy-3aβ, 5,6,7,7aα, 8aβ-hexahydro-2H, 4H-1,3,8-trioxa-4,6a-diazadicyclopenta [ a, f] pentalene-3cα (3bβH) -sultone methanesulfonate, 2,2-dimethyl-3bα-hydroxy-4-ethoxy-3aβ, 3b, 5,6,6aα, 7aβ-hexahydro-4H-1,3, 7-trioxa-5-aza-2H-cyclopenta [a] pentalene-4α-methanesulfonic acid sultone, 2,2,5β-trimethyl-3bα-hydroxy-6-oxo-3aβ, 5,6,7,7aα, 8aβ -Hexahydro-2H, 4H-1,3,8-trioxa-4,6a-diazadicyclopenta [a, f] pentalene-3cα (3bβH) -sultone methanesulfonate, 2- (2-hydroxyphenyl) -4 -Oxo-1,2,3,4-tetrahydropyridine-1-sulfonic acid sultone, 2- (2-hydroxy- 1-naphthyl) -4-methylbenzenesulfonic acid sultone, 2- (2-methyl-3-chloro-6-hydroxyphenyl) -4-methylbenzenesulfonic acid sultone, 2- (1-hydroxy-2-naphthyl)- Sultone 4-methylbenzenesulfonate, 2- (2-hydroxy-5-methylphenyl) -4-methylbenzenesulfonate, 2- (2-hydroxy-4-methyl-5-chlorophenyl) -4-methylbenzenesulfone Sultone acid, (2R) -2β- (2,4-dioxo-5-methyl-1,2,3,4-tetrahydropyrimidin-1-yl) -3aα, 3bβ-dihydroxy-5,5,7-trimethyl- 2,3,3a, 3b, 4,5,7a, 8,8a α-nonahydro-1-oxa-7a-azacyclopenta [a] indene-4α-sulfonic acid 4,3a-sultone, (2R) -2β- (2,4-Dioxo-5-methyl-1,2,3,4-tetrahydropyrimidin-1-yl) -3aα, 3bβ-dihydroxy-5,7,7-trimethyl-2,3,3a, 3b, 6 , 7,7a, 8,8aα-Nonahydro-1-oxa-7a-azacyclopenta [a] indene-4-s Phosphonic acid 4,3a-sultone, (2R) -2β- (2,4-dioxo-5-methyl-1,2,3,4-tetrahydropyrimidin-1-yl) -3aα, 3bβ-dihydroxy-5-methyl -5β, 7-diethyl-2,3,3a, 3b, 4,5,7a, 8,8a α-nonahydro-1-oxa-7a-azacyclopenta [a] indene-4α-sulfonic acid 4,3a-sultone (2R) -2β- (2,4-dioxo-5-methyl-1,2,3,4-tetrahydropyrimidin-1-yl) -3aα, 3bβ-dihydroxy-5-methyl-5α, 7-diethyl- 2,3,3a, 3b, 4,5,7a, 8,8a α-nonahydro-1-oxa-7a-azacyclopenta [a] indene-4α-sulfonic acid 4,3a-sultone, (2R, 5Z)- 2β- (2,4-Dioxo-5-methyl-1,2,3,4-tetrahydropyrimidin-1-yl) -3aα, 3bβ-dihydroxy-5-ethylidene-7,7-diethyl-2,3,3a , 3b, 4,5,6,7,7a, 8,8a α-Undecahydro-1-oxa-7a-azacyclopenta [a] indene-4α-sulfonic acid 4,3a-sultone, N- [2β- (2 -Hydroxyethyl) -2-allyltetrahydro-2H-pyran-3α-yl] ami Sulfuric sultone include (4aa) -7 [beta] acetoxy -8aα- (2- hydroxyethyl) octahydro -5H- pyrano [3,2-b] pyridine-5-sultone.
 特にスルトン基を有する環状化合物は、1、3-プロパンスルトン、1,4-ブテンスルトン、1,3-プロペンスルトン、3-メチル-1,3-プロペンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン及び3-メチル-1,3-プロパンスルトンからなる群から選ばれる少なくとも1つであることが好ましい。これらの環状化合物は添加剤として高い効果を発揮する。 Particularly, cyclic compounds having a sultone group are 1,3-propane sultone, 1,4-butene sultone, 1,3-propene sultone, 3-methyl-1,3-propene sultone, 1-methyl-1,3-propane sultone. It is preferably at least one selected from the group consisting of 2-methyl-1,3-propane sultone and 3-methyl-1,3-propane sultone. These cyclic compounds exhibit high effects as additives.
 特に非水電解液は、非水電解液全体を100質量%としたときに、スルトン基を有する環状化合物を2.0質量%以上6.0質量%以下含むことが好ましい。 In particular, the nonaqueous electrolytic solution preferably contains 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group when the entire nonaqueous electrolytic solution is 100% by mass.
 スルトン基を有する環状化合物は、LUMO(最低空準位;Lowest Unoccupied Molecular Orbital)が小さく還元されやすい。そのため非水電解質二次電池の充放電時には、スルトン基を有する環状化合物が非水電解液の主成分よりも優先的に還元分解される。そのためスルトン基を有する環状化合物が非水電解液に含まれることで、非水電解液の還元が抑制される。 A cyclic compound having a sultone group has a small LUMO (lowest unoccupied molecular orbital) and is easily reduced. Therefore, at the time of charge / discharge of the nonaqueous electrolyte secondary battery, the cyclic compound having a sultone group is reduced and decomposed preferentially over the main component of the nonaqueous electrolyte. Therefore, the reduction | restoration of a non-aqueous electrolyte is suppressed because the cyclic compound which has a sultone group is contained in a non-aqueous electrolyte.
 またスルトン基の酸素によってリチウムが溶媒和する際の活性化エネルギーが低下するとも考えられる。リチウムが溶媒和する際の活性化エネルギーが低下することによっても非水電解液の分解が抑制される。 It is also considered that the activation energy when lithium is solvated by oxygen of the sultone group decreases. The decomposition of the non-aqueous electrolyte is also suppressed by a decrease in activation energy when lithium solvates.
 すなわち、非水電解液がスルトン基を有する環状化合物を含むことで非水電解液の分解が抑制され、非水電解液が分解されることによって進行する非水電解質二次電池のサイクル特性の劣化が抑制され、非水電解質二次電池は、サイクル特性が向上する。 That is, the nonaqueous electrolyte contains a cyclic compound having a sultone group, so that the decomposition of the nonaqueous electrolyte is suppressed, and the cycle characteristics of the nonaqueous electrolyte secondary battery that progresses by the decomposition of the nonaqueous electrolyte are degraded. Is suppressed, and the nonaqueous electrolyte secondary battery has improved cycle characteristics.
 非水電解液を100質量%としたときに、スルトン基を有する環状化合物が2.0質量%より少ないと、非水電解液の分解の抑制効果が少なく、またスルトン基を有する環状化合物が6.0質量%より多いと、非水電解質二次電池の内部抵抗が上昇する。そのため、非水電解液を100質量%としたときに、スルトン基を有する環状化合物を2.0質量%以上6.0質量%以下含むことが好ましい。 When the amount of the cyclic compound having a sultone group is less than 2.0% by mass when the nonaqueous electrolytic solution is 100% by mass, the effect of suppressing the decomposition of the nonaqueous electrolytic solution is small, and the cyclic compound having a sultone group is 6 When the content is more than 0.0% by mass, the internal resistance of the nonaqueous electrolyte secondary battery increases. Therefore, when the nonaqueous electrolytic solution is 100% by mass, the cyclic compound having a sultone group is preferably contained in an amount of 2.0% by mass or more and 6.0% by mass or less.
 また非水電解質二次電池は、上記非水電解液を100質量%としたときに、スルトン基を有する環状化合物を2.0質量%以上6.0質量%以下含む非水電解液と、酸化錫にF、Sb、Ta及びPから選ばれる少なくとも一種を添加した導電性酸化物からなるコート層を有する正極用集電体と、を有することが好ましい。この組み合わせを有する非水電解質二次電池は、高電圧駆動(4.3V以上)させたときのサイクル特性が向上する。 Further, the nonaqueous electrolyte secondary battery includes a nonaqueous electrolyte solution containing 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group, when the nonaqueous electrolyte solution is 100% by mass, And a positive electrode current collector having a coating layer made of a conductive oxide in which at least one selected from F, Sb, Ta and P is added to tin. The non-aqueous electrolyte secondary battery having this combination has improved cycle characteristics when driven at a high voltage (4.3 V or higher).
 (第2の実施形態)
 <非水電解質二次電池>
 本発明の第2の実施形態の非水電解質二次電池は、集電体本体と、集電体本体の表面に形成された導電性酸化物からなるコート層とを有する非水電解質二次電池正極用集電体を有する非水電解質二次電池用正極と、LiBF(四フッ化ホウ酸リチウム)を電解塩として含有する非水電解質と、を有する。
(Second Embodiment)
<Nonaqueous electrolyte secondary battery>
A nonaqueous electrolyte secondary battery according to a second embodiment of the present invention is a nonaqueous electrolyte secondary battery having a current collector body and a coat layer made of a conductive oxide formed on the surface of the current collector body. A positive electrode for a non-aqueous electrolyte secondary battery having a positive electrode current collector; and a non-aqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolytic salt.
(非水電解質二次電池正極用集電体)
 集電体本体の説明は、第1の実施形態の集電体本体の説明と同じである。
(Current collector for positive electrode of non-aqueous electrolyte secondary battery)
The description of the current collector body is the same as the description of the current collector body of the first embodiment.
 コート層は、集電体本体の表面に形成され、導電性酸化物からなる。通常、アルミニウム箔を集電体本体として用いると、アルミニウム箔の表面には、第1の実施形態で説明した不動態膜が形成される。不動態膜は高抵抗の膜であるため、不動態膜を表面に有する集電体本体を用いる電極は高抵抗となり、その電極を用いた電池は出力特性が低下する。 The coating layer is formed on the surface of the current collector body and is made of a conductive oxide. Normally, when an aluminum foil is used as the current collector body, the passive film described in the first embodiment is formed on the surface of the aluminum foil. Since the passive film is a high-resistance film, an electrode using the current collector body having the passive film on the surface has a high resistance, and the output characteristics of a battery using the electrode deteriorate.
 本発明の第2の実施形態で用いる非水電解質二次電池正極用集電体は、集電体本体の表面にあらかじめ導電性酸化物からなるコート層が形成されている。そのため、上記不動態膜が形成されにくい。すなわち、このコート層により、高抵抗層が集電体本体の表面に形成されることを抑制できる。またコート層により電解塩等と集電体本体との接触を低減できるので、集電体本体の電解塩などによる腐食を抑制できる。 In the current collector for a nonaqueous electrolyte secondary battery positive electrode used in the second embodiment of the present invention, a coating layer made of a conductive oxide is formed on the surface of the current collector body in advance. Therefore, it is difficult to form the passive film. That is, this coat layer can suppress the formation of the high resistance layer on the surface of the current collector body. Further, since the contact between the electrolytic salt or the like and the current collector main body can be reduced by the coat layer, corrosion due to the electrolytic salt or the like of the current collector main body can be suppressed.
 またコート層は、導電性酸化物からなる。導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つである。コート層は上記の導電性酸化物からなるので、大気中の酸素、電解液及び電解塩に耐性があり、また高電圧においても耐えることができる。 The coating layer is made of a conductive oxide. The conductive oxide is indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, and tin oxide is selected from F, W, Ta, Sb, P and B Any one selected from the group consisting of zinc oxide added with at least one element selected from Ga, Al and B, and titanium oxide added with an Nb element. Since the coat layer is made of the above conductive oxide, it is resistant to oxygen, electrolytic solution and electrolytic salt in the atmosphere, and can withstand high voltage.
 上記導電性酸化物はいずれも金属酸化物に他の元素を添加したものである。元素の添加は元素単体で添加されても良いし、元素を含む酸化物の形で添加されても良い。上記導電性酸化物は、母材である金属酸化物への元素添加及び元素添加による金属酸化物の構造内の酸素欠損の発生などにより、自由に動ける電荷移動体、つまりキャリアが生じ、導電性を示す。そのため上記導電性酸化物は比抵抗が低い。導電性酸化物は比抵抗が低いので、本発明の第2の実施形態で用いる非水電解質二次電池正極用集電体を用いた電極は、電極の抵抗が実質的には下がらない。そのため、本発明の第2の実施形態の非水電解質二次電池は出力特性が低下することを抑制できる。 All of the above conductive oxides are metal oxides with other elements added. The element may be added alone or in the form of an oxide containing the element. The above conductive oxide has a charge transfer body that can move freely, that is, carriers due to the addition of elements to the metal oxide as a base material and the generation of oxygen vacancies in the structure of the metal oxide. Indicates. Therefore, the conductive oxide has a low specific resistance. Since the conductive oxide has a low specific resistance, the resistance of the electrode using the non-aqueous electrolyte secondary battery positive electrode current collector used in the second embodiment of the present invention does not substantially decrease. Therefore, the nonaqueous electrolyte secondary battery according to the second embodiment of the present invention can suppress a decrease in output characteristics.
 導電性酸化物は、比抵抗が9.9×10-3Ωcm以下であることが好ましい。 The conductive oxide preferably has a specific resistance of 9.9 × 10 −3 Ωcm or less.
 上記導電性酸化物は添加する元素の割合を変化させることで比抵抗を変化させることができる。 The specific resistance of the conductive oxide can be changed by changing the ratio of the element to be added.
 導電性酸化物として、上記第1の実施形態で記載の導電性酸化物と同様のものが使用できる。第2の実施形態の導電性酸化物の説明は、第1の実施形態の導電性酸化物と同じである。 As the conductive oxide, the same conductive oxide as described in the first embodiment can be used. The description of the conductive oxide of the second embodiment is the same as that of the conductive oxide of the first embodiment.
 第2の実施形態で用いる酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもののうち、酸化インジウムにSn元素あるいはZn元素を添加したものが好ましい。酸化インジウムにSn元素を添加したものとして、インジウム錫酸化物が挙げられ、酸化インジウムにZn元素を添加したものとして、インジウム亜鉛酸化物が挙げられる。インジウム錫酸化物としてIn-SnO(ITO)が好ましく、インジウム亜鉛酸化物としてIn-ZnO(IZO)が好ましい。 Among those in which at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H is added to indium oxide used in the second embodiment, those in which Sn element or Zn element is added to indium oxide are preferable. . Indium tin oxide may be used as the indium oxide added with Sn element, and indium zinc oxide may be used as the indium oxide added with Zn element. In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide, and In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide.
 ITOは酸化インジウムと酸化錫の複合体であり、成膜手法により多様な結晶状態を取りうる。錫のドープ量や成膜条件、加熱処理などそれぞれの条件を選定することで、ITO膜を低抵抗膜とすることができる。またITO膜は膜厚が小さい場合においても、比抵抗が小さいことが特徴である。そのため、ITOを用いたコート層は、集電体に占める割合を少なくすることができる。 ITO is a composite of indium oxide and tin oxide, and can take various crystal states depending on the film formation technique. By selecting the respective conditions such as the tin doping amount, film forming conditions, and heat treatment, the ITO film can be made a low resistance film. The ITO film is also characterized by a small specific resistance even when the film thickness is small. Therefore, the ratio of the coat layer using ITO to the current collector can be reduced.
 IZOは酸化インジウムと酸化亜鉛の複合体であり、アモルファス構造を有する。結晶性の材料の抵抗を下げようとした場合、加熱処理をして結晶性を上げる処理を行う。一方、集電体本体にアルミニウム箔を用いた場合、高温状態にて成膜を行った後に室温に戻すと膜応力が生じ、集電体本体の平坦性に影響を及ぼす。結果としてコート層を形成した集電体本体へ活物質などを塗布する際にその塗布性に影響を及ぼし、電池特性を損なうことに繋がる。このため可能な限りコート層は室温で成膜を行うことが望ましい。IZOは室温成膜によっても十分に低抵抗となるため特別に加熱処理を行う必要がない。またその特性から膜応力が小さいため、電池特性への影響が少ない。 IZO is a complex of indium oxide and zinc oxide and has an amorphous structure. In order to reduce the resistance of the crystalline material, heat treatment is performed to increase the crystallinity. On the other hand, when an aluminum foil is used for the current collector body, film stress occurs when film formation is performed at a high temperature and then returned to room temperature, which affects the flatness of the current collector body. As a result, when an active material or the like is applied to the current collector main body on which the coat layer is formed, the coating property is affected, leading to the deterioration of battery characteristics. Therefore, it is desirable to form the coat layer at room temperature as much as possible. Since IZO has a sufficiently low resistance even at room temperature, no special heat treatment is required. Moreover, since the film stress is small due to the characteristics, the influence on the battery characteristics is small.
 第2の実施形態で用いる酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化亜鉛にAl元素あるいはGa元素を添加したものが好ましい。酸化亜鉛にAl元素を添加したものとして、アルミニウム亜鉛酸化物が挙げられ、酸化亜鉛にGa元素を添加したものとして、ガリウム亜鉛酸化物が挙げられる。アルミニウム亜鉛酸化物としてアルミニウム添加酸化亜鉛(AZO)が好ましく、ガリウム亜鉛酸化物としてガリウム添加酸化亜鉛(GZO)が好ましい。 Of the zinc oxide used in the second embodiment, at least one element selected from Ga, Al and B is added, and zinc oxide is preferably added with an Al element or Ga element. Aluminum zinc oxide can be cited as a material in which Al element is added to zinc oxide, and gallium zinc oxide can be cited as a material in which Ga element is added to zinc oxide. Aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide, and gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide.
 AZOは結晶性の材料であるが、室温成膜によっても十分に低抵抗とすることができる。AZOが室温成膜でも低抵抗とすることができるのは、材料の物性に拠るところが大きく、AZOは加熱処理をしなくても酸化亜鉛に対するAlの添加量の最適化などにより比抵抗が適宜調整可能である。 AZO is a crystalline material, but it can have a sufficiently low resistance even by room temperature film formation. AZO can achieve low resistance even at room temperature, largely because of the physical properties of the material. AZO can adjust the specific resistance appropriately by optimizing the amount of Al added to zinc oxide without heat treatment. Is possible.
 導電性酸化物は、GZOであることが好ましい。一般的にGZOはAZOと比べて室温成膜でさらに低抵抗化を図ることができる。 The conductive oxide is preferably GZO. In general, the resistance of GZO can be further reduced by room temperature film formation as compared with AZO.
 第2の実施形態のコート層の膜厚は10nm~1μmであることが好ましく、20nm~800nmであることがより好ましい。コート層の膜厚が10nm以上であれば、集電体本体の表面を保護して電解液による集電体本体の腐食を抑制することができる。コート層の膜厚が1μm以下であれば、電池内部の集電体の占める体積を適正にすることができる。電池内の集電体の占める体積が大きくなりすぎると、活物質の量等を減らさなければならなくなり、電池容量の低下につながり好ましくない。 The film thickness of the coat layer of the second embodiment is preferably 10 nm to 1 μm, and more preferably 20 nm to 800 nm. If the thickness of the coat layer is 10 nm or more, the surface of the current collector body can be protected and corrosion of the current collector body due to the electrolytic solution can be suppressed. If the thickness of the coat layer is 1 μm or less, the volume occupied by the current collector inside the battery can be made appropriate. If the volume occupied by the current collector in the battery becomes too large, the amount of active material and the like must be reduced, which leads to a decrease in battery capacity.
 この集電体本体へコート層を形成する方法は、ゾルゲル法、熱分解スプレー法、CVD法(Chemical Vapor Deposition法)、スパッタリング法、真空蒸着法、コーティング法などを使用できる。このコート層形成方法は、集電体本体の材料や形状及びコート層を形成する導電性酸化物の種類に応じて適切に選択して使用すればよい。 As a method for forming a coating layer on the current collector body, a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, a coating method, or the like can be used. This coating layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of conductive oxide forming the coating layer.
 本発明の第2の実施形態で用いる非水電解質二次電池正極用集電体は特に下記の製造方法を用いることによって好適に製造できる。 The current collector for a non-aqueous electrolyte secondary battery positive electrode used in the second embodiment of the present invention can be preferably manufactured by using the following manufacturing method.
(非水電解質二次電池正極用集電体の製造方法)
 第2の実施形態の非水電解質二次電池正極用集電体の製造方法は、集電体の表面にスパッタリング法で導電性酸化物からなるコート層を形成するコート層形成工程を有することを特徴とする。
(Method for producing current collector for positive electrode of non-aqueous electrolyte secondary battery)
The method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to the second embodiment includes a coat layer forming step of forming a coat layer made of a conductive oxide on the surface of the current collector by a sputtering method. Features.
 コート層形成工程は、導電性酸化物をターゲットに用いたスパッタリング法によってコート層を形成する。導電性酸化物は上記非水電解質二次電池正極用集電体の説明で説明したものと同様のものを使用することができる。なお、導電性酸化物の比抵抗は好ましくは1.0×10-4Ωcm以上1.0×10-3Ωcm以下である。 In the coating layer forming step, the coating layer is formed by a sputtering method using a conductive oxide as a target. As the conductive oxide, the same oxide as described in the explanation of the current collector for the positive electrode of the nonaqueous electrolyte secondary battery can be used. Note that the specific resistance of the conductive oxide is preferably 1.0 × 10 −4 Ωcm or more and 1.0 × 10 −3 Ωcm or less.
 導電性酸化物は、ITO、IZO、AZO及びGZOから選ばれるいずれか一つであることが好ましい。 The conductive oxide is preferably any one selected from ITO, IZO, AZO, and GZO.
(非水電解質二次電池用正極)
 本発明の第2の実施形態の非水電解質二次電池は、上記非水電解質二次電池正極用集電体を有する正極を有する。第2の実施形態の正極に関する説明は上記した第1の実施形態の正極の説明と同様である。
(Positive electrode for non-aqueous electrolyte secondary battery)
A nonaqueous electrolyte secondary battery according to a second embodiment of the present invention has a positive electrode having the current collector for a nonaqueous electrolyte secondary battery positive electrode. The description about the positive electrode of the second embodiment is the same as the description of the positive electrode of the first embodiment.
(非水電解質二次電池)
 本発明の第2の実施形態の非水電解質二次電池は、電池構成要素として、上記した非水電解質二次電池用正極に加えて、負極、セパレータ、電解塩としてLiBFを用いる電解質を用いる。
(Non-aqueous electrolyte secondary battery)
The nonaqueous electrolyte secondary battery of the second embodiment of the present invention uses an electrolyte that uses LiBF 4 as a negative electrode, a separator, and an electrolyte salt, in addition to the above-described positive electrode for a nonaqueous electrolyte secondary battery, as a battery component. .
 第2の実施形態の負極、セパレータは第1の実施形態と同様のものを使用できる。第2の実施形態の負極とセパレータの説明は第1の実施形態の負極とセパレータの説明と同様である。 The negative electrode and separator of the second embodiment can be the same as those of the first embodiment. The description of the negative electrode and separator of the second embodiment is the same as the description of the negative electrode and separator of the first embodiment.
 第2の実施形態の電解質は電解塩としてLiBFを用いる以外は一般の非水電解質二次電池用に用いることのできる電解質が使用できる。電解質は、溶媒とこの溶媒に溶解された電解塩とを含んでいる。 As the electrolyte of the second embodiment, an electrolyte that can be used for a general non-aqueous electrolyte secondary battery can be used except that LiBF 4 is used as an electrolyte salt. The electrolyte includes a solvent and an electrolytic salt dissolved in the solvent.
 第2の実施形態の溶媒は、第1の実施形態と同様のものを使用できる。第2の実施形態の溶媒の説明は、第1の実施形態の溶媒の説明と同じである。 The solvent of the second embodiment can be the same as that of the first embodiment. The description of the solvent of the second embodiment is the same as the description of the solvent of the first embodiment.
 また電解塩は、LiBFを使用する。LiBFはLiPFに比べて導電性が低く疎水性を有する。そのため水との反応性が低く、耐加水分解性に優れている。 As the electrolytic salt, LiBF 4 is used. LiBF 4 is less conductive than LiPF 6 and is hydrophobic. Therefore, the reactivity with water is low and the hydrolysis resistance is excellent.
 電解質として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiBFを0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As the electrolyte, for example, a solution in which LiBF 4 is dissolved at a concentration of about 0.5 mol / l to 1.7 mol / l in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate can be used.
 上記第2の実施形態の非水電解質二次電池用正極を有し、かつ電解塩としてLiBFを有する電解質を有するため、本発明の第2の実施形態の非水電解質二次電池は、大きな充放電容量を有し、かつ優れたサイクル性能を有する。 The nonaqueous electrolyte secondary battery of the second embodiment of the present invention has a positive electrode for a nonaqueous electrolyte secondary battery of the second embodiment and has an electrolyte having LiBF 4 as an electrolytic salt. It has charge / discharge capacity and excellent cycle performance.
 (第3の実施形態)
 以下に、本発明の第3の実施形態の非水電解質二次電池用正極及び非水電解質二次電池を説明する。
(Third embodiment)
Below, the positive electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of the 3rd Embodiment of this invention are demonstrated.
 本発明の第3の実施形態の非水電解質二次電池用正極は、集電体本体、集電体本体の表面に形成された第1層、第1層の表面に形成された第2層、及び第2層の表面に形成された活物質層を有する非水電解質二次電池用正極において、第1層の比抵抗が、第2層の比抵抗よりも低く、かつ、集電体本体の比抵抗よりも高いことを特徴とする。 The positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment of the present invention includes a current collector body, a first layer formed on the surface of the current collector body, and a second layer formed on the surface of the first layer. And the positive electrode for a nonaqueous electrolyte secondary battery having an active material layer formed on the surface of the second layer, the specific resistance of the first layer is lower than the specific resistance of the second layer, and the current collector body It is characterized by being higher than the specific resistance.
 集電体本体は、非水電解質二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。本発明の第3の実施形態の非水電解質二次電池正極用集電体は、集電体本体の表面に第1層及び第2層の保護層が形成されているため、集電体本体は電解塩等の腐食に耐えることができる。 The current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery. In the current collector for the nonaqueous electrolyte secondary battery positive electrode according to the third embodiment of the present invention, the first and second protective layers are formed on the surface of the current collector body. Can withstand corrosion of electrolytic salts and the like.
 集電体本体の材料としては、ステンレス鋼、チタン、ニッケル、アルミニウム、銅、金、タングステン、モリブデンなどの金属材料又は導電性樹脂を例示することができる。参考までに上記材料の比抵抗値(μΩcm)を示すと、ステンレス鋼:71μΩcm、チタン:43μΩcm、ニッケル:6μΩcm、アルミニウム:2.5μΩcm、銅:1.6μΩcm、金:2μΩcm、タングステン:5μΩcm、モリブデン:5μΩcm程度である。 Examples of the material for the current collector main body include metal materials such as stainless steel, titanium, nickel, aluminum, copper, gold, tungsten, and molybdenum, or conductive resins. For reference, specific resistance values (μΩcm) of the above materials are as follows: stainless steel: 71 μΩcm, titanium: 43 μΩcm, nickel: 6 μΩcm, aluminum: 2.5 μΩcm, copper: 1.6 μΩcm, gold: 2 μΩcm, tungsten: 5 μΩcm, molybdenum : About 5 μΩcm.
 集電体本体の比抵抗値は特に制限されるものではないが、集電体本体の比抵抗値として、1μΩcm~200μΩcmが好ましく、さらに1.5μΩcm~100μΩcmがより好ましい。 The specific resistance value of the current collector body is not particularly limited, but the specific resistance value of the current collector body is preferably 1 μΩcm to 200 μΩcm, more preferably 1.5 μΩcm to 100 μΩcm.
集電体本体は箔、シート、フィルム、線状、棒状などの形態をとることができる。そのため、集電体本体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体本体が箔、シート、フィルム形態の場合は、その厚みが10μm~100μmの範囲内であることが好ましい。 The current collector body can take the form of a foil, a sheet, a film, a line, a bar, and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body. When the current collector body is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.
 第1層は集電体本体の表面に形成される保護層である。そのため、保護層としては、第1層は集電体本体の表面全体に形成されることが好ましい。しかしながら、本発明の第3の実施形態の効果を得るためには、第1層は少なくとも集電体本体の一部の表面に形成されればよい。特に、第1層は、少なくとも、後述する第2層と集電体本体との間に形成されるとよい。 The first layer is a protective layer formed on the surface of the current collector body. Therefore, as the protective layer, the first layer is preferably formed on the entire surface of the current collector body. However, in order to obtain the effect of the third embodiment of the present invention, the first layer may be formed on at least a part of the surface of the current collector body. In particular, the first layer is preferably formed at least between the second layer described later and the current collector body.
 第1層の比抵抗は使用する集電体本体の比抵抗よりも高い。第1層の材料の比抵抗値としては、1.5μΩcm~1Ωcmが好ましく、さらに100μΩcm~0.01Ωcmがより好ましい。 The specific resistance of the first layer is higher than the specific resistance of the current collector body used. The specific resistance value of the material of the first layer is preferably 1.5 μΩcm to 1 Ωcm, and more preferably 100 μΩcm to 0.01 Ωcm.
 第1層を構成する材料は、使用する集電体本体の比抵抗よりも高い比抵抗のものである。第1層を構成する材料としては、縮退半導体、すなわち金属酸化物に他元素を添加(ドープ)した導電性金属酸化物、導電性金属窒化物、導電性金属炭化物、又は、導電性有機高分子が好ましい。 The material constituting the first layer has a specific resistance higher than the specific resistance of the current collector body to be used. The material constituting the first layer is a degenerate semiconductor, that is, a conductive metal oxide, a conductive metal nitride, a conductive metal carbide, or a conductive organic polymer obtained by adding (doping) another element to a metal oxide. Is preferred.
 上記金属酸化物としては、酸化インジウム(In)、酸化亜鉛(ZnO)、過酸化亜鉛(ZnO)、酸化錫(II)(SnO)、酸化錫(IV)(SnO)、酸化錫(VI)(SnO)、二酸化チタン(TiO)、三酸化二チタン(Ti)、酸化ルテニウム(RuO)、酸化アルミニウム(Al)、酸化ニッケル(NiO)、酸化タンタル(Ta)、酸化タングステン(III)(W)、酸化タングステン(IV)(WO)、酸化タングステン(VI)(WO)、酸化クロム(Cr)が例示できる。 Examples of the metal oxide include indium oxide (In 2 O 3 ), zinc oxide (ZnO), zinc peroxide (ZnO 2 ), tin oxide (II) (SnO), tin oxide (IV) (SnO 2 ), and oxidation. Tin (VI) (SnO 3 ), titanium dioxide (TiO 2 ), dititanium trioxide (Ti 2 O 3 ), ruthenium oxide (RuO 2 ), aluminum oxide (Al 2 O 3 ), nickel oxide (NiO), oxide Examples include tantalum (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), and chromium oxide (Cr 2 O 3 ). it can.
 金属酸化物に添加する他元素は、金属酸化物に添加(ドープ)した場合に、添加前の化合物よりも添加後の化合物の比抵抗が低下するものである。上記他元素としては、Zn、Mo、W、Ti、Zr、Sn、H、F、Ta、Sb、P、B、Ga、Al、Nbが例示できる。 When other elements added to the metal oxide are added (dope) to the metal oxide, the specific resistance of the compound after addition is lower than that of the compound before addition. Examples of the other elements include Zn, Mo, W, Ti, Zr, Sn, H, F, Ta, Sb, P, B, Ga, Al, and Nb.
 導電性金属酸化物、導電性金属窒化物、又は導電性金属炭化物は、使用する集電体本体よりも比抵抗が高いものである。導電性金属酸化物の具体例としては、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの、酸化チタンにNb元素を添加したものが例示できる。導電性金属窒化物の具体例としては、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化タンタル(TaN)、窒化ニオブ(NbN)、窒化バナジウム(VN)及び窒化タングステン(WN)が例示できる。導電性金属炭化物の具体例としては、炭化チタン(TiC)、炭化モリブデン(MoC)、炭化タングステン(WC)、炭化タンタル(TaC)、炭化ニオブ(NbC)炭化バナジウム(VC)、炭化ジルコニウム(ZrC)が例示できる。 Conductive metal oxide, conductive metal nitride, or conductive metal carbide has higher specific resistance than the current collector body used. Specific examples of the conductive metal oxide include indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H, tin oxide with F, W, Ta, Sb, Examples include those obtained by adding at least one element selected from P and B, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide. Specific examples of the conductive metal nitride include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), niobium nitride (NbN), vanadium nitride (VN), and tungsten nitride ( WN). Specific examples of the conductive metal carbide include titanium carbide (TiC), molybdenum carbide (MoC), tungsten carbide (WC), tantalum carbide (TaC), niobium carbide (NbC), vanadium carbide (VC), and zirconium carbide (ZrC). Can be illustrated.
 上記導電性金属酸化物は、母材である金属酸化物への他元素添加、若しくは他元素添加による金属酸化物の構造内の酸素欠損の発生により、自由に動ける電荷移動体、すなわちキャリアが生じ、導電性を示す。添加する他元素の割合を変化させることで、導電性金属酸化物の比抵抗は変化する。本発明における導電性金属酸化物においては、本発明の趣旨の範囲内の比抵抗を示すように、適宜適切な割合で他元素を金属酸化物に添加すればよい。 In the conductive metal oxide, other elements are added to the base metal oxide, or oxygen vacancies are generated in the structure of the metal oxide due to the addition of other elements. , Showing conductivity. By changing the ratio of other elements to be added, the specific resistance of the conductive metal oxide changes. In the conductive metal oxide of the present invention, other elements may be added to the metal oxide at an appropriate ratio as appropriate so as to exhibit a specific resistance within the scope of the present invention.
 酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもののうち、酸化インジウムにZn元素あるいはSn元素を添加したものが好ましい。酸化インジウムにZn元素を添加したものとして、インジウム亜鉛酸化物が挙げられ、酸化インジウムにSn元素を添加したものとして、インジウム錫酸化物が挙げられる。インジウム亜鉛酸化物としてIn-ZnO(IZO)が好ましく、インジウム錫酸化物としてIn-SnO(ITO)が好ましい。 Among those in which at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H is added to indium oxide, those in which Zn element or Sn element is added to indium oxide are preferable. Examples of the indium oxide added with the Zn element include indium zinc oxide, and examples of the indium oxide added with the Sn element include indium tin oxide. In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide, and In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
 酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化錫に、F元素、Sb元素、Ta元素あるいはP元素を添加したものが好ましい。酸化錫にF元素を添加したものとして、フッ素錫酸化物が挙げられ、酸化錫にSb元素を添加したものとして、アンチモン錫酸化物が挙げられ、酸化錫にTa元素を添加したものとして、タンタル錫酸化物が挙げられ、酸化錫にP元素を添加したものとして、リン錫酸化物が挙げられる。フッ素錫酸化物としてフッ素添加酸化錫(FTO)が好ましく、アンチモン錫酸化物としてアンチモン添加酸化錫(ATO)が好ましく、タンタル錫酸化物としてタンタル添加酸化錫(TaTO)が好ましく、リン錫酸化物としてリン添加酸化錫(PTO)が好ましい。 Of those obtained by adding at least one element selected from F, W, Ta, Sb, P and B to tin oxide, those obtained by adding F element, Sb element, Ta element or P element to tin oxide are preferable. Fluorine tin oxide can be cited as the addition of F element to tin oxide, antimony tin oxide can be cited as the addition of Sb element to tin oxide, and tantalum as the addition of Ta element to tin oxide. Examples of the tin oxide include phosphorous tin oxide as a P element added to tin oxide. Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
 酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化亜鉛にGa元素を添加したものとして、ガリウム亜鉛酸化物が挙げられ、酸化亜鉛にAl元素を添加したものとして、アルミニウム亜鉛酸化物が挙げられ、酸化亜鉛にB元素を添加したものとして、ホウ素亜鉛酸化物が挙げられる。ガリウム亜鉛酸化物としてガリウム添加酸化亜鉛(GZO)が好ましく、アルミニウム亜鉛酸化物としてアルミニウム添加酸化亜鉛(AZO)が好ましく、ホウ素亜鉛酸化物としてホウ素添加酸化亜鉛(BZO)が好ましい。 Among those in which at least one element selected from Ga, Al, and B is added to zinc oxide, gallium zinc oxide can be cited as an example in which Ga element is added to zinc oxide, and Al element is added to zinc oxide. And aluminum zinc oxide, and boron zinc oxide may be mentioned as the element in which element B is added to zinc oxide. Gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide, aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide, and boron-doped zinc oxide (BZO) is preferred as the boron zinc oxide.
 酸化チタンにNb元素を添加したものとして、チタンニオブ酸化物が挙げられる。チタンニオブ酸化物としてTiO;Nbが好ましい。 An example of the titanium oxide added with Nb element is titanium niobium oxide. The titanium niobium oxide is preferably TiO 2 ; Nb.
 なお、一般的に、例えばIZOは90質量%の酸化インジウムに10質量%の酸化亜鉛が添加されたものであり、アモルファス構造を有するものを意味し、また、ITOは一般的に90質量%の酸化インジウムに10質量%の酸化錫が添加されたものを意味するが、本明細書においては、特に断らない限り、インジウム亜鉛酸化物、アルミニウム亜鉛酸化物、ホウ素亜鉛酸化物、インジウム錫酸化物、ガリウム亜鉛酸化物、フッ素錫酸化物、アンチモン錫酸化物、チタンニオブ酸化物と表記した場合、各酸化物における金属元素の配合割合は限定されない。 In general, for example, IZO is a material in which 90% by mass of indium oxide is added with 10% by mass of zinc oxide and has an amorphous structure, and ITO is generally 90% by mass. In the present specification, it means that 10% by mass of tin oxide is added to indium oxide. Unless otherwise specified, indium zinc oxide, aluminum zinc oxide, boron zinc oxide, indium tin oxide, When expressed as gallium zinc oxide, fluorine tin oxide, antimony tin oxide, or titanium niobium oxide, the mixing ratio of the metal element in each oxide is not limited.
 一般に、結晶性の材料の抵抗を下げようとした場合には、加熱処理をして結晶性を上げる処理を行う。ここで、集電体本体にアルミニウム箔を用いた場合、高温状態にて第1層を形成しようとすると、室温に戻した際に膜応力が生じ、集電体本体の平坦性に影響を及ぼす。結果として、第1層を形成した集電体本体に、第2層及び活物質層を塗布する際に影響が生じ、電池特性を損なうおそれがある。このため可能な限り第1層は室温で形成させることが望ましい。 Generally, when the resistance of a crystalline material is to be lowered, a heat treatment is performed to increase the crystallinity. Here, when an aluminum foil is used for the current collector body, if the first layer is formed at a high temperature, film stress is generated when the temperature is returned to room temperature, which affects the flatness of the current collector body. . As a result, when the second layer and the active material layer are applied to the current collector body on which the first layer is formed, the battery characteristics may be impaired. For this reason, it is desirable to form the first layer as much as possible at room temperature.
 IZOは室温成膜においても十分に低抵抗を示し特別に加熱処理を行う必要がないため有利である。さらに、IZOは膜応力が小さいとの特性を有するため、電池特性への影響が少なく有利である。 IZO is advantageous because it exhibits a sufficiently low resistance even in film formation at room temperature and does not require special heat treatment. Furthermore, since IZO has a characteristic that the film stress is small, it is advantageous in that it has little influence on battery characteristics.
 AZOは結晶性の材料であり、室温成膜においても十分に低抵抗を示す。GZOは室温成膜で、AZOよりもさらに低抵抗を示す。 AZO is a crystalline material and exhibits sufficiently low resistance even at room temperature. GZO is a film formed at room temperature and exhibits a lower resistance than AZO.
 第1層の材料が示すバンドギャップとして、7eV以下が好ましく、さらに1eV~4eVがより好ましい。 The band gap indicated by the material of the first layer is preferably 7 eV or less, and more preferably 1 eV to 4 eV.
 第1層の膜厚としては、10nm~1μmが好ましく、20nm~500nmがより好ましく、さらに50nm~200nmがより好ましい。 The thickness of the first layer is preferably 10 nm to 1 μm, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
 集電体本体の表面に第1層を形成させる方法としては、ゾルゲル法、熱分解スプレー法、CVD法(Chemical Vapor Deposition法)、スパッタリング法、真空蒸着法、コーティング法などが例示できる。この第1層形成方法は、集電体本体の材料や形状及び第1層を構成する材料の種類に応じて、適宜適切に選択して使用すればよい。 Examples of the method for forming the first layer on the surface of the current collector body include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method. This first layer forming method may be appropriately selected and used according to the material and shape of the current collector body and the type of material constituting the first layer.
 第2層は第1層の表面に形成される集電体本体の保護層である。本発明においては、集電体本体は2層の保護層で保護されるので、1層の保護層のみによる保護と比較して、集電体本体は安定となる。そして、集電体本体の表面に、集電体本体よりも比抵抗の大きな第1層、及び第1層よりも比抵抗の大きな第2層が、順に形成されることで、上述したように得られる正極の抵抗が低抵抗となる。そのため、第2層は第1層の表面全体に形成されることが好ましいが、本発明の効果を得るためには、少なくとも第1層の一部の表面に形成されればよい。 The second layer is a protective layer for the current collector body formed on the surface of the first layer. In the present invention, the current collector body is protected by the two protective layers, so that the current collector body is more stable than the protection by only one protective layer. Then, on the surface of the current collector body, a first layer having a specific resistance larger than that of the current collector body and a second layer having a specific resistance larger than that of the first layer are sequentially formed, as described above. The resistance of the positive electrode obtained is low. For this reason, the second layer is preferably formed on the entire surface of the first layer. However, in order to obtain the effects of the present invention, the second layer may be formed on at least a part of the surface of the first layer.
 第2層の比抵抗は使用する第1層の比抵抗よりも高い。第2層の材料の比抵抗値としては、100μΩcm~10Ωcmが好ましく、さらに10,000μΩcm~10Ωcmがより好ましい。 The specific resistance of the second layer is higher than the specific resistance of the first layer used. The resistivity of the material of the second layer, preferably 100μΩcm ~ 10 8 Ωcm, and more preferably further 10,000μΩcm ~ 10 8 Ωcm.
 第1層と第2層とを構成する材料の電気化学的性質は近いほう良い。両層の材料が同様のバンドギャップを有するものであるのが好ましい。第2層の材料が示すバンドギャップとしては、7eV以下が好ましく、さらに1eV~4eVがより好ましい。 The closer the electrochemical properties of the material constituting the first layer and the second layer are, the better. It is preferable that the material of both layers has the same band gap. The band gap exhibited by the material of the second layer is preferably 7 eV or less, and more preferably 1 eV to 4 eV.
 また、第2層は活物質及び電解液と直接的に接するので、第2層の材料は第1層の材料よりもキャリア密度の低いものが好ましい。キャリア密度の低い材料を選択することで、活物質及び電解液による分解反応を抑制することができる。 Also, since the second layer is in direct contact with the active material and the electrolytic solution, the material of the second layer is preferably a material having a lower carrier density than the material of the first layer. By selecting a material having a low carrier density, the decomposition reaction caused by the active material and the electrolytic solution can be suppressed.
 第2層を構成する材料は、使用する第1層の比抵抗よりも高い比抵抗のものである。第2層を構成する材料としては、金属酸化物、金属窒化物又は金属炭化物が好ましい。 The material constituting the second layer has a specific resistance higher than that of the first layer to be used. The material constituting the second layer is preferably a metal oxide, metal nitride, or metal carbide.
 第2層を構成する材料の具体例としては、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化錫(IV)(SnO)、二酸化チタン(TiO)、三酸化二チタン(Ti)、酸化ルテニウム(RuO)、酸化アルミニウム(Al)、酸化タンタル(Ta)、酸化タングステン(III)(W)、酸化タングステン(IV)(WO)、酸化タングステン(VI)(WO)、酸化クロム(Cr)、窒化アルミニウム(AlN)、炭化珪素(SiC)が例示できる。 Specific examples of the material constituting the second layer include indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (IV) (SnO 2 ), titanium dioxide (TiO 2 ), dititanium trioxide ( Ti 2 O 3 ), ruthenium oxide (RuO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), chromium oxide (Cr 2 O 3 ), aluminum nitride (AlN), and silicon carbide (SiC).
 第2層の膜厚としては、10nm~1μmが好ましく、20nm~500nmがより好ましく、さらに50nm~200nmがより好ましい。 The film thickness of the second layer is preferably 10 nm to 1 μm, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
 第1層と第2層の組み合わせについては、第1層の比抵抗が第2層の比抵抗よりも低いとの条件を満たしていればよい。第1層と第2層の組み合わせとしては、第1層が導電性金属酸化物であれば第2層は金属酸化物、第1層が導電性金属窒化物であれば第2層は金属窒化物、第1層が導電性金属炭化物であれば第2層は金属炭化物であるのが好ましい。 The combination of the first layer and the second layer only needs to satisfy the condition that the specific resistance of the first layer is lower than the specific resistance of the second layer. As a combination of the first layer and the second layer, if the first layer is a conductive metal oxide, the second layer is a metal oxide, and if the first layer is a conductive metal nitride, the second layer is a metal nitride. If the first layer is a conductive metal carbide, the second layer is preferably a metal carbide.
 第1層と第2層の膜厚の合計としては、20nm~2μmが好ましく、40nm~1μmがより好ましく、さらに100nm~500nmがより好ましい。 The total thickness of the first layer and the second layer is preferably 20 nm to 2 μm, more preferably 40 nm to 1 μm, and even more preferably 100 nm to 500 nm.
 第1層の表面に第2層を形成させる方法としては、ゾルゲル法、熱分解スプレー法、CVD法(Chemical Vapor Deposition法)、スパッタリング法、真空蒸着法、コーティング法などが例示できる。この第2層形成方法は、集電体本体及び第1層の材料や形状、並びに第2層を構成する材料の種類に応じて、適宜適切に選択して使用すればよい。 Examples of the method for forming the second layer on the surface of the first layer include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method. This second layer forming method may be appropriately selected and used according to the material and shape of the current collector main body and the first layer, and the type of material constituting the second layer.
 正極の活物質層に含まれる活物質については、例えば、リチウム二次電池用の正極の活物質の場合、リチウムイオンの吸蔵及び放出が可能な材料であれば良い。リチウム二次電池用の正極の活物質としては、LiCoO等のコバルト複合酸化物、LiMn、LiMnO等のマンガン複合酸化物、LiNiO、等のニッケル複合酸化物、LiFePO、LiFeVO、等の鉄複合酸化物、Li(Ni,Co)O、Li(Ni,Mn)O、Li(Co,Mg)O、Li(Ni,Co,Mn)O、Li(Ni,Co,Al)O、Li(Co,Mg,Al)O、Li(Ni,Co,Mn,Al)O等の複合酸化物等が挙げられる。これらの材料は、混合して用いてもよい。 The active material contained in the positive electrode active material layer may be any material that can occlude and release lithium ions, for example, in the case of a positive electrode active material for a lithium secondary battery. As an active material of the positive electrode for the lithium secondary battery, cobalt composite oxide such as LiCoO 2 , manganese composite oxide such as LiMn 2 O 4 and Li 2 MnO 3 , nickel composite oxide such as LiNiO 2 , LiFePO 4 , LiFeVO 4 , iron complex oxides, Li (Ni, Co) O 2 , Li (Ni, Mn) O 2 , Li (Co, Mg) O 2 , Li (Ni, Co, Mn) O 2 , Li Examples thereof include composite oxides such as (Ni, Co, Al) O 2 , Li (Co, Mg, Al) O 2 , and Li (Ni, Co, Mn, Al) O 2 . These materials may be used as a mixture.
 特に正極の活物質は、一般式:
LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe、Naから選択され、p+q+r+s=1、0≦p≦1、0≦q≦1、0≦r≦1、0≦s<1)で表される複合金属酸化物を含むことが好ましい。ここで、上記p、q、rはそれぞれ0<p<1、0<q<1、0<r<1の範囲とすることができる。
In particular, the active material of the positive electrode has the general formula:
LiCo p Ni q Mn r D S O 2 (D is selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe, Na, p + q + r + s = 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ It is preferable to include a composite metal oxide represented by 1, 0 ≦ r ≦ 1, 0 ≦ s <1). Here, the above-mentioned p, q, and r can be in the ranges of 0 <p <1, 0 <q <1, and 0 <r <1, respectively.
 この複合金属酸化物は熱安定性に優れ、低コストであるため、これを含む非水電解質二次電池は、熱安定性に優れ、安価なものとすることができる。 Since this composite metal oxide is excellent in thermal stability and low in cost, a non-aqueous electrolyte secondary battery including the composite metal oxide can be excellent in thermal stability and inexpensive.
 上記複合金属酸化物として、LiCo1/3Ni1/3Mn1/3、Li1.0Ni0.6Co0.2Mn0.2、Li1.0Ni0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2を例示することができる。 As the above composite metal oxide, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.0 Ni 0.6 Co 0.2 Mn 0.2 O 2 , Li 1.0 Ni 0.5 Co Examples include 0.2 Mn 0.3 O 2 , LiCoO 2 , and LiNi 0.8 Co 0.2 O 2 .
 活物質層は導電助剤を含んでもよい。導電助剤は、第1の実施形態と同様のものが使用できる。第3の実施形態の導電助剤の説明は、第1の実施形態の導電助剤の説明と同じである。 The active material layer may contain a conductive aid. The same conductive assistant as that in the first embodiment can be used. The description of the conductive auxiliary agent of the third embodiment is the same as the description of the conductive auxiliary agent of the first embodiment.
 活物質層は結着剤を含んでもよい。結着剤は活物質及び導電助剤を第2層の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。 The active material layer may contain a binder. The binder serves to bind the active material and the conductive additive to the surface of the second layer. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to.
 第2層の表面に活物質層を形成させる方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、第2層の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、第2層の表面に塗布後、乾燥する。必要に応じて電極密度を高めるべく、乾燥後のものを圧縮しても良い。 As a method for forming the active material layer on the surface of the second layer, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. An active material may be applied to the surface. Specifically, an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to form a paste. After coating on the surface of the two layers, it is dried. If necessary, the dried product may be compressed to increase the electrode density.
 溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)を例示できる。 Examples of the solvent include N-methyl-2-pyrrolidone (NMP), methanol, and methyl isobutyl ketone (MIBK).
 図3に本発明の第3の実施形態の非水電解質二次電池用正極を説明する模式図を示す。図3に示すように、集電体10の表面に第1層21が形成され、第1層21の表面に第2層22が形成され、第2層22の表面に活物質層31が形成されて、非水電解質二次電池用正極50となる。 FIG. 3 is a schematic diagram for explaining a positive electrode for a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention. As shown in FIG. 3, the first layer 21 is formed on the surface of the current collector 10, the second layer 22 is formed on the surface of the first layer 21, and the active material layer 31 is formed on the surface of the second layer 22. Thus, the positive electrode 50 for a non-aqueous electrolyte secondary battery is obtained.
 本発明の第3の実施形態の非水電解質二次電池は上記第3の実施形態の非水電解質二次電池用正極を有することを特徴とする。上記第3の実施形態の非水電解質二次電池用正極を有する非水電解質二次電池は、高電位駆動条件下でも良好な容量維持率を示すことができる。そのため、本発明の第3の実施形態の非水電解質二次電池は、大きな充放電容量を有し、かつ優れたサイクル性能を有するものである。 The nonaqueous electrolyte secondary battery according to the third embodiment of the present invention has the positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment. The nonaqueous electrolyte secondary battery having the positive electrode for a nonaqueous electrolyte secondary battery according to the third embodiment can exhibit a good capacity retention rate even under high potential driving conditions. Therefore, the nonaqueous electrolyte secondary battery according to the third embodiment of the present invention has a large charge / discharge capacity and excellent cycle performance.
 ここで、上記高電位駆動条件とは、リチウム金属に対するリチウムイオンの作動電位が4.3V以上、さらには4.5V~5.5Vのことをいう。本発明の第3の実施形態の非水電解質二次電池を用いた場合には、非水電解質二次電池用正極の充電電位をリチウム基準で4.3V以上、さらには4.5V~5.5Vとすることができる。なお、一般的なリチウムイオン二次電池の駆動条件においては、リチウム金属に対するリチウムイオンの作動電位は4.3V未満である。 Here, the high potential driving condition means that the operating potential of lithium ions with respect to lithium metal is 4.3 V or more, and further 4.5 to 5.5 V. When the non-aqueous electrolyte secondary battery according to the third embodiment of the present invention is used, the charging potential of the positive electrode for the non-aqueous electrolyte secondary battery is 4.3 V or higher, further 4.5 V to 5.V. 5V can be set. Note that, under the driving conditions of a general lithium ion secondary battery, the operating potential of lithium ions with respect to lithium metal is less than 4.3V.
 本発明の第3の実施形態の非水電解質二次電池は、電池構成要素として、上記した非水電解質二次電池用正極に加えて、負極、セパレータ、電解液を含む。第3の実施形態の負極、セパレータ、電解液は第1の実施形態と同様のものを使用できる。第3の実施形態の負極、セパレータ、電解液の説明は、第1の実施形態の負極、セパレータ、電解液の説明と同じである。 The nonaqueous electrolyte secondary battery according to the third embodiment of the present invention includes a negative electrode, a separator, and an electrolyte in addition to the above-described positive electrode for a nonaqueous electrolyte secondary battery as battery components. The negative electrode, separator, and electrolyte solution of the third embodiment can be the same as those of the first embodiment. The description of the negative electrode, separator, and electrolytic solution of the third embodiment is the same as the description of the negative electrode, separator, and electrolytic solution of the first embodiment.
 (第4の実施形態)
 本発明の第4の実施形態の非水電解質二次電池正極用集電体は、集電体本体と金属酸化物又は金属窒化物を含む被覆層とを有する非水電解質二次電池正極用集電体において、集電体本体と被覆層との間に、高抵抗金属を有することを特徴とする。
(Fourth embodiment)
A current collector for a nonaqueous electrolyte secondary battery positive electrode according to a fourth embodiment of the present invention includes a current collector body and a coating layer containing a metal oxide or metal nitride for a nonaqueous electrolyte secondary battery positive electrode current collector. The electric body is characterized by having a high resistance metal between the current collector body and the coating layer.
 集電体本体は、非水電解質二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。本発明の非水電解質二次電池正極用集電体は集電体本体の保護層として金属酸化物又は金属窒化物を含む被覆層が形成されているため、集電体本体は電解塩等の腐食に耐えることができる。 The current collector body refers to a chemically inert electronic high conductor that keeps current flowing through the electrode during discharge or charging of the nonaqueous electrolyte secondary battery. In the current collector for a non-aqueous electrolyte secondary battery positive electrode according to the present invention, a coating layer containing a metal oxide or a metal nitride is formed as a protective layer for the current collector body. Can withstand corrosion.
 集電体本体の材料としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。参考までに上記材料の比抵抗値(μΩcm)の一部を示すと、銀:1.5μΩcm、銅:1.6μΩcm、金:2μΩcm、アルミニウム:2.5μΩcm、マグネシウム4μΩcm、タングステン:5μΩcm、コバルト:6μΩcm、亜鉛:6μΩcm、ニッケル:6μΩcm、鉄:9μΩcm、白金:10μΩcm、錫:11μΩcm、インジウム:5μΩcm、チタン:43μΩcm、タンタル:12μΩcm、クロム:13μΩcm、モリブデン:5μΩcm、ステンレス鋼:71μΩcm程度である。 As a material of the current collector body, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, In addition, metal materials such as stainless steel can be exemplified. For reference, some of the specific resistance values (μΩcm) of the above materials are shown: silver: 1.5 μΩcm, copper: 1.6 μΩcm, gold: 2 μΩcm, aluminum: 2.5 μΩcm, magnesium 4 μΩcm, tungsten: 5 μΩcm, cobalt: 6 μΩcm, zinc: 6 μΩcm, nickel: 6 μΩcm, iron: 9 μΩcm, platinum: 10 μΩcm, tin: 11 μΩcm, indium: 5 μΩcm, titanium: 43 μΩcm, tantalum: 12 μΩcm, chromium: 13 μΩcm, molybdenum: 5 μΩcm, stainless steel: 71 μΩcm.
 集電体本体の比抵抗値としては、1.5μΩcm~150μΩcmが好ましく、さらに1.5μΩcm~100μΩcmがより好ましい。 The specific resistance value of the current collector body is preferably 1.5 μΩcm to 150 μΩcm, and more preferably 1.5 μΩcm to 100 μΩcm.
 集電体本体は箔、シート、フィルム、線状、棒状などの形態をとることができる。そのため、集電体本体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体本体が箔、シート、フィルム形態の場合は、その厚みが10μm~100μmの範囲内であることが好ましい。 The current collector body can take the form of foil, sheet, film, wire, rod, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector body. When the current collector body is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.
 本発明の第4の実施形態の非水電解質二次電池正極用集電体において、高抵抗金属は集電体本体と被覆層との間に存在する。この条件を満たす限り、高抵抗金属の存在形態に特に制限は無い。例えば、高抵抗金属は、集電体本体の表面全体若しくは一部に層状に存在しても良いし、又は集電体本体の表面全体若しくは一部に点在していても良い。高抵抗金属が層状に存在している場合の厚み、又は点在している場合の厚みについては、10nm~1μmが好ましく、20nm~500nmがより好ましく、さらに50nm~200nmがより好ましい。 In the current collector for the nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention, the high-resistance metal exists between the current collector body and the coating layer. As long as this condition is satisfied, the existence form of the high-resistance metal is not particularly limited. For example, the high-resistance metal may be present in layers on the entire surface or part of the current collector body, or may be scattered on the entire surface or part of the current collector body. The thickness in the case where the high resistance metal is present in layers or the thickness in the case where the high resistance metal is scattered is preferably 10 nm to 1 μm, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
 高抵抗金属としては、比抵抗が最も低い銀を除いて、集電体本体で述べたのと同じものが例示される。高抵抗金属の比抵抗値は、集電体本体よりも比抵抗が高ければよい。高抵抗金属の比抵抗値としては、1.6μΩcm~200μΩcmが好ましく、さらに1.6μΩcm~150μΩcmがより好ましい。 Examples of the high resistance metal are the same as those described in the current collector body except for silver having the lowest specific resistance. The specific resistance value of the high resistance metal only needs to be higher than that of the current collector body. The specific resistance value of the high resistance metal is preferably 1.6 μΩcm to 200 μΩcm, and more preferably 1.6 μΩcm to 150 μΩcm.
 本発明の第4の実施形態における被覆層は、金属酸化物又は金属窒化物を含む。本発明の第4の実施形態の非水電解質二次電池正極用集電体は金属酸化物又は金属窒化物を含む被覆層を有するので耐腐食性を示し、集電体本体の腐食が極めて起こりにくい。 The coating layer in the fourth embodiment of the present invention contains a metal oxide or a metal nitride. The current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention has a coating layer containing a metal oxide or metal nitride, and therefore exhibits corrosion resistance, and the current collector main body is extremely corroded. Hateful.
 金属酸化物としては、酸化インジウム(In)、酸化亜鉛(ZnO)、過酸化亜鉛(ZnO)、酸化錫(II)(SnO)、酸化錫(IV)(SnO)、酸化錫(VI)(SnO)、二酸化チタン(TiO)、三酸化二チタン(Ti)、酸化ルテニウム(RuO)、酸化アルミニウム(Al)、酸化ニッケル(NiO)、酸化タンタル(Ta)、酸化タングステン(III)(W)、酸化タングステン(IV)(WO)、酸化タングステン(VI)(WO)、酸化クロム(Cr)、酸化マグネシウム(MgO)、酸化コバルト(II)(CoO)、酸化コバルト(III)(Co)、四酸化三コバルト(Co)、酸化鉄(II)(FeO)、酸化鉄(III)(Fe)、四酸化三鉄(Fe)が例示される。 Examples of the metal oxide include indium oxide (In 2 O 3 ), zinc oxide (ZnO), zinc peroxide (ZnO 2 ), tin oxide (II) (SnO), tin oxide (IV) (SnO 2 ), and tin oxide. (VI) (SnO 3 ), titanium dioxide (TiO 2 ), dititanium trioxide (Ti 2 O 3 ), ruthenium oxide (RuO 2 ), aluminum oxide (Al 2 O 3 ), nickel oxide (NiO), tantalum oxide (Ta 2 O 3 ), tungsten oxide (III) (W 2 O 3 ), tungsten oxide (IV) (WO 2 ), tungsten oxide (VI) (WO 3 ), chromium oxide (Cr 2 O 3 ), magnesium oxide (MgO), cobalt oxide (II) (CoO), cobalt oxide (III) (Co 2 O 3 ), tricobalt tetroxide (Co 3 O 4 ), iron oxide (II) (FeO), iron oxide (III) (Fe 2 O 3 , Triiron tetraoxide (Fe 3 O 4) is exemplified.
 金属窒化物としては、窒化アルミニウム(AlN)、窒化チタン(TiN)、窒化銅(Cu)、窒化マグネシウム(Mg)、窒化タングステン(WN)、窒化コバルト(CoN)、窒化亜鉛(Zn)、窒化ニッケル(NiN)、窒化鉄(FeN)、窒化錫(Sn)、窒化インジウム(InN)、窒化ルテニウム(Ru)、窒化タンタル(TaN)、窒化クロム(CrN)が例示される。 Examples of the metal nitride include aluminum nitride (AlN), titanium nitride (TiN), copper nitride (Cu 3 N 2 ), magnesium nitride (Mg 3 N 2 ), tungsten nitride (WN), cobalt nitride (Co 3 N), Zinc nitride (Zn 3 N 2 ), nickel nitride (Ni 3 N), iron nitride (FeN), tin nitride (Sn 3 N 2 ), indium nitride (InN), ruthenium nitride (Ru 3 N 4 ), tantalum nitride ( Examples are TaN) and chromium nitride (CrN).
 被覆層を構成する材料は、縮退半導体、すなわち金属酸化物に他元素を添加(ドープ)したものでもよい。この場合の金属酸化物の具体例としては、上で挙げたものを示すことができる。金属酸化物に添加する元素としては、Zn、Mo、W、Ti、Zr、Sn、H、F、Ta、Sb、P、B、Ga、Al、Nbが例示できる。縮退半導体としては、特に、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、B及びPから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものが好ましい。 The material constituting the coating layer may be a degenerate semiconductor, that is, a metal oxide obtained by adding (doping) another element. Specific examples of the metal oxide in this case can include those listed above. Examples of the element added to the metal oxide include Zn, Mo, W, Ti, Zr, Sn, H, F, Ta, Sb, P, B, Ga, Al, and Nb. As the degenerate semiconductor, indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H, tin oxide from F, W, Ta, Sb, B, and P Those obtained by adding at least one selected element, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide are preferred.
 酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもののうち、酸化インジウムにZn元素あるいはSn元素を添加したものが好ましい。酸化インジウムにZn元素を添加したものとして、インジウム亜鉛酸化物が挙げられ、酸化インジウムにSn元素を添加したものとして、インジウム錫酸化物が挙げられる。インジウム亜鉛酸化物としてIn-ZnO(IZO)が好ましく、インジウム錫酸化物としてIn-SnO(ITO)が好ましい。 Among those in which at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H is added to indium oxide, those in which Zn element or Sn element is added to indium oxide are preferable. Examples of the indium oxide added with the Zn element include indium zinc oxide, and examples of the indium oxide added with the Sn element include indium tin oxide. In 2 O 3 —ZnO (IZO) is preferable as the indium zinc oxide, and In 2 O 3 —SnO 2 (ITO) is preferable as the indium tin oxide.
 酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化錫に、F元素、Sb元素、Ta元素あるいはP元素を添加したものが好ましい。酸化錫にF元素を添加したものとして、フッ素錫酸化物が挙げられ、酸化錫にSb元素を添加したものとして、アンチモン錫酸化物が挙げられ、酸化錫にTa元素を添加したものとして、タンタル錫酸化物が挙げられ、酸化錫にP元素を添加したものとして、リン錫酸化物が挙げられる。フッ素錫酸化物としてフッ素添加酸化錫(FTO)が好ましく、アンチモン錫酸化物としてアンチモン添加酸化錫(ATO)が好ましく、タンタル錫酸化物としてタンタル添加酸化錫(TaTO)が好ましく、リン錫酸化物としてリン添加酸化錫(PTO)が好ましい。 Of those obtained by adding at least one element selected from F, W, Ta, Sb, P and B to tin oxide, those obtained by adding F element, Sb element, Ta element or P element to tin oxide are preferable. Fluorine tin oxide can be cited as the addition of F element to tin oxide, antimony tin oxide can be cited as the addition of Sb element to tin oxide, and tantalum as the addition of Ta element to tin oxide. Examples of the tin oxide include phosphorous tin oxide as a P element added to tin oxide. Fluorine tin oxide is preferably fluorine-added tin oxide (FTO), antimony tin oxide is preferably antimony-added tin oxide (ATO), tantalum tin oxide is preferably tantalum-added tin oxide (TaTO), and phosphorus tin oxide is preferred. Phosphorus-doped tin oxide (PTO) is preferred.
 酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもののうち、酸化亜鉛にGa元素を添加したものとして、ガリウム亜鉛酸化物が挙げられ、酸化亜鉛にAl元素を添加したものとして、アルミニウム亜鉛酸化物が挙げられ、酸化亜鉛にB元素を添加したものとして、ホウ素亜鉛酸化物が挙げられる。ガリウム亜鉛酸化物としてガリウム添加酸化亜鉛(GZO)が好ましく、アルミニウム亜鉛酸化物としてアルミニウム添加酸化亜鉛(AZO)が好ましく、ホウ素亜鉛酸化物としてホウ素添加酸化亜鉛(BZO)が好ましい。 Among those in which at least one element selected from Ga, Al, and B is added to zinc oxide, gallium zinc oxide can be cited as an example in which Ga element is added to zinc oxide, and Al element is added to zinc oxide. And aluminum zinc oxide, and boron zinc oxide may be mentioned as the element in which element B is added to zinc oxide. Gallium-doped zinc oxide (GZO) is preferred as the gallium zinc oxide, aluminum-doped zinc oxide (AZO) is preferred as the aluminum zinc oxide, and boron-doped zinc oxide (BZO) is preferred as the boron zinc oxide.
 酸化チタンにNb元素を添加したものとして、チタンニオブ酸化物が挙げられる。チタンニオブ酸化物としてTiO;Nbが好ましい。 An example of the titanium oxide added with Nb element is titanium niobium oxide. The titanium niobium oxide is preferably TiO 2 ; Nb.
 なお、一般的に、例えばIZOは90質量%の酸化インジウムに10質量%の酸化亜鉛が添加されたものであり、アモルファス構造を有するものを意味し、また、ITOは一般的に90質量%の酸化インジウムに10質量%の酸化錫が添加されたものを意味するが、本明細書においては、特に断らない限り、インジウム亜鉛酸化物、アルミニウム亜鉛酸化物、ホウ素亜鉛酸化物、インジウム錫酸化物、ガリウム亜鉛酸化物、フッ素錫酸化物、アンチモン錫酸化物、チタンニオブ酸化物と表記した場合、各酸化物における金属元素の配合割合は限定されない。 In general, for example, IZO is a material in which 90% by mass of indium oxide is added with 10% by mass of zinc oxide and has an amorphous structure, and ITO is generally 90% by mass. In the present specification, it means that 10% by mass of tin oxide is added to indium oxide. Unless otherwise specified, indium zinc oxide, aluminum zinc oxide, boron zinc oxide, indium tin oxide, When expressed as gallium zinc oxide, fluorine tin oxide, antimony tin oxide, or titanium niobium oxide, the mixing ratio of the metal element in each oxide is not limited.
 一般に、結晶性の材料の抵抗を下げようとした場合には、加熱処理をして結晶性を上げる処理を行う。ここで、集電体本体にアルミニウム箔を用いた場合、高温状態にて被覆層を形成しようとすると、室温に戻した際に膜応力が生じ、集電体本体の平坦性に影響を及ぼす。その結果として、被覆層を形成した集電体本体に活物質層を塗布する際に影響が生じ、電池特性を損なうおそれがある。このため可能な限り被覆層は室温で形成させることが望ましい。 Generally, when the resistance of a crystalline material is to be lowered, a heat treatment is performed to increase the crystallinity. Here, when an aluminum foil is used for the current collector body, if an attempt is made to form a coating layer at a high temperature, film stress is generated when the temperature is returned to room temperature, which affects the flatness of the current collector body. As a result, when the active material layer is applied to the current collector body on which the coating layer is formed, there is a possibility that battery characteristics may be impaired. For this reason, it is desirable to form the coating layer at room temperature as much as possible.
 この点に関し、IZOは室温成膜であっても十分に低抵抗を示し特別に加熱処理を行う必要がないため有利である。さらに、IZOは膜応力が小さいとの特性を有するため、電池特性への影響が少なく有利である。AZOは結晶性の材料であり、室温成膜においても十分に低抵抗を示す。GZOは室温成膜において、AZOよりもさらに低抵抗を示す。 In this regard, IZO is advantageous because it exhibits a sufficiently low resistance even at room temperature film formation and does not require any special heat treatment. Furthermore, since IZO has a characteristic that the film stress is small, it is advantageous in that it has little influence on battery characteristics. AZO is a crystalline material and exhibits sufficiently low resistance even at room temperature. GZO exhibits a lower resistance than AZO in film formation at room temperature.
 被覆層の材料の比抵抗値として、10μΩcm~10Ωcmが好ましく、さらに10μΩcm~10Ωcmがより好ましい。 The specific resistance value of the material of the coating layer is preferably 10 μΩcm to 10 8 Ωcm, and more preferably 10 μΩcm to 10 6 Ωcm.
 被覆層は集電体本体及び高抵抗金属の保護層である。被覆層は高抵抗金属の表面の少なくとも一部に形成されればよい。被覆層は、高抵抗金属の表面の一部乃至全体に形成されること、又は、露出している集電体本体の表面及び高抵抗金属の表面の一部乃至全体に形成されることが想定される。特に、被覆層は、高抵抗金属の表面全体に形成されること、又は露出している集電体本体の表面全体及び高抵抗金属の表面全体に形成されることが好ましい。 The coating layer is a current collector body and a protective layer of high resistance metal. The coating layer may be formed on at least a part of the surface of the high resistance metal. It is assumed that the coating layer is formed on a part or the whole of the surface of the high-resistance metal, or formed on a part or the whole of the exposed surface of the current collector body and the surface of the high-resistance metal. Is done. In particular, the coating layer is preferably formed on the entire surface of the high-resistance metal, or formed on the entire surface of the current collector body and the entire surface of the high-resistance metal.
 被覆層の膜厚としては、10nm~1μmが好ましく、20nm~500nmがより好ましく、さらに50nm~200nmがより好ましい。 The film thickness of the coating layer is preferably 10 nm to 1 μm, more preferably 20 nm to 500 nm, and even more preferably 50 nm to 200 nm.
 高抵抗金属と被覆層を構成する材料の組み合わせについては、これらの界面で生じるショットキー障壁を低減するという観点から、両者の電気化学的性質(比抵抗値)が近いほうが好ましい。さらに、高抵抗金属と、被覆層を構成する材料の金属元素とが同じであることが特に好ましい。両者の金属が同じである場合、後述するように効率的な連続した製造方法を提供することができる。この製造方法によれば、高抵抗金属と被覆層との明確な界面の形成を防ぐことが可能であるため、ショットキー障壁の著しい低減を達成することができる。 Regarding the combination of the material constituting the high-resistance metal and the coating layer, it is preferable that the electrochemical properties (specific resistance values) of the two are close from the viewpoint of reducing the Schottky barrier generated at these interfaces. Furthermore, it is particularly preferable that the high resistance metal and the metal element of the material constituting the coating layer are the same. When both metals are the same, the efficient continuous manufacturing method can be provided so that it may mention later. According to this manufacturing method, it is possible to prevent formation of a clear interface between the high-resistance metal and the coating layer, so that a significant reduction in the Schottky barrier can be achieved.
 本発明の第4の実施形態の非水電解質二次電池正極用集電体の製造方法は、集電体本体の表面に高抵抗金属を塗布する塗布工程、塗布工程で得られた高抵抗金属を塗布された集電体本体の表面に金属酸化物又は金属窒化物を被覆する被覆工程を含む。 A manufacturing method of a current collector for a nonaqueous electrolyte secondary battery positive electrode according to a fourth embodiment of the present invention is a coating process for coating a high resistance metal on the surface of a current collector body, and a high resistance metal obtained in the coating process. A coating step of coating the surface of the current collector body coated with metal oxide or metal nitride.
 塗布工程としては、スパッタリング法、コーティング法などが例示できる。これらの方法は、集電体本体の材料や形状、及び高抵抗金属の種類に応じて、適宜適切に選択して使用すればよい。 Examples of the coating process include a sputtering method and a coating method. These methods may be appropriately selected and used according to the material and shape of the current collector body and the type of the high resistance metal.
 被覆工程としては、ゾルゲル法、熱分解スプレー法、CVD法(Chemical Vapor Deposition法)、スパッタリング法、真空蒸着法、コーティング法などが例示できる。これらの方法は、集電体本体及び高抵抗金属の材料や形状に応じて、適宜適切に選択して使用すればよい。 Examples of the coating process include a sol-gel method, a pyrolysis spray method, a CVD method (Chemical Vapor Deposition method), a sputtering method, a vacuum deposition method, and a coating method. These methods may be appropriately selected and used according to the material and shape of the current collector body and the high resistance metal.
 被覆工程は、酸素又は窒素雰囲気下にて金属をスパッタすることにより行われることが好ましい。例えば、酸素雰囲気下で金属をスパッタすると、酸素と金属が反応し金属酸化物の被覆層を形成できる。 The coating step is preferably performed by sputtering a metal in an oxygen or nitrogen atmosphere. For example, when a metal is sputtered in an oxygen atmosphere, the metal and the metal react to form a metal oxide coating layer.
 高抵抗金属と、被覆層を構成する材料の金属元素とが同じ非水電解質二次電池正極用集電体を製造する場合には、塗布工程がアルゴンガス雰囲気下で金属をスパッタすることにより行われ、被覆工程が酸素又は窒素雰囲気下にて塗布工程で用いられた金属と同じ金属をスパッタすることにより行われるのが好ましい。特に、塗布工程終了直前のスパッタリング装置内に酸素又は窒素を導入することにより、塗布工程と被覆工程とを連続工程とすることが好ましい。連続工程の製造方法は、製造プロセスの観点から効率的な点で有利である。しかも、得られる集電体において、高抵抗金属と被覆層との間に明確な界面の形成を防ぐことが実質的に可能であるから、低抵抗の集電体を得ることができるという点でさらに有利である。 When manufacturing a current collector for a positive electrode of a non-aqueous electrolyte secondary battery in which the high resistance metal and the metal element of the material constituting the coating layer are manufactured, the coating process is performed by sputtering the metal under an argon gas atmosphere. It is preferable that the coating process is performed by sputtering the same metal as that used in the coating process in an oxygen or nitrogen atmosphere. In particular, it is preferable that the coating process and the coating process are made continuous by introducing oxygen or nitrogen into the sputtering apparatus immediately before the coating process is completed. The continuous manufacturing method is advantageous in terms of efficiency from the viewpoint of the manufacturing process. Moreover, in the obtained current collector, it is substantially possible to prevent the formation of a clear interface between the high-resistance metal and the coating layer, so that a low-resistance current collector can be obtained. Further advantageous.
 本発明の第4の実施形態の非水電解質二次電池正極用集電体は、その表面に活物質層を形成することで、非水電解質二次電池用正極とすることができる。 The current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention can be used as a positive electrode for a nonaqueous electrolyte secondary battery by forming an active material layer on the surface thereof.
 第4の実施形態の正極の活物質層に含まれる活物質は、第3の実施形態に記載の活物質と同様の物が使用できる。第4の実施形態における正極の活物質の説明は第3の実施形態で記載した正極の活物質の説明と同じである。 The active material contained in the positive electrode active material layer of the fourth embodiment can be the same as the active material described in the third embodiment. The description of the positive electrode active material in the fourth embodiment is the same as the description of the positive electrode active material described in the third embodiment.
 活物質層は導電助剤を含んでもよい。導電助剤は、電極の導電性を高めるために添加される。第4の実施形態の導電助剤は、第1の実施形態に記載の導電助剤と同様の物が使用できる。第4の実施形態の導電助剤の説明は、第1の実施形態の導電助剤の説明と同じである。 The active material layer may contain a conductive aid. The conductive assistant is added to increase the conductivity of the electrode. The same thing as the conductive support agent described in 1st Embodiment can be used for the conductive support agent of 4th Embodiment. The description of the conductive auxiliary agent of the fourth embodiment is the same as the description of the conductive auxiliary agent of the first embodiment.
 活物質層は結着剤を含んでもよい。結着剤は活物質及び導電助剤を第2層の表面に繋ぎ止める役割を果たすものである。第4の実施形態の結着剤としては、第3の実施形態で例示した結着剤と同じものが使用できる。第4の実施形態の結着剤の説明は、第3の実施形態の結着剤の説明と同じである。 The active material layer may contain a binder. The binder serves to bind the active material and the conductive additive to the surface of the second layer. As the binder of the fourth embodiment, the same binder as exemplified in the third embodiment can be used. The description of the binder of the fourth embodiment is the same as the description of the binder of the third embodiment.
 本発明の第4の実施形態の非水電解質二次電池正極用集電体の表面に活物質層を形成させる方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。必要に応じて電極密度を高めるべく、乾燥後のものを圧縮しても良い。 As a method for forming an active material layer on the surface of the current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention, a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain The active material may be applied to the surface of the current collector using a conventionally known method such as a coating method. Specifically, an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then the collection is performed. After applying to the surface of the electric body, it is dried. If necessary, the dried product may be compressed to increase the electrode density.
 溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)を例示できる。 Examples of the solvent include N-methyl-2-pyrrolidone (NMP), methanol, and methyl isobutyl ketone (MIBK).
 本発明の第4の実施形態の非水電解質二次電池正極用集電体は金属酸化物又は金属窒化物を含む被覆層を有するので耐腐食性を示し、集電体本体の腐食が極めて起こりにくい。また、本発明の第4の実施形態の非水電解質二次電池正極用集電体は低抵抗を示すため電子移動度が大きく低下しない。これらの結果として、本発明の第4の実施形態の非水電解質二次電池正極用集電体を用いた非水電解質二次電池は、低抵抗を示し、高電位駆動条件下でも良好な容量維持率を示すことができる。そのため、本発明の第4の実施形態の非水電解質二次電池は、大きな充放電容量を有し、かつ優れたサイクル性能を有するものである。ここで、上記高電位駆動条件とは、リチウム金属に対するリチウムイオンの作動電位が4.3V以上、さらには4.5V~5.5Vのことをいう。本発明の第4の実施形態の非水電解質二次電池を用いた場合には、正極の充電電位をリチウム基準で4.3V以上、さらには4.5V~5.5Vとすることができる。なお、一般的なリチウムイオン二次電池の駆動条件においては、リチウム金属に対するリチウムイオンの作動電位は4.3V未満である。 The current collector for a nonaqueous electrolyte secondary battery positive electrode according to the fourth embodiment of the present invention has a coating layer containing a metal oxide or metal nitride, and therefore exhibits corrosion resistance, and the current collector main body is extremely corroded. Hateful. Moreover, since the non-aqueous electrolyte secondary battery positive electrode current collector according to the fourth embodiment of the present invention exhibits low resistance, the electron mobility does not decrease greatly. As a result of these, the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode current collector of the fourth embodiment of the present invention exhibits low resistance and good capacity even under high-potential driving conditions. The maintenance rate can be shown. Therefore, the nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention has a large charge / discharge capacity and excellent cycle performance. Here, the high potential driving condition means that the operating potential of lithium ions with respect to lithium metal is 4.3 V or more, and further 4.5 to 5.5 V. When the non-aqueous electrolyte secondary battery according to the fourth embodiment of the present invention is used, the charging potential of the positive electrode can be set to 4.3 V or higher, further 4.5 V to 5.5 V on the basis of lithium. Note that, under the driving conditions of a general lithium ion secondary battery, the operating potential of lithium ions with respect to lithium metal is less than 4.3V.
 本発明の第4の実施形態の非水電解質二次電池は、電池構成要素として、上記した集電体を有する正極に加えて、負極、セパレータ、電解液を含む。第4の実施形態の負極、セパレータ、電解液は、第1の実施形態と同様のものを使用できる。第4の実施形態の負極、セパレータ、電解液の説明は第1の実施形態の負極、セパレータ、電解液の説明と同じである。 The nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention includes a negative electrode, a separator, and an electrolytic solution as a battery component in addition to the positive electrode having the above-described current collector. The negative electrode, separator, and electrolyte solution of the fourth embodiment can be the same as those of the first embodiment. The description of the negative electrode, separator, and electrolytic solution of the fourth embodiment is the same as that of the negative electrode, separator, and electrolytic solution of the first embodiment.
 本発明の第1~第4の実施形態の非水電解質二次電池は、形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極及び負極にセパレータを挟装させ電極体とし、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。 The nonaqueous electrolyte secondary batteries of the first to fourth embodiments of the present invention are not particularly limited in shape, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be adopted. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
 上記第1~第4の実施形態の非水電解質二次電池は車両に搭載することができる。車両は高容量で高いエネルギー密度を有する非水電解質二次電池を搭載でき、高性能の車両とすることができる。なお車両としては、電池による電気エネルギーを動力源の全部又は一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 The nonaqueous electrolyte secondary batteries of the first to fourth embodiments can be mounted on a vehicle. The vehicle can be equipped with a non-aqueous electrolyte secondary battery having a high capacity and a high energy density, and can be a high-performance vehicle. The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electric assist. Bicycles and electric motorcycles are examples.
 以上、本発明の非水電解質二次電池正極用集電体、その製造方法、非水電解質二次電池用正極及び非水電解質二次電池の各実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As described above, the embodiments of the current collector for the nonaqueous electrolyte secondary battery positive electrode of the present invention, the manufacturing method thereof, the positive electrode for the nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery have been described. It is not limited to the embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
 以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1~7及び比較例1~7)
<集電体へのコート層形成>
 集電体として厚み20μmのアルミニウム箔を準備した。コート層原料として、IZO、AZO、ITO、硫化亜鉛(ZnS)、TiN、ATO、PTO、AlN、SnOを準備した。
(Examples 1 to 7 and Comparative Examples 1 to 7)
<Formation of coat layer on current collector>
An aluminum foil having a thickness of 20 μm was prepared as a current collector. As the coating layer material, IZO, AZO, ITO, zinc sulfide (ZnS), TiN, ATO, PTO, AlN, SnO 2 were prepared.
(集電体1)
 アルミニウム箔をスパッタリング装置に入れ、その表面にIZOをスパッタリングし、膜厚100nmのIZOのコート層を形成した。これを集電体1とする。
(Current collector 1)
The aluminum foil was put in a sputtering apparatus, and IZO was sputtered on the surface thereof to form a 100 nm-thick IZO coating layer. This is the current collector 1.
(集電体2)
 アルミニウム箔をスパッタリング装置に入れ、その表面にAZOをスパッタリングし、膜厚100nmのAZOのコート層を形成した。これを集電体2とする。
(Current collector 2)
The aluminum foil was put into a sputtering apparatus, and AZO was sputtered on the surface to form an AZO coating layer having a thickness of 100 nm. This is the current collector 2.
(集電体3)
 アルミニウム箔をスパッタリング装置に入れ、その表面にITOをスパッタリングし、膜厚100nmのITOのコート層を形成した。これを集電体3とする。
(Current collector 3)
The aluminum foil was put into a sputtering apparatus, and ITO was sputtered on the surface to form an ITO coat layer having a thickness of 100 nm. This is the current collector 3.
(集電体4)
 アルミニウム箔をスパッタリング装置に入れ、その表面にZnSをスパッタリングし、膜厚100nmのZnSのコート層を形成した。これを集電体4とする。
(Current collector 4)
The aluminum foil was put in a sputtering apparatus, and ZnS was sputtered on the surface thereof to form a ZnS coat layer having a thickness of 100 nm. This is the current collector 4.
(集電体5)
 アルミニウム箔を集電体5とする。
(Current collector 5)
The aluminum foil is used as the current collector 5.
(集電体6)
 アルミニウム箔をスパッタリング装置に入れ、その表面にTiNをスパッタリングし、膜厚100nmのTiNのコート層を形成した。これを集電体6とする。
(Current collector 6)
The aluminum foil was put in a sputtering apparatus, and TiN was sputtered on the surface to form a 100 nm-thick TiN coat layer. This is the current collector 6.
(集電体7)
 アルミニウム箔をスパッタリング装置に入れ、その表面にATOをスパッタリングし、膜厚100nmのATOのコート層を形成した。これを集電体7とする。
(Current collector 7)
The aluminum foil was put into a sputtering apparatus, and ATO was sputtered on the surface thereof to form an ATO coating layer having a thickness of 100 nm. This is the current collector 7.
(集電体8)
 アルミニウム箔をスパッタリング装置に入れ、その表面にPTOをスパッタリングし、膜厚100nmのPTOのコート層を形成した。これを集電体8とする。
(Current collector 8)
The aluminum foil was put in a sputtering apparatus, and PTO was sputtered on the surface thereof to form a PTO coating layer having a thickness of 100 nm. This is the current collector 8.
(集電体9)
 アルミニウム箔をスパッタリング装置に入れ、その表面にAlNをスパッタリングし、膜厚100nmのAlNのコート層を形成した。これを集電体9とする。
(Current collector 9)
The aluminum foil was put into a sputtering apparatus, and AlN was sputtered on the surface thereof to form an AlN coat layer having a thickness of 100 nm. This is the current collector 9.
(集電体10)
 アルミニウム箔をスパッタリング装置に入れ、その表面にSnOをスパッタリングし、膜厚100nmのSnOのコート層を形成した。これを集電体10とする。
(Current collector 10)
The aluminum foil was put into a sputtering apparatus, and SnO 2 was sputtered on the surface thereof to form a SnO 2 coating layer having a thickness of 100 nm. This is the current collector 10.
<比抵抗測定>
 上記集電体1~4、6~10の比抵抗値を測定するため、上記集電体1~4、6~10と同様にしてガラス上に100nmのコート層を成膜し、各コート層の比抵抗値を四端針法にて計測した。集電体1のコート層の比抵抗値は8×10―4Ωcm、集電体2のコート層の比抵抗値は3×10―3Ωcm、集電体3のコート層の比抵抗値は1×10―2Ωcm、集電体4のコート層の比抵抗値は1×10Ωcm以上、集電体6のコート層の比抵抗値は5×10―3Ωcm、集電体7のコート層の比抵抗値は7×10―3Ωcm、集電体8のコート層の比抵抗値は3×10―3Ωcm、集電体9のコート層の比抵抗値は1×10Ωcm以上、集電体10のコート層の比抵抗値は1Ωcmであった。
<Specific resistance measurement>
In order to measure the specific resistance values of the current collectors 1 to 4 and 6 to 10, a 100 nm coat layer was formed on the glass in the same manner as the current collectors 1 to 4 and 6 to 10, and each coat layer The specific resistance value was measured by the four-end needle method. The specific resistance value of the coat layer of the current collector 1 is 8 × 10 −4 Ωcm, the specific resistance value of the coat layer of the current collector 2 is 3 × 10 −3 Ωcm, and the specific resistance value of the coat layer of the current collector 3 is 1 × 10 −2 Ωcm, the specific resistance value of the coat layer of the current collector 4 is 1 × 10 8 Ωcm or more, and the specific resistance value of the coat layer of the current collector 6 is 5 × 10 −3 Ωcm, The specific resistance value of the coat layer is 7 × 10 −3 Ωcm, the specific resistance value of the coat layer of the current collector 8 is 3 × 10 −3 Ωcm, and the specific resistance value of the coat layer of the current collector 9 is 1 × 10 8 Ωcm. As described above, the specific resistance value of the coat layer of the current collector 10 was 1 Ωcm.
 <ラミネート型リチウムイオン二次電池作製>
(実施例1)
 集電体1を正極用集電体として用いた実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。まず正極活物質としてLiCo1/3Ni1/3Mn1/3と導電助剤としてアセチレンブラックとを、それぞれ88質量部、6質量部と、結着剤としてポリフッ化ビニリデン(PVDF)6質量部とを混合し、この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。
<Production of laminated lithium-ion secondary battery>
Example 1
A laminate type lithium ion secondary battery of Example 1 using the current collector 1 as a positive electrode current collector was produced as follows. First, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive additive, 88 parts by mass and 6 parts by mass, respectively, and polyvinylidene fluoride (PVDF) 6 as a binder A slurry was prepared by mixing the mixture with parts by mass and dispersing the mixture in an appropriate amount of N-methyl-2-pyrrolidone (NMP).
 上記集電体1にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように集電体1に塗布した。スラリーを塗布した集電体1を80℃で20分間乾燥してNMPを揮発により除去することによって、集電体1の表面に正極活物質層を形成した。その後、ロ-ルプレス機により、集電体1と集電体1上の正極活物質層を強固に密着接合させた。ここで、正極の電極密度は2.3g/cmとした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ50μm程度の正極1とした。 The slurry was placed on the current collector 1 and applied to the current collector 1 using a doctor blade so that the slurry became a film. The positive electrode active material layer was formed on the surface of the current collector 1 by drying the current collector 1 coated with the slurry at 80 ° C. for 20 minutes and removing NMP by volatilization. Thereafter, the current collector 1 and the positive electrode active material layer on the current collector 1 were firmly bonded to each other by a roll press. Here, the electrode density of the positive electrode was set to 2.3 g / cm 3 . The bonded product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and the positive electrode 1 having a thickness of about 50 μm was obtained.
 負極は以下のように作製した。黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン-ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布した。スラリーを塗布した集電体を乾燥してイオン交換水を除去することによって、集電体の表面に負極活物質層を形成した。その後、ロールプレス機により、集電体と集電体上の負極活物質層を強固に密着接合した。負極の電極密度は1.4g/cmとした。負極活物質層の接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ45μm程度の負極とした。 The negative electrode was produced as follows. A mixture of 97 parts by weight of graphite powder, 1 part by weight of acetylene black as a conductive additive, 1 part by weight of styrene-butadiene rubber (SBR) and 1 part by weight of carboxymethylcellulose (CMC) as a binder was obtained. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 μm, which is a negative electrode current collector, in a film shape using a doctor blade. The current collector coated with the slurry was dried to remove the ion exchange water, thereby forming a negative electrode active material layer on the surface of the current collector. Thereafter, the current collector and the negative electrode active material layer on the current collector were tightly bonded by a roll press. The electrode density of the negative electrode was 1.4 g / cm 3 . The joined product of the negative electrode active material layer was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (25 mm × 30 mm rectangular shape), and formed into a negative electrode having a thickness of about 45 μm.
 上記の正極1及び負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極1及び負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネー(DEC)をEC:DEC=3:7(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。 A laminate type lithium ion secondary battery was manufactured using the positive electrode 1 and the negative electrode. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between the positive electrode 1 and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution obtained by dissolving LiPF 6 at 1 mol / l in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 3: 7 (volume ratio) was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode each have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. The laminated lithium ion secondary battery of Example 1 was produced through the above steps.
 (実施例2)
 実施例1における集電体1の代わりに集電体2を用いた以外は実施例1と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。
(Example 2)
A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the current collector 2 was used instead of the current collector 1 in Example 1.
 (比較例1)
 実施例1における集電体1の代わりに集電体5を用いた以外は実施例1と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 1)
A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the current collector 5 was used instead of the current collector 1 in Example 1.
 (比較例2)
 実施例1における集電体1の代わりに集電体3を用いた以外は実施例1と同様にして比較例2のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 2)
A laminated lithium ion secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the current collector 3 was used instead of the current collector 1 in Example 1.
 (比較例3)
 実施例1における集電体1の代わりに集電体4を用いた以外は実施例1と同様にして比較例3のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 3)
A laminated lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the current collector 4 was used instead of the current collector 1 in Example 1.
 (実施例3)
 正極活物質としてLiNi0.5Co0.2Mn0.3を使用し、集電体1の代わりに集電体6を用い、負極の厚みを60μm程度とし、正極の厚みを50μm程度、密度を3.0g/cm程度として、実施例1のP/N比が1.8であるのに対してP/N比が1.3とするようにした以外は実施例1と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。
(Example 3)
LiNi 0.5 Co 0.2 Mn 0.3 O 2 is used as the positive electrode active material, the current collector 6 is used instead of the current collector 1, the negative electrode thickness is about 60 μm, and the positive electrode thickness is about 50 μm. As in Example 1, except that the density was about 3.0 g / cm 3 and the P / N ratio in Example 1 was 1.8, whereas the P / N ratio was 1.3. Thus, a laminate type lithium ion secondary battery of Example 3 was produced.
 (実施例4)
 集電体6の代わりに集電体7を用いた以外は実施例3と同様にして、実施例4のラミネート型リチウムイオン二次電池を作製した。
(Example 4)
A laminated lithium ion secondary battery of Example 4 was produced in the same manner as Example 3 except that the current collector 7 was used instead of the current collector 6.
 (実施例5)
 集電体6の代わりに集電体8を用いた以外は実施例3と同様にして、実施例5のラミネート型リチウムイオン二次電池を作製した。
(Example 5)
A laminated lithium ion secondary battery of Example 5 was produced in the same manner as Example 3 except that the current collector 8 was used instead of the current collector 6.
 (比較例4)
 集電体6の代わりに集電体5を用いた以外は実施例3と同様にして、比較例4のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 4)
A laminated lithium ion secondary battery of Comparative Example 4 was produced in the same manner as in Example 3 except that the current collector 5 was used instead of the current collector 6.
 (比較例5)
 集電体6の代わりに集電体9を用いた以外は実施例3と同様にして、比較例5のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 5)
A laminated lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 3 except that the current collector 9 was used instead of the current collector 6.
 (比較例6)
 集電体6の代わりに集電体10を用いた以外は実施例3と同様にして、比較例6のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 6)
A laminated lithium ion secondary battery of Comparative Example 6 was produced in the same manner as in Example 3 except that the current collector 10 was used instead of the current collector 6.
 (実施例6)
 集電体6の代わりに集電体1を用いた以外は実施例3と同様にして、実施例6のラミネート型リチウムイオン二次電池を作製した。
Example 6
A laminated lithium ion secondary battery of Example 6 was produced in the same manner as in Example 3 except that the current collector 1 was used instead of the current collector 6.
 (実施例7)
 電解液に電解液全体を100質量%とした時に4質量%の1,3-プロパンスルトンを添加した以外は実施例4と同様にして実施例7のラミネート型リチウムイオン二次電池を作製した。
(Example 7)
A laminated lithium ion secondary battery of Example 7 was produced in the same manner as in Example 4 except that 4% by mass of 1,3-propane sultone was added to the electrolytic solution when the total amount of the electrolytic solution was 100% by mass.
 (比較例7)
 電解液に電解液全体を100質量%とした時に4質量%の1,3-プロパンスルトンを添加した以外は比較例4と同様にして比較例7のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 7)
A laminated lithium ion secondary battery of Comparative Example 7 was produced in the same manner as Comparative Example 4 except that 4% by mass of 1,3-propane sultone was added to the electrolytic solution when the total amount of the electrolytic solution was 100% by mass.
<初期容量測定>
 実施例1、実施例2及び比較例1のラミネート型リチウムイオン二次電池の初期容量を測定した。充電は25℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電は電圧3.0V、1CレートでCC放電(定電流放電)を行った。放電容量を測定し結果を表1に示す。
<Initial capacity measurement>
The initial capacities of the laminated lithium ion secondary batteries of Example 1, Example 2, and Comparative Example 1 were measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was held for 1 hour. The discharge was a CC discharge (constant current discharge) at a voltage of 3.0 V and a 1 C rate. The discharge capacity was measured and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に見られるように、実施例1及び実施例2は初期放電容量が比較例1に比べて各々4%及び9%大きくなった。集電体本体にコート層を形成した以外は比較例1と実施例1及び実施例2のラミネート型リチウムイオン二次電池には違いがなく、集電体本体に上記したコート層を形成することでリチウムイオン二次電池の放電容量を比較例1のリチウムイオン二次電池に比べて向上できることがわかった。 As seen in Table 1, the initial discharge capacities of Examples 1 and 2 were 4% and 9% larger than those of Comparative Example 1, respectively. There is no difference between the laminated lithium ion secondary batteries of Comparative Example 1 and Example 1 and Example 2 except that the coat layer is formed on the current collector body, and the above-described coat layer is formed on the current collector body. It was found that the discharge capacity of the lithium ion secondary battery can be improved as compared with the lithium ion secondary battery of Comparative Example 1.
 ここで比較例1における集電体本体には自然形成された不動態膜が形成されていることが予想される。この不動態膜によって、集電体本体の表面の電子の流れが阻害されると予想される。それに対して実施例1及び実施例2における集電体本体には、桁数が10-4及び10―3である比抵抗を有する導電性酸化物からなるコート層が形成されている。そのため集電体本体の表面で電子の流れが阻害されるのが抑制されるため、実施例1及び実施例2の初期放電容量が比較例1の初期放電容量よりも高くなったと推察される。また4.5V―3.0Vという高電圧条件で、ラミネート型リチウムイオン二次電池の初期放電容量が向上できることが確認できた。 Here, it is expected that a passive film formed naturally is formed on the current collector body in Comparative Example 1. This passive film is expected to inhibit the flow of electrons on the surface of the current collector body. On the other hand, the current collector main body in Example 1 and Example 2 is formed with a coat layer made of a conductive oxide having a specific resistance with digits of 10 −4 and 10 −3 . Therefore, since it is suppressed that the flow of electrons is inhibited on the surface of the current collector body, it is presumed that the initial discharge capacity of Example 1 and Example 2 is higher than the initial discharge capacity of Comparative Example 1. Further, it was confirmed that the initial discharge capacity of the laminated lithium ion secondary battery can be improved under a high voltage condition of 4.5 V to 3.0 V.
<レート特性評価>
 実施例1、実施例2、比較例1、比較例2、比較例3のラミネート型リチウムイオン二次電池を用いて25℃でのレート特性を測定した。電圧範囲を4.5V-3.0Vとして1時間で放電する電流レートを1Cとする。電流レートが0.33C、1C、5C、10Cの時の放電容量を測定した。電流レートが0.33Cの時の容量を基準とし、1C容量/0.33C容量、5C容量/0.33C容量、10C容量/0.33C容量の割合を%で表示した。結果を表2に示す。
<Rate characteristics evaluation>
The rate characteristics at 25 ° C. were measured using the laminate type lithium ion secondary batteries of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3. The voltage range is 4.5V-3.0V, and the current rate for discharging in 1 hour is 1C. The discharge capacity when the current rate was 0.33C, 1C, 5C, and 10C was measured. Based on the capacity when the current rate is 0.33 C, the ratio of 1 C capacity / 0.33 C capacity, 5 C capacity / 0.33 C capacity, 10 C capacity / 0.33 C capacity is expressed in%. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2で見られるように、どのラミネート型リチウムイオン二次電池においても電流レートが高くなると容量は低下するが、実施例1及び実施例2のラミネート型リチウムイオン二次電池は、比較例1、比較例2、比較例3のラミネート型リチウムイオン二次電池に比べて高レートにおいてもその容量を維持でき、容量低下が抑制されることがわかった。これは桁数が10-4及び10―3である比抵抗を有する導電性酸化物からなるコート層が集電体に形成されていることによって、高レートにおいても集電体の表面で電子の流れが阻害されることを抑制できるという効果があることがわかった。またレートが高くなるにつれてその効果が顕著になることがわかった。 As can be seen from Table 2, the capacity decreases as the current rate increases in any laminated lithium ion secondary battery, but the laminated lithium ion secondary batteries of Example 1 and Example 2 are comparative examples 1, As compared with the laminate type lithium ion secondary batteries of Comparative Examples 2 and 3, it was found that the capacity could be maintained even at a high rate, and the capacity reduction was suppressed. This is because the current collector has a coating layer made of a conductive oxide having a specific resistance with a digit number of 10 −4 and 10 −3 . It turned out that there exists an effect that it can suppress that a flow is inhibited. Moreover, it turned out that the effect becomes remarkable as a rate becomes high.
 また比較例1と比較例2及び比較例3のラミネート型リチウムイオン二次電池を比較すると、桁数が10―2以上の比抵抗を有するコート層を形成した集電体(比較例2及び比較例3)を用いたラミネート型リチウムイオン二次電池はコート層を形成しない集電体(比較例1)を用いたラミネート型リチウムイオン二次電池よりも高レートにおいて容量低下が大きいことがわかった。上記の結果から、桁数が10-4及び10―3である比抵抗を有する導電性酸化物からなるコート層を集電体本体に形成することにより、ラミネート型リチウムイオン二次電池は特に高レートにおいて容量低下を抑制できることがわかった。 Further, when the laminate type lithium ion secondary batteries of Comparative Example 1, Comparative Example 2 and Comparative Example 3 were compared, a current collector formed with a coat layer having a specific resistance of 10 −2 or more (Comparative Example 2 and Comparative Example 2). It was found that the laminate type lithium ion secondary battery using Example 3) had a larger capacity drop at a higher rate than the laminate type lithium ion secondary battery using a current collector (Comparative Example 1) that did not form a coating layer. . From the above results, the laminate-type lithium ion secondary battery is particularly high by forming a coat layer made of a conductive oxide having a specific resistance with digits of 10 −4 and 10 −3 on the current collector body. It was found that capacity reduction can be suppressed at the rate.
<サイクル特性評価>
 実施例1、実施例2、及び比較例1のラミネート型リチウムイオン二次電池のサイクル特性を評価した。サイクル特性の評価としては、以下の条件で充放電を繰り返したサイクル試験を行い各サイクルの放電容量を測定した。充電は、55℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、25サイクルまでサイクル試験を行った。1サイクル目の放電容量を基準にして各放電容量維持率を計算した。放電容量維持率(%)は以下の式で求めた。
<Cycle characteristic evaluation>
The cycle characteristics of the laminated lithium ion secondary batteries of Example 1, Example 2, and Comparative Example 1 were evaluated. As an evaluation of the cycle characteristics, a cycle test in which charging and discharging were repeated under the following conditions was performed, and the discharge capacity of each cycle was measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate at 55 ° C. and a voltage of 4.5V. The voltage was held for 1 hour. Discharging performed CC discharge (constant current discharge) at 3.0V and 1C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Each discharge capacity retention rate was calculated based on the discharge capacity at the first cycle. The discharge capacity retention rate (%) was determined by the following formula.
 放電容量維持率(%)=(各サイクルの放電容量/1サイクル目の放電容量)×100 Discharge capacity maintenance rate (%) = (discharge capacity of each cycle / discharge capacity of the first cycle) × 100
 実施例1、実施例2及び比較例1のラミネート型リチウムイオン二次電池のサイクル数と容量維持率(%)の関係を示すグラフを図2に示す。図2に示すように実施例1及び実施例2のラミネート型リチウムイオン二次電池では容量維持率が各サイクルにおいて比較例1のラミネート型リチウムイオン二次電池よりも高かった。25サイクル目の容量維持率を比較すると、比較例1のラミネート型リチウムイオン二次電池の容量維持率が64.8%であったのに対し、実施例1のラミネート型リチウムイオン二次電池の容量維持率は72.5%であり、実施例2のラミネート型リチウムイオン二次電池の容量維持率は68.5%であった。 FIG. 2 shows a graph showing the relationship between the number of cycles and the capacity retention rate (%) of the laminated lithium ion secondary batteries of Example 1, Example 2 and Comparative Example 1. As shown in FIG. 2, the capacity retention rate of the laminated lithium ion secondary batteries of Example 1 and Example 2 was higher than that of the laminated lithium ion secondary battery of Comparative Example 1 in each cycle. When comparing the capacity retention rate at the 25th cycle, the capacity retention rate of the laminated lithium ion secondary battery of Comparative Example 1 was 64.8%, whereas that of the laminate type lithium ion secondary battery of Example 1 was The capacity retention rate was 72.5%, and the capacity retention rate of the laminated lithium ion secondary battery of Example 2 was 68.5%.
 桁数が10-4及び10―3である比抵抗を有する導電性酸化物からなるコート層を集電体本体に形成することにより、55℃という高温においてもラミネート型リチウムイオン二次電池のサイクル特性が比較例1に比べて向上することがわかった。このことから集電体本体が電解液により腐食するのを防ぐという保護膜の作用も、比較例1のラミネート型リチウムイオン二次電池に比べて実施例1及び実施例2のラミネート型リチウムイオン二次電池のほうが優れていることがわかった。 By forming a coating layer made of a conductive oxide having a specific resistance of 10 −4 and 10 −3 on the current collector body, the cycle of the laminate-type lithium ion secondary battery can be achieved even at a high temperature of 55 ° C. It was found that the characteristics were improved as compared with Comparative Example 1. Therefore, the protective film prevents the current collector body from being corroded by the electrolytic solution, and the laminated lithium ion secondary battery of Example 1 and Example 2 is also more effective than the laminated lithium ion secondary battery of Comparative Example 1. The secondary battery was found to be superior.
<実施例3、実施例4、比較例4、比較例5、比較例6のラミネート型リチウムイオン二次電池の初期容量及びセル抵抗測定>
 実施例3、実施例4、比較例4、比較例5、比較例6のラミネート型リチウムイオン二次電池の初期容量とセル抵抗を以下のように測定し、比較例4の数値を100と規格化し、数値化を行った。
<Measurement of Initial Capacity and Cell Resistance of Laminated Lithium Ion Secondary Batteries of Example 3, Example 4, Comparative Example 4, Comparative Example 5, and Comparative Example 6>
The initial capacity and cell resistance of the laminated lithium ion secondary batteries of Example 3, Example 4, Comparative Example 4, Comparative Example 5, and Comparative Example 6 were measured as follows, and the numerical value of Comparative Example 4 was set to 100. And digitized.
 初期容量測定は、まず各ラミネート型リチウムイオン二次電池にコンデショニング処理を行いその後に行った。コンデショニング処理は、25℃で所定電圧及び所定レートで充放電を3回繰り返して行った。初期容量測定は以下のように行った。充電は25℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧を一時間保持し、放電は電圧3.0V、1CレートでCC放電(定電流放電)を行った。その後、25℃とし、0.33Cにおける放電容量を測定し、初期容量とした。 The initial capacity measurement was performed by first conditioning each laminated lithium ion secondary battery. The conditioning treatment was performed by repeating charging and discharging three times at a predetermined voltage and a predetermined rate at 25 ° C. Initial capacity measurement was performed as follows. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was maintained for 1 hour, and the discharge was a CC discharge (constant current discharge) at a voltage of 3.0V and a 1C rate. Then, it set to 25 degreeC, the discharge capacity in 0.33C was measured, and it was set as the initial stage capacity | capacitance.
 また1Cレートにおける放電容量も測定し、各0.33Cレートの放電容量を100として1Cレートの放電容量を規格化した。 Also, the discharge capacity at the 1C rate was measured, and the discharge capacity at the 1C rate was normalized with the discharge capacity at each 0.33C rate as 100.
 セル抵抗(Ω)は、SOC(State of charge)20%時の電圧にて3Cレート、10秒放電にて測定した。結果を表3に示す。 The cell resistance (Ω) was measured by 3C rate and 10 second discharge at a voltage of 20% SOC (State of charge). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、実施例3及び実施例4のラミネート型リチウムイオン二次電池の初期容量の規格値は100以上あって、比較例4のラミネート型リチウムイオン二次電池の初期容量の規格値に比べて大きくなり、実施例3及び実施例4のラミネート型リチウムイオン二次電池のセル抵抗の規格値は100より小さく、比較例4のラミネート型リチウムイオン二次電池のセル抵抗の規格値に比べて小さかった。また比抵抗が大きい比較例5及び比較例6のラミネート型リチウムイオン二次電池は初期容量が100より小さく、比較例4のラミネート型リチウムイオン二次電池の初期容量に比べて小さく、かつ比較例5及び比較例6のラミネート型リチウムイオン二次電池のセル抵抗の規格値は100より大きく、比較例4のラミネート型リチウムイオン二次電池のセル抵抗の規格値より大きかった。 As can be seen from Table 3, the standard value of the initial capacity of the laminated lithium ion secondary battery of Example 3 and Example 4 is 100 or more, and the standard of the initial capacity of the laminated lithium ion secondary battery of Comparative Example 4 The standard value of the cell resistance of the laminated lithium ion secondary battery of Example 3 and Example 4 is smaller than 100, and the standard value of the cell resistance of the laminated type lithium ion secondary battery of Comparative Example 4 It was small compared to. The laminated lithium ion secondary batteries of Comparative Examples 5 and 6 having a large specific resistance have an initial capacity smaller than 100, smaller than the initial capacity of the laminated lithium ion secondary battery of Comparative Example 4, and are comparative examples. The standard value of the cell resistance of the laminate type lithium ion secondary battery of No. 5 and Comparative Example 6 was larger than 100, which was larger than the standard value of the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 4.
 ここでセル抵抗は、3Cレートで測定されているため、高レート特性を示す指標となる。セル抵抗は小さい値のほうが高レート特性がよいことを示す。セル抵抗の規格値が100以下であることは比較例4のラミネート型リチウムイオン二次電池に比べて高レート特性が高いことを示す。 Here, since the cell resistance is measured at a 3C rate, it is an index showing high rate characteristics. A smaller value of the cell resistance indicates better high rate characteristics. The standard value of the cell resistance being 100 or less indicates that the high rate characteristic is higher than that of the laminate type lithium ion secondary battery of Comparative Example 4.
 従って実施例3及び実施例4のラミネート型リチウムイオン二次電池は、比較例4のラミネート型リチウムイオン二次電池に比べて高い初期容量及び高い高レート特性を有することがわかった。 Therefore, it was found that the laminated lithium ion secondary batteries of Example 3 and Example 4 had higher initial capacity and higher high rate characteristics than the laminated lithium ion secondary battery of Comparative Example 4.
 また、集電体本体に導電性窒化物をコートした実施例3のラミネート型リチウムイオン二次電池の結果と、集電体本体に導電性酸化物をコートした実施例4のラミネート型リチウムイオン二次電池の結果を比較すると、実施例3のラミネート型リチウムイオン二次電池のセル抵抗の規格値が実施例4のラミネート型リチウムイオン二次電池のセル抵抗の規格値よりも小さく、1Cレートでの放電容量が0.33Cレートにおける放電容量と比較した規格値が実施例3のラミネート型リチウムイオン二次電池が実施例4のラミネート型リチウムイオン二次電池より高いことから、高レート特性は実施例3のラミネート型リチウムイオン二次電池のほうが実施例4のラミネート型リチウムイオン二次電池よりも優れていたことがわかった。この理由は、導電性窒化物のほうが導電性酸化物に比べて機械的強度が高いためと考えられるが明確ではない。 Further, the results of the laminated lithium ion secondary battery of Example 3 in which the current collector body was coated with conductive nitride, and the laminated lithium ion secondary battery of Example 4 in which the current collector body was coated with conductive oxide. Comparing the results of the secondary battery, the standard value of the cell resistance of the laminated lithium ion secondary battery of Example 3 is smaller than the standard value of the cell resistance of the laminated lithium ion secondary battery of Example 4, and the 1C rate Since the laminate type lithium ion secondary battery of Example 3 is higher than the laminate type lithium ion secondary battery of Example 4 in comparison with the discharge capacity at 0.33C rate, the high rate characteristics are It was found that the laminate type lithium ion secondary battery of Example 3 was superior to the laminate type lithium ion secondary battery of Example 4. The reason for this is thought to be because the conductive nitride has higher mechanical strength than the conductive oxide, but it is not clear.
<実施例4、実施例5、実施例6、実施例7、比較例4、比較例6、比較例7のラミネート型リチウムイオン二次電池の初期容量、サイクル特性及びセル抵抗測定>
 実施例4、実施例5、実施例6、実施例7、比較例4、比較例6、比較例7のラミネート型リチウムイオン二次電池の初期容量、サイクル特性及びセル抵抗測定を以下のように行った。
<Initial capacity, cycle characteristics and cell resistance measurement of laminated lithium ion secondary batteries of Example 4, Example 5, Example 6, Example 7, Comparative Example 4, Comparative Example 6, and Comparative Example 7>
Example 4, Example 5, Example 6, Example 7, Comparative Example 4, Comparative Example 6, Comparative Example 7, Laminate type lithium ion secondary battery of initial capacity, cycle characteristics and cell resistance measurement as follows went.
 初期容量は以下のように測定した。充電は25℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧を一時間保持し、放電は電圧3.0V、1CレートでCC放電(定電流放電)を行った。その後、25℃とし、0.33Cにおける放電容量を測定し、初期容量(mAh/g)とした。 The initial capacity was measured as follows. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was maintained for 1 hour, and the discharge was a CC discharge (constant current discharge) at a voltage of 3.0V and a 1C rate. Then, it set to 25 degreeC, the discharge capacity in 0.33C was measured, and it was set as the initial stage capacity (mAh / g).
 セル抵抗(Ω)は、SOC(State of charge)20%時の電圧にて3Cレート、10秒放電にて測定した。 The cell resistance (Ω) was measured by 3C rate and 10 second discharge at a voltage of 20% SOC (State of charge).
 容量維持率は、以下の条件で充放電を繰り返したサイクル試験を行い各サイクルの放電容量を測定した。充電は、55℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、25サイクルまでサイクル試験を行った。その後、25℃とし、0.33Cにおける放電容量を測定した。上記初期容量を基準にして25サイクル後の放電容量から25サイクル後の容量維持率を計算した。容量維持率(%)は以下の式で求めた。 The capacity maintenance rate was measured by measuring the discharge capacity of each cycle by performing a cycle test in which charging and discharging were repeated under the following conditions. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate at 55 ° C. and a voltage of 4.5V. The voltage was held for 1 hour. Discharging performed CC discharge (constant current discharge) at 3.0V and 1C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Then, it set to 25 degreeC and measured the discharge capacity in 0.33C. Based on the initial capacity, the capacity retention rate after 25 cycles was calculated from the discharge capacity after 25 cycles. The capacity retention rate (%) was obtained by the following formula.
 容量維持率(%)=(25サイクル後の放電容量/初期容量)×100 Capacity retention rate (%) = (discharge capacity after 25 cycles / initial capacity) × 100
 結果を表4にまとめた。 The results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各初期容量を比較すると、実施例4、実施例5、実施例6、実施例7、比較例4、比較例6、比較例7のラミネート型リチウムイオン二次電池においてどれも同等な値を示した。 When comparing the initial capacities, the laminated lithium ion secondary batteries of Example 4, Example 5, Example 6, Example 7, Comparative Example 4, Comparative Example 6, and Comparative Example 7 all showed equivalent values. It was.
 セル抵抗を比較すると、比較例6のラミネート型リチウムイオン二次電池のセル抵抗が高くなった以外は、同様の値を示した。セル抵抗は上記したが高レート特性を表す指標であり、値が低い方が高い高レート特性を有することを表す。 When the cell resistance was compared, the same value was obtained except that the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 6 was increased. As described above, the cell resistance is an index indicating the high rate characteristic, and the lower the value, the higher the high rate characteristic.
 容量維持率について、比較例4のラミネート型リチウムイオン二次電池と、実施例4のラミネート型リチウムイオン二次電池と、実施例7のラミネート型リチウムイオン二次電池を比較すると、集電体にコート層がない比較例4のラミネート型リチウムイオン二次電池の容量維持率に対して、集電体にATOのコート層を形成した実施例4のラミネート型リチウムイオン二次電池の容量維持率は向上した。さらに、集電体にATOのコート層を形成し、さらに電解液に1,3-プロパンスルトンを添加した実施例7のラミネート型リチウムイオン二次電池の容量維持率は実施例4のラミネート型リチウムイオン二次電池の容量維持率よりも向上した。 Regarding the capacity retention rate, the laminate type lithium ion secondary battery of Comparative Example 4, the laminate type lithium ion secondary battery of Example 4, and the laminate type lithium ion secondary battery of Example 7 were compared. The capacity retention rate of the laminate type lithium ion secondary battery of Example 4 in which the ATO coat layer was formed on the current collector was compared with the capacity retention rate of the laminate type lithium ion secondary battery of Comparative Example 4 having no coat layer. Improved. Further, the capacity retention rate of the laminated lithium ion secondary battery of Example 7 in which the ATO coat layer was formed on the current collector and 1,3-propane sultone was added to the electrolyte was the laminated lithium ion of Example 4. The capacity retention rate of the ion secondary battery was improved.
 また実施例7のラミネート型リチウムイオン二次電池については、集電体本体にコート層を形成したことによる電解液により集電体本体が腐食するのを防ぐという保護膜の作用と、スルトン基を有する環状化合物を非水電解液が含むことで、活物質などによる非水電解液の分解が抑制できるという作用の両方が発揮され、サイクル特性が大幅に向上したことが確認できた。 In addition, for the laminated lithium ion secondary battery of Example 7, the protective film acts to prevent the current collector body from being corroded by the electrolytic solution resulting from the formation of the coat layer on the current collector body, and the sultone group. It was confirmed that the inclusion of the cyclic compound having the non-aqueous electrolyte exhibited both the effect of suppressing the decomposition of the non-aqueous electrolyte due to the active material and the like, and the cycle characteristics were greatly improved.
 実施例5のラミネート型リチウムイオン二次電池において、集電体本体にPTOからなるコート層が形成されている。表4から実施例5のラミネート型リチウムイオン二次電池は、ATOからなるコート層を形成されている集電体本体を用いた実施例4のラミネート型リチウムイオン二次電池と比べて、初期容量、セル抵抗、容量維持率が同等の結果となった。 In the laminated lithium ion secondary battery of Example 5, a coating layer made of PTO is formed on the current collector body. From Table 4 to Example 5, the laminate-type lithium ion secondary battery has an initial capacity higher than that of the laminate-type lithium ion secondary battery of Example 4 using the current collector body on which the coating layer made of ATO is formed. As a result, the cell resistance and the capacity retention ratio were the same.
(実施例8~10及び比較例8~10)
 <ラミネート型リチウムイオン二次電池作製>
 (実施例8)
 集電体3を正極用集電体として用い、LiPFの代わりにLiBFを電解塩として用いた以外は実施例1と同様にして実施例8のラミネート型リチウムイオン二次電池を作製した。
(Examples 8 to 10 and Comparative Examples 8 to 10)
<Production of laminated lithium-ion secondary battery>
(Example 8)
A laminated lithium ion secondary battery of Example 8 was produced in the same manner as in Example 1 except that the current collector 3 was used as a positive electrode current collector and LiBF 4 was used as an electrolytic salt instead of LiPF 6 .
 (実施例9)
 実施例8における集電体3を集電体1に変えた以外は実施例8と同様にして実施例9のラミネート型リチウムイオン二次電池を作製した。
Example 9
A laminated lithium ion secondary battery of Example 9 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 1.
 (実施例10)
 実施例8における集電体3を集電体2に変えた以外は実施例8と同様にして実施例10のラミネート型リチウムイオン二次電池を作製した。
(Example 10)
A laminated lithium ion secondary battery of Example 10 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 2.
 (比較例8)
 実施例8における集電体3を集電体5に変え、電解塩をLIPFにした以外は実施例8と同様にして比較例8のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 8)
A laminated lithium ion secondary battery of Comparative Example 8 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 5 and the electrolytic salt was changed to LIPF 6 .
 (比較例9)
 実施例8における電解塩をLIPFにした以外は実施例8と同様にして比較例9のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 9)
A laminated lithium ion secondary battery of Comparative Example 9 was produced in the same manner as in Example 8 except that the electrolytic salt in Example 8 was changed to LIPF 6 .
 (比較例10)
 実施例8における集電体3を集電体5に変えた以外は実施例8と同様にして比較例10のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 10)
A laminated lithium ion secondary battery of Comparative Example 10 was produced in the same manner as in Example 8 except that the current collector 3 in Example 8 was changed to the current collector 5.
<初期容量測定>
 実施例8~10、比較例8~10のラミネート型リチウムイオン二次電池の初期容量を測定した。充電は25℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電は電圧3.0V、1CレートでCC放電(定電流放電)を行った。放電容量を測定しこれを初期容量とする。
<Initial capacity measurement>
The initial capacities of the laminated lithium ion secondary batteries of Examples 8 to 10 and Comparative Examples 8 to 10 were measured. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate and a voltage of 4.5 V at 25 ° C. The voltage was held for 1 hour. The discharge was a CC discharge (constant current discharge) at a voltage of 3.0 V and a 1 C rate. The discharge capacity is measured and used as the initial capacity.
<サイクル特性評価>
 初期容量測定に続いて、実施例8~10、比較例8~10のラミネート型リチウムイオン二次電池のサイクル特性を評価した。サイクル特性の評価としては、以下の条件で充放電を繰り返したサイクル試験を行った。充電は、55℃において1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。電圧は一時間保持した。放電は3.0V、1CレートでCC放電(定電流放電)を行った。この充放電を1サイクルとし、25サイクルまでサイクル試験を行った。その後温度を25℃に戻し、1Cレートにて放電容量を測定した。この放電容量をサイクル後容量とした。容量維持率(%)は以下の式で求めた。
<Cycle characteristic evaluation>
Following the initial capacity measurement, the cycle characteristics of the laminated lithium ion secondary batteries of Examples 8 to 10 and Comparative Examples 8 to 10 were evaluated. As an evaluation of the cycle characteristics, a cycle test in which charge and discharge were repeated under the following conditions was performed. Charging was CCCV charging (constant current constant voltage charging) at a 1C rate at 55 ° C. and a voltage of 4.5V. The voltage was held for 1 hour. Discharging performed CC discharge (constant current discharge) at 3.0V and 1C rate. This charging / discharging was made into 1 cycle, and the cycle test was done to 25 cycles. Thereafter, the temperature was returned to 25 ° C., and the discharge capacity was measured at a 1 C rate. This discharge capacity was taken as the post-cycle capacity. The capacity retention rate (%) was obtained by the following formula.
 容量維持率(%)=サイクル後容量/初期容量×100 Capacity retention rate (%) = capacity after cycle / initial capacity x 100
 各実施例及び比較例の初期容量、サイクル後容量及び容量維持率を表5に示す。 Table 5 shows the initial capacity, post-cycle capacity, and capacity retention rate of each of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、比較例8と比較例10のラミネート型リチウムイオン二次電池の結果を比較する。比較例8と比較例10のラミネート型リチウムイオン二次電池は電解塩が異なるだけである。電解塩にLiBFを用いた比較例10のラミネート型リチウムイオン二次電池は電解塩にLIPFを用いた比較例8のラミネート型リチウムイオン二次電池に比べて初期容量は低下するが容量維持率は高くサイクル特性は良好であることがわかった。比較例8と比較例9のラミネート型リチウムイオン二次電池はコート層が形成されているかどうかのみ異なる。コート層が形成された比較例9のラミネート型リチウムイオン二次電池は比較例8のラミネート型リチウムイオン二次電池に比べて容量維持率は高くなるが初期容量は低下した。 From the results of Table 5, the results of the laminated lithium ion secondary batteries of Comparative Example 8 and Comparative Example 10 are compared. The laminate type lithium ion secondary batteries of Comparative Example 8 and Comparative Example 10 differ only in the electrolytic salt. The laminated lithium ion secondary battery of Comparative Example 10 using LiBF 4 as the electrolytic salt has a lower initial capacity than the laminated lithium ion secondary battery of Comparative Example 8 using LIPF 6 as the electrolytic salt, but maintains the capacity. The rate was high and the cycle characteristics were good. The laminated lithium ion secondary batteries of Comparative Example 8 and Comparative Example 9 differ only in whether a coating layer is formed. The laminate type lithium ion secondary battery of Comparative Example 9 on which the coating layer was formed had a higher capacity retention rate but a lower initial capacity than the laminate type lithium ion secondary battery of Comparative Example 8.
 実施例8と比較例10のラミネート型リチウムイオン二次電池の初期容量を比較すると、コート層を形成した実施例8のラミネート型リチウムイオン二次電池の初期容量はコート層がない比較例10のラミネート型リチウムイオン二次電池の初期容量を大幅に向上できることがわかった。そして実施例8のラミネート型リチウムイオン二次電池の容量維持率は比較例10のラミネート型リチウムイオン二次電池の容量維持率よりも大きくなることがわかった。実施例8のラミネート型リチウムイオン二次電池は、比較例10のラミネート型リチウムイオン二次電池と比べて初期容量が向上するだけでなく容量維持率も増加した。このことからコート層を形成しさらに電解塩としてLiBFを用いることによって相乗効果が生まれることがわかった。 Comparing the initial capacities of the laminate type lithium ion secondary batteries of Example 8 and Comparative Example 10, the initial capacity of the laminate type lithium ion secondary battery of Example 8 in which the coat layer was formed was that of Comparative Example 10 having no coat layer. It was found that the initial capacity of the laminated lithium ion secondary battery can be greatly improved. The capacity retention rate of the laminated lithium ion secondary battery of Example 8 was found to be greater than the capacity retention rate of the laminated lithium ion secondary battery of Comparative Example 10. Compared with the laminate type lithium ion secondary battery of Comparative Example 10, the laminate type lithium ion secondary battery of Example 8 not only improved the initial capacity but also increased the capacity retention rate. From this, it was found that a synergistic effect was produced by forming a coat layer and further using LiBF 4 as an electrolytic salt.
 実施例8と比較例9のラミネート型リチウムイオン二次電池の容量維持率を比較すると、電解塩としてLiBFを使用した実施例8のラミネート型リチウムイオン二次電池の容量維持率は電解塩としてLIPFを使用した比較例9のラミネート型リチウムイオン二次電池の容量維持率より高いことがわかった。実施例8のラミネート型リチウムイオン二次電池の初期容量は比較例10のラミネート型リチウムイオン二次電池の初期容量ほど下がらないことがわかった。つまり実施例8のラミネート型リチウムイオン二次電池は初期容量の低減を抑制できサイクル特性をさらに向上できた。また実施例9及び実施例10のラミネート型リチウムイオン二次電池と実施例8のラミネート型リチウムイオン二次電池とを比較すると、実施例9及び実施例10のラミネート型リチウムイオン二次電池の初期容量は、実施例8のラミネート型リチウムイオン二次電池の初期容量とほとんど同じであり、サイクル特性は実施例8のラミネート型リチウムイオン二次電池よりさらに向上した。従って実施例8~10のラミネート型リチウムイオン二次電池は高電圧使用環境下においても初期容量とサイクル特性の両方に優れていることがわかった。 Comparing the capacity retention rates of the laminated lithium ion secondary batteries of Example 8 and Comparative Example 9, the capacity retention ratio of the laminated lithium ion secondary battery of Example 8 using LiBF 4 as the electrolytic salt is It was found that the capacity retention rate of the laminated lithium ion secondary battery of Comparative Example 9 using LIPF 6 was higher. It was found that the initial capacity of the laminated lithium ion secondary battery of Example 8 did not decrease as much as the initial capacity of the laminated lithium ion secondary battery of Comparative Example 10. That is, the laminate type lithium ion secondary battery of Example 8 was able to suppress the reduction of the initial capacity and further improve the cycle characteristics. Further, when the laminate type lithium ion secondary battery of Example 9 and Example 10 and the laminate type lithium ion secondary battery of Example 8 were compared, the initial stage of the laminate type lithium ion secondary battery of Example 9 and Example 10 was compared. The capacity was almost the same as the initial capacity of the laminated lithium ion secondary battery of Example 8, and the cycle characteristics were further improved as compared with the laminated lithium ion secondary battery of Example 8. Therefore, it was found that the laminate type lithium ion secondary batteries of Examples 8 to 10 were excellent in both initial capacity and cycle characteristics even under a high voltage use environment.
 (実施例11及び比較例11~14)
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
(Example 11 and Comparative Examples 11 to 14)
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited by these Examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.
 (実施例11)
 正極の集電体本体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔をスパッタリング装置に入れ、アルミニウム箔の表面に、90質量%の酸化インジウムに10質量%の酸化亜鉛が添加されたIZOをスパッタリングして膜厚100nmの第1層を形成した。その後、上記第1層の表面にSnOをスパッタリングして膜厚100nmの第2層を形成した。第1層と第2層の合計の膜厚は200nmである。
(Example 11)
An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector body. This aluminum foil was put into a sputtering apparatus, and IZO in which 10% by mass of zinc oxide was added to 90% by mass of indium oxide was sputtered on the surface of the aluminum foil to form a first layer having a thickness of 100 nm. Thereafter, SnO 2 was sputtered on the surface of the first layer to form a second layer having a thickness of 100 nm. The total film thickness of the first layer and the second layer is 200 nm.
 次に、活物質として88質量部のLi1.0Ni0.5Co0.2Mn0.3、導電助剤として6質量部のアセチレンブラック、及び結着剤として6質量部のポリフッ化ビニリデン(PVDF)とを混合した。この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。 Next, 88 parts by mass of Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 as an active material, 6 parts by mass of acetylene black as a conductive additive, and 6 parts by mass of polyfluoride as a binder. Vinylidene chloride (PVDF) was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.
 上記第2層の表面に上記スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。スラリーを塗布した集電体を80℃で20分間乾燥して、NMPを揮発により除去し、活物質層を第2層の表面に形成させた。その後、ロ-ルプレス機により活物質層の形成された集電体を圧縮し、集電体、第1層、第2層及び活物質層を強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、非水電解質二次電池用正極とした。 The slurry was placed on the surface of the second layer, and applied with a doctor blade so that the slurry became a film. The current collector coated with the slurry was dried at 80 ° C. for 20 minutes, NMP was removed by volatilization, and an active material layer was formed on the surface of the second layer. Thereafter, the current collector on which the active material layer was formed was compressed by a roll press, and the current collector, the first layer, the second layer, and the active material layer were firmly bonded. The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and used as a positive electrode for a nonaqueous electrolyte secondary battery.
 負極は以下のように作製した。黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン-ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布した。スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ60μm程度の負極とした。 The negative electrode was produced as follows. 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive auxiliary agent, 1 part by mass of styrene-butadiene rubber (SBR) and 1 part by mass of carboxymethyl cellulose (CMC) as a binder were mixed, and this mixture was mixed. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 μm, which is a negative electrode current collector, in a film shape using a doctor blade. The current collector coated with the slurry is dried and pressed, and the bonded product is heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and a negative electrode having a thickness of about 60 μm did.
 上記の非水電解質二次電池用正極及び負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、非水電解質二次電池用正極及び負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、非水電解質二次電池用正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。 A laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode for the nonaqueous electrolyte secondary battery. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between a positive electrode and a negative electrode for a nonaqueous electrolyte secondary battery to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution in which LiPF 6 was dissolved at 1 mol / l in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 3: 7 (volume ratio) was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. In addition, the positive electrode and negative electrode for nonaqueous electrolyte secondary batteries are provided with a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
以上の工程で、実施例11のラミネート型リチウムイオン二次電池を作製した。 Through the above steps, a laminated lithium ion secondary battery of Example 11 was produced.
(比較例11)
 正極の集電体本体の表面に直接活物質層を形成した。すなわち、第1層及び第2層を形成しなかったこと以外は、実施例11と同様の方法で、比較例11のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 11)
An active material layer was formed directly on the surface of the current collector body of the positive electrode. That is, a laminated lithium ion secondary battery of Comparative Example 11 was produced in the same manner as in Example 11 except that the first layer and the second layer were not formed.
(比較例12)
 第2層を形成させなかったこと以外は、実施例11と同様の方法で、比較例12のラミネート型リチウムイオン二次電池を作製した。IZO層の膜厚は100nmである。
(Comparative Example 12)
A laminated lithium ion secondary battery of Comparative Example 12 was produced in the same manner as in Example 11 except that the second layer was not formed. The thickness of the IZO layer is 100 nm.
(比較例13)
第1層を形成させなかったこと以外は、実施例11と同様の方法で、比較例13のラミネート型リチウムイオン二次電池を作製した。SnO層の膜厚は100nmである。
(Comparative Example 13)
A laminated lithium ion secondary battery of Comparative Example 13 was produced in the same manner as in Example 11 except that the first layer was not formed. The film thickness of the SnO 2 layer is 100 nm.
(比較例14)
第1層と第2層を形成順を逆にした、すなわち、集電体本体の表面にSnO層を形成させ、この層の表面にIZO層を形成したこと以外は、実施例11と同様の方法で、比較例14のラミネート型リチウムイオン二次電池を作製した。SnO層とIZO層の合計の膜厚は200nmである。
(Comparative Example 14)
The order of formation of the first layer and the second layer was reversed, that is, the SnO 2 layer was formed on the surface of the current collector body, and the IZO layer was formed on the surface of this layer. The laminate type lithium ion secondary battery of Comparative Example 14 was produced by the method described above. The total film thickness of the SnO 2 layer and the IZO layer is 200 nm.
<評価方法>
 実施例11、比較例11~14のラミネート型リチウムイオン二次電池の初期容量を測定した。測定する電池に対し、25℃、0.33Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)し、そして、電圧3.0V、0.33CレートでCC放電(定電流放電)を行ったときの放電容量を測定し、これを初期容量とした。
<Evaluation method>
The initial capacities of the laminated lithium ion secondary batteries of Example 11 and Comparative Examples 11 to 14 were measured. The battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate, voltage 4.5 V, and CC discharge (constant current discharge) is performed at voltage 3.0 V, 0.33 C rate. The discharge capacity when measured was measured and used as the initial capacity.
 また、ACインピーダンス抵抗測定を行い、100mHzにおける抵抗値を算出した。 Moreover, AC impedance resistance measurement was performed, and the resistance value at 100 mHz was calculated.
 さらに、55℃、1Cレートにて、4.5V-3.0Vの充放電サイクルを200サイクル行い、その後、0.33Cレートでの放電容量を測定して、容量維持率を算出した。容量維持率(%)は以下の式で求めた。 Further, 200 cycles of 4.5V-3.0V charge / discharge cycles were performed at 55 ° C. and 1C rate, and then the discharge capacity at 0.33C rate was measured to calculate the capacity retention rate. The capacity retention rate (%) was obtained by the following formula.
 容量維持率(%)=サイクル後容量/初期容量×100 Capacity retention rate (%) = capacity after cycle / initial capacity x 100
 なお、例えば1時間で放電する電流レートを1Cという。 For example, the current rate for discharging in 1 hour is called 1C.
 これらの結果を表6に示す。 These results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に見られるように、実施例11のラミネート型リチウムイオン二次電池と比較例11、12のラミネート型リチウムイオン二次電池とを比較すると、実施例11のラミネート型リチウムイオン二次電池は集電体本体にIZO層及びSnO層の2種類の保護層が形成されているにもかかわらず、あらかじめ保護層を形成させていない比較例11のラミネート型リチウムイオン二次電池及び保護層がIZO層のみの比較例12のラミネート型リチウムイオン二次電池と同等以上に低い抵抗値を示した。さらに、実施例11のラミネート型リチウムイオン二次電池は、比較例11及び比較例12のラミネート型リチウムイオン二次電池よりも優れた容量維持率を示した。 As seen in Table 6, when the laminate type lithium ion secondary battery of Example 11 and the laminate type lithium ion secondary batteries of Comparative Examples 11 and 12 were compared, the laminate type lithium ion secondary battery of Example 11 was The laminated lithium ion secondary battery and the protective layer of Comparative Example 11 in which the protective layer was not formed in advance even though two types of protective layers of the IZO layer and the SnO 2 layer were formed on the current collector body. The resistance value was equal to or lower than that of the laminate type lithium ion secondary battery of Comparative Example 12 having only the IZO layer. Furthermore, the laminate type lithium ion secondary battery of Example 11 exhibited a capacity retention rate superior to the laminate type lithium ion secondary batteries of Comparative Example 11 and Comparative Example 12.
 実施例11のラミネート型リチウムイオン二次電池と比較例13、14のラミネート型リチウムイオン二次電池とを比較すると、実施例11のラミネート型リチウムイオン二次電池は、保護層がSnO層のみの比較例13のラミネート型リチウムイオン二次電池及び保護層の順序が実施例11のラミネート型リチウムイオン二次電池と異なる比較例14のラミネート型リチウムイオン二次電池よりも、著しく低い抵抗値を示した。 When the laminate type lithium ion secondary battery of Example 11 and the laminate type lithium ion secondary batteries of Comparative Examples 13 and 14 are compared, the protective layer of the laminate type lithium ion secondary battery of Example 11 is only SnO 2 layer. The resistance value of the laminate type lithium ion secondary battery of Comparative Example 13 and the protective layer in the order of the laminate type lithium ion secondary battery of Comparative Example 14, which is different from the laminate type lithium ion secondary battery of Example 11, is significantly lower. Indicated.
 実施例11のラミネート型リチウムイオン二次電池の低い抵抗値は、集電体本体と接する第1層に縮退半導体であってキャリア密度が大きいIZOを用いているため、集電体本体と第1層の界面で生じるショットキー障壁が著しく低減された点、第1層と接する第2層にIZOとバンドギャップが同等のSnOを用いているために両層の電気化学的性質が類似した点の結果として得られたものと理解できる。 The low resistance value of the laminated lithium ion secondary battery of Example 11 is that the first layer in contact with the current collector body uses IZO, which is a degenerate semiconductor and has a high carrier density. The Schottky barrier generated at the interface between the layers is remarkably reduced, and the second layer in contact with the first layer uses SnO 2 having the same band gap as that of IZO. It can be understood that the result was obtained.
 本発明の非水電解質二次電池が低抵抗であり、良好な容量維持率を示したとのこれらの結果から、本発明の非水電解質二次電池は出力特性とサイクル特性に優れていることが確認できた。また、本発明の非水電解質二次電池が4.5Vという高電位駆動条件で使用可能なことも確認できた。 From these results that the nonaqueous electrolyte secondary battery of the present invention has a low resistance and a good capacity retention rate, the nonaqueous electrolyte secondary battery of the present invention is excellent in output characteristics and cycle characteristics. It could be confirmed. It was also confirmed that the nonaqueous electrolyte secondary battery of the present invention can be used under a high potential driving condition of 4.5V.
 (実施例12及び比較例15、16)
(実施例12)
 正極の集電体本体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔をスパッタリング装置に入れ、アルゴンガス雰囲気下で、アルミニウム箔の表面に錫を厚み100nm程度となるようスパッタリングした。錫のスパッタリングの途中から、酸素ガスをスパッタリング装置内に導入した。こうすることで、露出しているアルミニウム箔の表面及び錫の表面にSnOを含む被覆層を膜厚100nm程度で形成させた。すなわち、塗布工程と被覆工程を連続的に行い、集電体11を得た。ここで、集電体本体であるアルミニウムの比抵抗は2.5μΩcm、高抵抗金属であるSn(錫)の比抵抗は11μΩcmである。
(Example 12 and Comparative Examples 15 and 16)
Example 12
An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector body. This aluminum foil was put into a sputtering apparatus, and tin was sputtered to a thickness of about 100 nm on the surface of the aluminum foil under an argon gas atmosphere. Oxygen gas was introduced into the sputtering apparatus during the sputtering of tin. By doing so, a coating layer containing SnO 2 was formed to a thickness of about 100 nm on the exposed aluminum foil surface and tin surface. That is, the current collector 11 was obtained by continuously performing the coating process and the coating process. Here, the specific resistance of aluminum as a current collector body is 2.5 μΩcm, and the specific resistance of Sn (tin) as a high resistance metal is 11 μΩcm.
 正極は以下のように作成した。 The positive electrode was created as follows.
 活物質として94質量部のLi1.0Ni0.5Co0.2Mn0.3、導電助剤として3質量部のアセチレンブラック、及び結着剤として3質量部のポリフッ化ビニリデン(PVDF)を混合した。この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。 94 parts by mass of Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 as an active material, 3 parts by mass of acetylene black as a conductive additive, and 3 parts by mass of polyvinylidene fluoride (as a binder) PVDF) was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.
 集電体11における被覆層の表面に上記スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。スラリーを塗布した集電体11を80℃で20分間乾燥して、NMPを揮発により除去し、活物質層を被覆層の表面に形成させた。その後、ロ-ルプレス機により活物質層の形成された集電体11を圧縮し、集電体11と活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、正極を得た。 The slurry was placed on the surface of the coating layer of the current collector 11 and applied using a doctor blade so that the slurry became a film. The current collector 11 coated with the slurry was dried at 80 ° C. for 20 minutes, NMP was removed by volatilization, and an active material layer was formed on the surface of the coating layer. Thereafter, the current collector 11 on which the active material layer was formed was compressed by a roll press machine, and the current collector 11 and the active material layer were firmly bonded. The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours and cut into a predetermined shape (rectangular shape of 25 mm × 30 mm) to obtain a positive electrode.
 負極は以下のように作製した。 The negative electrode was produced as follows.
 黒鉛粉末97質量部と、導電助剤としてアセチレンブラック1質量部と、結着剤として、スチレン-ブタジエンゴム(SBR)1質量部、カルボキシメチルセルロース(CMC)1質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ60μm程度の負極とした。 97 parts by mass of graphite powder, 1 part by mass of acetylene black as a conductive auxiliary agent, 1 part by mass of styrene-butadiene rubber (SBR) and 1 part by mass of carboxymethyl cellulose (CMC) as a binder were mixed, and this mixture was mixed. A slurry was prepared by dispersing in an appropriate amount of ion-exchanged water. This slurry was applied to a copper foil having a thickness of 20 μm as a negative electrode current collector so as to form a film using a doctor blade, and the current collector coated with the slurry was dried and pressed. It was heated for a time with a vacuum dryer, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and a negative electrode having a thickness of about 60 μm was obtained.
 上記の正極及び負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極及び負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例12のラミネート型リチウムイオン二次電池を作製した。 A laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution in which LiPF 6 was dissolved at 1 mol / l in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 3: 7 (volume ratio) was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode each have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminated lithium ion secondary battery of Example 12 was produced.
(比較例15)
 正極の集電体として、厚み20μmのアルミニウム箔そのものを使用した。これ以外は、実施例12と同様の方法で、比較例15のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 15)
An aluminum foil itself having a thickness of 20 μm was used as a current collector for the positive electrode. Except for this, a laminated lithium ion secondary battery of Comparative Example 15 was produced in the same manner as in Example 12.
(比較例16)
 正極の集電体として、厚み20μmのアルミニウム箔の表面にSnOを含む被覆層を膜厚100nm程度で直接形成させたものを使用した。すなわち、アルミニウム箔と被覆層との間に高抵抗金属を形成しなかったこと以外は、実施例12と同様の方法で、比較例16のラミネート型リチウムイオン二次電池を作製した。
(Comparative Example 16)
The positive electrode current collector was formed by directly forming a coating layer containing SnO 2 with a thickness of about 100 nm on the surface of an aluminum foil having a thickness of 20 μm. That is, a laminated lithium ion secondary battery of Comparative Example 16 was produced in the same manner as in Example 12 except that the high resistance metal was not formed between the aluminum foil and the coating layer.
<評価方法>
 実施例12、比較例15、16のラミネート型リチウムイオン二次電池の初期容量を測定した。測定する電池に対し、25℃、0.33Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)し、そして、電圧3.0V、0.33CレートでCC放電(定電流放電)を行ったときの放電容量を測定し、これを初期容量とした。
<Evaluation method>
The initial capacities of the laminated lithium ion secondary batteries of Example 12 and Comparative Examples 15 and 16 were measured. The battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate, voltage 4.5 V, and CC discharge (constant current discharge) is performed at voltage 3.0 V, 0.33 C rate. The discharge capacity when measured was measured and used as the initial capacity.
 また、ACインピーダンス抵抗測定を行い、100mHzにおける抵抗値を算出した。 Moreover, AC impedance resistance measurement was performed, and the resistance value at 100 mHz was calculated.
 さらに、55℃、1Cレートにて、4.5V-3.0Vの充放電サイクルを200サイクル行い、その後、0.33Cレートでの放電容量を測定して、容量維持率を算出した。容量維持率(%)は以下の式で求めた。 Further, 200 cycles of 4.5V-3.0V charge / discharge cycles were performed at 55 ° C. and 1C rate, and then the discharge capacity at 0.33C rate was measured to calculate the capacity retention rate. The capacity retention rate (%) was obtained by the following formula.
 容量維持率(%)=サイクル後容量/初期容量×100 Capacity retention rate (%) = capacity after cycle / initial capacity x 100
 なお、例えば1時間で放電する電流レートを1Cという。初期容量、抵抗、及び容量維持率の結果を表7に示す。 For example, the current rate for discharging in 1 hour is called 1C. Table 7 shows the results of the initial capacity, resistance, and capacity retention rate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例12と比較例15のラミネート型リチウムイオン二次電池を比較すると、実施例12のラミネート型リチウムイオン二次電池はSnOの被覆層が形成されているにもかかわらず、あらかじめ被覆膜を形成させていない比較例15のラミネート型リチウムイオン二次電池と同等の低い抵抗値を示した。しかも、実施例12のラミネート型リチウムイオン二次電池は、比較例15のラミネート型リチウムイオン二次電池よりも優れた容量維持率を示した。 When the laminated lithium ion secondary battery of Example 12 and Comparative Example 15 are compared, the laminated lithium ion secondary battery of Example 12 has a coating film in advance even though the SnO 2 coating layer is formed. A low resistance value equivalent to that of the laminate type lithium ion secondary battery of Comparative Example 15 in which was not formed was shown. In addition, the laminate type lithium ion secondary battery of Example 12 exhibited a capacity retention rate superior to that of the laminate type lithium ion secondary battery of Comparative Example 15.
 実施例12と比較例16のラミネート型リチウムイオン二次電池を比較すると、実施例12のラミネート型リチウムイオン二次電池の抵抗値が著しく低いことがわかる。 When the laminated lithium ion secondary battery of Example 12 and Comparative Example 16 are compared, it can be seen that the resistance value of the laminated lithium ion secondary battery of Example 12 is extremely low.
 比較例16のラミネート型リチウムイオン二次電池が高抵抗であるのは、集電体を構成するアルミニウムとSnOとの電気化学的性質が大きく異なるため、アルミニウム箔と被覆層のSnOとの界面で大きなショットキー障壁が生じた結果と推察される。 The laminated lithium ion secondary battery of Comparative Example 16 is a high resistance, since the electrochemical properties of aluminum and SnO 2 which constitute the current collector is greatly different, and SnO 2 of the aluminum foil and the covering layer This is probably due to the large Schottky barrier at the interface.
 他方、実施例12のラミネート型リチウムイオン二次電池では、アルミニウム箔と被覆層のSnOとの間にSnが存在することで、アルミニウムとSnとの界面、及びSnとSnOとの界面が存在する。ここで、アルミニウムとSnとの界面で生じる抵抗は、両者が金属同士であり、両者の電気化学的性質が似ているため、問題とならない。SnとSnOの界面について考察すると、SnとSnOとの間の電気化学的性質の差異は、アルミニウムとSnOとの間の電気化学的性質の差異よりも小さい。そのため、SnとSnOの界面で生じるショットキー障壁は、アルミニウムとSnOとの界面で生じるショットキー障壁よりも低いと推察される。しかも、実施例12の集電体はSnの塗布工程とSnOの被覆工程とを連続して行ったため、SnとSnOの間で生じる界面の生成自体が低減されているとも推察される。よって、実施例12のラミネート型リチウムイオン二次電池の抵抗値が比較例16のラミネート型リチウムイオン二次電池の抵抗値と比べて著しく低くなったと考えられる。 On the other hand, in the laminated lithium ion secondary battery of Example 12, the presence of Sn between the aluminum foil and the SnO 2 of the coating layer allows the interface between aluminum and Sn and the interface between Sn and SnO 2 to be present. Exists. Here, the resistance generated at the interface between aluminum and Sn is not a problem because both are metals and their electrochemical properties are similar. Considering the interface between the Sn and SnO 2, the difference in electrochemical properties between Sn and SnO 2 is less than the difference in the electrochemical properties between aluminum and SnO 2. Therefore, it is presumed that the Schottky barrier generated at the interface between Sn and SnO 2 is lower than the Schottky barrier generated at the interface between aluminum and SnO 2 . Moreover, since the current collector of Example 12 was obtained by continuously performing the Sn coating step and the SnO 2 coating step, it is presumed that the generation of the interface generated between Sn and SnO 2 itself is reduced. Therefore, it is considered that the resistance value of the laminated lithium ion secondary battery of Example 12 was significantly lower than the resistance value of the laminated lithium ion secondary battery of Comparative Example 16.
 また、高電位駆動条件下での200サイクル後の容量維持率が、実施例1のラミネート型リチウムイオン二次電池と比較例2のラミネート型リチウムイオン二次電池とで同等であるため、本発明の非水電解質二次電池正極用集電体は耐腐食性に優れているといえる。 Further, since the capacity retention rate after 200 cycles under the high potential driving condition is the same for the laminated lithium ion secondary battery of Example 1 and the laminated lithium ion secondary battery of Comparative Example 2, the present invention It can be said that the current collector for positive electrode of non-aqueous electrolyte secondary battery is excellent in corrosion resistance.
 本発明の非水電解質二次電池正極用集電体を用いた非水電解質二次電池が低抵抗であり、良好な容量維持率を示したとの上記結果から、非水電解質二次電池は出力特性とサイクル特性に優れていることが確認された。また、本発明の非水電解質二次電池正極用集電体が4.5Vという高電位駆動条件で使用可能なことも確認できた。 From the above results that the non-aqueous electrolyte secondary battery using the current collector for positive electrode of the non-aqueous electrolyte secondary battery of the present invention has a low resistance and a good capacity retention rate, the non-aqueous electrolyte secondary battery outputs It was confirmed that the characteristics and cycle characteristics were excellent. It was also confirmed that the current collector for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention can be used under a high potential driving condition of 4.5V.
 上記実施例12及び比較例15、16の結果及び考察から、集電体本体のアルミニウム、高抵抗金属のSn及び被覆層のSnOの存在と、集電体の抵抗との関係が明らかになった。すなわち、集電体本体と被覆層との間に、集電体本体より比抵抗が高い高抵抗金属が存在することで、集電体の抵抗が著しく低くなることが裏付けられた。この関係が上記実施例に限定されるものでなく、集電体本体がアルミニウム以外の銀、銅などの金属の場合、被覆層がSnO以外の酸化インジウム、酸化亜鉛、酸化ニッケル、酸化チタンなどの金属酸化物、窒化アルミニウム、窒化チタンなどの金属窒化物、IZO、AZO、ITOなどの縮退半導体の場合にも妥当し得ることは、上記実施例12と比較例15、16の結果及び考察から、当業者に明らかであろう。 From the results and considerations of Example 12 and Comparative Examples 15 and 16, the relationship between the current collector body aluminum, the high resistance metal Sn and the coating layer SnO 2 is present and the current collector resistance is clarified. It was. That is, it was confirmed that the resistance of the current collector is remarkably lowered by the presence of a high-resistance metal having a specific resistance higher than that of the current collector body between the current collector body and the coating layer. This relationship is not limited to the above embodiments, the current collector body silver than aluminum, for metals such as copper, indium oxide of the coating layer other than SnO 2, zinc oxide, nickel oxide, titanium oxide, etc. From the results and discussion of Example 12 and Comparative Examples 15 and 16, it can be applied to metal nitrides such as metal nitrides such as aluminum nitride and titanium nitride, and degenerate semiconductors such as IZO, AZO, and ITO. Will be apparent to those skilled in the art.

Claims (36)

  1.  集電体本体と、
     該集電体本体の表面に形成された、比抵抗が9.9×10-3Ωcm以下である導電性酸化物或いは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層と、
     を有し、
     前記導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであり、
     前記導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つであることを特徴とする非水電解質二次電池正極用集電体。
    A current collector body;
    From a conductive oxide having a specific resistance of 9.9 × 10 −3 Ωcm or less or a conductive nitride having a specific resistance of 9.9 × 10 −3 Ωcm or less formed on the surface of the current collector body A coat layer,
    Have
    The conductive oxide is obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H to indium oxide, and from F, W, Ta, Sb, P and B to tin oxide. Any one selected from those obtained by adding at least one element selected, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide.
    The non-aqueous electrolyte secondary battery positive electrode current collector, wherein the conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN, and WN.
  2.  前記酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したものはインジウム亜鉛酸化物である請求項1に記載の非水電解質二次電池正極用集電体。 2. The non-aqueous electrolyte secondary battery positive electrode collector according to claim 1, wherein the indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H is indium zinc oxide. Electric body.
  3.  前記酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したものはアルミニウム亜鉛酸化物又はガリウム亜鉛酸化物である請求項1に記載の非水電解質二次電池正極用集電体。 The current collector for a positive electrode of a non-aqueous electrolyte secondary battery according to claim 1, wherein the zinc oxide added with at least one element selected from Ga, Al and B is aluminum zinc oxide or gallium zinc oxide.
  4.  前記導電性酸化物は、酸化錫にF、Ta、Sb、及びPから選ばれる少なくとも一種の元素を添加したものである請求項1に記載の非水電解質二次電池正極用集電体。 The current collector for a nonaqueous electrolyte secondary battery positive electrode according to claim 1, wherein the conductive oxide is obtained by adding at least one element selected from F, Ta, Sb, and P to tin oxide.
  5.  前記導電性窒化物はTiNである請求項1に記載の非水電解質二次電池正極用集電体。 The current collector for a nonaqueous electrolyte secondary battery positive electrode according to claim 1, wherein the conductive nitride is TiN.
  6.  前記コート層の膜厚は、10nm~1μmである請求項1~5のいずれか一項に記載の非水電解質二次電池正極用集電体。 The current collector for a positive electrode of a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the coating layer has a thickness of 10 nm to 1 µm.
  7.  請求項1~6のいずれか一項に記載の非水電解質二次電池正極用集電体を有する非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the current collector for a positive electrode of the nonaqueous electrolyte secondary battery according to any one of claims 1 to 6.
  8.  請求項1に記載の非水電解質二次電池正極用集電体と、
     非水電解液と、を有し、
     前記非水電解液は、該非水電解液を100質量%としたときに、スルトン基を有する環状化合物を2.0質量%以上6.0質量%以下含む非水電解質二次電池。
    The current collector for a non-aqueous electrolyte secondary battery positive electrode according to claim 1,
    A non-aqueous electrolyte, and
    The non-aqueous electrolyte is a non-aqueous electrolyte secondary battery containing 2.0% by mass or more and 6.0% by mass or less of a cyclic compound having a sultone group when the non-aqueous electrolyte is 100% by mass.
  9.  前記スルトン基を有する環状化合物は、1、3-プロパンスルトン、1,4-ブテンスルトン、1,3-プロペンスルトン、3-メチル-1,3-プロペンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン及び3-メチル-1,3-プロパンスルトンからなる群から選ばれる少なくとも1つである請求項8に記載の非水電解質二次電池。 The cyclic compound having a sultone group is 1,3-propane sultone, 1,4-butene sultone, 1,3-propene sultone, 3-methyl-1,3-propene sultone, 1-methyl-1,3-propane sultone The nonaqueous electrolyte secondary battery according to claim 8, which is at least one selected from the group consisting of 2-methyl-1,3-propane sultone and 3-methyl-1,3-propane sultone.
  10.  前記コート層は、酸化錫にF、Sb、Ta及びPから選ばれる少なくとも一種を添加したものからなる請求項8又は9に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 8 or 9, wherein the coating layer is made of tin oxide added with at least one selected from F, Sb, Ta and P.
  11.  集電体本体の表面にスパッタリング法で比抵抗が9.9×10-3Ωcm以下である導電性酸化物或いは比抵抗が9.9×10-3Ωcm以下である導電性窒化物からなるコート層を形成するコート層形成工程を有し、
     前記導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであり、
     前記導電性窒化物はTiN、ZrN、HfN、TaN、NbN、VN及びWNから選ばれるいずれか一つであることを特徴とする非水電解質二次電池正極用集電体の製造方法。
    Coat made from the current collector conductive oxide resistivity by the sputtering method is 9.9 × 10 -3 Ωcm or less on the surface of the body or resistivity conductive nitride is 9.9 × 10 -3 Ωcm or less A coat layer forming step of forming a layer;
    The conductive oxide is obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H to indium oxide, and from F, W, Ta, Sb, P and B to tin oxide. Any one selected from those obtained by adding at least one element selected, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide.
    The method for producing a current collector for a positive electrode of a nonaqueous electrolyte secondary battery, wherein the conductive nitride is any one selected from TiN, ZrN, HfN, TaN, NbN, VN, and WN.
  12.  集電体本体と、該集電体本体の表面に形成された導電性酸化物からなるコート層と、を有する非水電解質二次電池正極用集電体を有する非水電解質二次電池用正極と、
     LiBF(四フッ化ホウ酸リチウム)を電解塩として含有する非水電解質と、
     を有し、
     前記導電性酸化物は、酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したもの、酸化錫にF、W、Ta、Sb、P及びBから選ばれる少なくとも一種の元素を添加したもの、酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したもの並びに酸化チタンにNb元素を添加したものから選ばれるいずれか一つであることを特徴とする非水電解質二次電池。
    A positive electrode for a non-aqueous electrolyte secondary battery having a current collector for a non-aqueous electrolyte secondary battery positive electrode having a current collector body and a coating layer made of a conductive oxide formed on the surface of the current collector body When,
    A non-aqueous electrolyte containing LiBF 4 (lithium tetrafluoroborate) as an electrolytic salt;
    Have
    The conductive oxide is obtained by adding at least one element selected from Zn, Mo, W, Ti, Zr, Sn and H to indium oxide, and from F, W, Ta, Sb, P and B to tin oxide. Any one selected from those obtained by adding at least one element selected, those obtained by adding at least one element selected from Ga, Al and B to zinc oxide, and those obtained by adding Nb element to titanium oxide. A non-aqueous electrolyte secondary battery.
  13.  前記酸化インジウムにZn、Mo、W、Ti、Zr、Sn及びHから選ばれる少なくとも一種の元素を添加したものはインジウム錫酸化物又はインジウム亜鉛酸化物である請求項12に記載の非水電解質二次電池。 The non-aqueous electrolyte according to claim 12, wherein the indium oxide added with at least one element selected from Zn, Mo, W, Ti, Zr, Sn, and H is indium tin oxide or indium zinc oxide. Next battery.
  14.  前記酸化亜鉛にGa、Al及びBから選ばれる少なくとも一種の元素を添加したものはアルミニウム亜鉛酸化物又はガリウム亜鉛酸化物である請求項12に記載の非水電解質二次電池。 13. The nonaqueous electrolyte secondary battery according to claim 12, wherein the zinc oxide added with at least one element selected from Ga, Al and B is aluminum zinc oxide or gallium zinc oxide.
  15.  前記導電性酸化物は比抵抗が9.9×10-3Ωcm以下である請求項12~14のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 12 to 14, wherein the conductive oxide has a specific resistance of 9.9 × 10 -3 Ωcm or less.
  16.  前記コート層の膜厚は、10nm~1μmである請求項12~15のいずれか一項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 12 to 15, wherein the coating layer has a thickness of 10 nm to 1 µm.
  17.  集電体本体と、
     該集電体本体の表面に形成された第1層と、
     該第1層の表面に形成された第2層及び、
     該第2層の表面に形成された活物質層を有し、
     前記第1層の比抵抗が、前記第2層の比抵抗よりも低く、かつ、前記集電体本体の比抵抗よりも高いことを特徴とする非水電解質二次電池用正極。
    A current collector body;
    A first layer formed on the surface of the current collector body;
    A second layer formed on the surface of the first layer; and
    An active material layer formed on the surface of the second layer;
    The positive electrode for a non-aqueous electrolyte secondary battery, wherein the specific resistance of the first layer is lower than the specific resistance of the second layer and higher than the specific resistance of the current collector body.
  18.  前記第2層が、金属酸化物、金属窒化物又は金属炭化物からなる請求項17に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 17, wherein the second layer is made of a metal oxide, a metal nitride, or a metal carbide.
  19.  前記第2層が、酸化インジウム、酸化亜鉛、酸化錫、酸化チタン、酸化ルテニウム、酸化アルミニウム、酸化タンタル、酸化タングステン、酸化クロム及び窒化アルミニウムから選ばれる少なくとも一種である請求項17に記載の非水電解質二次電池用正極。 The non-aqueous solution according to claim 17, wherein the second layer is at least one selected from indium oxide, zinc oxide, tin oxide, titanium oxide, ruthenium oxide, aluminum oxide, tantalum oxide, tungsten oxide, chromium oxide, and aluminum nitride. Positive electrode for electrolyte secondary battery.
  20.  前記第1層が、金属酸化物に他元素を添加した導電性金属酸化物、導電性金属窒化物、又は導電性金属炭化物からなる請求項17~19のいずれか一項に記載の非水電解質二次電池用正極。 The nonaqueous electrolyte according to any one of claims 17 to 19, wherein the first layer is made of a conductive metal oxide, a conductive metal nitride, or a conductive metal carbide obtained by adding another element to a metal oxide. Secondary battery positive electrode.
  21.  前記他元素が、Zn、Mo、W、Ti、Zr、Sn、H、F、Ta、Sb、B、Ga、Al及びNbから選ばれる少なくとも一種である請求項20に記載の非水電解質二次電池用正極。 The non-aqueous electrolyte secondary according to claim 20, wherein the other element is at least one selected from Zn, Mo, W, Ti, Zr, Sn, H, F, Ta, Sb, B, Ga, Al, and Nb. Battery positive electrode.
  22.  前記第1層と前記第2層の組み合わせが、導電性金属酸化物と金属酸化物、導電性金属窒化物と金属窒化物、又は導電性金属炭化物と金属炭化物の組み合わせのいずれか一つから選択される請求項17~21のいずれか一項に記載の非水電解質二次電池用正極。 The combination of the first layer and the second layer is selected from any one of a conductive metal oxide and a metal oxide, a conductive metal nitride and a metal nitride, or a combination of a conductive metal carbide and a metal carbide. The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 17 to 21.
  23. 前記第1層と前記第2層の膜厚の合計が20nm~2μmである請求項17~22のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 17 to 22, wherein the total thickness of the first layer and the second layer is 20 nm to 2 μm.
  24. 前記第1層の膜厚が10nm~1μmであり、前記第2層の膜厚が10nm~1μmである請求項17~23のいずれかに記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 17 to 23, wherein the first layer has a thickness of 10 nm to 1 µm, and the second layer has a thickness of 10 nm to 1 µm.
  25.  前記活物質層が、一般式:
    LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe、Naから選択され、p+q+r+s=1、0≦p≦1、0≦q≦1、0≦r≦1、0≦s<1)で表される複合金属酸化物を含む請求項17~24のいずれか一項に記載の非水電解質二次電池用正極。
    The active material layer has the general formula:
    LiCo p Ni q Mn r D S O 2 (D is selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe, Na, p + q + r + s = 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 17 to 24, comprising a composite metal oxide represented by 1, 0 ≦ r ≦ 1, 0 ≦ s <1).
  26.  請求項17~25のいずれか一項に記載の非水電解質二次電池用正極を有する非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 17 to 25.
  27.  非水電解質二次電池用正極の充電電位がリチウム基準で4.3V以上であることを特徴とする請求項26に記載の非水電解質二次電池。 27. The non-aqueous electrolyte secondary battery according to claim 26, wherein a charge potential of the positive electrode for the non-aqueous electrolyte secondary battery is 4.3 V or more based on lithium.
  28.  集電体本体と金属酸化物又は金属窒化物を含む被覆層とを有する非水電解質二次電池正極用集電体において、
     前記集電体本体と前記被覆層との間に、該集電体本体より比抵抗が高い高抵抗金属を有することを特徴とする非水電解質二次電池正極用集電体。
    In the current collector for a positive electrode of a non-aqueous electrolyte secondary battery having a current collector body and a coating layer containing a metal oxide or metal nitride,
    A current collector for a nonaqueous electrolyte secondary battery positive electrode, comprising a high-resistance metal having a higher specific resistance than the current collector body between the current collector body and the coating layer.
  29.  前記集電体本体の比抵抗が1.5μΩcm~150μΩcmであり、前記高抵抗金属の比抵抗が1.6μΩcm~200μΩcmであり、前記金属酸化物又は前記金属窒化物の比抵抗が10μΩcm~10Ωcmである請求項28に記載の非水電解質二次電池正極用集電体。 The current collector body has a specific resistance of 1.5 μΩcm to 150 μΩcm, the high resistance metal has a specific resistance of 1.6 μΩcm to 200 μΩcm, and the metal oxide or the metal nitride has a specific resistance of 10 μΩcm to 10 8. The current collector for a positive electrode of a nonaqueous electrolyte secondary battery according to claim 28, wherein the current collector is Ωcm.
  30.  前記高抵抗金属が、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロムから選ばれる少なくとも一種である請求項28又は29に記載の非水電解質二次電池正極用集電体。 The high resistance metal is at least one selected from copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, and chromium. A current collector for a positive electrode of the nonaqueous electrolyte secondary battery as described.
  31.  前記金属酸化物が、酸化インジウム、酸化亜鉛、酸化錫、酸化ニッケル、酸化銅、酸化チタン、酸化ルテニウム、酸化アルミニウム、酸化タンタル、酸化タングステン、酸化クロム、酸化マグネシウム、酸化コバルト、酸化鉄から選ばれる少なくとも一種であり、
     前記金属窒化物が、窒化アルミニウム、窒化チタン、窒化銅、窒化マグネシウム、窒化タングステン、窒化コバルト、窒化亜鉛、窒化ニッケル、窒化鉄、窒化錫、窒化インジウム、窒化ルテニウム、窒化タンタル、窒化クロムから選ばれる少なくとも一種である請求項28~30のいずれか一項に記載の非水電解質二次電池正極用集電体。
    The metal oxide is selected from indium oxide, zinc oxide, tin oxide, nickel oxide, copper oxide, titanium oxide, ruthenium oxide, aluminum oxide, tantalum oxide, tungsten oxide, chromium oxide, magnesium oxide, cobalt oxide, and iron oxide. At least one kind,
    The metal nitride is selected from aluminum nitride, titanium nitride, copper nitride, magnesium nitride, tungsten nitride, cobalt nitride, zinc nitride, nickel nitride, iron nitride, tin nitride, indium nitride, ruthenium nitride, tantalum nitride, and chromium nitride. The current collector for a positive electrode of a nonaqueous electrolyte secondary battery according to any one of claims 28 to 30, wherein the current collector is at least one kind.
  32.  前記高抵抗金属と、前記金属酸化物又は前記金属窒化物を構成する金属とが同じ元素である請求項28~31のいずれか一項に記載の非水電解質二次電池正極用集電体。 The non-aqueous electrolyte secondary battery positive electrode current collector according to any one of claims 28 to 31, wherein the high-resistance metal and the metal constituting the metal oxide or the metal nitride are the same element.
  33.  請求項28に記載の非水電解質二次電池正極用集電体の製造方法であって、
     集電体本体の表面に高抵抗金属を塗布する塗布工程と、
     前記塗布工程で得られた集電体の表面に金属酸化物又は金属窒化物を被覆する被覆工程と、
     を含む非水電解質二次電池正極用集電体の製造方法。
    A method for producing a current collector for a non-aqueous electrolyte secondary battery positive electrode according to claim 28, comprising:
    An application process of applying a high-resistance metal to the surface of the current collector body;
    A coating step of coating the surface of the current collector obtained in the coating step with a metal oxide or metal nitride;
    Of a current collector for a positive electrode of a non-aqueous electrolyte secondary battery comprising:
  34.  前記被覆工程が酸素又は窒素雰囲気下にて金属をスパッタすることにより行われる請求項33に記載の非水電解質二次電池正極用集電体の製造方法。 The method for producing a current collector for a nonaqueous electrolyte secondary battery positive electrode according to claim 33, wherein the coating step is performed by sputtering a metal in an oxygen or nitrogen atmosphere.
  35.  前記塗布工程が金属をスパッタすることにより行われ、
     前記被覆工程が酸素又は窒素雰囲気下にて前記塗布工程で用いられた金属と同じ金属をスパッタすることにより行われる請求項33又は34に記載の非水電解質二次電池正極用集電体の製造方法。
    The coating process is performed by sputtering metal,
    The manufacture of a current collector for a nonaqueous electrolyte secondary battery positive electrode according to claim 33 or 34, wherein the coating step is performed by sputtering the same metal as that used in the coating step in an oxygen or nitrogen atmosphere. Method.
  36.  前記塗布工程の終了直前に酸素又は窒素雰囲気下とすることで、前記塗布工程と前記被覆工程とを連続工程とする請求項35に記載の非水電解質二次電池正極用集電体の製造方法。 36. The method for producing a current collector for a non-aqueous electrolyte secondary battery positive electrode according to claim 35, wherein the application step and the coating step are continuous steps by being in an oxygen or nitrogen atmosphere immediately before the end of the application step. .
PCT/JP2013/003025 2012-05-16 2013-05-13 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell WO2013172007A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012112368 2012-05-16
JP2012-112368 2012-05-16
JP2012112372 2012-05-16
JP2012-112372 2012-05-16
JP2012-226547 2012-10-12
JP2012226547 2012-10-12
JP2012-232464 2012-10-22
JP2012232464 2012-10-22

Publications (1)

Publication Number Publication Date
WO2013172007A1 true WO2013172007A1 (en) 2013-11-21

Family

ID=49583436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003025 WO2013172007A1 (en) 2012-05-16 2013-05-13 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Country Status (1)

Country Link
WO (1) WO2013172007A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062696A (en) * 2014-09-16 2016-04-25 株式会社東芝 Electrode material and electrode layer using the same, battery and electrochromic element
WO2016072090A1 (en) * 2014-11-06 2016-05-12 株式会社豊田自動織機 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell
CN106165181A (en) * 2014-04-11 2016-11-23 日产自动车株式会社 Electric device
JP2019033074A (en) * 2017-08-09 2019-02-28 三菱ケミカル株式会社 Nonaqueous electrolytic solution and secondary battery of the nonaqueous electrolytic solution
CN109411764A (en) * 2018-10-30 2019-03-01 东南大学 A kind of preparation method of the compound lithium an- ode collector of nickel oxide-nickel foam
CN110352533A (en) * 2017-05-25 2019-10-18 株式会社东芝 Electricity accumulating unit and accumulating system
CN113764675A (en) * 2018-08-28 2021-12-07 宁德新能源科技有限公司 Pole piece and electrochemical device
JP2022553462A (en) * 2020-09-23 2022-12-23 寧徳新能源科技有限公司 Composite current collector, electrode sheet and electrochemical device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004055247A (en) * 2002-07-18 2004-02-19 Nec Corp Secondary battery and collector for it
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2008290028A (en) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd Light source-integrated photocatalytic apparatus
JP2009009907A (en) * 2007-06-29 2009-01-15 Denso Corp Manufacturing method of electrode
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
JP2010086866A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Electrode sheet and method of manufacturing the same
JP2010176876A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Collector, electrode sheet, and method of manufacturing thereof
JP2010218971A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Manufacturing method of current collector for nonaqueous electrolyte secondary battery, and current collector
JP2011096667A (en) * 2010-12-13 2011-05-12 Toyota Motor Corp Positive electrode collector and method of manufacturing the same
WO2011083585A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
JP2011136890A (en) * 2009-12-29 2011-07-14 Central Glass Co Ltd Lead-free low-melting-point glass paste for insulation coating
JP2012248436A (en) * 2011-05-27 2012-12-13 Dainippon Printing Co Ltd Alkali metal ion secondary battery electrode plate, alkali metal ion secondary battery and battery pack

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004055247A (en) * 2002-07-18 2004-02-19 Nec Corp Secondary battery and collector for it
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2008290028A (en) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd Light source-integrated photocatalytic apparatus
JP2009009907A (en) * 2007-06-29 2009-01-15 Denso Corp Manufacturing method of electrode
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
JP2010086866A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Electrode sheet and method of manufacturing the same
JP2010176876A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Collector, electrode sheet, and method of manufacturing thereof
JP2010218971A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Manufacturing method of current collector for nonaqueous electrolyte secondary battery, and current collector
JP2011136890A (en) * 2009-12-29 2011-07-14 Central Glass Co Ltd Lead-free low-melting-point glass paste for insulation coating
WO2011083585A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
JP2011096667A (en) * 2010-12-13 2011-05-12 Toyota Motor Corp Positive electrode collector and method of manufacturing the same
JP2012248436A (en) * 2011-05-27 2012-12-13 Dainippon Printing Co Ltd Alkali metal ion secondary battery electrode plate, alkali metal ion secondary battery and battery pack

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165181A (en) * 2014-04-11 2016-11-23 日产自动车株式会社 Electric device
EP3131151A1 (en) * 2014-04-11 2017-02-15 Nissan Motor Co., Ltd. Electrical device
EP3131151A4 (en) * 2014-04-11 2017-04-05 Nissan Motor Co., Ltd Electrical device
US10199680B2 (en) 2014-04-11 2019-02-05 Nissan Motor Co., Ltd. Electric device
JP2016062696A (en) * 2014-09-16 2016-04-25 株式会社東芝 Electrode material and electrode layer using the same, battery and electrochromic element
WO2016072090A1 (en) * 2014-11-06 2016-05-12 株式会社豊田自動織機 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell
CN110352533A (en) * 2017-05-25 2019-10-18 株式会社东芝 Electricity accumulating unit and accumulating system
CN110352533B (en) * 2017-05-25 2022-07-19 株式会社东芝 Power storage unit and power storage system
JP2019033074A (en) * 2017-08-09 2019-02-28 三菱ケミカル株式会社 Nonaqueous electrolytic solution and secondary battery of the nonaqueous electrolytic solution
JP7078482B2 (en) 2017-08-09 2022-05-31 三菱ケミカル株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN113764675A (en) * 2018-08-28 2021-12-07 宁德新能源科技有限公司 Pole piece and electrochemical device
CN109411764B (en) * 2018-10-30 2021-06-11 东南大学 Preparation method of nickel nitride-nickel foam composite lithium metal negative current collector
CN109411764A (en) * 2018-10-30 2019-03-01 东南大学 A kind of preparation method of the compound lithium an- ode collector of nickel oxide-nickel foam
JP2022553462A (en) * 2020-09-23 2022-12-23 寧徳新能源科技有限公司 Composite current collector, electrode sheet and electrochemical device
JP7414813B2 (en) 2020-09-23 2024-01-16 寧徳新能源科技有限公司 Composite current collectors, electrode sheets and electrochemical devices

Similar Documents

Publication Publication Date Title
WO2013172007A1 (en) Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US9252429B2 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP5704633B2 (en) Secondary battery
KR20180061322A (en) Non-aqueous electrolyte for high-energy lithium-ion batteries
TWI431841B (en) Electrode active material with high capacity
WO2014021272A1 (en) Non-aqueous electrolyte and power storage device using same
JP6933216B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
WO2015053586A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
JP2015053152A (en) Nonaqueous electrolytic secondary battery
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102112207B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP2014146473A (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP6300021B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6048751B2 (en) Current collector for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017027772A (en) Lithium ion secondary battery and method for manufacturing the same
JP6946536B1 (en) Lithium secondary battery
JP5350190B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP7179956B2 (en) Cathodes for lithium-ion batteries and lithium-ion batteries
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP